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Abstract

We compute the dynamics of entanglement in the minimal setup producing ergodic and
mixing quantum many-body dynamics, which we previously dubbed boundary chaos.
This consists of a free, non-interacting brickwork quantum circuit, in which chaos and er-
godicity is induced by an impurity interaction, i.e., an entangling two-qudit gate, placed
at the system’s boundary. We compute both the conventional bipartite entanglement en-
tropy with respect to a connected subsystem including the impurity interaction for initial
product states as well as the so-called operator entanglement entropy of initial local op-
erators. Thereby we provide exact results in a particular scaling limit of both time and
system size going to infinity for either very small or very large subsystems. We show that
different classes of impurity interactions lead to very distinct entanglement dynamics.
For impurity gates preserving a local product state forming the bulk of the initial state,
entanglement entropies of states show persistent spikes with period set by the system
size and suppressed entanglement in between, contrary to the expected linear growth
in ergodic systems. We observe similar dynamics of operator entanglement for generic
impurities. In contrast, for T-dual impurities, which remain unitary under partial trans-
position, we find entanglement entropies of both states and operators to grow linearly
in time with the maximum possible speed allowed by the geometry of the system. The
intensive nature of interactions in all cases causes entanglement to grow on extensive
time scales proportional to system size.
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1 Introduction

One of the hallmark features of quantum mechanics which has no counterpart in classical
physics is quantum entanglement. With the advent of quantum computing and communica-
tion, quantum entanglement has become an important resource to overcome limitations of
classical computing [1]. Futhermore, the study of the creation and kinetics of entanglement
is currently a well established tool to characterize the complex dynamics of condensed matter
systems and the emergence of their thermodynamic description both theoretically [2, 3] and
experimentally [4–7]. Simultaneously the creation of the so-called entanglement entropy sets
fundamental limits on how such systems can be simulated on classical computers [8–11].

A standard protocol to investigate the creation of entanglement in a quantum system is that
of a quench, i.e., the time evolution from an initial state with typically little or no entanglement,
which is not an eigenstate of the system’s evolution operator. A very general feature in such
a non-equilibrium situation is the linear growth of entanglement between disjoint subsystems
measured by, for example, the von Neumann or Rényi entropies of the reduced density matrix,
and their subsequent saturation for finite systems.

This linear growth has been observed in distinguished scenarios, including experimental
setups with cold atoms [5], and has been explained by different mechanisms. In integrable
systems, the linear growth can be traced back to propagating stable quasi particles [12–18].
But it has also been shown that the linear growth is ubiquitous even in the absence of sta-
ble quasi particle excitations [19–30]. In spatially local chaotic many-body systems it can be
qualitatively deduced from a minimal membrane separating the subsystems [23,24]. Recently,
more rigorous results on the nature of the linear growth of entanglement in chaotic systems
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have been obtained for random quantum circuits [23, 25, 26] or Floquet systems including,
e.g., periodically driven chaotic spin chains [27] or Floquet quantum circuits [28–30]. In par-
ticular in the latter a dual description of the dynamics under a swapping of space and time
allows for rigorous results in the thermodynamic limit [16,27,30–32].

Nevertheless, there are some notable exceptions from the linear growth of entanglement
entropies, e.g., in the presence of confined quasiparticles [33] as well as in disordered [34]
and many-body localized systems [35–39], which display logarithmic growth.

An alternative point of view for characterizing the dynamics of many-body systems is pro-
vided by the growth of complexity of initially simple operators, for example, local operators,
under Heisenberg time evolution. There are various ways to characterize the complexity of the
time evolved operator, including out-of-time-ordered correlators, which quantify the scram-
bling of operators and the growth of their support [25, 40–46] as well as their Krylov com-
plexity [47–50]. Moreover, one can study correlations in the time evolved operator shared by
disjoint subsystems.

By interpreting operators as states in an enlarged Hilbert space by means of an operator
to state mapping, this idea can be made concrete by applying the concept of entanglement to
the vectorized operator. This leads to the notion of operator entanglement, which originally
was introduced to study the entanglement properties of evolution operators or, more gener-
ally, quantum channels [51]. In the context of many-body systems this measure can also be
used to quantify the growth of complexity of initially simple operators [52, 53]. The latter
provides additional insight into the complexity of the many body dynamics and sets limits for
the numerical simulation of Heisenberg time evolution of operators [52–56].

Previously, the aforesaid quantity has been studied in various settings, including systems
with local solitons [57] as well as integrable systems [52, 53, 56, 58, 59] and conformal field
theories [60], where logarithmic growth of operator entanglement entropies were observed.
In contrast, in general chaotic systems entanglement entropies initially grow linear in time [24,
61, 62] until they eventually saturate. An interesting exception from saturation at late times,
the so-called entanglement barrier, occurs for the reduced density matrix of a pure state in
systems with short range interactions [60,63,64]. There, after initially growing, entanglement
entropies ultimately drop down again until they settle at the value of a lowly entangled thermal
state.

In this paper we consider both the entanglement dynamics for product states and the op-
erator entanglement dynamics for local operators in a simple quantum circuit setting, which
allows for exact solutions in the limit of large system size L →∞. More precisely we study
a free quantum circuit model, with trivial free dynamics, which we perturb at the system’s
boundary with an entangling two-qudit gate, which we call an impurity interaction. This setup
was introduced in Ref. [65] and dubbed boundary chaos. One might think of such a circuit as
a toy model for a free system subject to a local perturbation which introduces nontrivial scat-
tering to the otherwise free dynamics. Despite its simple nature the boundary chaos circuit
has been shown to be quantum chaotic in the sense of spectral statistics and exhibits ergodic
dynamics [65].

Moreover, this setting allows us to analytically integrate out the free part of the dynamics,
in a conceptually similar fashion as for Poincaré maps in classical dynamics [66]. This enables
us to provide a simplified tensor network representation of the time evolved reduced density
matrix, or super density matrix in the case of operator entanglement. In particular, these net-
works contain only the impurity interaction and hence contain a factor of 1/L less gates. This
renders them amenable for efficient numerical contraction in terms of suitable transfer matri-
ces even for very large systems, and for analytical calculations in the thermodynamic limit of
system size L→∞. Depending on the choice of impurity interaction we either obtain the re-
duced (super) density matrix or the corresponding Rényi entanglement entropies exactly. For
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different classes of impurity interactions we find very different entanglement dynamics includ-
ing exponentially suppressed (operator) entanglement entropies for most times accompanied
by periodical spikes as well as maximally fast linear growth of (operator) entanglement. In all
cases, however, we find entanglement to grow on extensive time scales ∼ L. We summarize
our results in more detail in the following section.

1.1 Summary of results

To discuss our results, let us first introduce some notation. The free part of the boundary
chaos circuit is built from swap gates on a chain of qudits, i.e., q-level systems of length L+1.
Chaos and ergodicity is introduced by placing an impurity interaction, i.e., a non-trivial two-
qudit gate U just at the system boundary. Remarkably, this is indeed enough to make the system
ergodic! Namely, spectral fluctuations of the evolution operator coinicide with those of appro-
priate random matrix ensembles, see App. A, and dynamical correlations decay exponentially
in time [65]. In this work we use the simplistic nature of this model to obtain the asymptotics
of entanglement dynamics analytically for different classes of impurity interactions, yielding
results that seem quite non-intuitive at first glance. We systematically compute the entangle-
ment dynamics of initial product states and of local operators, which provides insight to the
complex many-body dynamics both for our simple model as well as for generic lattice systems.
To define entanglement entropies we introduce a bipartition of the system into a subset A con-
taining the first l + 1 qudits, and its complement A, containing the remaining L − l qudits.
For this bipartion we compute the dynamics of the reduced (super) density matrix ρl(t), and
its Rényi entropies Rn = ln tr(ρl(t)n)/(1− n), for initial product states and local operators in
the scaling limit L, t →∞ with t/L fixed. Depending on the type of impurity interaction we
obtain exact results either for fixed subsystem size l or in the limit l →∞. We describe the
different classes of impurity interactions and the results obtained for them below.

1. Product initial state and impurity interactions with a vacuum state: These interactions
preserve a certain 2-qudit product state1 |◦◦〉. For example, for spin qubits we can take
this to be the state with both spins pointing up (|◦〉 = |↑〉). Starting from initial states
of the form |• ◦ ◦ · · · ◦ ◦〉 with a single localized excitation |•〉 (e.g. |↓〉) at the boundary,
for finite systems, we see persistent revivals of Rn with period given by the system size
L, see Fig. 1 below.

This seemingly contradicts the ergodic-like spectral statistics of the evolution operator,
as in such a case a monotonic growth of entanglement is expected. However, because
our model has the impurity just at the boundary, the initially localized excitation travels
completely into the - typically much larger - complement of the considered subsystem
and leaves only the vacuum in the subsystem close to the boundary. Only at resonant
times, i.e., integer multiples of L, has the excitation traveled ballistically through the sys-
tem and returned to the impurity. And this is the only time where correlations between
the subystem and its complement might develop. Thus, exclusively at the boundary, the
excitations can scatter into higher excited states which lead to a growth of entanglement.
As this process occurs on a time scale proportional to L entanglement can grow at most
on extensive time scales (time proportional to L).

To put it more concretely, we find the reduced density matrix for large system size to be
close to the pure state

ρl(t) = |◦ ◦ · · · ◦ ◦〉〈◦ ◦ · · · ◦ ◦| , (1)

1A trivial example is a U(1)-symmetric, i.e. particle number conserving interaction gate. Here, however, we
consider more general gates which involve also the transitions |•◦〉 → |••〉, |◦•〉 → |••〉.
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for most times. For finite systems, introducing τ = ⌊t/L⌋ and a remainder δ = t mod L
such that t = τL+δ, we observe that Eq. (1) holds up to terms exponentially suppressed
as λδ0 for some λ0 < 1, controlled by a subleading eigenvalue of certain transfer matrices.
As the Rényi entropy of a pure state vanishes it is dominated by the subleading term and
reads

Rn(t)∼ |λ0|δ . (2)

This indicates exponential suppression of Rényi entropies with δ as well for most times
as L→∞. For resonant times, t ≈ τL , the entanglement entropy is of order one.

2. Product initial state and T-dual impurity interactions: T-dual gates are those two-qudit
gates which remain unitary under partial transposition (on a single qudit). Even though
the asymptotic reduced density matrix can not be obtained explicitly, the corresponding
Rényi entropies can be computed exactly for large subsystem size l →∞. In contrast
to the previous case we recover the result expected for fully chaotic systems given by

Rn(t) = 2τ ln(q) + const. , (3)

independent from the Rényi index n, implying flat entanglement spectrum of ∼ eRn(t)

non-zero eigenvalues of ρl(t). Noting that τ∼ t/L the above equation describes linear
growth of Rn with time at maximum velocity ln(q)/L allowed by the system’s geometry.
The only difference to a spatially homogeneous chaotic system is the additional 1/L
factor, which is due to the density 1/L of nontrivial interactions. Moreover, Eq. (3)
suggests a staircase structure of the entanglement entropies Rn(t) with steps at integer
values of t/L. Such staircaise structure, but with different step height, is also observed
for finite subsystems until Rn(t) saturates at late times, see Fig 2. The saturation value
for finite systems, however, depends on the impurity interaction at the boundary.

3. Product initial state and generic impurity interactions: In this case we see a mixture of
the above two scenarios. This is depicted in Fig. 3. The leading eigenvalue is still 1,
which leads to some plateau of Rn for fixed τ independent of L. However, unlike in the
T-dual case, there are subleading transfer matrix eigenvalues λ0 which lead to additional
structure ∼ λδ0 on top of the plateau.

