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Abstract—The advent of intelligent connected technology has 

greatly enriched the capabilities of vehicles in acquiring 

information. The integration of short-term information from 

limited sensing range and long-term information from cloud-

based systems in vehicle motion planning and control has become 

a vital means to deeply explore the energy-saving potential of 

vehicles. In this study, a traffic-aware ecological cruising control 

(T-ECC) strategy based on a hierarchical framework for 

connected electric vehicles in stochastic traffic environments is 

proposed, leveraging the two distinct temporal-dimension 

information. In the upper layer that is dedicated for speed 

planning, a sustainable energy consumption strategy (SECS) is 

introduced for the first time. It finds the optimal economic speed 

by converting variations in kinetic energy into equivalent battery 

energy consumption based on long-term road information. In the 

lower layer, a synthetic rolling-horizon optimization control 

(SROC) is developed to handle real-time traffic stochasticity. This 

control approach jointly optimizes energy efficiency, battery life, 

driving safety, and comfort for vehicles under dynamically 

changing traffic conditions. Notably, a stochastic preceding vehicle 

model is presented to effectively capture the stochasticity in traffic 

during the driving process. Finally, the proposed T-ECC is 

validated through simulations in both virtual and real-world 

driving conditions. Results demonstrate that the proposed strategy 

significantly improves the energy efficiency of the vehicle. 

 
Index Terms—Eco-driving, Electric vehicles, Energy efficiency, 

Model predictive control, Intelligent connected technology. 

 

I. INTRODUCTION 

nvironmental pollution is a pressing global concern that 

poses significant challenges to sustainable development [1]. 

One of the most prominent pollutions is road traffic emissions, 

which contribute to air pollution and climate change [2]. The 

adverse effects of vehicle emissions on public health and the 

environment necessitate the exploration of effective strategies 

to mitigate the pollution [3]-[4]. In this context, eco-driving has 

emerged as a promising approach to improve energy efficiency, 

cut emissions as well as enhance traffic throughput [5]. It can 

be enabled by training drivers to operate vehicles in an energy-

efficient way, i.e., avoiding unnecessary 
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acceleration/deceleration, idling and stops in a signalized 

corridor, yet it may increase the operational burden on drivers 

and labor cost to society [6], [7]. As an alternative, designing a 

vehicle velocity control strategy (e.g., driver assistance systems) 

can also minimize vehicle energy consumption by optimizing 

the driving profile [8]-[14].  

Up to now, numerous studies have been conducted to 

investigate and to evaluate various aspects of eco-driving 

strategies. Typically, the pulse and glide (PnG) strategy 

proposed by Li et al. [15] is recognized to have better energy 

efficiency performance than constant speed cruising on flat 

roads by the optimal control theory. Lin et al. [16] formulated 

an open-loop optimal control problem considering more 

realistic vehicle powertrain dynamics, an approximate solution 

was derived by employing two- or three-stage operation rules, 

resulting in improved fuel economy for the vehicle. Shan et al. 

[17] investigated the combined effect of bus stops and 

signalized intersections on the energy consumption of 

connected automated electric buses, and a comprehensive speed 

trajectory planning method balancing travel time and energy 

consumption was presented. Dong et al. [18] developed a 

predictive energy-aware driving strategy to minimize energy 

consumption for electric vehicles (EVs) crossing multiple 

signalized intersections. Compared to the constant speed (CS) 

strategy, the proposed method can reduce energy consumption 

by 19.98%. Yan et al. [19] designed an eco-coasting controller, 

which utilizes road information preview to calculate the optimal 

timing and duration for coasting maneuvers, and a tailored real-

time mixed integer programming algorithm is proposed by the 

authors to achieve energy-efficient results that highly 

approximate the globally solutions from dynamic programming. 

Mousa et al. [20] first introduced a deep reinforcement learning 

strategy that mimics human learning behavior to avoid red light 

stops, achieving an average fuel saving of 13.02%. Unlike 

conventional eco-driving control methods that consider only 

longitudinal dynamics, Liu et al. [21] studied a lateral control 

strategy to improve vehicle economy during cornering 

scenarios. However, the studies mentioned above all assume 

that vehicles are operating under free-flowing traffic conditions.  

In real-world traffic environment the dynamic nature of road 
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conditions and traffic patterns significantly influences the 

energy economy of vehicles, thus, the availability of traffic 

information is essential to solving the problem of eco-driving. 

Of particular importance is the emergence of vehicle-to-vehicle 

(V2V) and vehicle-to-infrastructure (V2I) communication 

technologies, which enable vehicles to gather and exchange 

information [22], [23]. These advancements have opened new 

avenues for exploring and optimizing vehicle speed for 

improving energy efficiency. Zhu et al. [24] introduced an 

adaptive cruise control system based on back-stepping 

technology to achieve synergistic optimization of driving safety 

and vehicle economy in a networking environment. Bakibillah 

et al. [25] implemented a learning-based event-driven eco-

driving system by using the automatic driving data of the 

vehicle to generate the optimal speed. Li et al. [26] presented a 

fuel consumption optimization algorithm with model predictive 

control (MPC) for intelligent networked vehicles in a car-

following scenario. Ngo et al. [27] developed a real-time eco-

driving strategy for EVs to generate a safe and economic speed 

profile while avoiding collisions and respecting speed limits. 

Although the aforementioned studies have achieved certain 

benefits, they mainly employ receding horizon optimization 

methods to improve energy efficiency by using short-term 

information only that tends to yield sub-optimal solutions. 

Furthermore, these optimization methods directly focus on 

minimizing fuel or energy consumption in a single layer of 

control, which poses significant challenges in terms of real-time 

computational efficiency, due to the continuous, non-quadratic, 

and highly nonlinear nature of the problem. To alleviate 

computational burden, some scholars have applied convex 

optimization techniques to energy consumption models. Jia et 

al. [28] and Lacombe et al. [29] transformed the problem from 

the time domain to the spatial domain, where the energy 

consumption model can be convexified. However, these 

approaches result in inadequate vehicle energy savings due to 

the mismatch in the energy consumption model. On the other 

hand, some scholars [30]-[32] have addressed the issue of 

computational efficiency by adopting an approach that involves 

tracking a constant maximum speed and adaptively adjusting 

the following distance to ensure safety. However, relying solely 

on a fixed target speed does not fully achieve the optimal 

economic driving, especially on roads with varying slopes. In 

addition, to the best of authors’ knowledge, current eco-driving 

strategies mostly focus on deterministic and singular scenarios, 

which are either free-driving scenarios or car-following 

scenarios [33]-[35]. However, these approaches may be 

impractical for vehicles traveling long distances, as the 

preceding vehicle can appear at any location and time along the 

journey, and this necessitates an eco-driving strategy capable of 

accommodating the stochastic nature of traffic scenarios. 

Meanwhile, properly representing the stochastic characteristics 

of preceding vehicles is also crucial for achieving eco-driving 

in real-world scenarios. 

Based on the state-of-the-art discussions, a layered control 

strategy, called traffic-aware ecological cruising control (T-

ECC), is proposed to support energy-efficient vehicle driving 

for connected electric vehicle (CEV). The proposed method 

incorporates the global nature of long-term information and the 

dynamic nature of short-term information to achieve optimal 

performance in terms of energy efficiency, battery life, driving 

safety, and comfort for CEV. The performance of the proposed 

T-ECC is verified by a stochastic preceding vehicle model to 

evaluate the energy efficiency improvement compared to 

redesign CS strategies. In addition, a real-world experiment is 

conducted to validate the feasibility of T-ECC and the 

reliability of the simulation results. The contributions of this 

paper are threefold: 

1) A full horizon energy-aware speed planning strategy, 

namely, sustainable energy consumption strategy (SECS), 

is developed in the eco-driving of CEV to find long-term 

speed plans by transforming vehicle kinetic energy into 

equivalent battery energy. The validated strategy, with 

the improvement in energy efficiency of real CEV, 

further opens new avenues of thought for eco-driving in 

EVs. 

