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ABSTRACT Although much research has been conducted in the field of automated cochlear implant 
navigation, the problem remains challenging. Deep learning techniques have recently achieved impressive 
results in a variety of computer vision problems, raising expectations that they might be applied in other 
domains, such as identifying the optimal navigation zone (OPZ) in the cochlear.  In this paper, a 2.5D joint-
view convolutional neural network (2.5D CNN) is proposed and evaluated for the identification of the OPZ 
in the cochlear segments.  The proposed network consists of 2 complementary sagittal and bird-view (or top 
view) networks for the 3D OPZ recognition, each utilizing a ResNet-8 architecture consisting of 5 
convolutional layers with rectified nonlinearity unit (ReLU) activations, followed by average pooling with 
size equal to the size of the final feature maps. The last fully connected layer of each network has 4 indicators, 
equivalent to the classes considered: the distance to the adjacent left and right walls, collision probability and 
heading angle. To demonstrate this, the 2.5D CNN was trained using a parametric data generation model, and 
then evaluated using anatomically constructed cochlea models from the micro-CT images of different cases. 
Prediction of the indicators demonstrates the effectiveness of the 2.5D CNN, for example the heading angle 
has less than 1˚ error with computation delays of less that <1 milliseconds.   

INDEX TERMS Automated insertion, virtual surgery, cochlear implant, convolutional neural network, 
real-time systems, low-cost navigation, robust centerline tracing.  

I. INTRODUCTION 
The cochlear implant (CI) [1] is one of the most successful 
implantable devices in clinical practice. It helps to restore 
lost hearing by delivering electrical impulses to the auditory 
nerves via an electrode array inserted into the cochlea in the 
inner ear [2]. Cochlear implant navigation involves inserting 
a wire containing a line of stimulating electrodes into the 
delicate spiral (or snail) shaped tube that varies in diameter 
and height along the 𝑍 plane and imposing geometrical 
limitations to the cochlear implant surgery as shown in Fig. 
1. The quality of restored hearing sensation is strongly 
related to the efficacy of surgery of the cochlear device 
implantation, particularly the optimum positioning and the 
insertion depth of the electrode array inside the cochlea 
without further damaging the remaining hearing [3]. The 
present standard technique relies on the surgeon’s fingertips 
while pushing the electrode array down the spiral-shaped 
cochlea. This approach requires the surgeon to identify the 

optimal insertion path solely by feel. Although the tip of the 
electrode array is not sharp to pierce through the bony wall 
of cochlea, extreme pressure may increase the risk of the 
electrode tip crossing the auditory nerve or the modiolus. 
Medical-imaging techniques such as MRI, computerized 
tomography (CT) [5] and X-rays [6]) are not practical 
options for guidance in implantation surgery as they cannot 
provide real-time imaging and they are impractical due to the 
very small volume of the cochlea. The systems in [7]-[13] 
for cochlear implant navigation derive information from 
impedance measurements on the electrodes at the end of the 
electrode array. While useful for identifying the position of 
the electrode tip, performance is compromised by the limited 
accuracy of the measured impedance values. Integration of a 
robotic arm [14] does not lead to better navigation 
performance as it similarly receives the guidance parameters 
from imprecise calculations. The present limited accuracy of 
identification of the position of the tip would be improved by 
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embedding intelligence, which would require accurate 
navigation. 

To avoid adverse consequences such as crossing 
anatomical wall as a result of the extreme geometrical 
limitations, computer-assisted surgery [15]-[16] is used to 
identify the extremely precise centerline trajectory required 
inside a three-dimensional (3D) reconstructed cochlea as 
priori knowledge (or post-processing) for cochlear implant 
electrode array insertion by automatic means.  
  The electrode insertion algorithm is designed based on the 
type of electrode: 1)  lateral wall electrode [17] that slides 
along the spiral ligament; and 2)  modular-hugging electrode 
[18] which tends to go closer to the inner wall (the modiolus). 
This paper proposes a method to significantly enhance 
cochlear implant navigation by identifying rapidly an 
interactive safe insertion zone in real-time using a novel 2.5D 
convolutional neural network (CNN), yielding very high 
insertion resolution accuracy. The proposed 2.5D algorithm 
navigates the tip of the electrode safely along the centerline 
coordinates to ensure minimal insertion risk while the rest of 
electrodes would slide along the cochlear wall. The electrode 
array model was based on a commercially available electrode 
[Advanced Bionics HiFocusTM SlimJ electrode (Hannover, 
Germany)] with 16 platinum electrodes. 
The rest of the paper is organized as follows. Section II 
presents the prior art and the CI navigation algorithm proposed 
in this work. Section III describes the methods used in data 
generation and proposes a framework to derive the navigation 
indicators. It also discusses the design of the 2.5D CNN and 
the joint 3D operator. Section IV details the efficacy of the 
2.5D CNN in different scenarios and visualizes the navigation 
steps for an anatomical cochlea model. Concluding remarks 
are drawn in Section V.   
 
II. RELATED WORK: CENTERLINE TRACING 

ALGORITHMS 
     There are a variety of approaches that can be utilized to 
identify the centerline of tubular structures. One category 

consists of skeletonization approaches [19] and those using 
multiscale enhancement, morphological reconstruction and 
segmentation methods [20]-[23]. They require the 
processing of full 3D volume and every image pixel with 
numerous operations per pixel.  