4. Local operator and generic impurity interactions: The concept of entanglement and en-
tanglement entropies can also be applied to vectorized operators, i.e. using an operator-
to-state mapping, where the operators are interpreted as states in an enlarged Hilbert
space. For generic impurity interactions the vectorized identity operator |◦〉= |1q〉 plays
the role of a vacuum state as a consequence of unitality of Heisenberg time evolution
similar to the case of states and vacuum-preserving impurity interactions. For local oper-
ators the role of the excitation is now played by the nontrivial component of the operator.
As a consequence of this analogy the corresponding operator entanglement/Rényi en-
tropies show qualitatively similar dynamics, see Fig. 4 below, and the physical intuition
remains the same. The reduced super density matrix is given by the operator version of
Eq. (1) for most times and corresponds to a pure state. The latter is just the vectorization
of the identity operator 1A on the subsystem A.

5. Local operator and T-dual impurity interactions: As was the case for states, the situation
changes drastically, if we additionally demand T-duality of the impurity interaction. Us-
ing similar arguments as for states we obtain the Rényi entropies for large system and
subsystem size exactly. Again we find linear growth of operator entanglement entropies
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with time at maximum speed as

Rn(t) = 2τ ln
�

q2
�

+ const. , (4)

with the only difference to Eq. (3) being the local Hilbert space dimension q2 instead
of q. For finite subsystems, we again find a similar staircase structure as in the case of
states, see Fig. 5.

We would like to reiterate that for both vacuum-preserving and T-dual impurity interac-
tions, spectral fluctuations of the full circuit show similar properties, e.g. level repulsion,
rendering the systems quantum chaotic in the sense of spectral statistics. Dynamics of entan-
glement, in contrast, is strikingly different being either exponentially suppressed for most times
in the case of impurities with a vacuum state, whereas it shows linear growth with maximum
speed in the T-dual case.

Additionally, while we state the results for initial states where the localized excitation is
placed at the edge of the system (where interaction operates), they are qualitatively valid for
the excitation placed anywhere in the lattice, in most cases. This can be shown easily for all the
cases above, except for the operator entanglement with T-dual gates where the computation
is complicated and a simple conclusion cannot be drawn.

In what follows, we shall first explain the setting of the problem and the notations used
throughout the rest of the work in Sec. 2. Then, we will derive the tensor network repre-
sentation of the reduced density matrix in Sec. 3.1; followed by details of the computation
of entanglement dynamics of product states in Sec. 3.2 and operator entanglement in Sec. 4.
Finally, we conclude by discussing implications of our results and possible extensions in Sec. 5.
Moreover, in App. A we provide additional insight into the spectral fluctuations in the bound-
ary chaos circuit and in App B we comment on the subleading part of the transfer matrices’
spectra.

2 Setting

In this section, we introduce the class of quantum circuits we use to obtain our results. As we
shall describe in Sec. 2.1, interactions are introduced only on the boundary and hence we call
this a boundary chaos circuit. We shall define and briefly discuss the entanglement entropies
both for states and operators in Sec. 2.2.

2.1 Boundary chaos circuit

We start from the Floquet system generated by a free brickwork quantum circuit on a one
dimensional lattice of size L + 1, with sites labelled by i ∈ {0,1, . . . L}. Then, we render the
evolution non-trivial by adding a two site non-trivial gate acting on sites 0 and 1. Each site
is occupied by a qudit with local Hilbert space given by Cq having canonical (computational)
basis |α〉with α ∈ {0, 1, . . . ,q−1} . Hence the total Hilbert space H = (Cq)⊗L+1 is of dimension
N = qL+1 and the product basis is denoted by |α0α1 · · ·αL〉. There are two types of local 2-
qudit gates, the Swap gate P governing the free evolution and the entangling unitary gate
U ∈ U(q2), the impurity interaction at the boundary. For the brickwork circuit design the
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Floquet operator is given by, U = U2U1 ∈ U
�

CN
�

with

U1 =
⌊L/2⌋
∏

i=1

P2i−1,2i , (5)

U2 = U0,1

⌊(L−1)/2⌋
∏

i=1

P2i,2i+1 , (6)

where Gi, j denotes the unitary gate acting as the 2-qudit gate G = U , P at sites i, j and trivially
otherwise. Diagrammatically, the circuit can be represented as

U =

0 2 4 L − 2 L
x

(7)

with its elementary building blocks

P = and U = . (8)

Here, the wedges indicate the orientation of the impurity interaction and wires carry the q-
dimensional Hilbert space Cq.

To compute time evolution of operators in the Heisenberg picture we use a folded picture
which introduces a super circuit with larger local Hilbert space dimensions q2 [67,68]. To this
end we define the vectorization of an operator by the isomorphism End (Cq)≃ Cq2

defined via
bilinear extension of

End (Cq) ∋ |α〉〈β | 7→ |α〉 ⊗ |β〉 ∈ Cq2
. (9)

This extends to a vectorization mapping via tensor multiplication End
�

CN
�

≃ CN2
. Also note

that this mapping is unitary with respect to the Hilbert-Schmidt inner product in End
�

CN
�

,

〈A|B〉 = tr
�

A†B
�

and the standard inner product in CN2
. Abusing the notation a bit, we also

choose an orthonormal basis in the space of vectorized operators, |α〉 with α ∈ {0,1, . . . q2−1}
in Cq2

where |0〉 is the vectorization of 1q/
p

q ∈ End (Cq) and |α〉 is the vectorization of
a Hilbert-Schmidt normalized, Hermitian operator, which is orthogonal to the identity and
hence traceless. Under this mapping, we can cast the Heisenberg time evolution of operators
A(t) = U−tAU t in a quantum circuit formulation. This super circuit is built from folded gates
S = P ⊗ P and W = UT⊗U† ∈ U(q4). The circuit W is of the same form as U but with the two
layers interchanged, i.e., W =W2W1 with

W1 =W0,1

⌊(L−1)/2⌋
∏

i=1

S2i,2i+1 , (10)

W2 =
⌊L/2⌋
∏

i=1

S2i−1,2i , (11)

where again, Si, j denotes the unitary gate acting nontrivially as the folded swap gate P and,
Wi, j the folded impurity interaction U acting on sites i, j, and trivially otherwise. Diagrammat-
ically, this can be represented as

W =

0 2 4 L − 2 L
x

(12)
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where
S = and W = , (13)

with the wedge indicating the orientation of the impurity interaction. Due to folding, the
wires now carry the q2-dimensional Hilbert space Cq2

. It is also worth noting that no matter
how one ‘folds’, the two layers of the original circuit U and the super circuit W are always
interchanged, which subsequently will lead to subtle differences in the computation of entan-
glement entropies.

2.2 Entanglement entropies

In this section, we provide a short introduction to the entanglement entropies we compute in
our work. We begin with the more familiar case of entanglement of states. As mentioned
before, we bipartition the system into the subsystem A = {0, 1, . . . l} and its complement
A = {l + 1, . . . , L} for l < L. The reduced density matrix of the subsystem A, denoted by
ρl(t), at any instant of time is given by,

ρl(t) = trA (|ψ(t)〉〈ψ(t)|) , (14)

where |ψ(t)〉 = U t |ψ〉 is the time evolved pure initial state |ψ〉 ∈ CN and the partial trace is
taken over the Hilbert space associated with A. We compute the n-th Rényi entropy Rn (for
integer n) of the reduced density matrix as,

Rn(t) =
1

1− n
ln [tr (ρl(t)

n)] . (15)

The single replica limit n→ 1 gives the von-Neumann entropy R1(t). Note that for a pure state,
we have Rn(t) = 0. In contrast the fully mixed state, ρl(t) = 1/ql+1, has a flat entanglement
spectrum and gives Rn(t) = (l + 1) ln(q) independent of n. In this work we focus on product
initial states |ψ〉 =

⊗L
i=0 |ψi〉 with |ψ〉i ∈ Cq. We will also restrict the discussion to states

with |ψi〉 = |ψ j〉 for i, j > 0 for simplicity. Nevertheless, depending on the type of impurity
interaction our approach might be applicable to arbitrary product states as well.

For entanglement of operators, the above definitions remain the same if the operators are
viewed as vectors in an enlarged Hilbert space as it is suggested by the vectorization mapping.
Hence, the reduced super density matrix for initial operator O ∈ End

�

CN
�

with vectorization
|O〉 is

ρ̂l(t) = trA

�

W t |O〉〈O|W−t
�

. (16)

Similarly as before, for pure states (pure vectorized operators), the entanglement entropies
are zero, while for the fully mixed super density matrix one gets Rn(t) = (l + 1) ln(q2). The
only difference is rooted in the local Hilbert space dimensions q vs q2. Note that an analogous
notion of operator entanglement can be applied to the evolution operator U itself or even
more general quantum evolutions as well [51], which, e.g., characterizes their entangling
power [69]. In this work, however, we will focus on local operator entanglement [52,53,62].
That is we consider local operators of the form a0 = a⊗1⊗L

q acting non-trivially as a ∈ End(Cq)
only on the first lattice site. We note that for operators and generic gates as well as for states
with vacuum-preserving gates the results are independent from where we put the non-trivial
operator/excited state (up to a shift in time). For states and T-dual gates we can go further
and perform the computation for arbitrary product initial states.
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3 Entanglement dynamics of product states

In this section we will first provide a tensor network representation of the reduced density
matrix for initial product states which allows both for an effective numerical computation
even for large system size and for an analytic evaluation. Using this description we will then
compute the Rényi entropies for different classes of impurity interactions.

3.1 Tensor network representation of the reduced density matrix for product
states

We shall introduce a tensor network representations of the initial and time evolved states in
this section first, before moving on to the discussion of the reduced density matrix.

3.1.1 Initial state

Let us begin by choosing two normalized states denoted by |a〉 and |◦〉. Without loss of gen-
erality, we might choose |◦〉 = |0〉 as one of the computational basis states. Unless stated
otherwise we take |a〉 orthogonal to |◦〉. Diagrammatically, these two states are represented
as, |a〉= a and |◦〉= .

We consider initial product states which are homogeneous in the bulk and correspond to
|a〉 at the boundary. More precisely they are given by

|a0〉= |a〉 ⊗ |◦〉
⊗L = a ∈ (Cq)⊗L+1 . (17)

3.1.2 Time evolved state

Following the construction introduced in Ref. [65] to integrate out the free bulk dynamics of
the boundary chaos circuit, we can recast the time evolved state into a more convenient tensor
network of smaller size (by a factor 1/L compared to the naive tensor network representation).
We provide a short description of the construction here. Let us start by introducing the building
blocks of the network. We express time t as t = τL + δ for non-negative integer τ and
remainder δ ∈ {0,1, . . . , L − 1}. For finite L, two different scenarios appear during evolution,
the times t with l/2< δ and l/2< L−δ are referred to as non-resonant and the remaining t
are called resonant. For resonant times t/L differs from the closest integer by less than l/(2L).
The tensor network is composed from the local 2-qudit gates V = U P defined by Eq. (8). We
depict the gate V and its Hermitian adjoint as

V = , V † = , (18)

where unitarity of V diagrammatically reads

= = (19)

The initial and final free dynamics for lattice sites in the bulk is taken into account by combin-
ing the action of the swap gates which for a given time t are not connected to the boundary in
forward or backward time direction into a global permutation of lattice sites. To this end we de-
note the unitary representation of the symmetric group on L elements SL which permutes ten-
sor factors byP : SL → U

�

(Cq)⊗L�. In other words,Pσ acts asPσ
�
⊗L

i=1 |αi〉
�

=
⊗L

i=1 |ασ−1(i)〉
on the canonical product basis. This is diagrammatically represented as,