2) An optimal control strategy, synthetic rolling-horizon 

optimization control (SROC), is designed to conduct 

real-time velocity control subject to the speed plans 

determined in the upper layer in time-varying traffic 

conditions. Compared with the commonly used MPC-

based method, the designed SROC enjoys both the merits 

of MPC and adaptive cruise control (ACC), striking the 

balance between computation efficiency and optimality. 

3) A stochastic preceding vehicle model calibrated on real 

traffic data is designed to construct dynamic traffic 

scenarios for carrying out more realistic simulation trials. 

The rest of this paper is organized as follows. Section II 

formulates the problem of ecological cruise control for EVs and 

establishes the system model. Section III describes the proposed 

T-ECC strategy. Stochastic simulations are conducted to 

evaluate the effectiveness of the proposed strategy in section IV. 

In section V, a real-world vehicle experiment is carried out to 

validate the T-ECC strategy. The paper is concluded in Section 

VI. 

II. PROBLEM FORMULATION 

This section formulates the ecological cruise control problem 

of a CEV and introduces the modelling framework, including 

vehicle motion and powertrain models. 

A. Problem Description 

This paper investigates ecological cruise control on highways 

with diverse gradients in a stochastic driving environment, as 

illustrated in Fig. 1, where the state of the preceding vehicle is 

random, including the initial position, duration on the road and 

its velocity profile. Through the integration of V2I and V2V 

communication, a wealth of real-time traffic information can be 

efficiently obtained by CEV. This includes crucial data such as 

speed limits, road gradient, and the states of preceding vehicles, 

which are transmitted to the ego vehicle. The proposed strategy 

involves calculating the optimized speed to control the 

longitudinal motion of the ego vehicle. The primary objective 

of this strategy is to enhance energy efficiency of the ego 

vehicle, while extending the battery life and maintaining 

driving safety in the context of dynamic and random traffic 
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scenarios. 

 
Fig. 1. Ecological cruising control on a highway with varying slopes. 

B. Vehicle motion model 

Considering that this paper focuses on the longitudinal 

performance of the vehicle, lateral movement is neglected. 

Thus, the longitudinal dynamics of a CEV traveling on a hilly 

road can be described by 

𝛿𝑚𝑎 = 𝐹𝑡 − 𝐹𝑟 − 𝐹𝑔 − 𝐹𝑖 (1) 

with 

𝐹𝑟 = 𝑚𝑔𝑓𝑐𝑜𝑠(𝜃) (2a) 

𝐹𝑔 = 𝑚𝑔𝑠𝑖𝑛(𝜃) (2b) 

𝐹𝑖 = 0.5𝐶𝑑𝜌𝐴𝑣
2 (2c) 

where 𝛿  is the vehicle rotational inertia coefficient, 𝑚  is the 

vehicle mass, 𝑎 is the vehicle acceleration. 𝐹𝑟, 𝐹𝑔 and 𝐹𝑖 are the 

rolling resistance, ramp resistance and air drag resistance, 

respectively. 𝑔  is the gravity constant, 𝑓 ,  𝜃 , and 𝐶𝑑  are the 

rolling resistance factor, gradient and aerodynamic drag factor, 

respectively. 𝐴 is the frontal area, 𝜌 is the air density. 𝐹𝑡 is the 

traction force, originating from the power supplied by the motor 

and transferred to the vehicle wheels through its transmission 

system. The traction force can be described as 

𝐹𝑡 =
𝑇𝑖𝑔𝜂𝑡

𝑟𝑤
(3) 

where 𝑇 is the motor torque, 𝑖𝑔 is the transmission ratio, 𝜂𝑡 is 

the transmission efficiency of the powertrain, 𝑟𝑤  is the tire 

rolling radius of the vehicle  

C. Electric Motor Model 

The subject vehicle is a commercial vehicle equipped with 

two PD18 in-wheel motors, and the efficiency data of the PD18 

motors is provided by Protean Electric Inc. Based on the 

experimental data, a static lookup table is established to depict 

the driving and braking efficiency map of the motor, as depicted 

in Fig. 2. Hence, the power consumption of the entire 

propulsion system is characterized as follows [36] 

𝑃𝑒 = 2𝑃𝑚𝜂𝑚
−𝑠𝑔𝑛(𝑃𝑚) = 2𝑇𝜔𝜂𝑚

−𝑠𝑔𝑛(𝑃𝑚) (4) 

where 𝑃𝑒 is the power consumption of propulsion system, 𝑃𝑚 is 

the required motor power. When 𝑃𝑚 > 0, it consumes energy 

as a motor to drive the vehicle, and when 𝑃𝑚 < 0, it functions 

as a generator to recover electrical energy. 𝑠𝑔𝑛(∙) is the sign 

function, and 𝜂𝑚, as depicted in Fig. 2, represents the motor 

working efficiency, which is related to the torque 𝑇 and speed 

𝜔 of the motor. 

 
Fig. 2. Efficiency map and external characteristics of the electric motor. 

D. Battery model 

The power source of the ego vehicle comes from a battery 

composed of a batch of LiFePO4 cells. The battery not only 

provides the drive energy consumption for the powertrain, but 

also supplies energy for the vehicle accessory, such as air 

conditioning, lighting, etc. Therefore, the terminal battery 

power 𝑃𝑏  can be defined as 

𝑃𝑏 = 𝑃𝑒 + 𝑃𝑎𝑢𝑥 (5) 

where 𝑃𝑎𝑢𝑥 is the auxiliary power. 

To characterize the battery dynamics of ego vehicle, an 

equivalent electrical circuit is used to model the lithium-ion 

phosphate battery system [37], where the complex 

electrochemical reaction inside the battery is ignored, and only 

the charge and discharge characteristics of the battery are 

considered. The battery model is hence given by 

𝑃𝑏 = 𝑈𝑜𝑐𝐼𝑏 − 𝐼𝑏
2𝑅𝑏 (6) 

where 𝐼𝑏 is the battery current. 𝑈𝑜𝑐 and 𝑅𝑏 are the open-circuit 

voltage and internal resistance of the battery, respectively. For 

each LiFePO4 cell, its open circuit voltage and internal 

resistance are defined as functions of battery state of charge 

(SOC) shown in Fig. 3.  

 
Fig. 3. SOC-dependent battery resistance and open circuit voltage. 

The dynamics of SOC is described as 

𝑆𝑂𝐶̇ = −
𝐼𝑏
𝑄𝑏
= −

𝑈𝑜𝑐 −√𝑈𝑜𝑐
2 − 4𝑅𝑏𝑃𝑏

2𝑄𝑏𝑅𝑏
(7) 

where 𝑄𝑏  is the nominal capacity of the battery. 