A second category tracks the centerline based on a filter 
or an assumed model. Commonly used filters are based on 
eigen-structure of local Hessian [24], idealized tubular 
models of vessels [25] and Hough transforms [26] to locate 
vessel direction and its cross vectors at a reference frame. For 
example, Hessian of the image is interpreted as second order 
partial derivatives of 3D sub-images at reference nodes, 
which requires extensive computation time. Cylindroidal 
superellipsoids [27] is an advanced model of probing for 3D 
tubular shapes using recursive fitting methods. Although the 
fitting-based approaches perform well across morphological 
complexities, they derive model parameters using maximum 
likelihood which is an extremely complex and lengthy 
process.  

A third category utilizes vectorization algorithms [28]-
[30] for tubular structure boundary analysis and centerline 
tracing where only pixels close to the border are processed. 
They are well-suited to real-time and robust tracing in large 
image sets. The sparse exploration of the boundaries yields 
low computational overhead but also introduces higher 
sensitivity to the discontinuities and geometrical 
complexities. An algorithm utilizing vectorization approach 
to handle 3D (volumetric) data is described in [31]. It is a 
fully automatic 3D neuron tracing algorithm emulating a 3D 
cylinder model and recursively explores the neuron 
topology. The simulations using the 3D cylinder algorithm 
on constructed cochlea models illustrate that the centerline 
tracing does not perform reliably when it is faced with high-
order tubular changes.  

Machine learning offers an alternative approach to 
identify and trace the central coordinates [32]-[34]. Steerable 
features and randomized decision trees are used in [35] to 
perform centerline extraction by learning the structural 
patterns of a tubular-like object. The approach in [32] uses 
orientation flow field and classifier to extract blood vessel 
centerlines. The average computation for tracing all 
coronaries takes about 1 minute on an Intel Core i7 2.8 GHz 
processor with 32 GB RAM as reported in [34].  

CNNs are a class of deep learning algorithms that have 
recently been utilized in 3D tubular structure tracing [35]-
[37]. In [35], a 3D dilated CNN [38] was trained to predict 
the most likely direction and radius of an artery at any given 
seed point. The tracing scheme in [35] was developed based 
on determining a posterior probability distribution over a 
discrete set of possible directions as well as an estimate of 
the radius. The drawback with this design is that the optimal 
direction determination is posed as a classification problem, 
thus the possible directions are distributed on a sphere where 
each point corresponds to a class. The best classification 
performance was obtained for the directions 
{500, 1000	or	2000}. The design in [35] demands excessive 
computational cost in classifying directions and is not 
suitable for real-time applications; it requires 20 seconds for 

 
FIGURE 1. Guidance of cochlear implant electrode array. The mean 
heights at the basal, middle and apical turns are 2.3 mm, 1.2 mm and 
0.8 mm respectively [4]. The quality of restored hearing sensation is 
strongly related the optimum positioning and the insertion depth of 
the electrode array inside the cochlea without further damaging the 
remaining hearing.  
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fully automatic coronary tree extraction using the Nvidia 
Titan Xp GPU. In [36] and [37], 3D CNNs were proposed to 
trace the cardiovascular tree structure. They require 58 and 
25 seconds using 12 GB GPU and Tesla P40 GPU, 
respectively. 

This paper proposes a novel low computation deep 
navigation method using a 2.5D multi-view CNNs that can 
better transform the input image to a small number of key 
perception indicators to recover 3D tracing information on 
the tubular structures, as shown in Fig. 2. The 3D cochlea 
segment is pre-processed and projected onto sagittal and 
bird-view planes and then applied to separate CNNs for 
mapping process. Each view decodes the relevant navigation 
(or tracing) information and fuses them; so contains the 
location distribution of the joint-view 3D tracing operator. 

The proposed tracing method has the following 
contributions: 1) A 2.5D tracing algorithm which shows 
significant trade-off between the performance and 
processing time by removing a dimension of an image. The 
algorithm provides a good fit for tracing-related tasks in real-
time processing images. 2) A compact residual convolutional 
architecture is used for each projected 2D image. It predicts 
the steering angle and the indicators including the collision 
probability and the distance to the left-right walls in real-
time. 3) A direct perception approach maps an input image 
to a small set of indicators that are used in identifying the 
optimal tracing path or insertion zone for navigation of the 
electrodes inside, for example, a cochlea. The mapping 
framework performs abstraction of the images by keeping 
only a set of compact and yet complete descriptors which 
results in real-time optimal path identification. 4) A 
comprehensive physiological-inspired tubular dataset 
provides a very diverse set of virtual environments for 
training the 2.5D tracing algorithm. Through extensive 
evaluation, it is shown that the trained model is efficient and 
can be applied to real cochlea models. The training set-up 
can be completely generalized for unseen scenarios.  5) A 
joint 3D operator for navigation in 3D set-ups. 
 
III. METHODES 
    In this section, first the datasets used in this study are 
described. It is followed by the deep mapping framework for 

extraction of the navigation indicators and the architecture of 
CNN. The definition of the input data and desired outputs 
provide a better understanding of the methods. It finally 
discusses the joint 3D navigation operator.  
 