Pσ = Pσ (20)
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Of particular importance for our construction are the permutations σδ ∈ SL for
δ ∈ {0,1, . . . , L − 1} which are defined by their action on x ∈ {1,2, . . . , L}. To this end we
write the latter as x = (L −δ+ y)mod L for unique y ∈ {1, 2, . . . , L} and define

σδ(x) =

¨

2y − 1 , if 2y − 1≤ L ,

2(L − y + 1) , if 2y − 1> L ,
(21)

for x ∈ {1, 2, . . . , L}. The tensor network representation of |a0(t)〉 is given by (see Ref. [65]
for details)

|a0(t)〉=

0 2 L −δ+ 1 L
x

a

τ

Pσδ

P−1
σ0

(22)

Note that the permutations (21) differ from Ref. [65] due to states evolving in the Schrödinger
picture in contrast with operators evolving in the Heisenberg picture, which is manifest in the
impurity interaction acting either in the second layer, see Eq. (7), or in the first layer of the cir-
cuit, see Eq. (12). For our choice of initial state

�

1Q ⊗P−1
σ0

�

|a0〉= |a0〉 and we can replaceP−1
σ0

by the identity. A similar representation can be obtained for 〈a0(t)| in which the appropriately
oriented adjoint gate V † enters. Intuitively, in the above network evolution in the time-like
variable τ, i.e. vertically, describes scattering of excitations into the system with trivial free
dynamics in between. Hence columns of the network describe such scattering events of this
type from impurity interactions which differ by L layers of the original circuit U t obtained from
Eq. (7). In a dual picture one might think of contracting the network in the horizontal spatial
direction, which corresponds to scattering of excitations along the boundary. Consequently,
rows of the tensor network (22) describe collective scattering events along the boundary from
impurity interactions in L subsequent layers in U t . Given the above interpretation, the phys-
ical time variable t runs along a helix through the network and hence causes the helix-like
topology of the tensor network.

3.1.3 Reduced density matrix

We now obtain the representation for the reduced density matrix from Eq. (22). We focus on
the simpler case of non-resonant times. Expanding the reduced density matrix in the appro-
priate computational basis,

ρl(t) =
q−1
∑

α0,...,αl=0

q−1
∑

β0,...,βl=0

ρ
α0···αl
β0···βl

(t) |α0 · · ·αl〉 〈β0 · · ·βl | , (23)
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we can diagrammatically represent it as

ρl(t) =
Pσδ P†

σδ

a a

δ

L

τ+ 1 τ+ 1

l

L − l

α0 α1 · · · αl βl · · · β1 β0

(24)

=

a a

δ

L

τ+ 1 τ+ 1

l2

l1

α0 · · · αl βl · · · β0

, (25)

where α0, . . . ,αl and β0, . . . ,βl represent the output and input legs of ρl(t) respectively. For
a more convenient depiction of the diagrams we rotated the tensor network (22) by 90◦. In
order not to complicate the diagrams, we show it for fixed values of L = 9, l = 4 and t = 31.
To obtain Eq. (24), we have used

�

1Q ⊗P−1
σ0

�

|a0〉 = |a0〉 and simplified the lowest row of the
tensor network (22) (similarly for 〈a0(t)|). Finally, Eq. (25) follows from the definition of σδ
and the unitarity of Pσδ . Moreover, we define l1 = ⌊l/2⌋ and l2 = l − l1. In the diagram, we
also highlight the parts directly unconnected to the in- and output legs of the reduced density
matrix with the rose shade, while we indicate the connected parts via the turquoise shade.
The importance of this distinction will become clear in what follows.

To get an explicit expression of the reduced density matrix, we introduce different trans-
fer matrices, which correspond to the rows of the tensor network (25). Hence, the transfer
matrices act in the spatial direction corresponding to the vertical direction in Eq. (25) (and
to the horizontal x-direction in Eq. (22)) Conceptually, this might be thought of as a dual
description of the dynamics after a space-time swap, which was recently used in related con-
texts [16,27,30–32]. Formally, we define transfer matrices Tτ and [Tτ]αβ : (Cq)⊗2τ→ (Cq)⊗2τ
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for τ ≥ 0 as well as [Tτ]α0α1
β0β1

and [Aτ]αβ : (Cq)⊗2τ → (Cq)⊗2(τ−1) for τ ≥ 1 as matrix product
operators by their respective diagrammatic representation

Tτ =

τ τ

, (26)

[Tτ]αβ =
α β

, (27)

[Tτ]α0α1
β0β1

=
α1β1

α0 β0

, (28)

[Aτ]αβ =
α β

. (29)

We also define Ca,τ : (Cq)⊗2τ → (Cq)⊗2(τ+1) , |ν〉 7→ |a〉 ⊗ |ν〉 ⊗ |a〉 which diagramatically can
be expressed as

Ca,τ =
a a

τ+ 1 τ+ 1

(30)

Additionally, we introduce [Aτ]α0,α1
β0,β1

= [Tτ]α0,α1
β0,β1

for l = 1 and [Aτ]α0···αl
β0···βl

: (Cq)⊗2τ→ (Cq)⊗2(τ−1)

for l ≥ 2 by

[Aτ]α0···αl
β0···βl

=

¨

[Tτ−1]
αl
βl
· · · [Tτ−1]

α4
β4
[Tτ−1]

α2
β2
[Tτ]α0α1

β0β1
· · · [Tτ]αl−1

βl−1
, l even,

[Tτ−1]
αl−1
βl−1
· · · [Tτ−1]

α4
β4
[Tτ−1]

α2
β2
[Tτ]α0α1

β0β1
· · · [Tτ]αl

βl
, l odd.

(31)

The operators Aτ+1 represent the turquoise shaded part of the tensor network (25); while
the lower rose shaded part corresponds to [Tτ+1]δ−l2 and the upper rose shaded part corre-
sponds to T L−δ−l1

τ . With the above definitions we have,

ρ
α0···αl
β0···βl

(t) = tr
�

T L−δ−l1
τ [Aτ+1]

α0···αl
β0···βl

T δ−l2
τ+1 Ca,τ

�

. (32)

We focus on the limit L−δ,δ≫ l where Eq. (32) can be simplified further, as then the leading
eigenvalues of Tτ+1 and Tτ will give the dominant contribution. More precisely, we compute
limL,t→∞ρl(t) for fixed l while L and t approaching infinity such that t/L→ τ0 ∈R\Z. This
latter condition ensures that for sufficiently large L and t we need to consider the non-resonant
case only. In the above limit the resonant case is relevant only if τ0 ∈Z.

Using the unitarity of gates V we can already list some basic properties of the spectrum of
the transfer matrices. First note, that the transfer matrices are in general not normal, implying
a nontrivial Jordan structure and a distinction between left and right eigenvectors. Neverthe-
less, the transfer matrices Tτ are non-expanding [62] such that the leading eigenvalue is at
most of modulus 1.

The leading eigenvalue of the transfer matrix is in fact equal to 1, which can be seen as
follows. We first define the normalized rainbow states |rτ〉 ∈ (Cq)⊗2τ via

|rτ〉= q−
τ
2

q−1
∑

α1,...,ατ=0

|α1α2 · · ·ατατ · · ·α2α1〉

= q−
τ
2

τ

(33)
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By unitarity of the gates one has 〈rτ|Tτ = 〈rτ| and hence 〈rτ| = |rτ〉
† is a left eigenvector

for eigenvalue 1, as can be seen by evaluating the eigenvalue equation diagrammatically. The
corresponding right eigenvector, however, cannot be described explicitly. In general, there
might be more unimodular eigenvalues. However, all the unimodular eigenvalues, and in
particular the eigenvalue 1, have equal algebraic and geometric multiplicity. The latter follows
from observing that a non-trivial Jordan block corresponding to an unimodular eigenvalue of
Tτ is no longer non-expanding.

In any case, the above tensor network representation allows us to numerically study very
large systems. The computational complexity to compute the reduced density matrix is linear
in L but exponential in τ and l as the dimensions of the involved matrices go up to q2(τ+l+1).
However, additional constraints on the impurity interaction can lead to situations in which
the reduced density matrix or the corresponding entanglement entropies can be computed
analytically. In the following sections we shall use these ideas to compute entanglement growth
in the boundary chaos circuit both analytically in the limit of large system size and long times
L, t →∞ at fixed τ. We complement those results by numerical computations in large but
finite systems.

3.2 Entanglement dynamics

In this section, we use Eq. (32) to compute the growth of entanglement for different classes
of impurities.

3.2.1 Impurities with a vacuum state

We start our analysis with a class of impurity interactions which allow for an exact compu-
tation of the reduced density matrix in the non-resonant case as t, L →∞. More precisely,
we consider impurities which preserve a 2-qudit product state. We call this product state
a (local) vacuum state. A trivial physical realization of such impurities, resulting in single-
particle dynamics, is given by 2-qubit gates which exhibit a local U(1) symmetry, for which,
e.g., magnetization is conserved. Hence either of the states |00〉 and |11〉 gives rise to a lo-
cal vacuum state. However, in order to obtain a non-trivial dynamics, we consider generic
vacuum-preserving gates described below.

Consider a two qudit gate U ∈ U(q2) which has an eigenstate of product form |φ〉 ⊗ |φ〉,
i.e.,

U |φ〉 ⊗ |φ〉= eiϕ |φ〉 ⊗ |φ〉 . (34)

Hence, |φ〉⊗|φ〉 can be taken as the local vacuum state. The resulting circuit is equivalent (via
local unitaries) to a circuit built from eiϕU0, where U0 is block diagonal, i.e., U0 = 1⊕ u with
u ∈ U(q2 − 1). As forward and backward time evolution appear symmetrically in the reduced
density matrix, we can assume ϕ = 0 without loss of generality. We find such a system to
be quantum chaotic in the spectral sense as numerically we find the circuit U built from such
gates to exhibit level repulsion for generic choices of u, see Fig. 6 in App. A. Finally to simplify
notation, after a potential change of the local basis we write |φ〉 = |0〉 = |◦〉 and denote the
vacuum state by |◦◦〉.

Spectrum of transfer matrices: We shall now try to obtain the leading part of the spectrum
of T built from gate U = U0 placed at the left end of the circuit. As mentioned before, we intend
to focus on the limit where the leading eigenvalues of T will give the dominant contribution
to Eq. (32). We restrict ourselves to gates U such that there are no additional unimodular
eigenvalues of Tτ, except for eigenvalue 1 with multiplicity one. We call such gates completely
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chaotic [62]. Numerically, we find this to be the case for generic choices of u ∈ U(q2 − 1), see
App. B.

To compute the eigenvector corresponding to the leading eigenvalue 1, we first observe
that U |◦〉⊗L+1 = |◦〉⊗L+1 as a consequence of U |◦◦〉 = |◦◦〉 and P |◦◦〉 = |◦◦〉. We also have
V |◦◦〉= |◦◦〉, (and similar for V †) which can be diagrammatically expressed as

= , = , = , = . (35)

These imply that Tτ |◦〉⊗2τ = |◦〉⊗2τ, i.e., |◦〉⊗2τ is a right eigenvector for eigenvalue 1. The
projection onto the eigenspace for eigenvalue 1 of Tτ consequently reads

Pτ = q
τ
2
�

|◦〉⊗2τ� 〈rτ| , (36)

where the prefactor takes into account the orthonormality with the left eigenvector 〈rτ| defined
in Eq. (33), required for the projector property P2

τ = Pτ. We shall compute the asymptotic
reduced density matrix using Eq. (36).

