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Social interactions determine many economic behaviours, but information on social ties does not
exist in most publicly available and widely used datasets. We present results on the identification of
social networks from observational panel data that contains no information on social ties between agents.
In the context of a canonical social interactions model, we provide sufficient conditions under which the
social interactions matrix, endogenous and exogenous social effect parameters are globally identified if
networks are constant over time. We also provide an extension of the method for time-varying networks.
We then describe how high-dimensional estimation techniques can be used to estimate the interactions
model based on the adaptive elastic net Generalized Method of Moments. We employ the method to study
tax competition across U.S. states. The identified social interactions matrix implies that tax competition
differs markedly from the common assumption of competition between geographically neighbouring
states, providing further insights into the long-standing debate on the relative roles of factor mobility and
yardstick competition in driving tax setting behaviour across states. Most broadly, our identification and
application show that the analysis of social interactions can be extended to economic realms where no
network data exist.
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1. INTRODUCTION

In many economic environments, behaviour is shaped by social interactions between agents.
In individual decision problems, social interactions have been key to understanding outcomes

The editor in charge of this paper was Francesca Molinari.
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2 REVIEW OF ECONOMIC STUDIES

as diverse as educational test scores, the demand for financial assets, and technology adoption
(Sacerdote, 2001; Conley and Udry, 2010; Bursztyn et al., 2014). In macroeconomics, the struc-
ture of firms’ production and credit networks propagate shocks, or help firms to learn (Acemoglu
et al., 2012; Chaney, 2014). In political economy and public economics, ties between jurisdic-
tions are key to understanding tax setting behaviour (Tiebout, 1956; Shleifer, 1985; Besley and
Case, 1994).

Underpinning all these bodies of research is some measurement of the underlying social ties
between agents. However, information on social ties does not exist in most publicly available and
widely used datasets. To overcome this limitation, studies of social interaction either postulate
ties based on common observables or homophily, or elicit data on networks. However, it is
increasingly recognized that postulated and elicited networks remain imperfect solutions to the
fundamental problem of missing data on social ties, because of econometric concerns that arise
with either method, or simply because of the cost of collecting network data.1

Two consequences are that (1) the classes of problems in which social interactions occur
are understudied, because social networks data are missing or too costly to collect; and (2)
there is no way to validate social interactions analysis in contexts where ties are postulated.
In this article, we tackle this challenge by deriving sufficient conditions under which global
identification of the entire structure of social networks is obtained, using only observational
panel data that itself contains no information on network ties. Our identification results allow
the study of social interactions without data on social networks, and the validation of structures
of social interaction where social ties have hitherto been postulated. The recovered networks are
economically meaningful to explain the effects under study, since they are entirely estimated
from the data itself, and not driven by ex-ante assumptions on how individuals interact.

A researcher is assumed to have panel data on individuals i = 1, . . . , N for instances t =
1, . . . , T . An instance refers to a specific observation for i and need not correspond to a time
period (for example, if i refers to a firm, t could refer to market t). The outcome of interest for
individual i in instance t is yit and is generated according to a canonical structural model of
social interactions:2

yit = ρ0

N∑
j=1

W0,i j y j t + β0xit + γ0

N∑
j=1

W0,i j x j t + αi + αt + εi t . (1)

Outcome yit depends on the outcomes of other individuals to whom i is socially tied, y jt , and
x jt includes characteristics of those individuals.3 W0,i j measures how the outcome and charac-
teristics of j causally impact the outcome for i. The network is initially assumed to be fixed over
time, and we later provide an extension of the method for time-varying networks. As outcomes
for all individuals obey equations analogous to (1), the system of equations can be written in
matrix notation, where the structure of interactions is captured by the adjacency matrix, denoted
by W0. Our approach allows for unobserved heterogeneity across individuals αi and common

1. As detailed in de Paula (2017), elicited networks are often self-reported and can introduce error to the outcome
of interest. Network data can be censored if only a limited number of links can feasibly be reported. Incomplete survey
coverage of nodes in a network may lead to biased aggregate network statistics. Chandrasekhar and Lewis (2016) show
that even when nodes are randomly sampled from a network, partial sampling leads to non-classical measurement error
and biased estimation. Collecting social network data is also a time- and resource-intensive process. In response to these
concerns, a nascent strand of literature explores cost-effective alternatives to full elicitation to recover aggregate network
statistics (Breza et al., 2020).

2. Blume et al. (2015) present micro-foundations for this estimating equation based on non-cooperative games
of incomplete information for individual choice problems.

3. In the case in which t is considered to be a time period, xit may also include lagged values of yit .
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de Paula et al. IDENTIFYING NETWORK TIES FROM PANEL DATA 3

shocks to individuals αt . This framework encompasses a classic linear-in-means specification
as in Manski (1993). In his terminology, ρ0 and γ0 capture endogenous and exogenous social
effects, and αt captures correlated effects. The distinction between endogenous and exogenous
peer effects is critical, as only the former generates social multiplier effects. In line with the lit-
erature, we maintain that the same W0 governs the structure of both endogenous and exogenous
effects. We later discuss relaxing this assumption when more than one regressor is used.

Manski’s seminal contribution set out the reflection problem of separately identifying
endogenous, exogenous, and correlated effects in linear models. However, it has been some-
what overlooked that he also set out another challenge in the identification of the social network
in the first place.4 This is the problem we tackle, and thus, we expand the scope of identification
beyond ρ0, β0, and γ0. Our point of departure from much of the literature is therefore to presume
W0 is entirely unknown to the researcher. We derive sufficient conditions under which all the
entries in W0, and the endogenous and exogenous social effect parameters, ρ0 and γ0, are glob-
ally identified from “reduced form” parameters. By identifying the social interactions matrix
W0, our results allow the recovery of aggregate network characteristics, such as the degree dis-
tribution and patterns of homophily, as well as node-level statistics such as the strength of social
interactions between nodes, and the centrality of nodes. Such aggregate and node-level statistics
often map back to underlying models of social interaction (Ballester et al., 2006; de Paula, 2017;
Jackson et al., 2017).

Our identification strategy is new and fundamentally different from those employed else-
where in the literature and does not rely on requirements about network sparsity. However, it
delivers sufficient conditions that are mild and relate to existing results on the identification of
social effects parameters when W0 is known (Bramoullé et al., 2009; De Giorgi et al., 2010;
Blume et al., 2015). The intuition for our identification result is simple: model (1) has N 2

reduced-form parameters, and there are N (N − 1) + 3 structural unknowns (as no unit affects
itself, so W0,i i = 0). So there are more equations than unknowns if N ≥ 2, and we demonstrate
those can be solved for the parameters of interest under the assumptions we invoke. Our identi-
fication result is also useful in other estimation contexts, such as when a researcher has partial
knowledge of W0,5 or in navigating between priors on reduced-form and structural parameters
in a Bayesian framework (see, e.g. Gefang et al., 2023), thus avoiding issues the raised by Kline
and Tamer (2016).