Battery aging is an important performance metric that 

influces the capacity. In this study, a semi-empirical model 
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based on experimental data is employed to describe the battery 

degradation [38]. This model delineates that the predominant 

factors influencing battery aging are the discharge/charge rates 

and the depth of discharge. It is characterized by an equation 

representing battery capacity loss, which can be expressed as 

𝑄𝑙𝑜𝑠𝑠 = 𝐵 ∙ exp (
−𝐸𝑎(𝐼𝑐)

𝑅𝑎𝑇𝑏
) ∙ (

∫|𝐼𝑏|𝑑𝑡

3600
)

𝑧

(8) 

where 𝑄𝑙𝑜𝑠𝑠  is the battery capacity loss, 𝐵  is the pre-

exponential factor, 𝐸𝑎  is the activation energy related to the 

instantaneous battery discharge/charge rate  𝐼𝑐 , where 𝐸𝑎 =

31700 − 370.3𝐼𝑐 and 𝐼𝑐 = 𝐼𝑏/𝐶𝑏, 𝐶𝑏 is the cell capacity. 𝑅𝑎 is 

the gas constant, 𝑇𝑏  is the ambient temperature, 𝑧 is the power 

law factor.  

III. TRAFFIC-AWARE ECOLOGICAL CRUISING CONTROL 

STRATEGY DESIGN 

To balance the proportions of optimality and computational 

efficiency, a hierarchical T-ECC strategy is presented, as 

depicted in Fig. 4. In addition, the construction of stochastic 

traffic scenarios is also shown in this section. 

 

Fig. 4. Schematic framework of the proposed T-ECC.

A. Sustainable Energy Consumption Strategy  

For the upper-level speed planning, a SECS based on 

deterministic long-term information, such as destination 

location and road gradient information, is developed in T-ECC. 

The proposed SECS is a full horizon planning strategy, inspired 

by Li's PnG strategy, which states that the vehicle body 

functions as an energy store to facilitate the efficiency of the 

internal combustion engine. Based on this finding, we regard 

the kinetic energy of the vehicle body as energy reserve in the 

same way as battery energy with effective power splitting rules 

to minimize the equivalent energy consumption of the system. 

Further, to realize the energy distribution of kinetic energy and 

battery power in EVs, the equivalent consumption 

minimization strategy (ECMS) [39] idea for hybrid vehicles is 

introduced into the speed planning of EVs. In ECMS, the power 

distribution strategy between the internal combustion engine 
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and the electric motor is optimized by minimizing the 

equivalent consumption, which is composed of transient fuel 

consumption and electricity. In addition, converting the 

longitudinal model from the temporal domain to the spatial 

domain will enable effective energy optimization, because most 

of the environmental characteristics associated with traffic 

conditions can fluctuate spatially [28]. For instance, the 

velocity 𝑣 and the road gradient 𝜃 are stated as 𝑣(𝑠) and 𝜃(𝑠), 
respectively. Further, denoting the traveled distance by 𝑠 and 

the trip time by 𝑡, a function 𝑑𝑣 𝑑𝑠⁄  can be defined as follows  
𝑑𝑣

𝑑𝑠
=
𝑑𝑣

𝑑𝑡
∙
𝑑𝑡

𝑑𝑠
=
1

𝑣
∙
𝑑𝑣

𝑑𝑡
(9) 

Therefore, the equivalent energy consumption rate of SECS 

is formulated as 

𝐸𝑠𝑒𝑐𝑠 =
𝐸𝑒 − 𝜆𝐸𝑘
∆𝑠

=
2𝑃𝑒
𝑣
− 𝜆𝑚𝑎 (10) 

with 

𝐸𝑒 = ∫
𝑃𝑏(𝑠)

𝑣(𝑠)
𝑑𝑠

𝑠

𝑠0

(11a) 

𝐸𝑘 = ∫
𝑚(𝑣2(𝑠) − 𝑣0

2(𝑠))

2

𝑠

𝑠0

𝑑𝑠 (11b) 

where 𝐸𝑠𝑒𝑐𝑠 is the equivalent energy consumption rate, 𝐸𝑒  is the 

electricity consumption, 𝐸𝑘  is the kinetic energy variation of 

the vehicle, 𝑠0 is the initial position of a journey, 𝑣0 is the initial 

speed, 𝜆 is the equivalent factor (EF) defined by (12) and (13), 

which is derived from numerical tests. 

𝜆 = 1 − 𝜉 ∙ (𝜎 − 0.5Θ𝑣) ∙ Θ𝑣
3 (12) 

Θ𝑣 =
𝑣 − 0.5(𝑣𝑚𝑎𝑥 + 𝑣𝑚𝑖𝑛)

𝑣𝑚𝑎𝑥 − 𝑣𝑚𝑖𝑛
(13) 

where 𝑣𝑚𝑎𝑥 and 𝑣𝑚𝑖𝑛 are the maximum and minimum vehicle 

speed, respectively. Θ𝑣 is the intermediate variable, 𝜎 and 𝜉 are 

the manipulated parameters with the following constraints 

0.5 < 𝜎 < 1 (14a) 

1 ≤ 𝜉 (14b) 

 
Fig. 5. Profiles of EF and vehicle kinetic energy against vehicle speed. 

It can be seen from the above equation that the EF is a 

function of the vehicle speed 𝑣, influenced by the parameters 𝜉 

and 𝜎. For an insight into the implications of SECS, we assume 

𝜉 = 10, 𝜎 = 0.65, and obtain the profile of the EF and kinetic 

energy against vehicle speed, as shown in Fig. 5. The profiles 

indicate that increasing speed leads to an increase in the kinetic 

energy of the vehicle, at which stage the EF decreases, which 

encourages reducing the kinetic energy of the vehicle body to 

offset the battery consumption, and vice versa. As such, the 

conceptual diagram of SECS is illustrated in Fig.6. The vehicle 

accelerates before going uphill in order to utilize its kinetic 

energy to overcome gravitational potential energy and avoid 

losing speed. Additionally, the vehicle releases kinetic energy 

when driving downhill, preventing unnecessary acceleration to 

reduce battery energy wastage. 

 

Fig. 6. Conceptual diagram of SECS. 

Finally, the upper-level velocity planning is defined as an 

optimal control problem in the spatial domain as follows 

𝑚𝑖𝑛
𝑇 ∈ 𝑢

  𝐽 = ∫ (
𝑃𝑏(𝑇, 𝑣)

𝑣
− 𝜆𝑚𝑎)

⏟          
𝐿(𝑥,𝑢,𝑠)

𝑑𝑠

𝑠𝑓

𝑠0

(15) 

s.t. 

�̇� = 𝑓(𝑥, 𝑢) = [
�̇�(𝑠)

�̇�(𝑠)
] = [

1

𝛿𝑚𝑣
(𝐹𝑡 − 𝐹𝑟 − 𝐹𝑔 − 𝐹𝑖)

1
𝑣⁄

] (16a) 

ℎ(𝑥, 𝑢, 𝑠) =

[
 
 
 
 
 
𝑣𝑚𝑖𝑛 − 𝑣
𝑣 − 𝑣𝑚𝑎𝑥
𝑇𝑚𝑖𝑛 − 𝑇
𝑇 − 𝑇𝑚𝑎𝑥
𝑎𝑚𝑖𝑛 − 𝑎
𝑎 − 𝑎𝑚𝑎𝑥]

 
 
 
 
 

≤ 0 (16b) 

where 𝐿(𝑥, 𝑢, 𝑠) is the cost function, 𝑥 = [𝑣, 𝑡]T  is the state 

variable, 𝑢 = 𝑇 is control variable, 𝑠0 and 𝑠𝑓  are the start and 

end points respectively. Equation (16a) are the system 

dynamics in spatial domain. Equation (16b) collects the input 

and state constraints of the system.  𝑇𝑚𝑖𝑛  and 𝑇𝑚𝑎𝑥  are the 

minimum and maximum motor torque, respectively. 𝑎𝑚𝑖𝑛  and 

𝑎𝑚𝑎𝑥  denote the minimum and maximum vehicle accelerations, 

respectively. 

