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INTRODUCTION
Radiology is a subject where AI has undeniable potential, 
and learning models have already been making significant 
breakthroughs in medical imaging analysis.1 These models 
enhance patient care and make diagnostic procedures from 
various modalities, such as X-ray, CT, and MRI, more effec-
tive.1 However, the availability of training data that is suffi-
ciently vast, curated, and representative is crucial to this 
improvement.1 Currently, most healthcare research organisa-
tions and clinical settings are limited to a centralised method-
ology where they only have local data access. For this reason, 
stakeholders have been developing new approaches to work 
together on a broad scale without endangering patient privacy 
to build performant and generalisable AI models.2 The only 
way to train robust AI models that accurately represent the 
whole human population under study and can go from the 
lab to the clinical and diagnostic system is through such multi-
institutional collaboration.3

The idea of federated learning (FL) was first put up as a 
technological remedy for distributed machine learning 
that protects user privacy. It has been shown that FL 
makes it possible for numerous partners to jointly train 
AI models without transferring data, making it easier 

to train AI models on a massive amount of data. Like 
collaborative model training on distributed data, swarm 
learning (SL) uses a network of nodes to aggregate model 
weights without a central instance. However, FL and SL 
have a significant drawback: weight updates must be 
communicated during training and information about the 
underlying data may be extrapolated from these weight 
updates. Therefore, such methods should not be regarded 
as privacy methods but rather as methods for maintaining 
data governance. This characteristic severely restricts the 
applicability of collaborative learning schemes. In addi-
tion, the sensitivity of medical imaging data hardens the 
development of potent AI models for disease diagnosis and 
clinical integration, and data privacy laws and regulations 
prohibit the use of medical data in such environments 
where private data can be extracted.4 The main purpose of 
this review is to enlighten medical imaging AI researchers 
with the recent developments in FL for medical imaging, 
articulate some key limitations, and envision a few perti-
nent research challenges. In this review, we evaluate some 
FL studies that address privacy, security, heterogeneity, 
data disparity, aggregation, and missing labels-related 
issues.
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ABSTRACT

Federated learning (FL) is gaining wide acceptance across the medical AI domains. FL promises to provide a fairly 
acceptable clinical-grade accuracy, privacy, and generalisability of machine learning models across multiple institutions. 
However, the research on FL for medical imaging AI is still in its early stages. This paper presents a review of recent 
research to outline the difference between state-of-the-art [SOTA] (published literature) and state-of-the-practice 
[SOTP] (applied research in realistic clinical environments). Furthermore, the review outlines the future research direc-
tions considering various factors such as data, learning models, system design, governance, and human-in-loop to 
translate the SOTA into SOTP and effectively collaborate across multiple institutions.
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FL FOR MEDICAL IMAGING
In an ideal FL environment, all participating medical institutions 
should collaboratively solve the machine learning problem under 
the control of a centralised orchestration server in a trusted 
execution environment. FL provides a framework for hospitals 
and other healthcare institutions to keep their data local since 
the model is trained by distributing itself around several cross-
institutional medical data centres. The global shared model, 
which is co-owned by all participating institutions, is maintained 
by the central server, whereby each institution maintains a local 
version of its model. The server can assess the quality of local 
models before aggregating the model updates based on pre-
determined criteria to disregard malicious and unfavourable 
model updates, but, unlike centralised learning (CL), global 
models keep iterating between aggregation servers and the 
participating institutions to produce high-quality converged and 
performant FL models which serve the needs of radiologists and 
clinicians in realistic diagnostic and clinical environments.

A few surveys and reviews were recently published by researchers 
on the applicability and adoption of FL for health care.1,4–11 
Although an early study presents a broader review of FL for 
medical images;12 however, to the best of our knowledge, this is 
the first focused review on FL techniques for medical imaging 
applications.

ADOPTION AND EARLY STUDIES
The majority of the early research examined FL’s applicability to 
medical imaging and contrasted it with other centralised and 
distributed learning approaches. In a study2 conducted in 2018, 
the effectiveness of FL algorithms and incremental learning 
methods was examined when used on patients having multi-
institutional multi-modal brain scans for gliomas. The study 
evaluated FL utilising MRI data from 32 institutions, with an 
average of less than six individuals per institution. With this 
dispersed data, the FL models were able to train effectively and 
showed over 99% consistency when compared to outcomes 
from full data sharing across institutions. However, using data 
from 16 and 32 institutions, respectively, the best Institutional 
Incremental Learning (IIL) and Cyclic Institutional Incremental 
Learning (CIIL) models demonstrated far more instability, with 
standard deviations ten times higher than FL models.