Global identification is a necessary requirement for consistency of extremum estimators such
as those based on the GMM (Hansen 1982; Newey and McFadden 1994). Our identification
analysis provides primitives for this condition. To estimate the model, we employ the adaptive
elastic net GMM method (Caner and Zhang, 2014), as this allows us to deal with a potentially
high-dimensional parameter vector (in comparison to the time dimension in the data) including

4. Manski (1993) highlights difficulties (and potential restrictions) in identifying ρ0, β0, and γ0 when all indi-
viduals interact with each other, and when this is observed by the researcher. In (1), this corresponds to W0,i j = N−1,
for i, j = 1, . . . , N . At the same time, he states (p. 536), “I have presumed that researchers know how individuals form
reference groups and that individuals correctly perceive the mean outcomes experienced by their supposed reference
groups. There is substantial reason to question these assumptions (. . . ) If researchers do not know how individuals form
reference groups and perceive reference-group outcomes, then it is reasonable to ask whether observed behaviour can
be used to infer these unknowns (. . . ) The conclusion to be drawn is that informed specification of reference groups is a
necessary prelude to analysis of social effects.”

5. One such example is the nascent literature of Aggregate Relational Data (ARD) as in Breza et al. (2020).
Another possibility is that individuals are known to belong to subgroups, so W0 is block diagonal.
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4 REVIEW OF ECONOMIC STUDIES

all the entries of the social interactions matrix W0, although other estimation protocols may also
be entertained (e.g. using Bayesian methods or a priori information).6

We showcase the method using Monte Carlo simulations based on stylized random network
structures as well as real-world networks. In each case, we take a fixed network structure W0
and simulate panel data as if the data generating process were given by (1). We then apply the
method to the simulated panel data to recover estimates of all elements in W0, as well as the
endogenous and exogenous social effect parameters (ρ0, γ0). The networks considered vary in
size, complexity, and their aggregate and node-level features. In small samples, we find that the
majority of links are identified even for T = 5, and the proportion of true non-links (zeros in W0)
captured correctly as zeros is over 85% even when T = 5. Of course, there are important limita-
tions to the use of the method in small-T cases. Biases are expected and manifest themselves in
two ways. First, weak links can be shrunk to zero, and the strength of strong edges can be overes-
timated. Second, the estimates of ρ and γ can suffer from small-sample bias, being analogous to
well-known results for autoregressive time series models. Both properties rapidly improve with
T. For instance, biases in the estimation of endogenous and exogenous effects parameters (ρ̂, γ̂ )
fall quickly with T and are close to zero for large sample sizes. The endogenous and exoge-
nous social effects are also correctly captured as T increases. A fortiori, we estimate aggregate
and node-level statistics of each network, demonstrating the accurate recovery of key players in
networks, for example.

In the final part of our analysis, we apply the method to shed new light on a classic real-world
social interactions problem: tax competition between U.S. states. The literatures in political
economy and public economics have long recognized the behaviour of state governors might be
influenced by decisions made in “neighbouring” states. The typical empirical approach has been
to postulate the relevant neighbours as being geographically contiguous states. Our approach
allows us to infer the set of “economic” neighbours determining social interactions in tax setting
behaviour from panel data on outcomes and covariates alone. In this application, the panel data
dimensions cover mainland U.S. states, N = 48, for the years 1962–2015, T = 53.

The identified network structure of tax competition differs markedly from the assumption
of competition between geographic neighbours. The identified economic network has fewer
edges, and we identify non-adjacent states that influence tax setting behaviours. Differences in
the structure of the identified economic and geography-based networks are reflected in the far
lower clustering coefficient in the former (0.042 versus 0.419). With the recovered social interac-
tions matrix we establish, beyond geography, which covariates correlate to the existence of ties
between states and so shed new light on hypotheses for social interactions in tax setting: factor
mobility and yardstick competition (Tiebout, 1956; Shleifer, 1985; Besley and Case, 1994). The
identified network highlights significant predictors of tax competition between states beyond dis-
tance: political homophily reduces the likelihood of a link, suggesting any yardstick competition
driving social interactions occurs when voters compare their governor to those of the opposing
party in other states. Tax haven states appear to be less influential in tax setting behaviours, eas-
ing concerns over a race-to-the-bottom in tax setting. Labour mobility between states does not
robustly predict the existence of economic ties between states in tax setting behaviour.

Given the relatively long study period in this application, at a final stage of analysis we
extend our method to allow the strength of social interactions in tax competition (ρ0, γ0) and the

6. The Elastic Net was introduced by Zou and Hastie (2005) in part to circumvent difficulties faced by alternative
estimation protocols (e.g. LASSO) when the number of parameters, p, exceeds the number of observations, n (where
p and n follow the notation in that article). Whereas the theoretical results on the large-sample properties of elastic net
estimators usually have not exploited sparsity, several articles have demonstrated their performance in data scenarios
where this occurs. In Section 3, we provide an informal discussion on the performance in our context.
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de Paula et al. IDENTIFYING NETWORK TIES FROM PANEL DATA 5

structure of links in the economic network (W0) to vary over time as we change the weight placed
on observations from any given time period. We document the gradual increase in strength of
social interactions over time, and the changing nature of the network of interactions. We utilize
these findings to conduct counterfactual simulations of the general equilibrium propagation of
tax shocks from a given state to all other mainland U.S. states, and how these general equilibrium
effects of the same policy shock vary as we place weight on observations later in our study
period.

Our article contributes to the literature on the identification of social interactions models.
The first generation of papers studied the case where W0 is known, so only the endogenous
and exogenous social effects parameters needed to be identified. It is now established that if
the known W0 differs from the linear-in-means example where all units are linked with equal
weights, ρ0 and γ0 can be identified (Bramoullé et al., 2009; De Giorgi et al., 2010). Intuitively,
identification in those cases can use peers-of-peers, are not necessarily connected to individual
i and can be used to leverage variation from exclusion restrictions in (1), or can use groups of
different sizes within which all individuals interact with each other (Lee, 2007). Bramoullé et al.
(2009) show these conditions are met if I, W0, and W 2

0 are linearly independent, which is shown
to hold generically by Blume et al. (2015). However, as made precise in Section 2, the linear
algebraic arguments employed by Bramoullé et al. (2009) or Blume et al. (2015) do not apply
when W0 is unobserved, and other arguments have to be used instead.7

Blume et al. (2015) investigate the case when W0 is partially observed and show that if
two individuals are known not to be directly connected, the parameters of interest in a model
related to (1) can be identified. Blume et al. (2011) take an alternative approach: suggesting a
parameterization of W0 according to a pre-specified distance between nodes. We do not impose
such restrictions, but note that partial observability of W0 or placing additional structure on W0
is complementary to our approach, as it reduces the number of parameters in W0 to be retrieved.
Bonaldi et al. (2015) and Manresa (2016) estimate models like (1) when W0 is not observed,
but where ρ0 is set to zero so there are no endogenous social effects. They use sparsity-inducing
methods from the statistics literature, but the presence of ρ0 in our case complicates identification
because it introduces issues of simultaneity that we address.8

Rose (2015) also presents related identification results for linear models like (1), assuming
the sparsity of the neighbourhood structure. Intuitively, given two observationally equivalent
systems, sparsity guarantees the existence of pairs that are not connected in either. Since obser-
vationally equivalent systems are linked via the reduced-form coefficient matrix, this pair allows
one to identify certain parameters in the model. Having identified those parameters, Rose (2015)
shows that one can proceed to identify other aspects of the structure (see also Gautier and Rose,
2016). This is related to the ideas in Blume et al. (2015), who show identification results can be
leveraged if individuals are known not to be connected. Our main identification results do not rely
on properties of sparse networks, and make use of plausible and intuitive conditions, whereas the
auxiliary rank conditions necessary may be computationally complex to verify. More recently,
Lewbel et al. (2023) propose an estimation strategy for the parameters ρ0, β0, and γ0 of model
(1) in the absence of network links if many different groups can be observed. Battaglini et al.