To alleviate the computational burden of (15), the Gauss 

pseudospectral method (GPM) is used to address the above 

problem, which transforms the continuous optimal control 

problem into a discrete nonlinear programming problem (NLP), 

which can be solved by a well-developed algorithm [40]. In 

GPM, (15) is rewritten as 

𝐽 =
𝑠𝑓 − 𝑠0

2
∫ ℒ(𝑥(𝜏), 𝑢(𝜏), 𝜏)𝑑𝜏
1

−1

(17) 

with 
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𝑠 =
𝑠𝑓 − 𝑠0

2
𝜏 +

𝑠𝑓 + 𝑠0

2
, 𝜏 ∈ [−1,1] (18) 

Next, the discrete and approximate state and input variables 

are performed. Define Legendre-Gauss points  𝜏𝑖 , where 𝑖 =
1, 2,⋯ ,𝑁. Thus, the states variables 𝑋 and control variables 𝑈 
are discretized as  

{
𝑋 = [𝑥(𝜏0), 𝑥(𝜏1), 𝑥(𝜏2),⋯ , 𝑥(𝜏𝑁)]

𝑈 = [𝑢(𝜏0), 𝑢(𝜏1), 𝑢(𝜏2),⋯ , 𝑢(𝜏𝑁)]
(19) 

The Lagrange interpolation are used to approximate the state 

variables and control inputs at collocations points, i.e., 

{
 
 

 
 𝑥(𝜏) ≈ ∑𝐿𝑖(𝜏)

𝑁

𝑖=0

𝑋𝑖

𝑢(𝜏) ≈∑𝐿𝑖(𝜏)

𝑁

𝑖=0

𝑈𝑖

(20) 

where 𝐿𝑖(𝜏) are the Lagrange basis polynomials, that is, 

𝐿𝑖(𝜏) = ∏
𝜏 − 𝜏𝑖
𝜏𝑖 − 𝜏𝑗

𝑁

𝑗=0,𝑗≠𝑖

(21) 

Then, the state variable differentiation can be derived from 

�̇�(𝜏) ≈ ∑�̇�𝑖(𝜏)

𝑁

𝑖=0

𝑋𝑖 =∑𝐷𝑘𝑖

𝑁

𝑖=0

𝑋𝑖 , 𝑘 = 1, 2,⋯ ,𝑁 (22) 

where 𝐷𝑘𝑖 is the differential approximation matrix. Further, the 

state transfer equation of the system can be rewritten in 

algebraic constraints form as follows 

{
𝑋𝐷𝑘 =

𝑠𝑓 − 𝑠0

2
𝑓(𝑋𝑘 , 𝑈𝑘)

𝑋𝑘 ≡ 𝑥(𝜏𝑘), 𝑈𝑘 ≡ 𝑢(𝜏𝑘)
 (23) 

In addition, based on the Gaussian-Lobatto quadrature, the 

cost function is converted into 

𝐽 =
𝑠𝑓 − 𝑠0

2
∑𝜔𝑘ℒ(𝑥(𝜏𝑘), 𝑢(𝜏𝑘))

𝑁

𝑘=0

(24) 

After the aforementioned steps, the whole optimal control 

problem based on the GPM is transformed into 

𝐽 =
𝑠𝑓 − 𝑠0

2
∑𝜔𝑘ℒ(𝑥(𝜏𝑘), 𝑢(𝜏𝑘))

𝑁

𝑘=0

(25) 

s.t. 

𝑋𝐷𝑘 =
𝑠𝑓 − 𝑠0

2
𝑓(𝑋𝑘 , 𝑈𝑘) (26a) 

ℎ(𝑋𝑘 , 𝑈𝑘) ≤ 0, 𝑘 = 1, 2,⋯ ,𝑁 (26b) 

The resulting NLP can be addressed using the sequential 

quadratic programming approach because it is effectively a 

high-dimensional sparse optimization issue [41]. After above 

process, the free-flow velocity-optimal trajectory is obtained 

𝑣𝑒𝑐𝑜. 

B. Synthetic Rolling-horizon Optimization Control 

In the lower layer, to cope with the disturbances from 

preceding vehicles in stochastic road conditions, a SROC 

approach combined ACC and MPC is applied to track 

ecological vehicle speeds planned by the SECS, while ensuring 

vehicle safety, driving comfort, traffic efficiency and battery 

life. 

In SROC, when the preceding vehicle emerges from a certain 

range in front of the ego vehicle, a minimum following distance 

is defined by the intelligent driver model (IDM) for vehicle 

safety [42]-[44], i.e., 

𝑑𝑚𝑖𝑛 = 𝑑0 + 𝑣ℎ𝑚 +
𝑣(𝑣 − 𝑣𝑝)

2√𝑎𝑚𝑎𝑥𝑏
(27) 

where 𝑑0 is the static spacing between vehicles, ℎ𝑚 is the safe 

time headway, 𝑣𝑝 is the speed of preceding vehicle, 𝑎𝑚𝑎𝑥 and 𝑏 

are the maximum acceleration and the comfortable deceleration, 

respectively. Restricting only the minimum following distance 

for ego vehicle may lead to excessive following gaps, which are 

detrimental to traffic efficiency. Therefore, we have also set a 

maximum following distance [26] 

𝑑𝑚𝑎𝑥 = 10 + 𝑣 + 0.0825𝑣
2 (28) 

As for a car-following process, the generally desirable 

following distance [45] can be given by  

𝑑𝑑𝑒𝑠 = 𝑑0 + 𝑣ℎ𝑑 (29) 

where ℎ𝑑 is the desired time headway. Hence, the cost function 

associated with safety and traffic throughput is defined as 

follows 

𝐽𝑑 =

{
 
 

 
 +∞

𝑓1(𝑑𝑑𝑒𝑠 − 𝑑)
2

𝑓2(𝑑 − 𝑑𝑑𝑒𝑠)
2

𝑓3(𝑑 − 𝑑𝑚𝑎𝑥)
2 + 𝑓2(𝑑𝑚𝑎𝑥 − 𝑑𝑑𝑒𝑠)

2

𝑑 < 𝑑𝑚𝑖𝑛
𝑑𝑚𝑖𝑛 ≤ 𝑑 < 𝑑𝑑𝑒𝑠
𝑑𝑑𝑒𝑠 ≤ 𝑑 < 𝑑𝑚𝑎𝑥

𝑑𝑚𝑎𝑥 ≤ 𝑑

 

(30) 

where 𝑑 is the actual following distance, 𝑓𝑖 (𝑖 = 1, 2, 3;  𝑓
3
≫

𝑓
2

) is the cost coefficients, which are set to 2, 1, and 50, 

respectively. 

From the above, by combining energy efficiency, battery life, 

vehicle safety, driving comfort and traffic efficiency, the cost 

function over each moving horizon of MPC is formulated as 

min
𝑢
 𝐽(𝑘) = ∑ 𝑤1

𝐾+𝑁𝑝−1

𝑖=𝑘

(𝑣(𝑘) − 𝑣𝑒𝑐𝑜(𝑘))
2
+ 𝑤2|�̇�(𝑘)|

2 

+𝑤3𝐽𝑑(𝑘) + 𝑤4𝑄𝑙𝑜𝑠𝑠(𝑘)∆𝑡                             (31) 

s.t. 