In 2019, Wang et al3 used two institutional datasets to test FL 
algorithms on pancreatic segmentation in CT images. Institution 
1 submitted 420 portal venous phase abdomen CT images manu-
ally tagged for the pancreas to aid in preoperative planning for 
gastric surgery. Institution 2 submitted 486 contrast-enhanced 
abdomen CT images of pancreatic patients, which were resam-
pled to isotropic spacing and trimmed to a minimum Hounsfield 
unit intensity. The global FL model performed well in predicting 
pancreatic tumours, but it performed somewhat worse when 
compared to the local models trained at each institution. The 
authors stated that using server-side-quality enhancement 
approaches could potentially improve the global model’s perfor-
mance. In another study, Yi et al13 presented improvements 
to the typical U-Net design for brain tumour segmentation in 
another investigation. They introduced inception modules and 

dense blocks to their SU-Net design. Experiments with the 
Low-Grade Glioma dataset revealed that their proposed SU-Net 
model outperformed the basic U-Net architecture in both feder-
ated and non-federated contexts in terms of Area Under Curve 
and Dice Similarity Coefficient measures.

Several earlier investigations were made to study the viability 
of FL for medical imaging applications. Camajori et al14 eval-
uated the latency and model quality trade-offs in synchronous 
and asynchronous FL contexts using a modified U-Net model 
and publicly available BraTS and private clinical MRI datasets. 
According to their findings, large FL models – typically ranging 
from 30 to 150 MB in every learning round – may clog commu-
nication channels in wireless or large-scale FL networks. Simi-
larly, Dou et al15 performed a multicentre feasibility study on 
COVID-19 CXR pictures of 132 patients from seven different 
hospitals in three different countries. The findings show that FL 
models are excellent in detecting CT abnormalities in COVID-19 
patients and providing scalable and low-cost tools for estimating 
lesion burden and clinical management.

Similarly, Dayan16 used a CXR dataset from 20 global hospitals 
and trained FL models to predict clinical outcomes (such as the 
need for mechanical breathing treatment or death within the 
next 24 h) and achieved 95% sensitivity and 88.2% specificity 
scores across all hospitals. Lee et al17 collected 8457 thyroid ultra-
sound pictures from six universities and trained various deep 
learning networks (VGG19, ResNet50, ResNext50, SE-ResNet50, 
and SE-ResNext50) in FL conditions. Their reported results 
suggest that the area under the receiving operating charac-
teristic (AUROC) remained between 75.20 and 86.72% in FL 
conditions, compared to 73.04 to 91.04% for traditional deep 
learning models. Linardos et al,18 on the other hand, used feder-
ated transfer learning with a 3D-CNN network pre-trained on 
an action recognition dataset, then included shape prior knowl-
edge to retrain a cardiac MRI binary classifier. They assessed its 
performance in terms of leave-centre-out and out-of-site gener-
alisability and discovered good findings.

Because centralisation of FL processes might create delays due 
to disagreements over control and model ownership, a feasi-
bility study on whole-brain MRI T1 images was performed 
using BrainTorrent, a peer-to-peer FL system.19 The client-
specific investigation revealed a 1–4% improvement in Dice 
score performance when utilising BrainTorrent over centralised 
FL systems, and BrainTorrent produced more robust aggregated 
and personalised models. FL also enabled cross-institutional 
COVID-19 identification studies to benefit from private data. 
FL implementations of deep neural networks (DNNs) such as 
COVID-Net, ResNeXt, ResNet18, and MobileNet_v2 outper-
formed centralised implementations.20,21

RESEARCH ON FL FOR MEDICAL IMAGING
This section presents a review of current SOTA research on FL 
for medical images.