7. Alternative identification approaches when W0 is known focus on higher moments (variances and covariances
across individuals) of outcomes (de Paula, 2017) and rely on additional restrictions on higher moments of εi t . Note that
(1) is a spatial autoregressive model. In that literature, W0 is also typically assumed to be known (Anselin, 2010).

8. Manresa (2016) allows for unit-specific β0 parameters. While in many applications those are taken to be
homogeneous, we also discuss extensions on how heterogeneity in those parameters can be handled when ρ0 �= 0 in
Supplementary Appendix B.
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6 REVIEW OF ECONOMIC STUDIES

(2022) estimate a structural model specifically for the case of unobserved social connections in
the U.S. Congress.

Finally, in the statistics literature, Lam and Souza (2020) study the penalized estimation of
model (1) when W0 is not observed, assuming the model and social interactions are identified.
The statistical literature on graphical models has investigated the estimation of neighbour-
hoods defined by the covariance structure of the random variables at hand (Meinshausen and
Buhlmann, 2006). This corresponds to a model where yt = (I − ρ0W0)

−1εt is jointly normal
(abstracting from covariates). On a graph with N nodes corresponding to the variables in the
model, an edge between two nodes (variables) i and j is absent when these two variables are con-
ditionally independent given the other nodes. In the model above, the inverse covariance matrix
is (I − ρ0W0)

��−1
ε (I − ρ0W0), where �ε is the variance covariance structure for εt . The dis-

covery of zero entries in this matrix is not equivalent to the identification of W0 and involves �ε

(as do identification strategies using higher moments when W0 is known).9

We build on these papers by studying the problem where W0 is potentially entirely unknown
to the researcher. In so doing, we open up the study of social interactions to realms where social
network data does not exist. In our case, we consider the definition of the network as the one
that mediates, together with the variables xit , the outcome process yit according to equation (1).
The identified network may be a combination of elicited types of social interactions—such as
friendship formation, lending and borrowing relations, links with relatives—or different from
elicited data, as long as the links are relevant in determining the outcomes. In our case, and
in line with the literature, the network ties Wi j are considered to be deterministic parameters
or predetermined. Alternatively, the networks are assumed to be the outcome of a stochastic
process, such as the latent space model (Hoff et al., 2002; Breza et al., 2020) or Exponential
Random Graphs models (Holland and Leinhardt, 1981).

Our conclusions discuss how our approach can be modified, and assumptions weakened,
to integrate partial knowledge of W0. We discuss further applications and the steps required to
simultaneously identify models of network formation and the structure of social interactions. The
practical use of our proposed method has already been demonstrated in applications. For exam-
ple, Fetzer et al. (2021) study the impact on conflict of the transition of security responsibilities
between international and Afghan forces. Our proposed method is used to control for violation
of SUTVA-type hypotheses that might occur because of spillover and displacement effects of
insurgent forces across districts. Since the pattern of displacement is unobserved—and, in fact,
insurgents have incentives to obfuscate their strategy—the current method is applied to fully
recover the network and bound the effects of the end of the military occupation on conflict.10

We proceed as follows. Section 2 presents our core result: the sufficient conditions under
which the social interactions matrix, endogenous and exogenous social effects are globally iden-
tified. Section 3 describes the high-dimensional techniques used for estimation based on the
adaptive elastic net GMM method and presents simulation results from stylized and real-world
networks. Section 4 applies our methods to study tax competition between U.S. states. Section 5
concludes. The Supplementary Appendix provides proofs and further details on estimation and
simulations.

9. Meinshausen and Buhlmann (2006)’s and Lam and Souza (2020)’s neighbourhood estimates rely on (penal-
ized) regressions of yit on y1t , . . . , yi−1,t , yi+1,t , . . . , yN ,t , which do not address the endogeneity in estimating
W0.

10. Zhou (2019) applies our identification results, focusing on unobserved networks with grouped heterogeneity,
to suggest a nonlinear least squares procedure for estimation on a single network observation.
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de Paula et al. IDENTIFYING NETWORK TIES FROM PANEL DATA 7

2. IDENTIFICATION

2.1. Setup

Consider a researcher with panel data covering i = 1, . . . , N individuals repeatedly observed
over t = 1, . . . , T instances. The number of individuals N in the network is fixed but potentially
large. The aim is to use this data to identify a social interactions model with no data on actual
social ties. For expositional ease, we first consider identification in a simpler version of the
canonical model in (1), where we drop individual-specific (αi ) and time-constant fixed effects
(αt ) and assume xit is a one-dimensional regressor for individual i and instance t. We later
extend the analysis to include individual-specific, time-constant fixed effects and allow for mul-
tidimensional covariates xk,i t , k = 1, . . . , K . We adopt the subscript “0” to denote parameters
generating the data, and non-subscripted parameters are generic values in the parameter space:

yit = ρ0

N∑
j=1

W0,i j y j t + β0xit + γ0

N∑
j=1

W0,i j x j t + εi t . (2)

As the outcomes for all individuals i = 1, . . . , N obey equations analogous to (2), the system of
equations can be more compactly written in matrix notation as:

yt = ρ0W0 yt + β0xt + γ0W0xt + εt . (3)

The vector of outcomes yt = (y1t , . . . , yNt )
′ assembles the individual outcomes in instance t; the

vector xt does the same with individual characteristics. yt , xt , and εt have dimension N × 1, the
social interactions matrix W0 is N × N , and ρ0, β0, and γ0 are scalar parameters. We do not make
any distributional assumptions on εt beyond E(εt |xt ) = 0 (or E(εt |zt ) = 0 for an appropriate
instrumental variable zt if xt is endogenous). We assume the network structure is predetermined
and constant, and that the number of individuals N is fixed and repeated. In reality, networks
may evolve over time. We thus later expand the method for dynamic network cases. The network
structure W0 is a parameter to be identified and estimated.

The social interaction model (3) has been widely studied (Manski, 1993; Manresa, 2016;
Blume et al., 2015, among many others), but it is also restrictive in at least two senses. First,
we consider Wi j to be fixed and predetermined, and not through models of strategic network
formation (Jackson and Wolinsky, 1996; de Paula et al., 2018) or of stochastic nature, as in the
class of Exponential Random Graphs (Holland and Leinhardt, 1981) or Latent Distance models
(Breza et al., 2020; Hoff et al., 2002). If there is feedback between outcome determination and
link formation, and especially if this involves unobservables, it would be important to model
network formation more explicitly.