𝑠(𝑘 + 1) = 𝑠(𝑘) +
𝑣(𝑘 + 1) + 𝑣(𝑘)

2
∆𝑡 (32a) 

𝑣(𝑘 + 1) = 𝑣(𝑘) + 𝑎(𝑘)∆𝑡 (32b) 

𝑎(𝑘) =
1

𝛿𝑚
∙ (𝐹𝑡(𝑘) − 𝐹𝑟(𝑘) − 𝐹𝑔(𝑘) − 𝐹𝑖(𝑘)) (32c) 

𝑣𝑚𝑖𝑛 ≤ 𝑣(𝑘) ≤ 𝑣𝑚𝑎𝑥 (32d) 

𝑇𝑚𝑖𝑛 ≤ 𝑇(𝑘) ≤ 𝑇𝑚𝑎𝑥 (32e) 

𝑎𝑚𝑖𝑛 ≤ 𝑎(𝑘) ≤ 𝑎𝑚𝑎𝑥 (32f) 

where the state variable is 𝑥 = [𝑠, 𝑣]𝑇, the control input is 𝑇. 𝑤𝑖  
(𝑖 = 1, 2, 3, 4) is weight factors. 𝑘 is the current time step, 𝑁𝑝 

is the preview horizon length, ∆𝑡 is the time step length. 

It should be noted that in the discrete-time MPC, in general 

∆𝑡 is not setup in a small scale on account of the computational 

burden. However, during the car-following process, an 

emergency brake could happen in two consecutive time steps, 

leading to a serious safety accident. Therefore, in SROC, the 

continuous ACC [46] is provided as an additional safety 

assistance, which is operated in parallel with the MPC. For the 
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ACC, to ensure absolute safety, the following distance is 

formulated as 

𝑑𝑎𝑐𝑐 = 𝑑0 + 𝑣(𝑘)ℎ𝑎 (33a) 

𝑑𝑚𝑖𝑛 < 𝑑𝑎𝑐𝑐 < 𝑑𝑑𝑒𝑠 (33b) 

where ℎ𝑎 is the time headway. In particular, smaller time steps 

for the ACC, i.e., 𝑁𝑎 ∙ ∆𝑡𝑎𝑐𝑐 = ∆𝑡. The ACC here is based on 

the design of a PD controller. Finally, the whole SROC strategy 

schematic is presented, as shown in Fig. 7, where ACC is 

activated to act as a safety net for guaranteeing safe following 

distance only when 𝑑 < 𝑑𝑚𝑖𝑛, i.e., by the control input of the 

ACC to prevent the possibility of a collision caused by 

unexpected braking of the preceding vehicle in-between time 

steps of the MPC. The pseudo-code for the SROC strategy is 

illustrated as Algorithm 1. 

 

Fig. 7. The schematic of the SROC strategy. 

Alogrithm 1 Implementation algorithm for SROC 

Input: 𝑠𝑝, 𝑣𝑝, 𝜃, 𝑣𝑒𝑐𝑜  

Output: 𝕌𝑜𝑝𝑡 

1: Initialization by setting 𝑥(𝑗) = [𝑠(𝑗), 𝑣(𝑗)]𝑇, 𝑇𝑎𝑐𝑐(𝑗), 
𝑇𝑚𝑝𝑐(𝑗), 𝑣𝑚𝑖𝑛, 𝑣𝑚𝑎𝑥, 𝑇𝑚𝑖𝑛, 𝑇𝑚𝑎𝑥 , 𝑎𝑚𝑖𝑛 , 𝑎𝑚𝑎𝑥, 𝑑0, 𝑑0, ℎ𝑚, 

ℎ𝑎, ℎ𝑑, ∆𝑡, ∆𝑡𝑎𝑐𝑐, 𝑁𝑎, 𝑁𝑝 

2: 𝑗 = 𝑗 + 1 

3: If 𝑗%𝑁𝑎 == 0 or 𝑗 == 0 

4: 𝑥(𝑘) = [𝑠(𝑗), 𝑣(𝑗)]𝑇  

5: For 𝑖 = 0: 1: 𝑁𝑝 − 1 

6: Update 𝑡 ← 𝑡 + ∆𝑡 
7: Update ego-vehicle’s status by Eq(32a), (32b) and (32c) 
     𝑥(𝑘 + 𝑖) ← 𝑓(𝑥(𝑘), 𝑢(𝑘)) 
8: Compute optimal control inputs 𝑇𝑚𝑝𝑐(𝑘 + 𝑖) 

9: Go back to step 5 

10: End For 

11: 𝑢𝑚𝑝𝑐 = 𝑇𝑚𝑝𝑐(𝑘 + 1) 
12: End IF 

13: Else 

14: Update 𝑡 ← 𝑡 +  ∆𝑡𝑎𝑐𝑐  
15: Compute optimal control 𝑢𝑎𝑐𝑐 = 𝑇𝑎𝑐𝑐(𝑗 + 1) by ACC  

16: End Else 

17: 𝑥(𝑗 + 1) ← 𝑓(𝑥(𝑗), 𝑢𝑚𝑝𝑐) 

18: If 𝑑(𝑗 + 1) < 𝑑𝑚𝑖𝑛(𝑗 + 1) 
19: 𝑢(𝑗) = 𝑢𝑚𝑝𝑐 

20: Else 

21: Go back to step 2 

22: Return 𝕌𝑜𝑝𝑡 = 𝑢(𝑗) 

C. Stochastic Preceding Vehicle Model  

To characterize a real long-distance driving scenario where 

the preceding vehicle may appear anytime and anywhere, a 

stochastic preceding vehicle model is developed in this paper. 

In this model, a random number generator first generates an 

arbitrary motion state of the preceding vehicle, then the critical 

frequency of the velocity signal in the real environment is 

determined based on the collected traffic data, eventually, the 

temporal correlation of the velocity is introduced by designing 

a Butterworth low-pass filter.  

The initial position of the preceding vehicle 𝑠𝑝0, the duration 

on the road 𝑡𝑝 and the preceding vehicle’s velocity trajectory 

𝑣𝑝 are generated as Pearson random variables by means of a 

random number generator, and the random properties of these 

variables are calibrated using actual driving data. Notice that 

the simulated velocity trajectory of the preceding vehicle is 

discrete and random instead of being significantly correlated in 

the adjacent temporal domain for real driving conditions. 

Therefore, it is necessary to enhance the temporal correlation of 

𝑣𝑝. We transform the random velocity from the time domain to 

the frequency domain, and for a time-discrete sequence of 

velocities 𝑣𝑝[𝑛]0≤𝑛≤𝑁, its discrete Fourier transform is given by 

𝑉[𝑘] = ∑ 𝑒−𝑗
2𝜋
𝑁
𝑛𝑘𝑣𝑝[𝑛]

𝑁−1

𝑛=0

(34) 

where 0 ≤ 𝑘 ≤ 𝑁 − 1, equation (34) is expanded as 

𝑉[𝑘] = ∑ 𝑣𝑝[𝑛] ∙ [cos (
2𝜋

𝑁
𝑘𝑛) − 𝑗𝑠𝑖𝑛 (

2𝜋

𝑁
𝑘𝑛)]

𝑁−1

𝑛=0

(35) 

It can be seen that the time complexity of Eq. (33) is 𝑂(𝑁2). 
To improve computational efficiency, the Fast Fourier 

Transform (FFT) is employed, which reduces the time 

complexity to 𝑂(𝑁𝑙𝑔𝑁) [47]. In FFT, we assume that 𝑛 = 2𝑚. 