Asymptotic reduced density matrix: In the limit of large L and hence L−δ≫ l1, we replace
T L−δ−l1
τ by Pτ in Eq. (32) and obtain,

ρ
α0···αl
β0···βl

(t) = q
τ
2 〈rτ| (Aτ+1)

α0···αl
β0···βl

(Tτ+1)
δ−l2
�

|a〉 ⊗ |◦〉⊗2τ ⊗ |a〉
�

, (37)

where2 we have used the explicit definition of Ca,τ. Next, we consider also δ≫ l2 and replace

T δ−l2
τ+1 by Pτ+1 to obtain,

ρ
α0···αl
β0···βl

(t) = q
τ
2 〈rτ| (Aτ+1)

α0···αl
β0···βl
|◦〉⊗2τ+2 , (38)

where we have used q
τ+1

2 〈rτ+1|
�

|a〉 ⊗ |◦〉⊗2τ ⊗ |a〉
�

= 1. The invariance of the vacuum state
implies

(Aτ+1)
α0···αl
β0···βl
|◦〉⊗2τ+2 =

� l
∏

i=0

δαi ,0δβi ,0

�

|◦〉⊗2τ . (39)

Combining this with q
τ
2 〈rτ|
�

|◦〉⊗2τ� = 1 we obtain ρα0···αl
β0···βl

(t) =
∏l

i=0δαi ,0δβi ,0. Hence, we

get,3

ρl(t) = (|◦〉〈◦|)
⊗l+1 + c(τ, l)λδ0 . (40)

Here we explicitly include subleading terms which scale with the subleading eigenvalue
λ0 = λ0(τ) of Tτ+1, which in general depends on τ. The prefactor can in principle be ob-
tained from the left and right eigenvectors corresponding to λ0. Further note, that due to
biorthogonality of left and right eigenvectors and Eq. (39) the subleading part of the spectrum
of Tτ gives rise to contributions exponentially suppressed with L only, which can safely be
ignored in Eq. (40).

2Strictly speaking the above expression is correct only in the limit L →∞ or up to corrections exponentially
suppressed with L − δ or δ. For the sake of notational convenience we still write it as an equality. We discuss
subleading terms explicitly when appropriate.

3Alternatively, we could have replaced Tτ+1 first, but the subleading contribution would be still be the same.
This is because, replacing Tτ+1 by Pτ+1 and subsequently Tτ by the projection onto λ0 eigenspace gives zero by
Eq. (39) and biorthogonality of eigenvectors.
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Figure 1: Second Rényi entropy for q = 2 and l = 2 for an impurity interaction with a
vacuum state for various system sizes in (a) linear and (b) semi-logarithmic scale. (a)
The dashed line corresponds to the maximum entropy given by (l +1) ln(q). Orange
dots depict R2 obtained from a direct computation via Eq. (14). (b) The dash-dotted
lines illustrates the asymptotic scaling |λ0|δ.

Entanglement entropies and comparison with numerics: From Eq. (40), the Rényi en-
tropies follow as

Rn (t)∼
n

n− 1
|λ0|δ , (41)

assuming unique subleading eigenvalue and ignoring possible non-trivial Jordan blocks, as
both do not change the result qualitatively. The above implies entanglement entropies to be
exponentially suppressed with δ. Hence entanglement can be large only when δ is small
implying persistent revivals of entanglement entropies with period given by the system size
L. This is illustrated in Fig. 1 for the second Rényi entropy. There we show the entanglement
entropies obtained from numerically evaluating Eq. (32) for various large system sizes. In
particular, we confirm the asysmptotic scaling |λ0|δ in Fig. 1(b). We do not depict Rényi
entropies of higher order n> 2 as they are practically indistinguishable from n= 2. For small
system sizes, for which entanglement dynamics can be evaluated directly, i.e., by performing
time evolution with the original circuit U , Eq. (7), we find saturation of the entanglement
entropies at late times (not shown). The saturation value, however, is in general not that of a
random state given by the Page value [70,71], but depends on the concrete choice of the gate.

3.2.2 T-dual impurities

Another situation in which the leading part of the spectrum can be described explicitly is given
by T-dual impurity interactions at the boundary. In what follows we shall elaborate on the im-
plications of T-duality of the impurity interaction on the entanglement of states.

Spectrum of transfer matrices: A 2-qudit gate U ∈ U(q2) is called T-dual if its partial trans-
pose UT1 with respect to the first qudit (and hence also w.r.t. the second qudit) is unitary as
well [72]. A convenient parameterization of T-dual gates is given by [73,74]

U = (u+ ⊗ u−)exp
�

iJΣq2−1 ⊗Σq2−1

�

(v+ ⊗ v−) . (42)
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with Σi the generalized Gell-Mann matrices, J ∈ [0,π/4] and u±, v± ∈ U(q). Here, J governs
the interaction with J = π/4 giving rise to the most rapidly decaying correlations and chaotic
dynamics. The above is an exhaustive parametrization for q = 2 but not for q > 2 [73].
Consequently the gate V becomes dual unitary, i.e., the gate Ṽ which originates from V by
reshuffling of matrix elements (w.r.t the canonical product basis) according to Ṽ ab

cd = V d b
ca is

unitary [73]. This can be diagrammatically expressed as

=

= . (43)

Denoting by |◦〉 ∈ Cq an arbitrary normalized state as boundary condition for the transfer
matrices Tτ dual unitarity implies that the rainbow state |rτ〉 is a right eigenvector of Tτ with
eigenvalue 1, i.e., Tτ |rτ〉 = |rτ〉. Hence the left and right eigenvectors coincide in this case.
In what follows, we consider only those T-dual impurity interactions where eigenvalue 1 has
multiplicity 1 and no other unimodular eigenvalues exist, 4 i.e., the completely chaotic gates.
Note, that the set of T-dual gates and the set of gates which support a local vacuum are not
disjoint. However, for qubits q = 2, the gate implementing impurity interaction which share
both features has to be of the form U = |◦〉〈◦| ⊗ v + |a〉〈a| ⊗ w where v is a diagonal (phase)
unitary single qubit gate, or a similar expression with the first and second qubit swapped.
Such interactions cannot create entanglement for the specified initial states. The form above
follows directly from demanding unitarity of UT1 for gates of the form U = 1⊕u with u ∈ U(3).
In contrast, for larger local Hilbert space dimensions, q > 2, there exist gates which are both
T-dual and exhibit a vacuum state, which give rise to non-trivial entanglement dynamics. Ex-
amples for those gates are the folded gates described in Sec. 2.1 when the unfolded gate is
T-dual. This leads to the entanglement dynamics described in Sec. 4.2.2 for local operators.

Asymptotic Reduced Density Matrix: The above properties allow two construct the asymp-
totic form of the reduced density matrix in the non-resonant case (L, t →∞, t/L→ τ0 ∈R \Z)
for initial states of the form Eq. (17). That is we start from |a〉⊗|◦〉⊗L with |a〉 ∈ Cq an arbitrary
normalized state (not necessarily orthogonal to |◦〉). Note, that as |rτ〉 is a right eigenvector
of Tτ independently of the choice of boundary conditions, the following construction can be
applied to arbitrary initial product states, when taking proper care of the action of 1q ⊗P−1

σ0
on the initial state. To simplify the discussion, however, we restrict to the simpler initial states
above. The asymptotic reduced density matrix is obtained by replacing powers of Tτ with
|rτ〉〈rτ| and powers of Tτ+1 with |rτ+1〉〈rτ+1|. This yields

ρ
α0···αl
β0···βl

(t) = 〈rτ+1| (|a〉 ⊗ |rτ〉 ⊗ |a〉) 〈rτ| (Aτ+1)
α0···αl
β0···βl
|rτ+1〉 (44)

= q−
1
2 〈rτ| (Aτ+1)

α0···αl
β0···βl
|rτ+1〉 , (45)

4We have confirmed numerically that generically this is the case and that there are no other unimodular eigen-
values for all τ (and that there is a finite spectral gap 1− |λ0|> 0 as τ→∞), see. App. B.
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up to subleading terms. In the last equality we have used 〈rτ+1| (|a〉 ⊗ |rτ〉 ⊗ |a〉) = q−
1
2 . A

diagrammatic representation of the asymptotic reduced density matrix is given by

ρl(t) =
1

qτ+1

α0 · · · αl βl · · · β0

τ+ 1

. (46)

Unfortunately, unitarity and dual unitarity of V does not allow to simplify the reduced density
matrix further except for l = 0. However the Rényi entropies can still be computed in the
asymptotic regime of large subsystem size, which is discussed below. Similar to the setting of
gates with a vacuum state, subleading terms are at least suppressed as λδ0 . However, numerical
investigations, as presented in Fig. 2, seem to indicate that subleading terms are suppressed
with system size, i.e., as λL

0 .

Rényi entropies and comparison with numerics: The asymptotics of the Rényi entropies
can be obtained when L − δ, δ and l are large. Formally, we consider first the simultaneous
limit L, t →∞, t/L→ τ0 ∈R \Z as described in Sec. 3.1.3, which gives the reduced density
matrix derived in Sec. 3.2.2 and afterwards the limit l →∞.

The goal, is to write down the Rényi entropies in terms of the leading eigenvalues of the
transfer matrices. To do so, we express tr (ρl(t)n) in a form, in which the asymptotic approxi-
mation can be easily applied. More precisely, we aim to obtain tr (ρl(t)n)∝ 〈στ|

�

T l
τ

�⊗n |στ〉
for a suitable state |στ〉 ∈

�

C2τ
�⊗n

.
To this end, we first define

ρ̂l(t) =

α1 · · · αl βl · · · β1

τ

l (47)

= . (48)

Note that, in Eq. (47) the number of in- and output legs is reduced by one. That is, ρ̂l(t)
is of dimension ql instead of ql+1. Moreover, only transfer matrices [Tτ]αβ enter, in contrast
with Eq. (46) in which also transfer matrices at size τ+ 1 enter. The second line, Eq. (48), is
a schematic representation used to make the diagrams more compact. The green and orange
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colored blocks correspond to the τ× l block built from the gates V and V †, respectively, with
the wedges indicating the orientation of the gates, while the white boxes indicate the boundary
conditions given by |◦〉. The wires corresponding to in and out going legs each carry a Hilbert
space of dimension ql . The top and bottom wires are an abbreviation for the unnormalized
rainbow states q

τ
2 |rτ〉 and hence those wires carry a Hilbert space of dimension qτ. The above

definitions allow us to rewrite

tr (ρl(t)
n) = qq−n(τ+1)tr (ρ̂l(t)

n) , (49)

where a factor q−n(τ+1) enters due to n normalization constants in Eq. (46) coming from n
replicas ofρl(t). The first factor of q, however, originates from repeatedly contracting the gates
V connected to output legs α0 and α1 of the i-th replica with the adjoint gates V † connected
to the input legs β0 and β1 in the i−1-th replica using unitality of the gates. This removes the
dependence of our results from δ, such that entanglement entropies will depend only on τ.

For τ = 0, Eq. (49) can be evaluated exactly as ρ̂l(t) = (|◦〉〈◦|)
⊗l even for finite l. This

gives the initial entropy as

Rn (t) = ln(q) , (50)

up to terms exponentially suppressed in δ, i.e. ∼ |λ0|δ, with λ0 being the subleading eigen-
value of T1. This gives rise to non-trivial initial dynamics of the entanglement entropies for
short times for any finite l, see Fig. 2, as well as in the limit l →∞.

For τ > 0 the n replicas entering tr (ρl(t)n) in Eq. (49) need to be rearranged to proceed
further. This is best seen schematically. For n= 3 (with an obvious generalization to arbitrary
n) this reads

tr
�

ρ̂l(t)
3
�

=

1 1 2 2 3 3

(51)

=

3 2 2 1 1 3

.