A. DATA 
To learn the navigation indicators (or parameters) in cochlea 
tracing, two types of dataset were utilized. The first dataset 
is composed of synthetic MATLAB-generated images for 
training purposes. The second dataset contains anatomical 
cochlea models. Both are used to quantitatively analyze the 
navigation performance on the 2.5D multi-view CNNs. 
1) SYNTHETIC IMAGES 
Considering the sagittal and bird views of the cochlea 
structure, a parametric segment model of the cochlea is 
proposed to accommodate all the navigation features for 
training the 2.5D CNNs. The model shown in Fig. 3(a) has 
deformation capability to emulate all the variations along the 
cochlea such as bend, rotation and length-width variation. 
For example, in the bird-view mode (i.e. looking at the 
cochlea from the top), the bend intensity changes constantly 
along the cochlea.  The bend in each cochlea segment (either 
bird-view or sagittal) is composed of two crucial parameters; 
the arc intensity and the turning effect which are evident 

 
FIGURE 2.  Overview of the proposed joint-view navigation 
framework. The sagittal and bird-view views are generated by 
projecting the 3D points onto two orthogonal planes (i.e. X-Y and X-
Z planes). Two CNNs are trained in parallel to map each view’s 
projected image to its corresponding navigation indicators, which 
are then fused together to estimate 3D joint operator.  

 
FIGURE 3.  Synthetic data generation. (a) Illustration of the 
parametric cochlea segment model. There are two arcs defined 
between the A and B nodes, and between the C and D nodes. Their 
width and the length are tunable in this proposed model. (b) shows 
the arc intensity change. In (c), the length of the arcs is tuned to the 
smaller values. (e) shows when the width is tuned based on 
adjusting the arc length between C and D. Cochlea segment rotation 
is an important factor in implant navigation and this capability is 
shown in (f). (g) Combining (b), (e) and (f).  
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when there are sharp turns. Both effects are shown in the Fig. 
3(a)-(b). A closer look at Fig. 3(b) shows that the inner arc 
between A and B nodes is smaller compared with the outer 
arc between nodes C and D, which defines the turnings along 
cochlea. The length and the width vary radically along the 
cochlea path (e.g. the mean width at the basal, middle and 
apical turns are 2.1 mm, 1.2 mm and 0.6 mm, respectively 
[4]). The length and the width are, therefore, generated for 
various sizes to cover all the variations along the cochlea.  In 
Fig. 3(c) the width of the cochlea segment is tuned by 
stacking the number of length-adjusted arcs. Orientation 
information is important for cochlear tracing. In the proposed 
parametric model it is required to obtain a rotational 
invariant representation for cochlea segments. In order to 
make the model more robust to orientation variations, the 
generated images are also rotated along z-axis by [0:360˚] to 
emulate the bird-view of the cochlea and along y-axis by 
[0:90˚] to generate the sagittal tracing segments. The rotation 
step size is 5˚. Overall, the most practical point in data 
generation is to design the edges having high correlation with 
the cochlea projection into two orthogonal planes. 
Generating the right edges greatly helps to identify the 
navigation inferences, through the generalization capability 
and the noise-artefact robustness of the 2.5D CNN.  
2) COCHLEA MODELS 
The 2.5D CNN and tracing algorithms were examined with 
a set of three synthetic cochlea models 
(Synth!"#$%&…Synth!"#$%'). The purpose of utilizing 
synthetic data is to provide an analysis of the algorithms 
under controlled conditions that mimic the cochlea structure. 
The averaged model used for the synthetic cochlea models 
was generated in MATLAB 2022.b using: 

𝑥 = 4
𝑠
56 sin

(𝑠), 	𝑦 = 4
𝑠
56 cos

(𝑠) , z = 4−
𝑠
36.										

(1) 
where 𝑠 ranges from 6.5 to 21.25 to resemble the anatomical 
human cochlea with a mean length of 41.5 mm and diameter 
of 2 mm for parametric sweeping purposes [39]. The 
synthetic 3D cochlea models were constructed within a 10 
mm × 10 mm × 10 mm volume comprising the cochlea 
model and the pad arrays to obtain consistent (𝑥, 𝑦, 𝑧) 
dimensions for evaluation of tracing performance.  

In a similar manner three anatomical cochlea models were 
constructed from micro-CT images (Anatom!"#$%&… 

Anatom!"#$%'). These evaluate the centerline tracing 
algorithm against a “golden standard,” i.e., a hand-traced 
centerline by clinicians in realistic reconstructed cochlea 
models. The realistic cochlea models were derived from 
micro-CT images of 512 × 512 pixels per slice. A manually 
defined ground-truth was used to quantify traversal 
performance.  The micro-CT data was imported to 
Simpleware ScanIP v2016.09 (Synopsys, Mountain View, 
USA) for image processing and data segmentation by 
defining regions in the image data that belong to the same 
anatomical layers. Smoothing filters utilizing recursive 
Gaussian, median, and mean filters were used to adjust the 
grayscale range. Manual segmentation was used by editing 
the morphology or filling cavities (i.e. dilate, erode, open and 
closed functions) were used in ScanIP software. To obtain 
appropriate boundaries and remove any overlapping sections 
between the tissue layers, Boolean operations were applied. 
The volume conductor of the cochlea and the layers in its 
vicinity were generated based on a high-resolution (2.24 μm 
× 2.24 μm × 5 μm) voxel size micro-CT image stack of a 
human cochlea. Due to limited computation memory, the 
effective operative field of the scans was rescaled to include 
only the cochlea and its immediate surroundings and was 
subsequently down sampled to an isotropic resolution of 9.6 
μm with a spatial resolution of 930 × 930 × 1014 voxels. 