Partial model sharing
Despite claims of privacy protection and minimal data exposure, 
experienced attackers can nevertheless acquire access to patients' 
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data. Early investigations on multiparametric preoperative MRI 
images assessed multimodal and multisegmentation tasks with 
the goal of minimising soft Dice loss using the Adam optimiser.22 
Furthermore, privacy risks were reduced by exposing just 10% of 
the shared model using partial model sharing approaches such as 
selective parameter sharing and gradient clipping with differential 
privacy via the sparse vector technique. Similarly, FLOP, a partial 
model sharing approach, was introduced by keeping the final 
few layers private from the server while sharing the remainder 
of the model for federated averaging.23 When compared to the 
traditional FedAvg method, the FLOP’s experimental evaluation 
with a COVID-19 dataset and six distinct model architectures 
demonstrated much superior accuracy, privacy guarantees, and 
personalisation.

Gradient-level privacy preservation
Model inversion attacks are the most prevalent in FL systems, in 
which hostile individuals reconstruct images from global models 
and subsequently target their peers. Gradient-level privacy pres-
ervation approaches can aid in the defense against these attacks. 
The Differentially Private Gradient Descent (DPGD) approach 
for semantic segmentation in CT images extends Differential 
Privacy (DP) guarantees to gradient-based optimisation by clip-
ping gradients using the L2 norms of each minibatch.24 The opti-
misation step is then performed after adding Gaussian noise to 
the averaged minibatch gradients. Despite minor privacy-utility 
trade-offs, differentially private stochastic gradient descent (DP-
SGD) totally defeats privacy-centred attacks, while large-sized 
models have been shown to be more resilient to model inversion 
attacks than smaller ones. However, providing strong privacy 
protections while providing maximum value remains difficult 
owing to small-sized datasets and the limited number of sites in 
the hospital networks.

Another interesting solution for preserving gradient-level 
privacy and preventing model inversion and membership infer-
ence attacks by untrusted centres is homomorphically encrypted 
FL (HEFL). Researchers suggested a HEFL method for multi-
centric radiology and pathology datasets that outperformed 
locally and centrally trained models.25 Despite strong privacy 
assurances, HEFL is vulnerable to convergence failure as a result 
of adversarial weight changes from defective or malicious clients. 
However, model participants are mainly trustworthy or honest-
but-curious people, which reduces this attack vector slightly.

Heterogeneous datasets
FL systems must primarily deal with heterogeneous datasets 
that are not distributed independently and identically (non-IID) 
because of differences in scanning technologies, data collecting 
procedures, human abilities, data annotation methodologies, 
and data storage and processing systems. Researchers conducted 
extensive experiments to learn about the effects of non-IID data-
sets on FL systems and the effects of data partitions with varying 
degrees of skewness in quantity and label distributions.26 Their 
suggested weighted average for FedSGD and weighted loss, 
on the other hand, dramatically reduce the quantity and label 
distribution skews. Alternatively, during conventional FedAvg, 

averaging the mean and variance in batch normalisation (BN) 
across all centres helps to prevent skew-induced BN perfor-
mance loss.

The non-IIDness of datasets causes activation-divergence even 
when common classes are present on distinct scanning systems. 
Researchers developed a prior that increases per-class activa-
tion vectors while minimising per-system activation vectors 
based on the notion of highest entropy.27 On short CXR data-
sets, the activation-divergence with the suggested FedMax tech-
nique remained negligible and equal to FedAvg. However, given 
the substantial variability in large-scale non-IID datasets, the 
problem may persist. An alternative solution, Federated Disen-
tanglement (FedDis), tackles the non-IID issue by separating 
the form and appearance of the brain’s anatomical structure in 
MRI images and then exchanging just the shape parameters for 
anomaly detection.28 FedDis surpasses the best baseline FL tech-
niques by 11%.

Domain adaptation
Handling systemic data discrepancy in fMRI distributions 
is another problem when considering scanning system vari-
ables. Researchers developed a federated learning method that 
included Gaussian and Laplacian noises to protect the privacy of 
shared local model weights, followed by the multisite mixture-
of-experts technique for domain adaptation.29 Furthermore, the 
federated adversarial domain alignment approach was used in 
conjunction with a domain-specific local feature extractor and 
a global discriminator to enable the generalisation of multi-
source distant domains into a shared target domain. However, 
the suggested strategies enhance some but not all multisite fMRI 
classification. The adversarial domain identifier-based feature 
alignment approach was utilised to align the intermediate latent 
space distributions between the source and target locations, 
as well as to minimise errors around the cranium and lesion 
regions in T2-weighted sequences.30 Memory-aware curriculum 
learning on a multisite breast cancer dataset was also employed 
to improve domain alignment and increase FL classifier perfor-
mance.31 The presence of noisy latent distributions (owing to 
differential privacy approaches) and the non-IID features of FL 
datasets, on the other hand, are still major difficulties in creating 
effective domain adaptation algorithms.