(52)

The first equality diagrammatically represents the multiplication of subsequent replicas by
connecting the input legs of replica i with the output legs of replica i + 1 (see labels in the
bottom left of the boxes) and connecting the legs between n and 1 realizes the trace. The sec-
ond equality is obtained by rearranging the boxes corresponding to the forward and backward
time evolution part while keeping the lines connecting subsequent boxes intact. Then, each
combined block consisting of forward block (green) of replica i and backward block (orange)
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from replica i − 1 is T l
τ i.e.,

T l
τ = (53)

The wires connecting the combined blocks on the top and bottom of the network can be viewed
as states |στ〉 ∈ (Cq)⊗2nτ. To give a proper definition we denote the 2nτ-periodic shift by −τ
in S2nτ by η−τ, and similar to Sec. 3, the unitary representation of S2nτ which permutes the
tensor factors in (Cq)⊗2nτ by P. The states |στ〉 are then defined by

|στ〉= q
nτ
2 Pη−τ |rτ〉

⊗n (54)

= (55)

where each wire carries the Hilbert space (Cq)⊗τ of dimension qτ. Evidently, |στ〉 is just a
shifted version of the n-fold tensor product of the unnormalized rainbow states, where we
shift by “half a replica”. Hence Eq. (52) can be phrased as

tr (ρ̂l(t)
n) = 〈στ|
�

T l
τ

�⊗n |στ〉 . (56)

The above expression can be simplified in the limit l →∞ by replacing T l
τ by the projection

onto the leading eigenvalue, which by the assumption of having multiplicity 1 is given by
Pτ = |rτ〉〈rτ|. Using the diagrammtic representations of states, we find

tr (ρ̂l(t)
n) = 〈στ| (|rτ〉〈rτ|)

⊗n |στ〉= q−τ(n−2) . (57)

Inserting the above result into Eq. (49) finally yields

tr
�

ρn
l (t)
�

= q−(n−1)(2τ+1) , (58)

where the subleading terms are exponentially suppressed at least as |λ0|l . Consequently the
corresponding Rényi entropies read

Rn (t) = 2τ ln (q) + ln (q) . (59)

For the resonant case, i.e. when L, t →∞, such that, t/L → τ0 ∈ Z first and subsequently
l →∞, a similar computation yields,

tr (ρl(t)
n) = q−(n−1)2τ , (60)

and hence,

Rn (t) = 2τ ln (q) . (61)

Note that the computation for the resonant case involves essentially the same steps but with
slightly different intermediate tensor networks.

Even though the limit of large subsystem size is not accessible by numerical simulation, the
staircase structure of entanglement entropies suggested by Eq. (59) is clearly seen in Fig. 2(b)
for small l = 2. The average slope, however, is different from 2 ln(q) as in Eq. (59). We
restrict ourselves to the second Rényi entropy n = 2 in Fig. 2(b) as higher orders n > 2 give
qualitatively similar results. Small differences appear, however, for the value of the plateaus
at fixed τ > 0, which weakly depends on n.
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Figure 2: Second Rényi entropy for q = 2 with (a) l = 0 and (b) l = 2 for a T-dual
impurity interaction for various system sizes. (a) The dashed line corresponds to the
maximum entropy given by Eq. (63). Orange dots depict R2 obtained from a direct
computation via Eq. (14). We choose J = π/4− 0.05 in Eq. (42) to ensure chaotic
dynamics.

Subsystem with one lattice site, l = 0: Another limit which can be treated exactly is that
of the smallest possible subsystem given by l = 0, i.e., the subsystem A consisting of the first
lattice site only. We again consider the limit t, L→∞ and the simpler non-resonant case first.
Applying the analysis to compute the reduced density matrix for T-dual gates to l = 0, we get
the reduced density matrix as given by Eq. (45). Then, using (Aτ+1)

α
β |rτ+1〉 = q−

1
2δα,β |rτ〉

we get,

(ρl(t))
α
β =

1
q
δα,β =

1
q
1q , (62)

which is the infinite temperature state. Consequently, the Rényi entropies read

Rn (t) = ln(q) . (63)

For the resonant case, a similar computation yields the same result. Moreover, as argued in the
previous section, the above result is obtained for τ= 0 as well, but with corrections scaling as
|λ0|δ. In particular, after the non-trivial initial dynamics, entanglement entropies saturate at
the maximum possible value, as it is depicted in Fig. 2(a). For any other numerically accessible
subsystem size this is not the case, see Fig. 2(b), even for longer times than what is shown there.

3.2.3 Numerical results for generic impurities

For impurity interactions falling in neither of the classes discussed above, there is no simple
description of the right eigenvectors corresponding to leading eigenvalue 1. Nevertheless, the
tensor network representation (25) allows for computing the reduced density matrix for large
system size L but small subsystem size l numerically. Here we briefly report the numerical
results. In Fig. 3 we depict the second Rényi entropy for (a) l = 0 and (b) l = 2. In both cases
the entanglement dynamics resembles a combination of the T-dual case and the case of gates
with local vacuum states. In particular we observe a similar staircase structure as in the T-dual
case. This is induced by the leading eigenvalue 1 of the transfer matrices Tτ and Tτ+1 and
the corresponding eigenvectors. The latter give the reduced density matrix as L→∞ similar
to the tensor network (46), with the rainbow state on the bottom of the network replaced by
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Figure 3: Second Rényi entropy for q = 2 with (a) l = 0 and (b) l = 2 for a generic
impurity interaction for various system sizes. (a) The dashed line corresponds to
the maximum entropy (l + 1) ln (q). Orange dots depict R2 obtained from a direct
computation via Eq. (14).

the actual (unknown) right eigenvector for the leading eigenvalue 1. The Rényi entropy of
this asymptotic reduced density matrix gives rise to the plateaus observed for constant τ. In
principle this is also the case for impurity interactions which support a vacuum state. There,
however, the asymptotic reduced density matrix further contracts to a pure state leading to a
plateau of height zero. In contrast, perturbing gates with vacuum states one expects the right
eigenvector for eigenvalue 1 to change as well as the vacuum states being no longer exactly
invariant, both of which will lead to a plateau of non-zero height. On top of the plateaus we
observe additional contributions which originates from the subleading eigenvalues and scale
as |λ0|δ. This is reminiscent of impurity interactions with vacuum states, for which those
contributions sit on top of the plateaus of zero height as described above. For generic gates,
the magnitude of these subleading contributions strongly depend on the concrete choice of
impurity interaction. With non-zero probability we find both examples qualitatively similar to
the one shown in Fig. 3 as well as examples for which subleading contributions are essentially
irrelevant and the entanglement dynamics is very similar to the T-dual case. In any case we
observe saturation of entanglement entropies for small system sizes at late times, i.e. longer
than what is depicted here, but the maximum possible value of (l + 1) ln(q) is in general not
reached. We also checked Rényi entropies of higher order n > 2 and find almost identical
values, in particular there is a very weak dependence on n of the height of the plateaus similar
to the T-dual case.

4 Operator entanglement dynamics for local operators

In this section we study the entanglement dynamics of local initial operators. In analogy to
the case of states we first construct a tensor network representation similar to Eq. (25) for
the reduced super density matrix in Sec. 4.1. This again allows for an exact computation of
the asymptotic reduced super density matrix in the limit L, t →∞ and subsequently of the
operator Rényi entropies. We present this calculation for both generic impurity interactions in
Sec. 4.2.1 and T-dual impurity interaction in Sec. 4.2.2.
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4.1 Tensor network representation of the reduced super density matrix

We construct the analog of the tensor network representation (25) for the super density matrix
for an initial local operator. With a slight abuse of notation we will use the same symbols and
diagrammatic representations in the following sections as we did for the state counterparts
in the previous sections, as many constructions and arguments are exactly the same for the
operators as for the states. However, there are some notable differences, which are as follows.

Firstly, there are slight differences in the tensor networks representations which ultimately
originate from the time evolution of states in the Schrödinger picture as opposed to the time
evolution of operators in the Heisenberg picture. Those differences are essentially irrelevant
for the dynamics of entanglement entropies. The major difference, however, is that the folded
gates are unital (see definition below) which leads to additional properties of the relevant
transfer matrices. In the following sections we will often drop the adjective ‘super’ when
referring to super operators and super density matrices.

Let us first introduce the relevant notation and relate it to the constructions for states in the
previous sections. This will provide us with the tensor network representation of the reduced
density matrix. Subsequently, for different choices of impurity interactions we will compute
its asymptotic form and derive the corresponding entanglement entropies.

The local Hilbert space is now the space of vectorized operators Cq2
of dimension q2 with

the Hilbert-Schmidt orthonormal basis (|α〉)q
2−1
α=0 introduced in Sec. 2.1. We denote the Hilbert-

Schmidt normalized vectorized identity 1q/
p

q by |◦〉 = |0〉 and choose a Hermitian and

traceless Hilbert-Schmidt normalized vectorized operator |a〉 ∈ Cq2
(being traceless implies

〈◦|a〉 = 0). We shall depict them diagrammatically in the same way as for states and hence,

the corresponding local operator |a0〉= |a〉⊗|◦〉
⊗L ∈
�

Cq2
�⊗L+1

is diagrammatically presented

exactly as in Eq. (17). We introduce the folded gate W = U† ⊗ U T and V =WS (which is the
folded version of the gate V = U P in the case of states) and use the same diagrammatic rep-
resentation (18). The gate V is again unitary, which is diagrammatically depicted by Eq. (19).

We define permutations σδ ∈ SL for δ ∈ {0,1, . . . , L − 1} similarly as in the case of states
by its action on x ∈ {1, 2, . . . , L}. Again we write the latter as x = (L−δ+ y)mod L for unique
y ∈ {1, 2, . . . , L} and define

σδ(x) =

¨

2y , if 2y ≤ L ,

2(L − y) + 1 , if 2y > L .
(64)

Redefining the permutations σδ is a consequence of the differences between the tensor net-
work representations (7) and (12) reflecting evolution in the Schrödinger and the Heisenberg
picture, respectively. Again, P is the unitary representation of SL permuting tensor factors,

which now acts on
�

Cq2
�⊗L

. With the above notations, the time evolved local operator is
given by Eq. (22), and is diagrammatically represented by the tensor network (24). Keep-
ing in mind the difference in the permutations σδ, we ultimately obtain a very similar tensor
network representation as Eq. (25), given by
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ρl(t) =

a a

δ

L

τ+ 1 τ+ 1

l2

l1

α0 · · · αl βl · · · β0

, (65)

where l2 = ⌊l/2⌋ and l1 = l − l2. The difference to Eq. (25) is just that even and odd in- and
output legs of the reduced density matrices for sites 1 to l are interchanged. The rows of the
network can again be cast in the form of transfer matrices given by Eqs. (26)-(30), but we
redefine [Aτ]α0α1

β0β1
= [Tτ−1]

α1
β1
[Aτ]α0

β0
for l = 1 as well as

[Aτ]α0···αl
β0···βl

=

¨

[Tτ−1]
αl−1
βl−1
· · · [Tτ−1]

α1
β1
[Tτ]α0α2

β0β2
[Tτ]α4

β4
· · · [Tτ]αl

βl
, l even,

[Tτ−1]
αl
βl
· · · [Tτ−1]

α1
β1
[Tτ]α0α2

β0β2
[Tτ]α4

β4
· · · [Tτ]αl−1

βl−1
, l odd,

(66)

for l > 1. From here on the same techniques can be applied to compute entanglement entropies
as in the case of states.

4.2 Entanglement dynamics

Now we shall compute the entanglement dynamics for operators for different kinds of impurity
interactions, and highlight the difference with the dynamics of states, if any.

4.2.1 Generic impurity interactions

In this section we study the entanglement dynamics for local operators in case of generic
(completely chaotic, see below) unitary interactions. This is closely related to the case of
gates with a vacuum state in Sec. 3.2.1, as the vectorized identity plays the role of the vacuum
state.