The constructed synthetic and anatomical models 
represent height (ℎ) and width (𝑤) variations (ℎ < 𝑤) in 
human cochlea anatomy. For example, the  (ℎ 𝑤⁄ ) ratio of 
the Anatom!"#$%&, Anatom!"#$%( and Anatom!"#$%( are 

 
FIGURE 4.  The initial height (𝒉) and width (𝒘)  (𝒉 < 𝒘) of the 
anatomical models (𝐀𝐧𝐚𝐭𝐨𝐦𝒎𝒐𝒅𝒆𝒍𝟏… 𝐀𝐧𝐚𝐭𝐨𝐦𝒎𝒐𝒅𝒆𝒍𝟑) around the scala 
tympani seed point. The models are designed to have (𝒉 𝒘⁄ )𝒎𝒐𝒅𝒆𝒍𝟏< 
(𝒉 𝒘⁄ )𝒎𝒐𝒅𝒆𝒍𝟐< (𝒉 𝒘⁄ )𝒎𝒐𝒅𝒆𝒍𝟑. The models consider geometrical 
variations along the navigation paths. 
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FIGURE 5.   Illustration of navigation indicators. (a) electrode distance 
to the left and right walls, (𝑫𝒊𝒔𝒕 − 𝑳𝑾) and (𝑫𝒊𝒔𝒕 − 𝑹𝑾). (b) Collision 
probability (𝑪𝒐𝒍𝒍𝒊𝒔𝒊𝒐𝒏) which shows the distance to the front wall. (c) 
The navigation angle and (d) safe insertion zone for optimal 
navigation.  
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(45 62⁄ ), (35 55⁄ ) and (50 67⁄ ). It should be noted that the 
reported ratios are the initial height over width as shown in 
Fig. 4 and are decreased along the cochlea.    
 
B. DEEP MAPPING FROM AN IMAGE TO INDICATORS 
A framework is laid out to map the generated image to a set 
of typical navigation indicators shown in Fig. 5. Three types 
of indicator to represent an optimal path navigation are 
proposed: the distance to the adjacent walls, the distance to 
the frontal wall (i.e. collision probability) and heading angle. 
The electrode array insertion is concerned with the two 
adjacent anatomical walls for following the centreline when 
the tip of the array is pushed inside the tubular structure. This 
is shown in Fig. 5(a) by identifying the distance of the 
electrode to the left and right walls indicated by (𝐷𝑖𝑠𝑡 −
𝐿𝑊) and (𝐷𝑖𝑠𝑡 − 𝑅𝑊) respectively. Collision probability 
(𝐶𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛) is the next indicator that shows the maximum 
allowable navigation jump to avoid crossing the anatomical 
walls along insertion iterations. This is a crucial indicator as it 
accurately shows the stopping points specifically in the tubular 
turns before mapping the next image frame shown in Fig. 5(b). 
The navigation angles y (𝜃, 𝜑) are the next indicators that 
direct the optimal rotation of the electrodes along the sagittal 
(𝜃) and bird-view (𝜑) projection planes. In total, four 
affordance indicators to interpret the navigation scene are 
extracted from each image frame using the 2.5D CNN for 
each view. Considering the 2.5D view processing, a 3D safe 
insertion zone can be defined using all generated height and 
width variations of the cochlea in sagittal and bird-view 
projections around the predicted centerline coordinates as a 
hypothetical insertion cylinder [e.g. 50% of 𝐷𝑖𝑠𝑡 − 𝑅𝑊 as 
shown in Fig. 5(d)].  
 
C. ARCHITECTURE OF THE 2.5D CNN 
The 3D points are projected on two views (i.e. 2.5D view). 
For each view, a convolutional network having the same 
network architecture and architectural parameters and the 
outputs are constructed. Based on multi-task learning [40], a 
ResNet [41] architecture followed by separate outputs shown 
in Fig. 6 is proposed. Since residual architectures are known 
to help generalization on both shallow and deep networks, it 
is adapted to increase model performance. The architecture 
of the 2.5D CNN is highly compact, where the input layer 
has a size of 64×64 to accept the sagittal or top views. The 
output of each 2D convolutional layer is activated by a 
rectified nonlinearity unit (ReLU) with its parameter equal 
to 0.1, which allows for a small, non-zero gradient when the 
unit is saturated and inactive.  