A regression of outcomes on covariates corresponds, then, to the reduced form for (3),

yt = �0xt + νt , (4)

with �0 = (I − ρ0W0)
−1(β0 I + γ0W0) and νt ≡ (I − ρ0W0)

−1εt . If W0 is observed, Bramoullé
et al. (2009) note that a structure (ρ, β, γ ) that is observationally equivalent to (ρ0, β0, γ0) is
such that (I − ρ0W0)

−1(β0 I + γ0W0) = (I − ρW0)
−1(β I + γ W0). This can be written as a lin-

ear equation in I, W0, and W 2
0 , and identification is established if those matrices are linearly

independent. If W0 is not observed, the putative unobserved structure comprises W0, and an
observationally equivalent parameter vector will instead satisfy (I − ρ0W0)

−1(β0 I + γ0W0) =
(I − ρW )−1(β I + γ W ). Following the strategy in Bramoullé et al. (2009) would lead to an
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8 REVIEW OF ECONOMIC STUDIES

equation in I, W, W0, and W W0, so the insights obtained in that paper do not carry over to the
case we study when W0 is unknown.

We establish identification of the structural parameters of the model, including the social
interactions matrix W0, from the coefficients matrix �0. Without data on the network W0, we
treat it as an additional parameter in an otherwise standard model relating outcomes and covari-
ates. Our identification strategy relies on how changes in covariates xit reverberate through
the system and impact yit , as well as outcomes for other individuals. These are summarized
by the entries of the coefficient matrix �0, which, in turn, encode information about W0 and
(ρ0, β0, γ0). A non-zero partial effect of xit on y jt indicates the existence of direct or indirect
links between i and j. When ρ0 = 0 (and �0 = β0 I + γ0W0), only direct links produce such a
correlation. When ρ �= 0, both direct and indirect connections may generate a non-zero response,
but distant connections will lead to a lower response. Our results formally determine sufficient
conditions to precisely disentangle these forces.

We set out six assumptions underpinning our main identification results. Three of these are
entirely standard. A fourth is a normalization required to separately identify (ρ0, γ0) from W0,
and the fifth is closely related to known results on the identification of (ρ0, γ0) when W0 is known
(Bramoullé et al., 2009). The sixth assumption pertains to the relation between the nature of
repeated multiple observations of the outcome and covariates and restrictions on the stability of
W. These Assumptions (A1–A6) deliver an identified set of up to two points.

Our first assumption explicitly states that no individuals affect themselves and is a standard
condition in social interaction models:

(A1) (W0)i i = 0, i = 1, . . . , N .

Assumption (A1) rules out applications with self-influence. For example, Input–Output matrices
typically feature (W0)i i > 0, as firms tend to source from other firms in the same industry. With
Assumption (A1), we can omit elements on the diagonal of W0 from the parameter space. We
thus can denote a generic parameter vector as θ = (W12, . . . , WN ,N−1, ρ, γ, β)′ ∈ R

m , where
m = N (N − 1) + 3, and Wi j is the (i, j)th element of W. Reduced-form parameters can be tied
back to the structural model (3) by letting � : R

m → R
N 2

define the relation between structural
and reduced-form parameters:

�(θ) = (I − ρW )−1 (β I + γ W ) ,

where θ ∈ R
m , and �0 ≡ �(θ0).

As εt (and, consequently, νt ) is mean-independent from xt , E[εt |xt ] = 0, the matrix �0 can
be identified as the linear projection of yt on xt . We do not impose additional distributional
assumptions on the disturbance term, except for conditions that allow us to identify the reduced-
form parameters in (4). If xt is endogenous, i.e. E[εt |xt ] �= 0, a vector of instrumental variables
zt may still be used to identify �0. In either case, identification of �0 requires variation of
the regressor across individuals i and through instances t. In other words, either E[xt x ′

t ] (if
exogeneity holds) or E[xt z′

t ] (otherwise) is full-rank.
Our next assumption controls the propagation of shocks and guarantees that they die as they

reverberate through the network. This provides adequate stability and is related to the concept
of stationarity in network models. It implies the maximum eigenvalue norm of ρ0W0 is less than
one and ensures (I − ρ0W0) is a non-singular matrix. As the variance of yt exists, the transfor-
mation �(θ0) is well-defined, and the Neumann expansion (I − ρ0W0)

−1 = ∑∞
j=0(ρ0W0)

j is
appropriate.
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de Paula et al. IDENTIFYING NETWORK TIES FROM PANEL DATA 9

(A2)
∑N

j=1 |ρ0(W0)i j | < 1 for every i = 1, . . . , N , ‖W0‖ < C for some positive C ∈ R and
|ρ0| < 1.

We next assume that network effects do not cancel out, another standard assumption. As we
will show, this assumption rules out the pathological case in which endogenous and exogenous
effects exactly cancel each other out:

(A3) β0ρ0 + γ0 �= 0.

The need for this assumption can be shown by expanding the expression for �(θ0), which is
possible by (A2):

�(θ0) = β0 I + (ρ0β0 + γ0)

∞∑
k=1

ρk−1
0 W k

0 . (5)

If Assumption (A3) were violated, β0ρ0 + γ0 = 0 and �0 = β0 I , so the endogenous and exoge-
nous effects would balance each other out, and network effects would be altogether eliminated
in the reduced form.11

Identification of the social effects parameters (ρ0, γ0) requires that at least one row of W0
adds to a fixed and known number. Otherwise, ρ0 and γ0 cannot be separately identified from
W0. Clearly, no such condition would be required if W0 were observed.

(A4) There is an i such that
∑

j=1,...,N (W0)i j = 1.

Letting Wy ≡ ρ0W0 and Wx ≡ γ0W0 denote the matrices that summarize the influence of peers’
outcomes (the endogenous social effects) and characteristics on one’s outcome (the exogenous
social effects), respectively, the assumption above can be seen as a normalization. In this case,
ρ0 and γ0 represent the row-sum for individual i in Wy and Wx , respectively.12

The fifth assumption allows for a specific kind of network asymmetry. We require the
diagonal of W 2

0 not to be constant as one of our sufficient conditions for identification.

(A5) There exists l, k such that (W 2
0 )ll �= (W 2

0 )kk , i.e. the diagonal of W 2
0 is not proportional to

ι, where ι is the N × 1 vector of ones.

In unweighted networks, the diagonal of the square of the social interactions matrix captures the
number of reciprocated links for each individual or, in the case of undirected networks, the pop-
ularity of those individuals. Assumption (A5) hence intuitively suggests differential popularity
across individuals in the social network.

This assumption is related to the network asymmetry condition proposed elsewhere, such as
in Bramoullé et al. (2009). They show that when W0 is known, the structural model (2) is identi-
fied if I, W0, and W 2

0 are linearly independent. Given the remaining assumptions, this condition
is satisfied if (A5) is satisfied, but the converse is not true: one can construct examples in which
I, W0, and W 2

0 are linearly independent when W 2
0 has a constant diagonal, so �0 does not pin

11. One important case is when networks do not determine outcomes, which we interpret as ρ0 = γ0 = 0 or with
W0 representing the empty network. From equation (5), it is clear that if �(θ0) is not diagonal with constant entries, then
it must be that (ρ0β0 + γ0) �= 0, which implies that ρ0 �= 0 or γ0 �= 0, and also that W0 is non-empty. Taken together,
this suggests that the observation that �(θ0) is not diagonal is sufficient to ensure that network effects are present and
Assumption (A3) is not violated.