Variation-awareness
FL gets difficult in the presence of uncommon disorders and 
image-level differences. FedRare is an intracentre supervised 
contrastive learning approach for acquiring highly sepa-
rable latent features, in which the server picks and provides 
the reliable latent features and the centres jointly compute 
intraclient contrastive loss.32 When tested on a skin lesion 
segmentation dataset, FedRare beats SOTA algorithms. Simi-
larly, the variation-aware FL (VAFL) architecture decreases 
image-level fluctuations across centres.33 VAFL is built on a 
privacy-preserving generative adversarial network, notably 
PPWGAN-GP, which creates synthetic images and then applies 
a modified CycleGAN for image-to-image translation at each 
centre before training any classifier. However, VAFL is plagued 
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by visual distortion in malignant areas, which is not a concern 
for classification tasks but might be devastating with segmen-
tation tasks.

Image reconstruction
Reconstruction of medical images in FL settings is difficult since 
images are not acquired in image space and academics have little 
experience to federated datasets. Researchers used two layers 
of federated MRI (FedMRI) reconstruction.34 First, the server 
maintains a global encoder that is shared by all centres. Then, 
since each centre has a unique data distribution, the centre-
specific decoders maintain domain-specific features to efficiently 
reconstruct pictures. A weighted contrastive regularisation 
approach was also used to ensure optimisation level adjustments 
in client-server variances and to improve global model conver-
gence. Alternatively, the Federated Learning of Generative IMage 
Priors (FedGIMP) approach employs unconditional models, 
which generalise better and are more adaptable to multicentre 
datasets.35 FedGIMP reconstructs pictures in two steps as well, 
with an unconditional adversarial model initially generating a 
global image prior to synthesis through latent variables, which 
is then merged with subject-specific imaging operators for high-
quality MRI reconstruction.

Federated averaging
The traditional federated averaging (FedAvg) approach directly 
averages the local model weights from all centres and gener-
ates new global model weights. However, considering data 
and system-level heterogeneities, finding a robust aggregating 
approach is a substantial task. FedCostWAvg is a weighted 
federated averaging technique presented by researchers that 
weights local models of 3D-UNet by the amount of local datasets 
(Federated Tumor Segmentation Challenge) and training gains 
in respective centres.36 FedCostWAvg amplifies more informa-
tive updates, therefore it outperforms FedAvg. Fed-CBT, on the 
other hand, employed a weighted average strategy over graph 
neural networks to generate a single representative connectivity 
map from multicentre multiview brain connectomic datasets, 
but it does not operate well in non-IID situations.37 FedFocus 
was suggested for COVID-19 CXR pictures to pivot the feder-
ated learning process by dynamically stabilising the aggregation 
process depending on training loss, and it beats classical FedAvg38 
slightly. In addition, for Byzantine-tolerant FL, researchers 
employed a distance-based outlier suppression approach in 
which an aggregation server computes the cosine and Euclidean 
distances between distinct centre updates and assigns outlier 
scores to each centre.39 Finally, the weighted average is calcu-
lated using the outlier ratings from each centre. On two medical 
imaging datasets (CheXpert and HAM10000), its outlier iden-
tification effectively protects against model poisoning attacks 
in both IID and Non-IID FL contexts. HarmoFL is another 
framework that addresses data heterogeneity at the client and 
global server levels by applying the amplitude normalisation 
technique.40 HarmoFL beats other SOTA (FedBN, FedProx, and 
MOON) techniques in breast cancer histology image classifica-
tion, histology nuclei segmentation, and prostate MRI segmen-
tation tasks.40