Since most parameters in the proposed network lie in the 
first fully connected layer, a convolutional layer and a max-
pooling layer are added to improve the degree of 
discrimination of the learned feature and reduce the number 
of parameters. Dotted lines represent skip connections 
defined as 1×1 convolutional shortcuts to allow the input and 
output of the residual blocks to be added. After the last ReLU 
layer, the architecture splits into two different fully 
connected layers. The main branch consists of a fully 
connected layer and a softmax output layer to classify the 

collision probability (𝐶𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛), distance of the electrode to 
the left (𝐷𝑖𝑠𝑡 − 𝐿𝑊) and right (𝐷𝑖𝑠𝑡 − 𝑅𝑊) walls (see 
Section III.B). For the auxiliary branch, neurons are split to 
form a regression network for estimation of the tracing 
angles along sagittal or bird-view planes (𝜃, 𝜑). Mean-
squared error (MSE) and cross-entropy (CEN) losses are 
utilized to classify the tracing angles and the affordance 
indicators, respectively:  

𝐿A"B = α(𝐿CDE) + 𝛽(𝐿FEG).																								(2) 
𝐿A"B, 𝐿CDE and 𝐿FEG represent the total loss of the model, the 
loss of tracing angle prediction and the loss of other 
indicators, and α, 𝛽 show the loss weights. The network was 
designed with a compact architecture,  but  the joint 
optimization might pose a convergence problem. 
Specifically, imposing no weighting between the two losses 
during training results in convergence to a very poor 
solution. This is due to the fact that the MSE gradients’ 
norms is proportional to the absolute tracing angle and 
initially has much higher value. Therefore, α is set to 0.1 and 
more weight is assigned to 𝐿CDE in later stages of training (i.e. 
0.2-0.3). Adjusting the loss weight between the two losses 
would likely result in optimal performance or require much 
longer optimization times. The Adam optimizer [40] is used 
with a starting learning rate of 0.001 and an exponential per-
step decay equal to 10−5. 
 
D. JOINT 3D NAVIGATION OPERATOR  
A joint 3D tracing operator is proposed to flexibly position 
the electrode array through the complex 3D tubular structure. 
As illustrated in Fig. 7, the 3D navigation operator is 
composed of three elements: 1) the bird-view axis (𝑌) to 
monitor the width variations in a tube, 2) the sagittal axis (𝑍) 
to identify the height of a tube, and 3) a navigation vector  
𝑛𝑎𝑣^̂^̂ ^̂ ^⃗ H. Bird view (𝑌) and sagittal (𝑍) axes are jointly 

 
FIGURE 6.  2.D CNN is a joint deep mapping network, from a single 
64×64 frame including (𝑫𝒊𝒔𝒕 − 𝑳𝑾), (𝑫𝒊𝒔𝒕 − 𝑹𝑾), collision probability 
(𝑪𝒐𝒍𝒍𝒊𝒔𝒊𝒐𝒏) and the tracing angles along sagittal and bird views 
(𝜽, 𝝋). The main architecture of the CNN consists of a ResNet with 4 
residual blocks. (b), followed by dropout and ReLU non-linearity. 
Afterwards, the network branches into 4 separated fully-connected 
layers. The design notation including the convolution kernel’s size, 
the number of filters and the residual connections are shown in the 
figure. 
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connected at node O shown in Fig. 7 and form a unified 
structure that is rotated based on the assigned angles to the 
unity vector  𝑛𝑎𝑣^̂^̂ ^̂ ^⃗ H.  3D space directions are indicated by 
considering two angles; 𝜃 and 𝜑 around a unity vector 
𝑛𝑎𝑣^̂^̂ ^̂ ^⃗ H = [𝜃, 𝜑] in Fig. 7, where 𝜃 describes the bird-view 
rotations around the 𝑍 axis and 𝜑° describes the sagittal 
rotations around the 𝑌 axis after being rotated by 𝜃° around 
the 𝑌 axis. The length of the navigation vector  𝑛𝑎𝑣^̂^̂ ^̂ ^⃗ H also 
defines the maximum allowable length that the electrode 
array that can be pushed inside the tubular structure (cochlea 
in this case) in each iteration and shown in Fig. 7. The 
navigation vector  𝑛𝑎𝑣^̂^̂ ^̂ ^⃗ H can be shifted along the identfied 
distances [(𝐷𝑖𝑠𝑡 − 𝐿𝑊) and (𝐷𝑖𝑠𝑡 − 𝑅𝑊)] to the cochlea 
walls from the origin (O) in both sagittal and bird-view 
projections. All the defined parameters in the joint 3D tracing 
operator introduce super-flexibility in different scenarios 
with highly precise tuning of the navigation of the electrodes. 
 
IV. EXPERIMENTAL SETUP AND RESULTS 
     This section focuses on the presentation and 
discussion of the results, mainly using the metric-based 
experimental setup, CI insertion in noisy scenarios and 
eventually the navigation indicators prediction in a real 
cochlea model. 
 
A. REGRESSION AND CLASSIFICATION RESULTS 
     In this section, the quantitative and qualitative results of 
the 2.5D CNN are discussed. The 2.5D CNN addresses the 
regression network for estimation of the tracing angles along 
sagittal or bird-view planes (𝜃, 𝜑). To quantify the 
regression performance two metrics are used: root-mean-
squared error (RMSE) and explained variance ratio (EVA). 
RMSE measures the average magnitude of the prediction 

error, indicating how close the observed values 𝛼 are to 

those estimated by the network 𝛼c: 

𝑅𝑀𝑆𝐸 = g
1
𝑁ij𝛼cM − 𝛼Mk.