12. Alternatively, one could normalize ρ∗ = 1 and rescale the network accordingly. In this case, W∗ = ρ0W0
would be identified instead. Also, Wx = γ0

ρ0
W∗ so γ0 would be identified relative to ρ0. Wy and Wx would be

unchanged.
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10 REVIEW OF ECONOMIC STUDIES

down θ0. See Example 1 in Supplementary Appendix A. The strengthening of this hypothesis is
the formal price to pay for the social interactions matrix W0 being unknown to the researcher.

Before proceeding to our formal results, we provide a very simple illustration to shed light
on how the assumptions above come together to provide identification. Suppose the observed
reduced-form matrix is,

�0 = 1
455

⎡⎣275 310 0
310 275 0

0 0 182

⎤⎦ ,

and that, following (A4), the first row is normalized to one. From the third row and column of
�0, we see there is no path of any length connecting the individual in Row 3 to or from those
in Rows 1 or 2, since her outcome is not affected by their covariates and their outcomes are
not affected by her covariates. In other words, individual 3, is isolated and (W0)13 = (W0)23 =
(W0)31 = (W0)32 = 0. On the other hand, individuals 1 and 2 cannot be isolated, as their covari-
ates are correlated with the other individual’s outcome, reflecting (A5).13 Due to the row-sum
normalization of the first row, (W0)12 = 1. Using (A3), it can be seen that W0 is symmetric if �0
is symmetric. We thus find that (W0)21 = 1. This and (A1) map all elements of W0, and thus,

W0 =
⎡⎣0 1 0

1 0 0
0 0 0

⎤⎦ .

As the third individual is isolated, she will only be affected by her exogenous xi and not by
endogenous or exogenous peer effects. Hence, the (3, 3) element of �0 is equal to β0 = 182

455 =
0.4. To find ρ0, note that (I − ρ0W0)�0 = β0 I + γ0W0. Hence, focusing on the (1,1) elements of
the matrices above, we find that 275

455 − ρ0
310
455 = 0.4, implying ρ0 = 0.3 (complying with (A2)).

Finally, γ0 is identified from entry (1, 2), giving γ0 = 310
455 − 0.3 275

455 = 0.5.
Our final assumption articulates the need for a constant network W0 observed over multiple

instances of yt and xt :

(A6) yt and xt are observed for individuals i = 1, . . . , N , and instances t = 1, . . . , T , and the
network W0 does not depend on t

Here, “instances” can refer to time but also to settings in which the same units are observed
over multiple episodes. For example, if i are firms, then t can be segmented markets in which
they operate. For simplicity, we refer to an instance as a time period. If �0 is known, the main
identification result we articulate below will state that W0, ρ0, β0, and γ0 are globally identified.
However, in practice, �0 is rarely observed and thus all quantities need to be estimated. For
this purpose, when �0 is not known, multiple observations of yt and xt with a constant W0 are
required to implement the estimator. We expand on estimation requirements in Section 3.1.

Importantly, the main identification results (for a given �0) could, in principle, be applied
for each time period t. That is, one can write a version of equation (3) as

yt = ρ0W0t yt + β0xt + γ0W0t xt + εt ,

where W0t is time-varying and, consequently, the reduced-form interaction matrix
�0t = (I − ρ0W0t )

−1(Iβ0 + W0tγ0) is also time-varying. If the reduced-form matrices were

13. If on the other hand, (W0)i j = 0.5, i �= j in violation of (A5), and all agents were connected, the model
would not be identified.
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de Paula et al. IDENTIFYING NETWORK TIES FROM PANEL DATA 11

known, the identification results we develop below could be applied to the reduced-form element
by element for each �0t . Again, one rarely observes �0t , for all t ∈ [1, T ]. This observation
will motivate an extension of the method, presented in Section 2.3.3, where Assumption (A6) is
relaxed and W0 is allowed to vary with t.

In an extension, we allow the network W0t to vary over time and introduce kernel weights.
Akin to the non-parametric regression Y = f (X) + ε, f is identified if E(ε|X) = 0, and it is pos-
sible to estimate f using neighbouring observations if f is sufficiently smooth or varies slowly.
Similar considerations extend to varying-coefficient models and, in particular, time-varying
coefficient models where local stability conditions as those discussed in Dahlhaus (2012) are
usually invoked (see also Hastie and Tibshirani, 1993 and their Example (e)).

2.2. Main identification results

Under the assumptions above, we can begin to identify parameters related to the network. These
results are then useful for our main identification theorems. Let λ0 j denote an eigenvalue of W0
with corresponding eigenvector v0, j for j = 1, . . . , N . Assumptions (A2) and (A3) allow us to
identify the eigenvectors of W0 directly from the reduced form. As |ρ0| < 1:

�0v0, j = β0v0, j + (ρ0β0 + γ0)

∞∑
k=1

ρk−1
0 W k

0 v0, j

=
[
β0 + (ρ0β0 + γ0)

∞∑
k=1

ρk−1
0 λk

0, j

]
v0, j

= β0 + γ0λ0, j

1 − ρ0λ0, j
v0, j . (6)

The infinite sum converges as |ρ0λ0, j | < 1 by (A2). The equation above implies that v0, j is also
an eigenvector of �0 with the associated eigenvalue λ�, j = β0+γ0λ0, j

1−ρ0λ0, j
. The fact that eigenvectors

of W0 are also eigenvectors of �0 has a useful implication: eigencentralities may be identified
from the reduced form, even when W0 is not identified. As detailed in de Paula (2017) and
Jackson et al. (2017), such eigencentralities often play an important role in empirical work as
they allow a mapping back to underlying models of social interaction.14

Now let � ≡ {θ ∈ R
m : Assumptions (A1)–(A6) are satisfied} be the structural parameter

space of interest. Our identification argument is structured as follows: (1) we first establish
local identification of the mapping �(θ) using classical results on the rank of the gradient of
Rothenberg, 1971 (Theorem 1); (2) we then show that �(θ) is proper (Corollary 1); and (3)
has a connected image (Lemma 2 in the Supplementary Appendix); (4) allowing us to state the
cardinality of the pre-image �−1(�̄) is constant for any �̄ in the image of �(·), and that the car-
dinality is at most 2 (Theorem 2). We then provide additional conditions to narrow the identified
set to a singleton (Corollaries 2–4).