In the case of operators the gate V and its adjoint are unital, as they act by conjugation
with the unitaries U P or PU† on operators, i.e.,

V |◦◦〉= |◦◦〉 and V † |◦◦〉= |◦◦〉 . (67)

By taking the adjoint of the above equations, one can see that unitality applies also to 〈◦◦|,
corresponding to trace preservation. Diagrammatically, this can be expressed as previously
in Eq. (35). Consequently the transfer matrices are unital as well, i.e., Tτ |◦〉⊗2τ = |◦〉⊗2τ,
meaning that |◦〉⊗2τ is a right eigenvector for eigenvalue one. The above implies that Tτ is a
unital CP map and that T †

τ is a CPTP map.
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Figure 4: Second operator Rényi entropy for q = 2 and l = 2 for a generic impurity
interaction, a being the spin-z operator, for various system sizes in (a) linear and (b)
semi-logarithmic scale. (b) The dash-dotted lines illustrates the asymptotic scaling
|λ0|δ.

The corresponding left eigenvector is again the rainbow state |rτ〉 ∈
�

Cq2
�⊗2τ

, which ap-
propriately normalized now reads

|rτ〉= q−τ
q−1
∑

α1,...,ατ=0

|α1α2 · · ·ατατ · · ·α2α1〉 (68)

= q−τ

τ

(69)

The projection onto the eigenspace corresponding to eigenvalue 1 is then given by
Pτ = qτ |◦ ◦ · · · ◦〉〈rτ| with the prefactor ensuring proper normalization of the left and right
eigenvector and hence P2

τ = Pτ.
In the context of operator entanglement we call a generic impurity interaction completely

chaotic, if there is no additional linear independent eigenvector for a unimodular eigenvalue
of Tτ for any τ and when there is a finite spectral gap between eigenvalue 1 and the sublead-
ing eigenvalue λ0. Numerics suggest that this is the generic situation; see App. B. Repeating
the same arguments from Sec. (3.2.1) by replacing q by q2 in intermediate steps, yields the
reduced density matrix described by Eq. (40) and the entanglement entropies (41). For var-
ious system sizes L we obtain the second Rényi entropy also numerically by contracting the
tensor network (65) and depict it in Fig. 4 for subsystem size l + 1= 3. There the asymptotic
exponential dependence |λ0|δ is well confirmed for the largest system size (dashed line in (b))
and holds even for moderately large systems L > 50. Similar to the entanglement dynamics
of states from gates which support a vacuum state, Rényi entropies of higher order n> 2 (not
shown) agree with the n= 2 case.

4.2.2 T-dual impurity interactions

For the case of T-dual impurity interactions, the entanglement dynamics for local traceless
operators acting non-trivially at the boundary can also be treated exactly for large systems
and large subsystems. That is, in the limit L, t, l → ∞, when limits are taken in the order
described in Sec. 3.2.2. However, unlike the previous section, the leading part of the spectrum
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of transfer matrices for folded T-dual impurity interactions is different from the ones studied
in Sec. 3.2.2.

Spectrum of transfer matrices: The main difference to the case of initial product states lies
in the unitality and dual unitality of the folded gate V = WS in addition to dual unitarity
of the folded gates. This gives rise to additional eigenvectors of Tτ for leading eigenvalue 1.
Unitality is a general property of the folded gates and was introduced in Sec. 4.2.1 already.
On the other hand, dual unitality of the dual folded gate Ṽ is defined akin to the state setting

Ṽ |◦◦〉= |◦◦〉 , ˜(V †) |◦◦〉= |◦◦〉 , (70)

and similarly for 〈◦◦|. This can be diagrammatically depicted as

= , = , = , = . (71)

These properties give rise to τ+1 linear independent eigenvectors of Tτ for eigenvalue 1 given
by [62,75]

|sx〉= |◦〉
⊗τ−x ⊗ |rx〉 ⊗ |◦〉

⊗τ−x ∈
�

Cq2
�⊗2τ

, (72)

constructed from the rainbow states, Eq. (33), |rx〉 for x ∈ {1, . . . ,τ} and |◦〉⊗2τ. In this case,
we call the impurity completely chaotic if there are no other linearly independent eigenvectors
with unimodular eigenvalue. In what follows, we first consider l > 0 and τ > 0 in order to
avoid constraints arising from the small size of the tensor networks. We shall discuss the other
cases separately later.

One thing to immediately note about the state |sx〉 is that they are not orthonormal, as
〈sx |sy〉= q−|x−y|. Hence, we need to apply the Gram-Schmidt procedure to obtain a orthonor-
mal set of eigenvectors given by

|t0〉= |◦〉
⊗2τ , (73)

|t x〉=
q
p

q2 − 1

�

|sx〉 −
1
q
|ss−1〉
�

, for x ∈ {1, . . . ,τ} . (74)

Thus the projection onto the eigenvalue 1 eigenspace is Pτ =
∑τ

x=0 |t x〉〈t x |. Also note that for
T-dual impurity interactions left and right eigenvectors for eigenvalue 1 coincide. In particular,
as |t0〉 is both a left and a right eigenvector, Tτ is the vectorization of a unital CPTP map.

Asymptotic reduced density matrix: We now derive the asymptotic reduced density matrix
as L, t →∞ in the non-resonant case and briefly comment on the resonant case later. The
degenerate eigenspace for eigenvalue 1 gives rise to a slightly more complex structure of the
reduced density matrix. Upon replacing the transfer matrices T L−δ−l1

τ by Pτ only the term
|tτ〉〈tτ| gives a non-vanishing contribution to the reduced density matrix. For all the other
terms the leftmost tensor factor 〈◦| in 〈t x | allows for contracting the leftmost column of the
tensor network (65) due to unitality of the folded gate V and yields a factor of 〈◦|a〉 = 0. By
the same argument only the first two of the four terms

|tτ〉〈tτ|=
q2

q2 − 1

�

|sτ〉〈sτ| −
1
q
|sτ−1〉〈sτ| −

1
q
|sτ〉〈sτ−1|+

1
q2
|sτ−1〉〈sτ−1|
�

(75)

give a non-vanishing contribution to the reduced density matrix. Hence, we can replace Tτ by
q2

q2−1

�

|sτ〉〈sτ| −
1
q |sτ−1〉〈sτ|
�

and similarly for Tτ+1. This yields the asymptotic reduced density
matrix as

ρl(t) = ρ̃
(τ)
l (t)−

1
q2
ρ̃
(τ−1)
l (t) , (76)
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where
�

ρ̃
(τ)
l (t)
�α0···αl

β0···βl
=

q
q2 − 1

〈rτ| (Aτ+1)
α0···αl
β0···βl
|rτ+1〉 . (77)

This can be diagrammatically represented as

ρ̃
(τ)
l (t) =

1
q2 − 1

1
q2τ

α0 · · · αl βl · · · β0

τ+ 1

. (78)

Unfortunately, Eq. (76) can not be simplified further except of l = 0 as was the case for states,
which we shall discuss separately in 4.2.2.

Rényi entropies for large subsystems l →∞: Now we shall derive the asymptotics of the
Rényi entropies when also the subsystem is large, i.e. we take the limit l →∞ in a similar
manner as in the case of states. As the asymptotic reduced density matrix, Eq. (76), is the
difference of two terms, the computation is more involved than in the case of states. We
moreover restrict ourselves to τ > 0 in order to avoid additional complications due to small
networks. We first sketch the main steps before getting into the details of the computation.
There are four main steps we need to do to obtain our desired result.

1. Rearranging tr (ρl(t)n): We rewrite tr (ρl(t)n) as an alternating sum of terms of the
form 〈σ|T l

σnσn−1
⊗· · ·⊗T l

σ1σn
|σ〉 for suitable states |σ〉, σi ∈ {τ−1,τ} and generalized

transfer matrices Tσiσi−1
with similar spectral properties as the Tτ.

2. Taking the limit l →∞: Upon replacing the generalized transfer matrices by the pro-
jection onto their leading eigenvalue 1 for large l most of the terms in the sum above
cancel and we obtain tr (ρl(t)n)∝ 〈στ|P⊗n

τ |σ
τ〉 − 〈στ−1|P⊗n

τ−1 |σ
τ−1〉 with the states

|στ〉 similar as for states and the Pτ as in the previous section.

3. Evaluating matrix elements 〈στ|P⊗n
τ |σ

τ〉: Inserting Pτ =
∑

x |t x〉〈t x | in the first term
all but the term |tτ〉〈tτ| are canceled by Pτ−1 in the second term and we are left with
tr (ρl(t)n)∝ 〈στ| (|tτ〉〈tτ|)

⊗n |στ〉.

4. Computing the overlap 〈στ| (|tτ〉)
⊗n: Evaluating 〈στ| (|tτ〉〈tτ|)

⊗n |στ〉 eventually
gives the final result in Eq. (109).

1. Rearranging tr (ρl(t)n): From Eq. (76) we obtain

tr (ρl(t)
n) =
∑

σ∈{τ−1,τ}n

�

−1
q2

�♯σ

tr
�

ρ̃
(σ1)
l (t)ρ̃(σ2)

l (t) · · · ρ̃(σn)
l (t)
�

, (79)

with the ρ̃(σ)l defined in Eq. (77) and where we define ♯σ := |{i ∈ {1, . . . , n} : σi = τ− 1}|.
For subsequent calculations it is convenient to rewrite this in the form,

tr (ρl(t)
n) = q2
�

1
q2 − 1

1
q2τ

�n ∑

σ∈{τ−1,τ}n
(−1)♯σ tr
�

ρ̂
(σ1)
l (t)ρ̂(σ2)

l (t) · · · ρ̂(σn)
l (t)
�

, (80)
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where the first factor q2 arises similar as in the case of states by (repeatedly) contracting
gates V connected to the output legs α0 and α2 of the i-th replica with the adjoint gates V †

connected to the input legs β0 and β2 of the (i − 1)-th replica. The second factor comes from
the normalization constants (and the prefactor 1/q2) occuring in Eq. (78) (and Eq. (76)).
Finally, ρ̂(σi)

l (t) is given by the tensor network representation

ρ̂
(σi)
l (t) =

α1 · · · αl βl · · · β1

σi

l (81)

=

σi σi

. (82)

This is similar as in the case of states but we now additionally indicate the size of the blocks in
their respective bottom left corner. This also fixes the dimension of the Hilbert spaces carried
by the wires connecting forward and backward block to be q2σi . Again the above simplification
implies that our subsequent results are independent from δ.