G

MN&

																									(3) 

The EVA measures the proportion of variation in the 
predicted values with respect to those of the observed values. 
Such variations are given by the variance of the residuals 
𝑉𝑎𝑟 = (𝛼c − 𝛼) and the variance of the observed values 
𝑉𝑎𝑟 = (𝛼).  

𝐸𝑉𝐴 = 1 −
𝑉𝑎𝑟(𝛼c − 𝛼)
𝑉𝑎𝑟(𝑎) 	.																								(4) 

If predicted values approximate the observed values well, 
the residual variance will be less than the total variance, 
resulting in 𝐸𝑉𝐴 ⪅ 1.  Otherwise, the residual variance will 
be equal or greater than the total variance, producing 𝐸𝑉𝐴 =
0 or 𝐸𝑉𝐴 < 0, respectively. To assess the performance on 
collision prediction (𝐶𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛), the distance of the electrode 
to the left (𝐷𝑖𝑠𝑡 − 𝐿𝑊) and right (𝐷𝑖𝑠𝑡 − 𝑅𝑊) walls, 
average classification accuracy and F-1 score are used. It 
should be noted that training of the 2.5D CNN used the 
combination of the synthetic data generated by the 
parametric model explained in Section III-A.1 and the 
projection of the synthetic cochlea models 
(Synth!"#$%&…Synth!"#$%'). Using the parametric 
synthetic data generation and synthetic cochlea models 
(Synth!"#$%&…Synth!"#$%'), the sagittal and bird view 
networks were trained by over 1 million 2D cochlear 
segments with different width, length, inner and outer arcs 
and rotation directions. The trained networks have high 
generalization capability to data variation and are able to 
perform electrode navigation for unseen cochlea cases from 
different patients. 

The generated data were divided into a training set 
containing 70% percent of the data to optimize the 
parameters and the hyperparameters, and the testing set 
consisting of the remaining 30% to evaluate the 2.5D CNN 
performance on the unseen data. The whole network is then 
examined on the anatomical models (Anatom!"#$%&… 
Anatom!"#$%') with manually defined ground-truth to 
quantify traversal performance. The tracing process begins 
by defining a sampling cube around the seed point in the 
scala tympani. Having sampled a segment of 3D cochlear, it 

 
FIGURE 7. Illustrating the joint 3D navigation operator. The 𝒏𝒂𝒗QQQQQQQQ⃗ 𝒌 =
[𝜽,𝝋] is formed by identifying the navigation indicators from the 
sagittal and the bird-view projections. In this example, the 
navigation operator is shifted by 𝜽° to the left and 𝝋° upward. The 
length of the navigator is defined by the minimum of collision 
probability of sagittal and the bird-view projections. The distance to 
the walls in both projections also give margins for shifting the 
𝒏𝒂𝒗QQQQQQQQ⃗ 𝒌 = [𝜽,𝝋] to left-right and up-down considering the green dotted 
arrows according to the optimal safe zone. 
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TABLE 1. Average quantitative results on cochlea models (𝐀𝐧𝐚𝐭𝐨𝐦𝒎𝒐𝒅𝒆𝒍𝟏… 
𝐀𝐧𝐚𝐭𝐨𝐦𝒎𝒐𝒅𝒆𝒍𝟑): EVA and RMSE are computed on the (𝑫𝒊𝒔𝒕 − 𝑳𝑾), 
(𝑫𝒊𝒔𝒕 − 𝑹𝑾) and the tracing angles along sagittal or top views (𝜽, 𝝋), while 
Avg. accuracy and F-1 score are evaluated on the collision prediction task. 
Despite being relatively lightweight in terms of number of parameters, 
2.5D CNN maintains a very good performance on both tasks. 
 

 

Model 
 

EVA 
 

RMSE Avg. 
accuracy 

F-1 
score 

Num. 
Layers 

 

FPS* 

AlexNet  0.63 0.128 88.2% 0.80 8 23 
ResNet-50  0.81 0.067 97.8% 0.93 50 7 
VGG-16  0.73 0.109 92.7% 0.84 16 12 

2.5D CNN 0.76 0.078 95.4% 0.92 8 20 
* Processing time in frames per second (fps). 
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is projected onto the bird and sagittal views and sent to the 
2.5D CNN. The sampling cube is rotated and adjusted based 
on the latest tracing information [𝜃, 𝜑] for sampling the next 
cochlea segment. This process continues to the last segment 
and sampling iterations along the cochlea and is user 
controlled.   
Table I compares the average performance of cochlea models 
(Anatom!"#$%&… Anatom!"#$%') between the 2.5D CNN 
against other architectures from the literature [40], [43]-[44]. 
From these results, it is observed that the 2.5D CNN, even 
though 70 times smaller than the best architecture (ResNet-
50), maintains considerable prediction performance while 
achieving real-time operation. Furthermore, the comparison 
against the VGG-16 architecture indicates the advantages in 
terms of generalization due to the residual learning scheme 
and parametric data generation model, as discussed in 
Section III.A.1 and Section III.B, respectively. The design 
succeeds at finding a good trade-off between tracing 
performance and the number of parameters detailed in the 
CNN architecture as shown in Table I. In order to enable the 
placement of an electrode array to promptly react to 
situational changes, it is necessary to reduce the network’s 
latency as much as possible.  
 