We now formally present our results. Our first theorem establishes local identification of
the mapping. A parameter point θ0 is locally identifiable if there exists a neighbourhood of θ0
containing no other θ which is observationally equivalent. Using classical results in Rothenberg

14. To identify the eigencentralities, we identify the eigenvector that corresponds to the dominant eigenvalue. If
W0 is non-negative and irreducible, this is the (unique) eigenvector with strictly positive entries, by the Perron–Frobenius
theorem for non-negative matrices (see Horn and Johnson, 2013, p. 534).
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12 REVIEW OF ECONOMIC STUDIES

(1971), we show that our assumptions are sufficient to ensure that the Jacobian of � relative to
θ is non-singular, which, in turn, suffices to establish local identification.

Theorem 1. Assume (A1)–(A6). θ0 ∈ � is locally identified.

An immediate consequence of local identification is that the set {θ ∈ � : �(θ) = �(θ0)} is
discrete (i.e. its elements are isolated points). The following corollary establishes that � is a
proper function, i.e. the inverse image �−1(K ) of any compact set K ⊂ R

N 2
is also compact

(Krantz and Parks, 2013, p. 124). Since it is discrete, the identified set must be finite.

Corollary 1. Assume (A1)–(A6). Then �(·) is a proper mapping. Moreover, the set {θ : �(θ) =
�(θ0)} has a finite number of elements.

Under additional assumptions, the identified set is at most a singleton in each of the
partitioning sets �− ≡ � ∩ {ρβ + γ < 0} and �+ ≡ � ∩ {ρβ + γ > 0}.15

Since � = �− ∪ �+, if the sign of ρ0β0 + γ0 is unknown, the identified set contains, at
most, two elements. In the theorem that follows, we show global identification only for θ ∈ �+,
since arguments are mirrored for θ ∈ �−.

Theorem 2. Assume (A1)–(A6). Then for every θ ∈ �+, we have �(θ) = �(θ0) ⇒ θ = θ0.
That is, θ0 is globally identified with respect to the set �+.

Similar arguments apply if Theorem 2 instead were to be restricted to θ ∈ �−. The proof of
the corollary below is immediate and therefore omitted.

Corollary 2. Assume (A1)–(A6). If ρ0β0 + γ0 > 0, then the identified set contains at most
one element, and similarly if ρ0β0 + γ0 < 0. Hence, if the sign of ρ0β0 + γ0 is unknown, the
identified set contains, at most, two elements.16

We now turn our attention to the problem of identifying the sign of ρ0β0 + γ0 from the
observation of �0. This would then allow us to establish global identification using Theorem 2.
It is apparent from (5) that if ρ0 > 0 and (W0)i j ≥ 0, for all i, j = {1, . . . , N }, the off-diagonal
elements of �0 identify the sign of ρ0β0 + γ0.

Corollary 3. Assume (A1)–(A6). If ρ0 > 0 and (W0)i j ≥ 0, the model is globally identified.

Real-world applications often suggest endogenous social interactions are positive (ρ0 > 0),
in which case global identification is fully established by Corollary 3. On the other hand, if
ρ0 < 0 (e.g. if outcomes are strategic substitutes), ρk

0 in (5) alternates signs with k, and the off-
diagonal elements no longer carry the sign of ρ0β0 + γ0. Nonetheless, if W0 is non-negative
and irreducible (i.e. not permutable into a block-triangular matrix or, equivalently, a strongly
connected social network), the model is also identifiable without further restrictions on ρ0:

Corollary 4. Assume (A1)–(A6), (W0)i j ≥ 0 and W0 is irreducible. If W0 has at least two real
eigenvalues or |ρ0| <

√
2/2, then the model is globally identified.

15. The global inversion results we use are related to, but different from, variations on a classic inversion result
of Hadamard that has been used in the literature. In contrast, we employ results on the cardinality of the pre-image of
a function, relying on less stringent assumptions. While the Hadamard result requires the image of the function to be
simply-connected (Theorem 6.2.8 of Krantz and Parks, 2013), the results we rely on do not.

16. Under some special conditions, the mirror image of θ0 can be characterized from equation (5). If
−W0 satisfies Assumption (A4), we may set ρ∗ = −ρ0, β∗ = β0, γ ∗ = −γ0, and W∗ = −W0. Then, ρ0β0 +
γ0 = −(ρ∗β∗ + γ ∗). Also note that

∑∞
k=1 ρk−1

0 W k
0 = −∑∞

k=1(ρ∗)k−1(W∗)k , so (ρ0β0 + γ0)
∑∞

k=1 ρk−1
0 W k

0 =
(ρ∗β∗ + γ ∗)

∑∞
k=1(ρ∗)k−1(W∗)k . It follows that �(θ0) = �(θ∗), where θ∗ = (ρ∗, β∗, γ ∗, W∗).
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de Paula et al. IDENTIFYING NETWORK TIES FROM PANEL DATA 13

Corollary 4 requires that W0 be irreducible, i.e. that it is not permutable into a block upper-
triangular matrix. In the context of directed graphs, this is similar to requiring that the matrix
be strongly connected, that is, that any node can be reached from any other node. The corollary
then rules out cases when the network is not connected, for example, if there are two disjoint
groups (with no connection across groups), or a star network pointing from the centre towards
the edges. The corollary holds if there are at least two real eigenvalues, or if ρ0 is appropriately
bounded. Since W0 is non-negative, it has at least one real eigenvalue by the Perron–Frobenius
theorem. If W0 is symmetric, for example, its eigenvalues are all real, and Corollary 4 holds.
It also holds if (W0)i j ≤ 0, as we can rewrite the model as ρW0 = −ρ|W0|, where |W0| is the
matrix whose entries are the absolute values of the entries in W0. However, Corollary 4 rules out
cases that mix positive (W0)i j ≥ 0 and negative interactions (W0)i j ≤ 0. In any case, the bound
on |ρ0| is sufficient and holds in most (if not all) empirical estimates we are aware of obtained
from either elicited or postulated networks, and in our application on tax competition.

2.3. Extensions

We present three extensions of the method for individual fixed effects, common shocks, and
time-varying W. Supplementary Appendix B describes extensions for multivariate covariates
and heterogeneous β0.

2.3.1. Individual fixed effects. We observe outcomes for i = 1, . . . , N individuals repeat-
edly through t = 1, . . . , T instances. If t corresponds to time, it is natural to think of there being
unobserved heterogeneity across individuals, αi , to be accounted for when estimating �0. The
structural model (2) is then,

yit = ρ0

N∑
j=1

W0,i j y j t + β0xit + γ0

N∑
j=1

W0,i j x j t + αi + εi t ,

which can be written in matrix form as

yt = ρ0W0 yt + xtβ0 + W0xtγ0 + α∗ + εt ,

where α∗ is the vector of fixed effects. Individual-specific and time-constant fixed effects
can be eliminated using the standard subtraction of individual time averages. Defining ȳt =
T −1 ∑T

t=1 yt , x̄t = T −1 ∑T
t=1 xt , and ε̄t = T −1 ∑T

t=1 εt ,

yt − ȳt = ρ0W0 (yt − ȳt ) + (xt − x̄t ) β0 + W0 (xt − x̄t ) γ0 + εt − ε̄t ,

if W0 does not change with time. Identification from the reduced form follows from previous
theorems, since �0 is unchanged when regressing yt − ȳt on xt − x̄t .17

2.3.2. Common shocks. We next allow for unobserved common shocks to all individuals in
the network in the same instance t. Such correlated effects αt can confound the identification of
social interactions. As we have not placed any distributional assumption on the covariance matrix
of the disturbance term, our analysis readily incorporates correlated effects that are orthogonal

17. As is the case in panel data, this would require strict exogeneity (E[εs |xt ] = 0 for any s and t) or
predetermined errors (E[εs |xt ] = 0 for s ≥ t) so that the matrix �0 can be consistently estimated.
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14 REVIEW OF ECONOMIC STUDIES

to xt . When this is not the case, one possibility is to model the correlated effects αt explicitly.
The model then is,

yt = ρ0W0 yt + xtβ0 + γ0W0xt + αt ι + εt ,

where αt is a scalar capturing shocks in the network common to all individuals. Let �01 =
(I − ρ0W0)

−1 and �02 = (β0 I + γ0W0) such that �0 = �01�02. The reduced-form model is

yt = �0xt + αt�01ι + vt .