For fixed σ ∈ {τ− 1,τ}n we can repeat the argument from Sec. 3.2.2 to obtain a similar
equation as Eq. (52) by reshuffling the forward and backward parts of subsequent replicas.
The resulting tensor networks have the same structure but in the operator case the wires
connecting the (reshuffled) replica i with replica i − 1 carry Hilbert spaces whose dimension
q2σi depends on the index i of the replica. The (reshuffled) replicas can now be described in

terms of the generalized transfer matrices Tσi ,σi−1
acting on
�

Cq2
�⊗σi ⊗
�

Cq2
�⊗σi−1

which are
defined by their diagrammatic representation

Tσi ,σi−1
=

σi σi−1

(83)

shown here for σi = τ= 3 and σi−1 = τ−1= 2. In particular, one has Tττ = Tτ. The replicas
in the operator version of Eq. (52) can now be written as

T l
σiσi−1

=

σi σi−1

(84)

To complete the reshuffling of replicas leading to the operator version of Eq. (52) we introduce
vectorized operators |σ〉 which connect the replicas. Again, the state |σ〉 will be obtained
from the n-fold tensor product of rainbow states shifted by “half a replica”. However, the

individual factors now are states in
�

Cq2
�⊗2σi

and hence depend on the index i of the replicas
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they connect. To make the above precise we first define |σ| = 2
∑

i σi . We again denote by
η−σn
∈ S|σ| the |σ| periodic shift by −σn and by P the unitary representation of S|σ| which

permutes the tensor factors in
�

Cq2
�⊗|σ|

. We then define |σ〉 ∈
�

Cq2
�⊗|σ|

by

|σ〉= q
|σ|
2 Pη−σn

�

|rσn
〉 ⊗ |rσn−1

〉 ⊗ · · · ⊗ |rσ1
〉
�

(85)

= . (86)

In the above network the wire reaching from left to right carries the Hilbert space
�

Cq2
�⊗σn

of

dimension q2σn and the inner wires carry Hilbert spaces of dimensions d = q2σn−1 , q2σn−2 , . . .,
q2σ1 (left to right). In particular for the case, where all the σi are the same, i.e., for

στ = (τ,τ, . . . ,τ) and στ−1 = (τ− 1,τ− 1, . . . ,τ− 1) (87)

we obtain the analog of the states defined in Sec. 3.2.2. Finally we arrive at

tr
�

ρ̂
(σ1)
l (t)ρ̂(σ2)

l (t) · · · ρ̂(σn)
l (t)
�

= 〈σ|T l
σnσn−1

⊗ T l
σn−1σn−2

⊗ · · · ⊗ T l
σ1σn
|σ〉 . (88)

This concludes the first step. The above expression can be only evaluated further in the limit
l →∞.

2. Taking the limit l →∞: As the generalized transfer matrices enter to the power of l,
the above expression can be evaluated in the limit l →∞ by replacing the Tσiσi−1

by their
leading eigenvalue and the projection onto the corresponding eigenspace.

The Tσiσi−1
are non-expanding, unital, CPTP maps with leading eigenvalue 1. Unitality

and (dual) unitarity of the gate V give rise to min{σi−1,σi}+ 1 linearly independent eigen-
vectors. For the completely chaotic T-dual impurity interactions considered here, these are
the only eigenvectors, since one has spec

�

Tσ1,σ2

�

⊆ spec (Tτ) for any τ ≥ max{σ1,σ2} as a
consequence of (dual) unitality. More precisely, given a right eigenvector |λ〉 of Tσ1,σ2

with
eigenvalue λ the vector |◦〉⊗σ1−τ⊗ |λ〉⊗ |◦〉⊗σ2−τ is an eigenvector of Tτ with the same eigen-
value. Adapting this argument to the eigenvalue 1 for completely chaotic impurity interactions
the projections Pσi ,σi−1

onto the corresponding eigenspace are given by

Pττ = Pτ , (89)

Pττ−1 = |◦〉〈◦| ⊗Pτ−1 , (90)

Pτ−1τ = Pτ−1 ⊗ |◦〉〈◦| , (91)

with Pτ the corresponding projection for Tτ introduced above. Hence,

tr
�

ρ̂
(σ1)
l (t)ρ̂(σ2)

l (t) · · · ρ̂(σn)
l (t)
�

= 〈σ|Pσnσn−1
⊗Pσn−1σn−2

⊗ · · · ⊗Pσ1σn
|σ〉 , (92)

up to terms exponentially suppressed with l.

The above expression is equal for all σ ̸= στ and hence in particular equals the expression
for στ−1. To see this, first consider σ ∈ {τ− 1,τ}n with not all entries identical. Thus there
is j ∈ {1, . . . , n} with σ j = τ − 1 and σ j−1 = τ. A straightforward computation then shows
that contracting the projection Pτσ j−2

with 〈◦| and |◦〉 on the left yields the projection Pτ−1σ j−2

acting on a smaller space. Formally, this reads

(〈◦| ⊗1)Pτσ j−2
(|◦〉 ⊗1) = Pτ−1σ j−2

, (93)
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where 1 denotes the identity on
�

Cq2
�⊗τ−1+σ j−2

. This is obvious for σ j−2 = τ − 1 and for
σ j−2 = τ follows from writing

Pττ = Pτ = |tτ〉〈tτ|+ |◦〉〈◦| ⊗Pτ−1 ⊗ |◦〉〈◦| , (94)

and noting that

(〈◦| ⊗1) |tτ〉〈tτ| (|◦〉 ⊗1) = 0 . (95)

From the above properties it follows that

〈σ|Pσnσn−1
⊗Pσn−1σn−2

⊗ · · · ⊗Pσ1σn
|σ〉= 〈π|Pπnπn−1

⊗Pπn−1πn−2
⊗ · · · ⊗Pπ1πn

|π〉 ,

if πi = σi for i ̸= j − 1 and π j−1 = τ− 1.
This argument is best illustrated diagrammatically by

Pτ−1τ Pτσi−2
= Pτ−1τ−1 Pτσi−2

(96)

= Pτ−1τ−1 Pτ−1σi−2
, (97)

where the gray boxes represent the indicated projections with which we replaced Tσ jσ j−1
in

Eq. (109). At the extreme left, we have Pσ jσ j−1
= Pτ−1τ. The wires to the left (right) carry

the Hilbert space Cd of dimension d = q2(τ−1) (d = q2(σ j−2)) and for the central thick wires
d = q2(τ−1), while for the central thin wires d = q2. By repeated use of the above argument
it follows that 〈σ|Pσnσn−1

⊗ Pσn−1σn−2
⊗ · · · ⊗ Pσ1σn

|σ〉 = 〈στ−1|P⊗n
τ−1 |σ

τ−1〉. Finally using
∑

σ ̸=στ(−1)♯σ =
∑n

k=1

�n
k

�

(−1)k = −1, as follows from the binomial theorem, we simplify
Eq. (80) as

tr (ρl(t)
n) = q2
�

1
q2 − 1

1
q2τ

�n
�

〈στ|P⊗n
τ |σ

τ〉 − 〈στ−1|P⊗n
τ−1 |σ

τ−1〉
�

. (98)

This concludes the second step.

3. Evaluating matrix elements 〈στ|P⊗n
τ |σ

τ〉: Now, we shall show that the second term in
Eq. (98) almost completely cancels the first term. To this end we first insert Eq. (94) into the
first term. Then a similar argument as sketched in Eq. (97) yields

〈στ|P⊗n
τ |σ

τ〉= 〈στ| (|tτ〉〈tτ|)
⊗n |στ〉+ 〈στ−1|P⊗n

τ−1 |σ
τ−1〉 , (99)

where mixed terms in the n-fold tensor product cancel due to Eq. (95). Clearly, the second
term in the above equation is exactly canceled by the second term in Eq. (98). This yields

tr (ρl(t)
n) = q2
�

1
q2 − 1

1
q2τ

�n
�

�〈στ|
�

|tτ〉
⊗n�
�

�

2
. (100)
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4. Computing the overlap 〈στ| (|tτ〉)
⊗n: Finally, we are left with the computation of the

overlap
�

�〈στ|
�

|tτ〉
⊗n�
�

�

2
. Using the fact, that |tτ〉 coincides with |rτ−1〉 on all but the leftmost

and rightmost tensor factor the overlap factorizes as

�

�〈στ|
�

|tτ〉
⊗n�
�

�

2
=
�

�〈στ−1|
�

|rτ−1〉
⊗n�
�

�

2 �
�〈σ1|
�

|t1〉
⊗n�
�

�

2
, (101)

where in the last factor |t1〉 =
qp

q2−1

�

|r1〉 −
1
q |◦◦〉
�

, i.e., the state |tτ〉 in Eq. (74) for τ = 1.

Using the diagrammatic representation of states, the first factor gives q−(τ−1)(2n−4). Similarly,
for the second factor we obtain

〈σ1| (|t1〉)
⊗n =

�

q
p

q2 − 1

�n�

〈σ1| (|r1〉)
⊗n − 〈σ1|
�

1
q
|◦◦〉
�⊗n�

=
�

q2 − 1
�1− n

2 , (102)

as all the mixed terms in the n-fold tensor product (|t1〉)
⊗n cancel by a similar argument as for

deriving Eq. (98). Combining everything we conclude the fourth step by obtaining

�

�〈στ|
�

|tτ〉
⊗n�
�

�

2
=

�

q2

(q2 − 1)q2τ

�n−2

. (103)

This ultimately leads to

tr (ρl(t)
n) =
�

q
(q2 − 1)q2τ

�2(n−1)
, (104)

up to terms exponentially suppressed at least as |λ0|l . This gives the Rényi entropy as

Rn (t) = 2τ ln
�

q2
�

− 2 ln
�

q
q2 − 1

�

, (105)

independent from n up to terms which vanish as l →∞. For the case τ = 0, applying the
above line of reasoning gives

tr (ρl(t)
n) =
�

1
(q2 − 1)

�n−1

, (106)

as the exact result even for finite l. This corresponds to the Rényi entropy

Rn (t) = ln
�

q2 − 1
�

. (107)

However, originating from the subleading terms of the asymptotic reduced density matrix
Eq. (76) the subleading terms of the entropies scale as |λ0|δ and hence give rise to non-trivial
initial dynamics. Finally, for completeness, we mention the corresponding result for the reso-
nant case and τ > 1, since the derivation is similar. We have

tr (ρl(t)
n) =

�

q2

(q2 − 1)q2τ

�2(n−1)

. (108)

This gives the Rényi entropies as

Rn (t) = 2τ ln
�

q2
�

− 2 ln

�

q2

q2 − 1

�

. (109)

Even though the tensor network (65) allows for computing the reduced density matrix for large
system size L and small subsystem size l, direct numerical simulation fails for large l as the
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Figure 5: Second Rényi entropy for q = 2, a T-dual impurity interaction with
J = π/4−0.05 in Eq. (42), and a the spin-z operator with (a) l = 0 and (b) l = 1 for
various system sizes. The dashed lines corresponds to (a) Eq. (114) and (b) Eq. (107)
as well as the maximum entropy (l +1) ln

�

q2
�

. The inserts show a magnification for
initial times.

complexity of the computation grows exponentially with l. Nevertheless, at least the plateau-
like structure suggested by Eq. (109), i.e., almost constant entanglement entropy for constant
τ, can be observed for small subsystem size as well. This is depicted in Fig. 5(b) for l = 1.
Also the non-trivial initial dynamics as predicted by Eq. (107) is confirmed there; see inset.
Moreover, we find the entanglement entropy to saturate at the maximum possible value after
times t = 2L (τ= 2) for the example considered here. Additionally we numerically computed
Rényi entropies of higher order n > 2 (not shown) and found them to coincide qualitatively
with the results for n= 2. Similar to the entanglement dynamics of states for T-dual gates only
the value at the plateaus for intermediate times, i.e, τ > 0 but before entanglement entropies
saturate, e.g., τ = 1 in Fig. 5(b), depends very weakly on n. This indicates that even for
the small numerically accessible subsystems sizes l the non-zero eigenvalues of the reduced
density matrix almost coincide as it is the case in the l →∞ limit.

Rényi entropies for small subsystems l = 0: As mentioned before, another case which
allows for exact results is that of minimal subsystem size l = 0 for which the subsystem only
contains the lattice site 0 at the boundary, whereas L, t →∞. In this situation we can obtain
an exact expression of the reduced density matrix as described below.