B. DEEP MAPPING OF NAVIGATION INDICATORS IN 
NOISY SCENARIOS   
Cochlea navigation is a difficult task, primarily because of 
the noise and variability associated with the real-world 
scenes. Computer vision has displayed a promising 
performance and flexibility when dealing with high degrees 
of noise and variability. This is because unlike most of the 
iterative methods where the search of true direction is 
determined based on a local estimate of the orientation and 
history information, the proposed and other CNN methods 
consider the whole feature map and the outline of the images 
(i.e. the borders). Typically, the added noise corrupts the 
process of mapping cochlea images to the navigation 
indicators including the distance to the adjacent left and right 
walls, collision probability and heading angle, and results in 
either minor or major deviations from the ground truth. The 
results in Fig. 8(a) show RMSE<0.1 for noise standard 
deviation (𝜎G) of  0 < 𝜎G < 025. 2D gaussian noise was 
embedded to the generated images and used for deep 
extraction of the navigation indicators in noisy situations. 
Fig. 8(a) shows that for 𝜎G < 0.22, the average RMSE of 
(𝐷𝑖𝑠𝑡 − 𝐿𝑊) (or (𝐷𝑖𝑠𝑡 − 𝑅𝑊)) in cochlea models 
(𝐴𝑛𝑎𝑡𝑜𝑚!"#$%&… 𝐴𝑛𝑎𝑡𝑜𝑚!"#$%') is below 0.18. Increased 
noise causes more variations on the border information of the 
projected cochlea segments. This can be seen as a stream of 
images with localized amplitude variations which makes the 
border recognition extremely difficult. For 𝜎G > 0.4,  the 
RMSE of all algorithms increase at a higher rate. Fig. 8(a) 
also shows that the ResNet-50 always shows higher noise 
robustness for 0.05 < 𝜎G < 0.55. 

Contiguous tracing which is the ratio of successful trials 
in tracing centerlines in all trials is calculated and shown in 
Fig. 8(b) for 0.05 < 𝜎G < 0.55. The contiguous ratio 
analysis considers the randomness of the 2D noise 
distribution. The graphs are computed from a total number 
of 30 trials for the cochlea models (𝐴𝑛𝑎𝑡𝑜𝑚!"#$%&… 
𝐴𝑛𝑎𝑡𝑜𝑚!"#$%'). For the 2.5D CNN, the tested cochlea 
models are traversed contiguously because the designed 
ResNet architecture helps with generalization of the border 
recognition in the image segments. In Fig. 8(b), the ratio of 
successfully traced centreline coordinates by the ResNet-50 
algorithm are higher compared to 2.5D CNN but has about 
3X longer execution time.  

 
C.  JOINT-VIEW PROJECTION AND NAVIGATION: STEP-
BY-STEP STUDY 
Fig. 9 shows the qualitative results of progressive projection 
and tracing in  𝐴𝑛𝑎𝑡𝑜𝑚!"#$%', its corresponding 3D 
operators and the identified indicators. An oriented sampling 
cube (OSC), which is a tight fit around 3D point in local 
space, is generated at four different locations of the 
𝐴𝑛𝑎𝑡𝑜𝑚!"#$%' to show the performance of the 2.5D CNN. 
The considered locations capture almost all the geometrical 
difficulties along the navigation path (i.e. width and height 
variations, rotations along Z axis etc.). Fig. 9(a) is the start 
of the navigation and location of the OSC around the scala 
tympani seed point, so seed point x-y-z coordinates are set to 
the center of the OSC. 3D sampled points obtained from the 

 
FIGURE 8.  (a) The calculated RMSE in mapping of (𝑫𝒊𝒔𝒕 − 𝑳𝑾) to the 
ground truth as a function of noise compiled for the anatomical models 
(𝑨𝒏𝒂𝒕𝒐𝒎𝒎𝒐𝒅𝒆𝒍𝟏… 𝑨𝒏𝒂𝒕𝒐𝒎𝒎𝒐𝒅𝒆𝒍𝟑). (b) Ratio of successful iterations 
completed by 2.5D CNN as a function of noise compared with ResNet-
50, VGG-16 and AlexNet.  
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input depth image are projected onto x-y and y-z planes of 
the coordinate system, respectively. Notice that the 
projections on the three orthogonal planes may be coarse 
because of the resolution of the depth map [45], which can 
be improved by performing median filter and opening 
operation on the projected images. The designed CNNs for 
each view then process and map the input projections into 
the navigation’s indicators. For the identified indicators 
including (𝐷𝑖𝑠𝑡 − 𝐿𝑊), (𝐷𝑖𝑠𝑡 − 𝑅𝑊) and (𝐶𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛) in 
each view, the distances from the left, right and the frontal 
walls are normalized between 0 and 64 (6 neurons to 
quantize 64 steps, with nearest points set to 0 and farthest 
points set to 64). The navigation angles (𝜃	and 𝜑) are also 
indicated by two numbers.  
By fusing the computed navigation indicators from both 
sagittal and bird-view projections, a 3D joint operator is 
finally formed as shown in Fig. 9(a)-(d). The superimposed 
3D navigators in each figure consists of blue and black 
arrows to quantify the height and width of the sampled 