Feature-aware aggregation
The majority of aggregation algorithms take server-level settings 
into account and conduct population-wise aggregations. Consid-
ering client-level characteristics while aggregating, on the other 
hand, becomes advantageous in many circumstances. FedMix is 
a label-independent adaptive aggregation algorithm that makes 
good use of labels from pixels, bounding boxes, and images.41 
FedMix enables discriminative feature representation for all 
participating centres by employing an adaptive weight assign-
ment technique. When tested on brain tumor and skin lesion 
segmentation tasks, FedMix greatly beats SOTA approaches. 
Similarly, Bernecker et al suggested two modality-based feature 
normalisation algorithms that outperformed SOTA methods on 
multisite multimodality datasets.42 Alternatively, SplitAVG, a 
heterogeneity-aware FL technique that divides the network into 
two subnetworks, the server and the institutional subnetwork,43 
was developed. After calculating the bias from each institutional 
subnetwork, SplitAVG concatenates intermediate feature maps. 
SplitAVG’s efficiency in the presence of varied image acquisi-
tion, labeling, and quantity skew was proved in an experimental 
assessment on the BraTs segmentation dataset.

Unlabelled data or partial annotations
Unlabelled medical images provide a significant difficulty for 
learning. Self-supervised learning approaches, such as contras-
tive learning (CL), can efficiently pre-train a neural network 
from unlabelled data and fine-tune the network to execute 
downstream tasks with limited annotated data, but the limited 
variation in centres' data hampers CL algorithm performance in 
FL environments. To perform segmentation tasks on volumetric 
medical pictures with little annotations, the Federated Contras-
tive Learning (FCL) system was proposed.44 The framework 
allows for the interchange of various contrastive features across 
training networks before performing global structural matching 
to create well-aligned unified feature spaces for all centres. The 
suggested FCL framework outperforms SOTA FL approaches 
in an experimental assessment on a cardiac MRI dataset. 
Another FCL framework was suggested that employs MoCo as 
an intranode CL model, and it again performed exceptionally 
well when the global model attained 90% accuracy with just 3% 
data labels.45 Researchers also proposed Split Learning,46 model 
distillation,47 global model optimisation,48 ongoing learning,49 
performance efficiency,50,51 personalisation,52,53 and a study of 
COVID-1954 in FL settings.

Table 1 presents a comparative overview of notable studies.

STATE-OF-THE-PRACTICE, LIMITATIONS, AND 
FUTURE RESEARCH DIRECTIONS
FL is primarily an in-production learning system where FL algo-
rithms may behave significantly different than lab environments. 
Therefore, most SOTA methods need to be integrated into FL 
tools, and then re-evaluation should be made to understand 
their actual utility in state-of-the-practice (SOTP) environ-
ments. Ideally, an SOTP is designed to be a fully functioning FL 
system which is ready to be deployed in realistic hospital envi-
ronments and which can cater all the basic performance require-
ments in terms of privacy, security, connectivity, and governance. 
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Table 1. Literature Analysis

Method Problem Solution Strengths Limitations Baseline/SOTA
Partial Model 
Sharing22

Model inversion 
attacks

Selective Parameter 
Sharing+Differential 

Privacy

Minimum exposure 
of patient data

Privacy-Utility trade-
off, the more noise 

the less accurate the 
models are

Centralised learning

FLOP23 Model inversion 
attacks

Partial Model Sharing Minimum exposure 
of patient data

Privacy techniques 
were not implemented

FedAvg

DP-SGD24 Model inversion 
attacks

Differentially Private 
Stochastic Gradient 

Descent

Robust against 
privacy attacks

Large-batch 
implementations are 
hard with DP-SGD

Centralised learning 
with non-protected 

gradients

P2P FL25 Privacy Attacks Iterative Continual 
Learning + Synaptic 

Intelligence

Robust against 
privacy attacks

Data heterogeneity 
impacts precision and 

sensitivity

Iterative Continual 
Learning without 

Synaptic Intelligence

FedMax27 Data Heterogeneity 
causes activation 

divergence

Maximum Entropy-based 
Prior

Balances activation 
vectors across 

multiple data sources

Larger number of 
classes may degrade 
the performance of 

FedMax

FedAvg

FedDis28 Learning from 
heterogeneous data 

sources is hard

Federated Disentangled 
Representation Learning

Mitigates statistical 
heterogeneity across 

different scanners

Handling variations 
in parameter space 

across different data 
sources degrades the 

performance

N/A

HarmoFL40 Feature 
heterogeneity causes 

domain shifts

Amplitude 
Normalisation+Weight 

perturbation

Simultaneously 
handles both local 
and global drifts

Need to be tested with 
large set of model 

participants

FedBN, FedProx, 
MOON, FedAdam, 

FedNova

FedMix41 SOTA methods 
work with standard 
image annotations 
across all the data 