We propose a transformation to eliminate the correlated effects: exclude the individual-invariant
αt , subtracting the mean of the variables in a given period (global differencing). For this purpose,
define H = 1

n ιι′. We note that in empirical and theoretical work, it is customary to strengthen
Assumption (A4) and require that all rows of W0 sum to one if no individual is isolated (see for
example Blume et al., 2015). This strengthened assumption is usually referred to as row-sum
normalization, and is stated below:

(A4′) For all i = 1, . . . N , we have that
∑

j=1,...,N (W0)i j = 1.

This can be written compactly as W0ι = ι. In this case, W0 can be interpreted as the normalized
adjacency matrix. Under row-sum normalization we have that,

(I − H) yt = (I − H) (I − ρ0W0)
−1 (β0 I + γ0W0) xt + (I − H) (I − ρ0W0)

−1 εt

= (I − H)�0xt + (I − H) vt ,

because (I − H)(I − ρ0W0)
−1αt ι = 0 if Assumption (A4′) holds. It then follows that �̃0 =

(I − H)�0 is identified. The next proposition shows that, under row-sum normalization of W0,
�0 is identified from �̃0 (and, as a consequence, the previous results immediately apply).

Proposition 1. If W0 is non-negative, irreducible, and row-sum normalized, �0 is identified
from �̃0.

Under row-sum normalization of W0, a common group-level shock affects individuals
homogeneously since (I − ρ0W0)

−1αt ι = αt (I + ρ0W0 + ρ2
0 W 2

0 + · · · )ι = αt
1−ρ0

ι, which is a
vector with no variation across entries. Consequently, global differencing eliminates correlated
effects and (I − H)(I − ρ0W0)

−1αt ι = (I − ρ0W0)
−1αt (I − H)ι = 0. Absent row-sum nor-

malization, global differencing does not ensure correlated effects are eliminated. To see this,
note that (I − ρ0W0)

−1 is no longer row-sum normalized and αt (I − ρ0W0)
−1ι does not have

constant entries.
The next proposition makes this point formally: that the stronger Assumption (A4′) is

necessary to eliminate group-level shocks by showing it is not possible to construct a data
transformation that eliminates group effects in the absence of row-sum normalization.

Proposition 2. Define rW0 = (I − ρ0W0)
−1ι. If in space � = {θ ∈ R

m : Assumptions (A1)–(A6)
are satisfied}, there are N matrices W (1)

0 , . . . , W (N )
0 such that [rW (1)

0
· · · rW (N )

0
] has rank N, then

the only transformation such that (I − H̃)(I − ρ0W0)
−1ι = 0 is H̃ = I .
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de Paula et al. IDENTIFYING NETWORK TIES FROM PANEL DATA 15

It is useful to be able to test for row-sum normalization (A4′) as it enables common shocks
to be accounted for in the social interactions model. This is possible as

�0ι = β0ι + (ρ0β0 + γ0)

∞∑
k=1

ρk−1
0 W k

0 ι

=
[
β0 + (ρ0β0 + γ0)

∞∑
k=1

ρk−1
0

]
ι

= β0 + γ0

1 − ρ0
ι. (7)

The last equality follows from the observation that, under row-normalization of W0, W k
0 ι =

W0ι = ι, k > 0. This implies �0 has constant row-sums, which suggests row-sum normalization
is testable. In the Supplementary Appendix, we derive a Wald test statistic to do so.18

2.3.3. Time-varying W. We now relax Assumption (A6), which states that W0 does not
vary across the time periods t = 1, . . . , T . The version of equation (3) with time-varying
network is

yt = ρ0W0t yt + β0xt + γ0W0t xt + εt ,

with the reduced-form matrix �0t = (I − ρ0W0t )
−1(Iβ0 + W0tγ0). We note that the identifica-

tion results developed in Section 2.2 can, in principle, be applied element by element to each
�0t , leading to the identification of a time-varying W0t (and, potentially, of the parameters ρ0,
β0 and γ0).

In practice, implementing any estimation strategy with a time-varying �0t (or W0t ) is not
feasible using only observation from the single time period t. We instead adopt a kernel-weighted
version. Define period-specific weights ωt , and consider the transformed data ỹs = ωs(t)ys and
x̃s = ωs(t)xs , s = 1, . . . , T . Evidently, uniform weights ωs = 1, s = 1, . . . , T are equivalent to
the strategy not considering time-varying networks and assuming that the networks are fixed
within those windows. Alternatively, one could estimate Wt in time windows by setting ωt =
1[t ≤ t ≤ t̄], where t and t̄ are the start and end of the time window for which Wt is estimated.
In this case, the minimum effective window length t̄ − t can be computed as we discuss in
Section 3.1. In the context of DSGE models with time-varying parameters, Kapetanios et al.
(2019) suggest a Gaussian kernel with positive weights throughout the entire sample. As in
non-parametric regression with smooth kernel weights, it also assumes that the network evolves
slowly over time. We further discuss this strategy in the estimation section, and it is implemented
in the empirical application section below.

3. IMPLEMENTATION

We now transition from our core identification results to their practical implementation. In prac-
tice, ordinary least squares (OLS) can only be used to estimate θ if T � N , which is in practice
unlikely to be met, as this is a high-dimensional problem. Our preferred approach makes use of
penalized estimation techniques that can be used for any given T. More specifically, we make

18. For ease of explanation, in the Supplementary Appendix, we derive the test under the asymptotic distri-
bution of the OLS estimator. The test generally holds with minor adjustments for estimators with known asymptotic
distributions.
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16 REVIEW OF ECONOMIC STUDIES

use of the adaptive elastic net GMM (Caner and Zhang, 2014), which is based on the penalized
GMM objective function. Given the identification results presented in Section 2, the population
moments used in forming the GMM objective function will be satisfied at the true parameter
vector.

After setting out the estimation procedure, we showcase the method using Monte Carlo simu-
lations based on stylized and real-world network structures. In each case, we take a fixed network
structure W0, and simulate panel data as if the data generating process were given by the model
in (1). We apply the method to the simulated panel data to recover estimates of all elements in
W0, as well as the endogenous and exogenous social effect parameters.