cochlear respectively. The red arrow also shows the optimal 
navigation path. For example, the navigation parameter for 
the OSC samples around the scala tympani seed point, the 
(𝐷𝑖𝑠𝑡 − 𝐿𝑊), (𝐷𝑖𝑠𝑡 − 𝑅𝑊)	of both views are  (𝐷𝑖𝑠𝑡 −
𝐿𝑊/𝑅𝑊)DXYZBBX% = 30/25) and (𝐷𝑖𝑠𝑡 − 𝐿𝑊/
𝑅𝑊)[Z\#]^Z$_ = 29/24). (𝐶𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛) which shows the 
length of 𝑛𝑎𝑣^̂^̂ ^̂ ^⃗ H is also set to 39, the minimum of collision in 
both views 𝜃	and 𝜑 are also set to −5°and 115°. This process 
is then repeated for four different locations by moving the 
OSC along cochlea as shown in Fig. 9(a)-(d). 3D depth 
sampling is obtained by rotating the OSC to the identified 
𝜃	and 𝜑 of the previous step (i.e., the 𝜃	and 𝜑 history). The 
height, width and depth of OSC are also defined according 
to the derived information in the previous step [e.g., 
(𝐷𝑖𝑠𝑡 − 𝐿𝑊), (𝐷𝑖𝑠𝑡 − 𝑅𝑊) and the minimum of collision 
probability in both views 𝜃	and 𝜑]. This is an automated and 
reliable depth sampling that converts the whole cochlea to 
the smaller segments. The size-adjusted OSC rotates along 

 
FIGURE 9.  Automated tracing along a 3D cochlea using the 𝑨𝒏𝒂𝒕𝒐𝒎𝒎𝒐𝒅𝒆𝒍𝟑. (a), (b), (c) and (d) represent the shifted OSC shown by cyan color along 
the 𝑨𝒏𝒂𝒕𝒐𝒎𝒎𝒐𝒅𝒆𝒍𝟑. The superimposed OSC along cochlear samples different geometrical complexities at different turns. In (a), the OSC is placed 
around the scala tympani seed point, the sampled 3D cochlea segment is projected into the orthogonal sagittal and bird-view planes. The navigation 
indicators for both views are derived in two different columns below the projections. For example, sagittal view of 3D tracing algorithm starts from 
the seed point with 𝜽 = −𝟓°, 𝑪𝒐𝒍𝒍𝒊𝒔𝒊𝒐𝒏 = 𝟒𝟓, 𝑫𝒊𝒔𝒕 − 𝑳𝑾 = 𝟑𝟎 and 𝑫𝒊𝒔𝒕 − 𝑹𝑾 = 𝟐𝟓. Rotated joint 3D operators are also superimposed in each OSC for 
different scenarios. The derived navigation indicators {𝑻𝒐𝒑, 𝑩𝒐𝒕𝒕𝒐𝒎, 𝑳𝒆𝒇𝒕	𝒂𝒏𝒅	𝑹𝒊𝒈𝒉𝒕} are shown in (a), (b), (c) and (d).  
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the cochlea; the sagittal and bird-views also rotate 
accordingly to capture the projections. The identified 

coordinates and the 3D operator present the optimal 
navigation tool for surgical purposes. 
 

V. CONCLUSION 
In this paper, 2.5D CNN is proposed to map the projected 2D 
cochlea images into accurate navigation indicators, including 
the distance to the adjacent left and right walls, collision 
probability and heading angle. A novel network architecture 
was designed (i.e. converting a 3D to two complementary 
networks) to trade off performance for processing time to 
enable online operation, Each network consists of 5 dense 
convolutional layers with {(12×12) … (96×96)} kernels and 
LeakyReLU activations, followed by just one average 
pooling, with size equal to the size of final feature maps and 
three dense layers. The training was performed by 
minimizing the categorical cross entropy with the Adam 
optimizer. Tracing of the cochlea is a laborious and 
dangerous task as there exist infinitesimal error margin. The 
proposed method learns to promptly react to the radical 
directional changes, geometrical variations and overall 
rotations along the cochlea. It was shown through extensive 
evaluations on processing time, navigation accuracy and 
noise robustness analysis that the proposed approach 
performs well with both synthetic MATLAB-generated 
images and anatomical cochlea models constructed from 
micro-CT images. The results confirm reliable navigation 
with an average of >98% mapping accuracy. The processing 
time of the navigation platform which consists of 3D 
segment sampling, 2.5D projections, navigation indicators 
extraction and eventually the remapping to 3D navigators is 
100 ms per insertion step. Where there are local noise and 
artefacts, the feature map activations clearly recognize the 
edges of the of the generated images by the parametric 
model. Future work will focus on integrating the proposed 
navigation method into a robotic arm with a real-time 
imaging module to implement a precise computer-aided 
system for virtual cochlear surgery. 
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