sources

Label-agnostic unified FL 
framework

Local models use 
all available labels, 

server performs 
adaptive weight 

assignment across all 
the data sources

Experiments were 
made with small 

dataset

FedAvg,
FedST

SplitAVG43 Data heterogeneity 
causes performance 

drops

Heterogeneity-aware FL 
using simple network 

split+feature map 
concatenation

Effectively overcomes 
performance drops 

issues

It only handles 
statistical 

heterogeneity

Centralised learning, 
CWT, FedAvg, 

SplitNN, FedSGD, 
FedSGD + GN, 

FedAvgM, FedAvg 
+ SD

Domain 
Adaptation29

Systemic data 
differences cause 

domain shifts across 
FL training networks

Decentralised iterative 
optimisation+Domain 

adaptation

The variations in 
data sampling and 
collecting result in 

sparse datasets

Domain adaptation 
methods are not 

always beneficial with 
FL

Single-site, cross-site, 
Mix, Ensemble

FL-MRCM30 Domain shifts 
introduce sub-
optimality in 

generalisable model

FL-MR with cross-site 
modelling

Cross-site modelling 
aligns the latent 
spaces between 

source and target 
domains

Comparison with 
SOTA methods is 

missing

Cross-site, Fused 
Features, FL-MR

Memory-aware 
curriculum FL31

The frequency and 
order of sample 

collection impacts 
the learning 
mechanism

Memory-aware curriculum 
learning+unsupervised 

domain adaption

Controls the order of 
training data samples 

and prioritises the 
forgotten samples

 �  Coping with 
Unbalanced and 
Non-IID data is 

hard

Fed (Federated) Fed-
CL, Fed-Align

FedIIC32 Imbalance class 
distributions 

introduce bias

Intraclient contrastive 
learning, interclient 
contrastive learning

Uniform embedding 
distribution across all 

clients

Need to be tested with 
realistic scenarios

FedAvg, FedProx, 
MOON, FedProc, 
FedFocal, FedRS, 

FedLC, CReFF

(Continued)
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However, considering the basic FL lifecycle for SOTP environ-
ments, as presented in Figure  1, the adoption of FL in multi-
institutional collaborative research environments is still in its 
early phases. Therefore, in addition to solving learning problems, 
there is a need to define the holistic research agenda considering 
various facets of FL platforms and medical imaging AI applica-
tions. We outline key research directions considering the basic 
properties of data, learning models, FL systems, governance, and 
human-in-the-loop.

Although multiple SOTA methods effectively handle data 
heterogeneity issues, none of the existing methods was tried and 
tested in SOTP environments and across multiple experiments. 
Therefore, SOTP frameworks should enable scanner-agnostic 
and modality-specific federated AI-enabled data acquisition 
policies to acquire and reconstruct image scans effectively. This 
approach will help in acquiring high-quality medical images 
across the varying participating institutions. Similarly, feder-
ated, private, and cross-site data exploration can aid in effec-
tive data preparation with decreased image distribution shifts. 
Likewise, federated image annotations on both synthetic and 
realistic images can marginally increase the data quality by mini-
mising the label-skews and label-scarcity issues across the feder-
ated training networks. Since the degrading quality of scanners 
and misaligned subject-orientations increase noisy and poorly 
constructed images, federated data preparation and labelling 
can increase the number of clean images. However, considering 
differences in time zones while bringing human-in-the-loop, 
image acquisition protocols, communication networks, subject-
and-technician readiness, and availability of expert annotators, 
the availability of federated datasets is a major challenge.

Unlike SOTA methods, learning from unseen federated datasets 
is a major challenge in SOTP systems. Ideally, data exploration 
should be minimised and researchers should not have access to 
complete datasets. However, researchers should be given access 
to sufficient data to prepare the correctly functioning FL code 
which could be submitted to FL platforms to train FL models 
across collaborating institutions. To this end, conventional data 

anonymisation techniques should be applied before handing 
over the patients’ data or synthetic medical images should be 
generated from actual datasets and it should be made available 
for medical AI researchers.