Equation (35) can be reformulated as 

𝑉[𝑘] = ∑ 𝑒
−2𝑗𝜋(2𝑟)𝑘

𝑁 𝑣𝑝[2𝑟] +∑𝑒
−2𝑗𝜋(2𝑟+1)𝑘

𝑁 𝑣𝑝[2𝑟 + 1]

𝑁
2−1

𝑟=0

𝑁
2−1

𝑟=0

 

= ∑𝑒
−2𝑗𝜋𝑟𝑘
𝑁/2 𝑣𝑝[2𝑟]

𝑁
2−1

𝑟=0⏟          
𝐴[𝑘]

+ 𝑒
−2𝑗𝜋𝑘
𝑁 ∑𝑒

−2𝑗𝜋𝑟𝑘
𝑁/2 𝑣𝑝[2𝑟 + 1]

𝑁
2−1

𝑟=0⏟              
𝐵[𝑘]

 

(36) 

where 𝐴[𝑘] and 𝐵[𝑘]  are even-numbered and odd-numbered 

data points, respectively. From this, we can obtain 

𝑉[𝑘] = 𝐴[𝑘] + 𝑒
−2𝑗𝜋𝑘
𝑁 𝐵[𝑘] (37) 

The critical frequency of the real traffic data can be obtained 

by the FFT, which helps us to determine the retained frequency 

components of the velocities generated by the random number 

generator. Further, a Butterworth low-pass filter is designed to 



> IEEE TRANSACTIONS ON TRANSPORTATION ELECTRIFICATION < 

 

8 

introduce time dependence by selecting the cut-off frequency 

(i.e., filter time constant). 

Alogrithm 2 The FFT algorithm 

Input: velocity signal 𝑣𝑝, sampling rate ∆𝑡𝐹𝐹𝑇 

Output: critical frequency 𝐹𝑐 
1: Compute the signal length 𝑛𝑣 

2: Perform fast fourier transform 𝑉[𝑘] ← 𝑣𝑝[𝑛] 

3: Compute the frequency axis 𝐹[𝑛] ← (𝑛, ∆𝑇) 
4: Find the index of the maximum magnitude 𝑛𝑝 ←

    (𝐹[𝑛], 𝑉[𝑘]) 
5: Get the corresponding critical frequency 𝐹𝑐 
6: End 

IV. SIMULATION AND DISCUSSION 
In this section, the effectiveness of the proposed T-ECC is 

verified by several simulations. Note that all simulations are 

carried out on a workstation with Intel® Core™ i7-10875H 

CPU and 16 GB RAM. 

A. Simulation Setup 

To validate the devised strategy, it is imperative to establish 

a simulation environment that incorporates real world road data. 

Our selection for this purpose is an urban expressway situated 

in the northern region of Nanjing, China, as depicted in Fig. 8. 

Spanning a length of 30 km, this expressway serves as an ideal 

candidate. To capture the elevation information of this specific 

road segment, the Google elevation API is leveraged [48], 

which provides accurate and reliable data. In the simulation, 

relevant data for the subject vehicle, including the vehicle body, 

motor, and battery, are summarized in Table I. In addition, other 

parameters related to the proposed strategy and the simulation 

are provided in Table II. 

In the simulation, to better represent the stochasticity of the 

forward traffic environment in ego vehicle driving, we simulate 

1000 stochastic driving conditions by the developed stochastic 

preceding vehicle model and verify the performance of T-ECC 

under free-driving, car-following, and stochastic scenarios (i.e., 

the preceding vehicle may appear at any position of the journey). 

In contrast, a common CS strategy [49] is recognized as a 

benchmark, notably, the IDM is applied in CS to maintain safe 

following distance in response to time-varying traffic. For the 

sake of fairness, different comparison groups are set up for CS, 

i.e., speeds of 50 km/h, 60 km/h, 70 km/h, 80 km/h, and 90 km/h, 

named CS-1, CS-2, CS-3, CS-4, and CS-5, respectively. 

 
Fig. 8. The experimental route in Nanjing City, China. 

TABLE I  

EGO VEHICLE PARAMETERS 

Component Parameter Symbol  Value 

Vehicle 

Mass 𝑚 2000 kg 
Accessory power 𝑃𝑎𝑢𝑥 400 W 

Rotational inertia 

coefficient 
𝛿 1.022 

Tire radius 𝑟𝑤 0.36 m 

Transmission efficiency 
the powertrain 

𝜂𝑡 0.95 

Frontal area A 2.45 m2 

Air-dragging resistance 

coefficient 
𝐶𝑑 0.28 

Transmission ratio 𝑖𝑔 1 

Rolling resistance 

coefficient 
𝑓 0.015 

Air density 𝜌 1.202 kg/m3 

Gravity factor g 9.81 m/s2 

Motor 
Maximum Torque  𝑇𝑚𝑎𝑥 1225 Nm  

Maximum Speed 𝜔𝑚𝑎𝑥 1600 rpm 

Battery  

Pre-exponential factor 𝐵 -1516 

Gas constant 𝑅𝑎 8.314 

Ambient temperature 𝑇𝑏 298 K 

Power law factor 𝑧 0.824 

Cell capacity 𝐶𝑏 25 Ah 

TABLE II  

ALGORITHM PARAMETERS 

Parameter Symbol Value 

Sampling distance ∆𝑠 2 m 

Minimum speed 𝑣𝑚𝑖𝑛 50 km/h 

Maximum speed 𝑣𝑚𝑎𝑥 90 km/h 

Maximum acceleration 𝑎𝑚𝑎𝑥 2 m/s2 
Maximum deceleration 𝑎𝑚𝑖𝑛 -4 m/s2 

Static spacing 𝑑0 4.5 m 

Safe time headway ℎ𝑚 1.5 s 
Comfortable deceleration 𝑏 -2.5 m/s2 

Desired time headway ℎ𝑑 2.5 s 
Sampling time interval ∆t 1 s 

Prediction horizon of MPC 𝑁𝑝 10  

Time headway of ACC ℎ𝑎 1 s 
Sampling horizon of ACC 𝑁𝑎 10 

Sampling interval of ACC ∆𝑡𝑎𝑐𝑐 0.1 s 

B. Simulation Results  

1) Free-driving scenario 

The vehicle speed profile for the T-ECC is depicted in Fig. 9. 

It can be easily observed that the speed of the T-ECC varies 

with road slope. Before climbing uphill, the vehicle accelerates 

in advance to store kinetic energy. This kinetic energy is then 

released while going uphill to offset the increase in gravitational 

potential energy. At the highest point of the road slope, the 

vehicle has the lowest speed. Then, the gravitational potential 

energy is converted into kinetic energy to reduce battery energy 

consumption. This is consistent with our proposed SECS 

superiority. It is this variation in speed that achieves energy 

savings and extended battery life for the vehicle, as confirmed 

in Table III. Table III demonstrates the average speed of the T-

ECC is 69.2 km/h, improving energy efficiency by 8.56% and 

battery life by 17.6% compared to the similarly fast CS-3. 