Firstly, for τ ≥ 1 the asymptotic analysis from discussion earlier in this section applies for
the non-resonant case. Hence, the asymptotic reduced density matrix is given by Eq. (76).
Then we evaluate Eq. (77) further using (Aτ+1)

α
β |rτ+1〉= q−1δα,β |rτ〉 to get

�

ρ
(τ)
l (t)
�α

β
=

1
q2 − 1

δα,β . (110)

Thus, we obtain (ρ0)
α
β (t) = q−2δα,β and hence

ρ0(t) =
1
q2
1q2 (111)

is the infinite temperature state up to corrections proportional to |λ0|L .
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Secondly, for τ= 0, i.e., 0≤ t < L the reduced density matrix takes the simple form

(ρ0)
α
β (t) = (A1)

α
β T δ−1

1 |a〉 ⊗ |a〉 . (112)

For large δ ≫ 1 the transfer matrix T1 can again be replaced by the projection onto the
eigenspace for the eigenvalue 1. Following the argument for general l we see that only the
terms proportional to |r1〉〈r1| and |◦◦〉〈r1| give a non-vanishing contribution. The first term
gives a contribution∝ 1q2 whereas the second term gives a contribution∝ |◦〉〈◦|. Collecting
both terms we obtain

ρ0(t) =
1

q2 − 1

�

1q2 − |◦〉〈◦|
�

, (113)

which corresponds to the infinite temperature state restricted to the subspace orthogonal to
|◦〉, i.e., of traceless operators. Consequently the corresponding Rényi entropies read

Rn (t) =

¨

ln
�

q2 − 1
�

, if τ= 0 ,

ln
�

q2
�

, if τ > 0 ,
(114)

and are independent of n. For τ = 0 this coincides with Eq. (106) and gives rise to the same
non-trivial initial entanglement dynamics discussed there. In the resonant case, the same
results can be obtained as in the non-resonant case, only for t = L, i.e., τ = 1 and δ = 0 the
reduced density matrix and the corresponding entropies correspond to Eq. (114). In Fig. 5(a)
we depict the second Rényi entropy for various system sizes obtained from contracting the
tensor network (65) for l = 0. The asymptotic form of the entropies is approached fast even
for moderately large system sizes. In the inset we additionally show the non-trivial initial
entanglement dynamics.

5 Conclusion

We study the entanglement dynamics for both product states and local operators in a minimal
model of many-body quantum chaos built from a locally perturbed free quantum circuit. Using
a minimal but exact description of time evolution resulting from analytically integrating out
the free part of the circuit we obtain tensor network representations of the reduced density
matrices. We contract the tensor networks using a transfer matrix approach in spatial direction
resulting in a simple form of the reduced density matrices in the limit of large system size L.

Then, depending on the choice of the perturbation, i.e., the impurity interaction at the
system’s boundary, we either compute the reduced density matrix or the corresponding Rényi
entropies exactly. For the gates which exhibit a local vacuum state, the reduced density matrix
of an initial product state is close to a pure and hence unentangled state at most times. Sim-
ilar dynamics is observed in the reduced super density matrix of initially local operators for
generic impurity interactions. It is only for times t ≈ τL in resonance with system size, that
entanglement entropies are large in both cases. This results in untypical entanglement dynam-
ics, of peridodically spiking entanglement entropies, despite the system being chaotic in the
sense of spectral statistics. In such chaotic systems entanglement entropies generically grow
linearly in time. Hence our setting resembles an example where different notions of many-
body quantum chaos, namely random-matrix like spectral fluctuations and linear growth of
entanglement entropies do not coincide, as it is also the case when studying thermalization in
the present setting [65].

In contrast we recover the entanglement dynamics of typical chaotic systems, i.e., linear
growth of entanglement entropies, for T-dual impurity interactions when the size of the subsys-
tem is large. This is the case both for initial product states and local operators. More precisely
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entanglement grows linearly with τ leading to plateaus in the Rényi entropies in between
resonant times. The height of the plateaus grows at maximum speed given by 2 log(d), with
d = q or q2, respectively. Hence, as τ ≈ t/L, the speed of entanglement growth is reduced
by a factor of 1/L compared to the maximum value, which we attribute to only one gate, i.e.,
the impurity interaction, of the in total L gates of the circuit being entangling. One there-
fore might conjecture, that for a number of n entangling gates one should get a correction
n/L to the maximal possible speed and that the maximum speed is recovered in the spatially
homogeneous setting.

Our work hence provides an exact description of the entanglement dynamics in large sys-
tems for either arbitrary subsystem size (entanglement of states for gates with vacuum state
and operator entanglement for generic gates) or in the limit of infinite subsystem size (T-dual
gates). In the latter case our results explain the entanglement dynamics qualitatively even
for small subsystems. However, for finite subsystems we are currently not able to address the
question of saturation of entanglement entropies at late times. This is due to exponential scal-
ing of the size of transfer matrices with τ, which renders the large τ regime intractable via
numerics. Unfortunately, this cannot be computed analytically as well due to the fact that, for
finite subsystems the subleading part of the spectrum of the transfer matrices also becomes
relevant, for which we lack an analytical description.

Hence, to address the question of saturation, one requires different techniques, e.g., meth-
ods based on a dual space-time swapped interpretation as recently introduced in Ref. [30],
which is beyond the scope of this work. Also, if one was able to approach longer times, one
might be able to study the phenomenon of entanglement barriers for operator entanglement
in the boundary-chaos setting.
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A Spectral statistics of the circuit

In this appendix we present the level spacing distribution p(s) for the boundary chaos circuit
for the three different classes of impurity interactions – gates preserving a vacuum state, T-dual

gates, and generic gates. The scaled level spacing si =
qL+1

2π (εi+1 − εi) is given by the difference
of consecutive eigenphases/quasi-energies of the boundary chaos circuit U and is normalized
to unit mean spacing. For the impurity interaction with a vacuum-preserving gate used in
Fig.1 we depict p(s) in Fig. 6(a), whereas (b) shows p(s) for the T-dual impurity interaction
from Fig. 5 and (c) shows p(s) for the generic impurity interaction from Fig. 4. Each agrees
well with the random matrix result for the respective symmetry class. For the T-dual case
this is the circular orthogonal ensemble (COE) for q = 2 and the circular unitary ensemble
(CUE) for larger q (not shown). The other two cases correspond to the CUE for any q. The
impurity interactions used for Fig. 2 and Fig. 3 yield similar level spacing distributions and
are not shown separately. The correspondence between the level spacing distribution for the
boundary chaos circuit and the respective random matrix results clearly indicates our setting
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Figure 6: Level spacing distribution p(s) for (a) impurity interaction with vacuum,
(b) T-dual and (c) generic impurity interactions for L + 1 = 14 and q = 2. Dashed
and dotted black lines correspond to the corresponding distribution for the CUE (a,c)
and COE (b) respectively.
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Figure 7: Distribution p(|λ0|) of the subleading eigenvalue λ0 for (a) states with
τ= 9 and (b) operators with τ= 5 from 10000 realizations from different classes of
impurity interactions (see legend).

indeed leads to chaotic quantum systems in the sense of spectral statistics.

B Subleading eigenvalues of transfer matrices

Our analysis of entanglement dynamics, both for states and operators, requires subleading
eigenvalues λ of the transfer matrices Tτ to be gapped from one, i.e., |λ|< 1. As this is out of
scope of a rigorous proof we resort to extensive numerical studies to confirm this claim. Using
Arnoldi iteration in the subspace orthorgonal to the eigenspace of the leading eigenvlaue 1 we
compute the subleading eigenvalue of the transfer matrices for the largest accessible values
of τ. Note that Tτ is a non-Hermitian (and in general non-normal) matrix of dimension q2τ

in the case of states, whereas it is of dimension q4τ in the case of operators. We compute the
subleading eigenvalue at size τ = 9 for states and τ = 5 for operators for 10000 realizations
for qubits q = 2 for the different classes of impurity interactions. Here, we sample the generic
gates Haar random from U(4), while we choose u in the gate a with vacuum state, U = 1⊕ u,
Haar random from U(3). For T-dual gates we fix the interaction J = π/4−0.05 in Eq. (42) and
choose the local unitaries u±, v± Haar random from U(2). In Fig. 7(a) we show the distribution
of the modulus of the subleading eigenvalue |λ0| for the case of states. For generic impurity
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interactions we find the probabiltiy to dropp towards zero when |λ0| approaches 1 indicating
a finite gap for random choices of the gate. In contrast, both for T-dual impurity interactions
and those with a vacuum state we find the probability to be largest around 1 indictating finite
probability to find arbitrary large subleading eigenvalue Nevertheless, we do not find a single
instance where the subleading eigenvalue actually has modulus one and hence there will be
at least a small gap for generic choices of the impurity interaction from these classes. A small
spectral gap only implies, that the limiting entanglement dynamics for L→∞ is approached
much slower. In Fig. 7(b) we additionally show the same data for the transfer matrices from
the operator case and find qualitatively very similar behavior as for states.

C Impurity interactions for numerical computations

In this section we provide the impurity interactions U , entering Eq. (7), which we use for
numeical computations. For the entanglement dynamics of states, presented in Sec. 3.2.1
from impurities which support a vacuum state the gate is

U =

�

1 0 0 0
0 0.56078693+i0.13052803 −0.31583062−i0.08879493 0.59273587+i0.45772385
0 0.7123732+i0.2419316 0.39227097−i0.22401521 −0.2246578−i0.42363082
0 0.30203025+i0.10607406 −0.38000351+i0.7374988 −0.45253113+i0.06659165

�

. (C.1)

For T-dual impurity interactions, discussed in Sec. 3.2.2, our choice of local unitaries in Eq. (42)
as well as J = π/4− 0.05 yields

U =
�−0.56511125+i0.14546062 −0.34221162+i0.55985625 0.15649404−i0.42756842 0.13597384+i0.05611289
−0.44338093+i0.48186603 −0.0147065−i0.58867791 0.0635994−i0.13913641 −0.39303688−i0.21582098
−0.28160319+i0.15256069 −0.18672499+i0.30249188 −0.17678486+i0.82765589 −0.18242321−i0.14666947
−0.21884669+i0.28326661 0.04262872−i0.30742391 −0.02241818+i0.22917526 0.72147776+i0.44942792

�

.

(C.2)

In the case of generic impurity interactions from Sec. 3.2.3 we use

U =

�

0.36435611+i0.30859449 0.25372067+i0.09374407 0.55892459+i0.07675011 0.55887898−i0.26118756
0.38573468−i0.52730716 −0.18706112+i0.16487939 0.3447626+i0.55123777 −0.28602683+i0.08026939
−0.02131933+i0.46880636 0.08412532−i0.47063255 0.44362124+i0.0356644 −0.56044703+i0.19753834

0.1571885+i0.31658781 0.05215964+i0.79584427 0.00758074−i0.24669653 −0.42106545−i0.0276125

�

.

(C.3)

For the entanglement dynamics of operators and generic impurity interactions, discussed in
Sec. 4.2.1 we choose the impurity interaction

U =
�−0.15302565−i0.00702436 0.07406427+i0.68998362 −0.61881981−i0.11039248 0.01091446+i0.31579631
−0.65851585−i0.32242472 0.10537759−i0.29765891 −0.18430557+i0.16641164 −0.54844977+i0.01534251
−0.38846017−i0.12440906 −0.25436805−i0.31744661 −0.32211766−i0.15547394 0.71989747−i0.1481935
0.01525248−i0.52184426 −0.42302265+i0.27259531 0.24344719+i0.59667051 0.16349771+i0.17937624

�

,

(C.4)

whereas for the T-dual case, presented in Sec. 4.2.2, our choice of local unitaries in Eq. (42)
as well as J = π/4− 0.05 results in

U =

� −0.3923746−i0.30245775 0.32529251+i0.04037993 0.34083335+i0.45827838 0.47857571+i0.30314118
−0.28166778−i0.31394062 −0.00791122+i0.62361304 −0.29015399−i0.40778701 0.30814909−i0.29616428
−0.53469481−i0.02205057 −0.3565329−i0.48333761 −0.50931968−i0.09325641 0.11279488+i0.26843675
−0.01098664+i0.53866553 0.28259919+i0.2510083 −0.01856994−i0.39355537 0.10761974+i0.63248604

�

.

(C.5)
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