The robustness of server-level optimisers and aggregators 
is desired considering heterogeneity and inaccessibility of 
remote data, and the various privacy (linkability and utility) 
and security threats (model-inversion and free-riders attacks). 
SOTA methods effectively use differential privacy techniques 
to preserve local and global models. Also, secure multiparty 
computation and homo-morphic encryption were tested well on 
multi-institutional datasets. However, the same methods must 
still be deployed and tested with SOTP methods.

Since SOTA methods mainly focus on the learning part, 
SOTP FL systems need to consider system-level issues 
such as the distribution of global models across training 
networks, synchronising and gathering model updates from 
participating sites, handling missing model updates, sched-
uling (re-)training workflows, and ensuring scalable data 
processing across the training networks. Since FL models 
are expected to run for a longer period, FL systems need 
to ensure continuous training, evaluation, testing, integra-
tion, deployment, and versioning of learning workflows. 
Federated experiment definition and federated databases 
and registries are still needed in SOTP FL systems. In addi-
tion, the federated continuous monitoring of training sites 
and FL workflows is needed for effective model develop-
ment of SOTP FL environments. Likewise, robust commu-
nication protocols that can cater for the seamless transfer of 
large imaging models are also essential to SOTP FL systems. 
Considering the economics, human expertise, institutional 
policies, and involvement of multiple stakeholders (e.g., 
patients, radiographers, data annotators, clinicians, data 
engineers, researchers, model developers, DevOps engi-
neers, model owners, and ethics committees), SOTP FL 
systems should provide end-to-end governance, traceability, 
and accountability mechanisms.

Method Problem Solution Strengths Limitations Baseline/SOTA
VAFL33 Cross-client 

variations results in 
imbalanced datasets

Privacy-preserving GAN, 
CycleGAN

Captures variations 
across the sample 

space

Variations in manual 
annotations needs 

to addressed, Image 
distortions need to be 

handled during image-
to-image translation

Local Learning, 
Centralised Learning

FedMRI34 Domain shifts 
degrade the model 

performance

Specifity-preserving FL for 
image reconstruction

Benefits in 
collaborative 

reconstructions when 
clients have unique 

distributions.

Repeated adversarial 
training between client 
and server slows down 

the training process

FedAvg,
FedProx,
FedBN,

FL-MRCM

FedGIMP35 Conditional models 
generalise poorly on 

non-IID datasets

Cross-site learning 
of a generative MRI 

prior+subject-specific 
injection of the imaging 

operator

Improves reliability 
against domain 

shifts in the imaging 
operator

Adapting the prior is 
hard during inference

FL-MRCM, FedGAN, 
LG-Fed,
FedMRI

Table 1. (Continued)
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CONCLUSION
The emergence of FL is revolutionising the field of medical 
imaging, where several SOTA methods are being used to 
successfully learn from unseen data without jeopardising 
patients’ privacy. This study reveals that data heteroge-
neity is the most active research topic, with several local 
and global model augmentation strategies, as well as some 
intrasite and cross-site techniques, reported by researchers 
to address data heterogeneity. Similarly, SOTA methods 
proposed early techniques for privacy preservation, data 
augmentation, model distillation, domain adaptation, aggre-
gation and optimisation, performance enhancement, and 
model personalisation techniques. However, there are still 
many unanswered problems regarding how to create SOTP 

FL frameworks given the nature of FL systems and the need 
for an implementation in actual hospital settings.
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Figure 1. A model’s lifecycle in federated learning environments in realistic clinical settings. (1) the learning process is initiated 
by an orchestration server, (2) the server selects, registers, and/or clusters participating institutions, (3) the server broadcasts 
the training and evaluation configurations along with information about datasets, (4) participating institutions execute their local 
single/multitask trainers and heterogeneous data handlers, (5) participating institutions optionally perform local model enhance-
ments and transmit local models to the server, (6) the server performs aggregation and/optimisation, and/or enhances global 
model, (7) the server evaluates the global model, (8) the server sends the model for retraining if it does not meet the desired 
convergence/performance criteria. After the model converges, (9) the server then sends the converged model for versioning and 
possible deployment at participating institutions, and finally (10) the participating institutions keep monitoring the model perfor-
mance and either initiate new training cycles or abandon the model if it is not required anymore.
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