Compared to other CS strategies, the improvement in vehicle 

energy efficiency is significant as the speed of the CS increases, 

together with a significant reduction in battery capacity loss and 

extended battery life. Despite CS-1 consumes less energy by 

driving at a much lower average speed, the T-ECC can save 

28.3% travel time and 8.7% battery life.  
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To illustrate the energy saving mechanism of T-ECC, the 

motor torques of CS-1, CS-3, CS-5 and T-ECC are compared 

in Fig. 10. It is observed that the torque fluctuation of T-ECC is 

smoother and the braking frequency of the motor is 

significantly reduced, resulting from the SECS strategy in T-

ECC, which increases the speed of the vehicle by converting 

kinetic energy, effectively avoiding the energy wastage caused 

by braking. Meanwhile, T-ECC exhibits a jump from low 

torque to high torque during vehicle drive. Further, we compare 

the motor output power distribution of the T-ECC and CS-3. 

Fig. 11 reveals that the output power of the CS-3 follows a 

normal distribution, while the distribution of the T-ECC is 

loosely distributed. In addition, the maximum and median 

values of motor output power for the T-ECC are smaller than 

the CS-3. 

Finally, Fig. 12 indicates the distribution of motor operating 

states for CS-3 and T-ECC, which we classify the motor 

operating states as driving, coasting and braking. It is observed 

that CS-3 has a higher proportion of driving and braking, 

reaching 55.7% and 35.1% respectively, yet the proportion of 

coasting is only 9.2%. In contrast, the T-ECC is in the coasting 

zone for 36.7% of the journey when the vehicle is driven with 

sufficient energy consumption, suggesting that energy 

efficiency of the vehicle is more favorable in coasting 

conditions, which has been verified in the literature [50]. 

2) Car-following scenario 

In 1000 sets of simulations, one simulation is randomly 

selected to verify effectiveness in a car-following scenario, 

where the vehicle enters a car-following area at 10 km to follow 

the preceding vehicle trajectory generated by the stochastic 

preceding vehicle model. Fig. 13 presents the longitudinal 

velocity profiles of the ego vehicle and the preceding vehicle in 

the car-following zone between 10 and 15 km of the road. It is 

noticeable that the ego vehicle tracks the speed trajectory of 

preceding vehicles well, and also that it decelerates more by 

coasting to avoid excessive braking, which facilitates driving 

comfort and economy of the ego vehicle. At 14 km of the 

journey, causing ego vehicle to perform a significant 

emergency braking maneuver for safety. However, shortly 

thereafter, ego vehicle gradually resumes following the 

preceding vehicle in a steady manner. 

The following distance between the preceding vehicle and 

ego vehicle is displayed in Fig. 14. In Fig. 14, the actual 

following distances fluctuate between the maximum and 

minimum inter-vehicle distance, which demonstrates that the 

proposed following strategy of T-ECC is consistent with 

expectations. As shown in Table IV, the T-ECC consumes 

about 2635 kJ of energy, which achieves a 15.7% improvement 

in energy efficiency and a 26.3% extension in battery life 

compared to the CS-3 with common IDM following strategy. 

These results indicate that the proposed T-ECC strategy has 

fulfilled the energy-saving pursuit while accounting for 

preceding vehicle interference in heavy traffic scenario. 

To demonstrate the security guarantees of the SROC method, 

we also compare the following strategy with only the normal 

MPC. Fig. 15 depicts the following distance for the MPC-based 

car-following strategy. It can be observed that the general trend 

is similar to that of the SROC method. However, upon closer 

examination of the 12.6 km location in both Fig. 14 and Fig. 15, 

as highlighted in Fig. 16, a concern arises. In the MPC approach, 

the gap between vehicles narrows to below the safe minimum 

distance. In contrast, the SROC method avoids such a scenario, 

demonstrating the enhanced safety provided by our proposed 

SROC approach. In terms of computational burden, the single-

step computation time of the benchmark is 20 ms, while the 

SROC method in T-ECC is 25 ms, which is comparable and 

showcase the potential of the proposed method for real-time 

implementation 

 
Fig. 9. Speed profiles of T-ECC. 

 
Fig. 10. Comparison of motor operating torques for the CS-1, CS-3, CS-5 and T-ECC. 
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Fig. 11. Comparison of mechanical power of the motor for the CS-3 and T-

ECC. 

Fig. 12. Comparison of motor operating states distribution of the CS-3 and 

T-ECC. 

  
Fig. 13. Speed trajectory of the ego vehicle and preceding vehicle. Fig. 14. Results for the following distance between the preceding vehicle and 

ego vehicle (SROC). 

  
Fig. 15. Results for the following distance between the preceding vehicle and 
ego vehicle (MPC). 

Fig. 16. Zoomed-in following distance by MPC and SROC in T-ECC. 

TABLE III  

COMPARISON OF THE RESULTS OF DIFFERENT STRATEGIES IN FREE-TRAFFIC SCENARIO 

Strategies Average speed Energy consumption Energy saving by T-ECC Battery capacity loss 
Battery life saving by  

T-ECC 

CS-1 50 km/h 14142 kJ -5.59% 0.0046% 8.70% 

CS-2 60 km/h 15291 kJ 2.35% 0.0048% 12.5% 

CS-3 70 km/h 16329 kJ 8.56% 0.0051% 17.6% 
CS-4 80 km/h 17561 kJ 14.97% 0.0052% 19.2% 

CS-5 90 km/h 18615 kJ 19.79% 0.0055% 23.6% 

T-ECC 69.2 km/h 14932 kJ -- 0.0042% -- 
 

3) Stochastic traffic scenario 

To exhibit fully effectiveness of T-ECC, the results of 1000 

sets of simulations are compared. The energy efficiency 

improvement and battery life extending of the T-ECC 

compared to the CS-3 in the 1000 stochastic simulation are 

shown in Fig. 17 and Fig. 18, respectively. 

In Fig. 17, compared to CS-3, the energy efficiency 

improvements of T-ECC are concentrated between 7% and 

16%, with a maximum energy savings of 20.98%. Fig. 18 

reveals that maximum battery life extension of 35.17% can be 

realized by the T-ECC relative to the CS-3. In the 800 stochastic 

tests, the battery life improvement of T-ECC is predominantly 
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distributed around 20%. Further, the average energy efficiency 

improvement and battery life extension of the T-ECC are 

calculated in Table V, where we can see that the average energy 

economy of T-ECC under 1000 stochastic cases is enhanced by 

11.37%, and meanwhile battery life is promoted by 20.03% in 

comparison to the CS-3. In summary, the above results 

highlight the energy economy and the ability to prevent battery 

degradation for the proposed strategy in random traffic 

scenarios, further confirming the adaptability and robustness of 

the T-ECC. 

  
Fig. 17. Energy efficiency improvement during 1000 stochastic simulations. Fig. 18. Battery life improvement during 1000 stochastic simulations. 

  
Fig. 19. EF curves with different σ values Fig. 21. EF curves with different 𝜉 values. 

 
Fig. 20. Vehicle speed profiles with different σ. 

 
Fig. 22. Vehicle speed profiles with different 𝜉. 
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TABLE IV  

RESULTS OF DIFFERENT FOLLOWING STRATEGIES IN HEAVY TRAFFIC SCENARIO 

Strategies Energy consumption Energy saving Battery capacity loss Battery life saving 

CS-3(IDM) 3216 kJ 
15.7% 

0.0019% 
26.3% 

T-ECC 2635 kJ 0.0014% 
 

TABLE V 
AVERAGE ENERGY SAVINGS AND AVERAGE BATTERY LIFE EXTENDING 

DURING 1000 STOCHASTIC SIMULATIONS 

Strategies Average energy saving 
Average battery life 

saving 

CS-3 
11.37% 20.03% 

T-ECC 

C. Sensitivity Analysis of Equivalent Factor 

In this section, sensitivity analyses are performed to quantify 

the contribution of 𝜉 and 𝜎 to the EF between kinetic energy 

and electricity consumption. We set the 𝜎 (0.5 < 𝜎 < 1)  as 

0.55, 0.65, 0.75, 0.85, and 0.95, the EF curves and vehicle speed 

profiles with different σ are shown in Fig. 19 and Fig. 20 

respectively. As depicted in Fig 19, the variation trend of the 

EF remains consistent across different values of 𝜎,  fluctuating 

around 1. It can be seen that the EF is relatively small at higher 

speeds, i.e., when the kinetic energy of the vehicle is higher, it 

is more desirable to replace the battery power consumption with 

body kinetic energy by reducing the kinetic energy conversion 

weights, and vice versa. Additionally, within the speed limit 

range of 50 to 90 km/h, the impact of 𝜎 on EF becomes more 

significant as it increases. Fig. 20 illustrates that the velocity 

profiles between 50 km/h and 90 km/h exhibit a high degree of 

similarity. Therefore, modifying the value of 𝜎  would have 

negligible effects on the cruising velocity profile within the 

low-speed range. However, noticeable discrepancies become 

apparent within the range of 80 to 90 km/h. When 𝜎 increases, 

the range of speeds becomes narrower, preventing the 

attainment of a top speed of 90 km/h due to an excessively large 

constant in the high-speed region. 

Subsequently, we proceed with the other parameter analysis 

focusing on 𝜉 , which is subject to the constraint 𝜉≥1. Five 

distinct values of 𝜉 are chosen for evaluation: 1, 2.5, 5, 10, and 

20. The variations of the EF corresponding to these different 𝜉 

values are graphically presented in Fig. 21. It can be seen that 

five lines exhibit notable variances, particularly within the 

range of 50 to 90 km/h. With an increase in 𝜉, the effect on the 

change rate of EF becomes more evident. It is noteworthy that 

the EF displays a higher sensitivity to the variable 𝜉 compared 

to 𝜎 , meanwhile, the velocity profiles depicted in Fig. 22 

demonstrate clear distinctions between them. In Fig. 22, as 𝜉 

increases within the range of 50 to 90 km/h, the minimum 

cruising speed rises, resulting in an upward shift of the lower 

limit of the speed range. Similarly, an increase in 𝜉 leads to a 

decrease in the upper limit of cruising speed. When considering 

the overall cruise speed profile, larger values of 𝜉 result in a 

narrower range of speeds for CEV. 

V. VEHICLE-IN-THE-LOOP TEST 

A. Vehicle Instrumentation 

In this study, an eco-driving CEV platform is built composed 

of global navigation satellite system/inertial navigation system 

(GNSS/INS), millimeter-wave radar (MMW), LiDAR, and 

cameras, which is an organic combination of connected vehicle 

technology and autonomous driving shown in Fig. 23. Based 

on these in-vehicle sensing devices for acquiring road elevation, 

speed limit, and traffic information, the upper control system of 

the CEV experiment platform processes and fuses data from 

multiple sensors. It employs the proposed T-ECC algorithm to 

determine the underlying control commands of CEV and 

subsequently transmits them to the underlying actuators, 

enabling the execution of the vehicle's driving and braking 

operations in the autonomous driving mode, where the 

controller is executed at a frequency of 10 Hz. In the CEV 

platform, the software system based on the robotics operating 

system (ROS) is developed, connecting the drivers, data parsers 

and algorithms of the various components. Note that the ROS 

software platform is running on Ubuntu 16.04LTS and the 

framework is shown in Fig. 24. 

 
Fig.23. The experimental platform and test road for the connected and 

automated vehicle. 

In this real-world experiment, two vehicles with autonomous 

driving capabilities are used. The ego vehicle is based on the 

modified Chery Little-Ant, while the preceding vehicle we 

selected is a CEV that tracked a predetermined speed trajectory 

to depict controlled forward traffic behavior. The test is 

conducted on a closed road with a total length of 6000m. The 

first 4000 m simulates a free-flow traffic scenario without a 

preceding vehicle, representing an unrestricted traffic flow. At 
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the 4000 m of experimental road, a preceding vehicle appears, 

and the remaining 2000 m simulate a car-following scenario. 

This allows for the evaluation and testing of the ego vehicle's 

behavior in following the preceding vehicle. 

 

Fig. 24. A framework for ROS software. 

TABLE VI  

COMPARISON OF THE RESULTS OF T-ECC AND CS-3 IN THE EXPERIMENT 

Strategies Energy consumption Energy saving  

CS-3 2476 kJ 
11.75% 

T-ECC 2185 kJ 

Finally, the proposed T-ECC is validated and compared with 

the CS-3 strategy in the experiment, and the speed profiles and 

energy consumption comparisons for the two strategies are 

obtained in Fig. 25 and Table VI, respectively. 

B. Experimental Results 

In Fig. 25, it is demonstrated that T-ECC is capable of 

adjusting the vehicle speed based on changes in road gradient. 

Particularly in areas with significant slope variations, the speed 

variations are highly pronounced. It can be seen that the vehicle 

speed reaches its maximum at the lowest altitude point of the 

test road, i.e., at 1000 m, while at the highest altitude point, 

which is at 2500 m, the speed is at its minimum. These speed 

variations are accomplished through the implementation of 

SECS within T-ECC, enabling the vehicle to proactively 

accelerate before ascending a hill and effectively harnessing 

gravitational potential energy during descents. This approach 

mitigates the need for excessive braking, resulting in significant 

energy savings. In the heavy traffic scenario, both strategies 

effectively track the preceding vehicle. It can be observed that 

CS-3 utilizes the IDM to achieve vehicle following, resulting in 

a closer match to the motion state of the preceding vehicle. On 

the other hand, T-ECC maintains a dynamic gap for vehicle 

following. Therefore, when the ego vehicle decelerates, T-ECC 

proactively releases the accelerator pedal, allowing the vehicle 

to spend more time in a coasting state while ensuring safety and 

reducing energy consumption. 

 
Fig.25. The velocity profiles by different methods in the experiment.

Throughout the entire experiment, the proposed T-ECC 

strategy only consumes 2185 kJ of energy, while CS-3 

consumes 2476 kJ, resulting in an energy saving of 11.75%. 

Overall, the real-world experiment confirms the real-time 

performance and cost-effectiveness of the proposed T-ECC 

strategy. 

VI. CONCLUSION 

This paper proposes a T-ECC strategy based on the 

hierarchical framework for CEV operating in stochastic 

environments. By leveraging advantages of both long-term and 

short-term information integration, the strategy aims to improve 

energy efficiency. In the upper layer, a SECS strategy is 

proposed to generate a globally optimal energy-efficient speed. 

In the lower layer, the SROC method incorporating MPC and 

ACC is designed to track energy-optimal speed trajectory for 

CEV, simultaneously achieving synergistic optimization of 

energy efficiency, battery life, driving safety and driving 

comfort of ego vehicle in time-varying traffic conditions. Based 

on the stochastic traffic scenario constructed by the proposed 

stochastic preceding vehicle model, the simulation results 

confirm that T-ECC achieves an average of 11.37% energy 

saving and 20.03% battery life improvement compared to the 

improved CS strategy. Furthermore, a real vehicle 

implementation validated the real-time performance and 

economic benefits of the T-ECC strategy. 

In the future, the T-ECC strategy will be tested under extreme 

road conditions and can be extended to a vehicular platoon 

consisting of a string of EVs in the context of V2V/V2I 

interactions. 
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