3.1. Estimation

The parameter vector to be estimated is high-dimensional: θ = (W12, . . . , WN ,N−1, ρ, γ, β)′ ∈
R

m , where m = N (N − 1) + 3 and Wi j is the (i, j)th element of the N × N social interactions
matrix W0. To be clear, in a network with N individuals, there are N (N − 1) potential interac-
tions because an individual could interact with everyone else but herself (which would violate
Assumption A1). As a consequence, even with a modest N, there are many more parameters to
estimate, and m is large. For example, a network with N = 50 implies more than 2,000 parame-
ters to estimate. While we consider N (and thus m) fixed, we still refer to θ as high-dimensional.
OLS estimation requires m � N T (⇒ N � T ), so many more time periods than individuals: a
requirement often met in finance data sets (van Vliet, 2018) or in other fields (see, e.g. Section 4.2
in Rothenhäusler et al., 2015). Instead, to estimate a large number of parameters with limited
data, we utilize high-dimensional estimation methods, which are the focus of a rapidly growing
literature.

Sparsity is a key assumption underlying many high-dimensional estimation techniques. In the
context of social interactions, we say that W0 is sparse if m̃, the number of non-zero elements of
W0, is such that m̃ � N T . The notion of sparsity thus depends on the number of time periods.
Sparsity corresponds to assuming that individuals influence or are influenced by a small number
of others, relative to the overall size of the potential network and the time horizon in the data.
As such, sparsity is typically not a binding constraint in social networks analysis.19

In the estimation of sparse models, the “effective number of parameters” (or “effective
degrees of freedom”) relates to the number of variables with non-zero estimated coefficients
(Tibshirani and Taylor, 2012). In the context of the current social network model, this is equiv-
alent to m parameters, where m = d N (N − 1) + K and d is the network density defined as
m̃/(N (N − 1)). The adaptive elastic net GMM estimator presented by Caner and Zhang (2014)
converges at a rate of

√
N T/m̃ = √

N T/[d N (N − 1) + K ] = O(
√

T/(d N )) (see Remark 7 in
Caner and Zhang, 2014). Hence, the quality of the large sample results relies on a comparison
between T and dN. In line with this, we thus require N T � d N (N − 1) + K . For example, in
the high-school network of Coleman (1964) that is part of our simulation exercise, N = 70 and
d = 0.076. Assuming K = 3, N (N − 1) × d + 3 = 370.1.20

Finally, to reiterate, our identification results themselves do not depend on the sparsity of
networks. In particular, Assumptions (A1)–(A6) do not impose restrictions on the number of

19. Common stylized networks are sparse, such as the star, lattice (each individual is a source of spillover only
to one other individual), or interactions in pairs, triads or small groups (De Giorgi et al., 2010). Real-world economic
networks are also sparse. The sparsity in AddHealth friendship network is around 98%. Sparsity of the production
networks in the U.S. is above 99% (Atalay et al., 2011).

20. As pointed out by a referee, variation in x will also matter for estimation precision. This is reflected in the
asymptotic distribution for this estimator, shown later in this subsection.
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de Paula et al. IDENTIFYING NETWORK TIES FROM PANEL DATA 17

links in W0, or m̃.21 The identification results presented in Section 2 apply more broadly and
irrespective of the estimation procedure.

Our preferred approach estimates the interaction matrix in the reduced form while penaliz-
ing and imposing sparsity on the structural object W0. We impose sparsity and penalization in
the structural-form matrix W0 because this is a weaker requirement than imposing sparsity and
penalization in the reduced-form matrix �0.22 To do so, we use the adaptive elastic net GMM
(Caner and Zhang, 2014), which is based on the penalized GMM objective function,

G N T (θ, p) ≡ gN T (θ)′ MT gN T (θ) + p1

N∑
i, j=1
i �= j

∣∣Wi, j
∣∣ + p2

N∑
i, j=1
i �= j

∣∣Wi, j
∣∣2

, (8)

where θ = (W1,2, . . . , WN ,N−1 ρ, γ, β)′ with dimension m = N (N − 1) + 3, and p1 and p2 are
the penalization terms. The term gN T (θ)′MT gN T (θ) is the unpenalized GMM objective function
with moment conditions based on orthogonality between the structural disturbance term and
the covariates: gN T (θ) = ∑T

t=1[x1t et (θ)′ · · · xNt et (θ)′]′, et (θ) = yt − ρW yt − βxt − γ W xt .
There are q ≡ N 2 moment conditions since xit is orthogonal to e jt for each i, j = 1, . . . , N .
Hence, the GMM weight matrix MT is of dimension N 2 × N 2, symmetric, and positive defi-
nite. For simplicity, we use MT = IN 2×N 2 . Note that if xt is econometrically endogenous, one
can also exploit moment conditions with respect to available instrumental variables.23 Given the
identification results presented in Section 2, if θ �= θ0 and does not belong to the identified set,
then �(θ) �= �(θ0). Consequently, the populational version of the GMM objective function is
uniquely minimized at the true parameter vector θ0.

The penalization terms in equation (8) are what makes this different from a standard GMM
problem. The first term, p1

∑N
i, j=1,i �= j |Wi, j |, penalizes the sum of the absolute values of Wi j ,

i.e. the sum of the strength of links, for all node-pairs. Depending on the choice of p1, some
Wi, j ’s will be estimated as exact zeros. A larger share of parameters will be estimated as zeros
if p1 increases. The second term, p2

∑N
i, j=1,i �= j |Wi, j |2, penalizes the sum of the square of the

parameters. This term has been shown to provide better model-selection properties, especially
when explanatory variables are correlated (Zou and Zhang, 2009). The first-stage estimate is

θ̃ (p) = (1 + p2/T ) · arg min
θ∈Rm

G N T (θ, p), (9)

where (1 + p2/T ) is a bias-correction term also used by Caner and Zhang (2014).
Implementing the numerical optimization embedded in equation (9) is computationally chal-

lenging, as m = N (N − 1) + 3 may entail a large number of function arguments. We instead
implement the following modification to use fast Least-Angle Regression (LARS) algorithms

21. If N → ∞, Assumption (A2) would imply vanishing (W0)i j entries. As highlighted previously, we consider
N to be fixed, in line with many practical applications. Furthermore, Assumption (A2) is used to represent inverse
matrices as Neumann series in our identification results. What is necessary for this to hold is that a sub-multiplicative
norm on ρW be less than one. Here, we use a specific norm (i.e. the maximum row-sum norm), but other (induced)
norms are also possible (i.e. the 2-norm or the 1-norm) (see Horn and Johnson, 2013, Chapter 5.6).

22. Note that even if W is sparse, � may not be sparse. In Supplementary Appendix C.1, we show that [�0]i j = 0
if, and only if, there are no paths between i and j in W0, so the pair is not connected. So, sparsity in �0 is understood as
W0 being “sparsely connected”, which is a stronger assumption than sparsity in W0.

23. For expositional ease, we describe estimation in the context of the reduced-form model (4), thereby abstaining
from individual fixed or correlated effects. As the GMM estimator uses moments between the structural disturbance
terms and covariates, this endogeneity is built into the estimation procedure.
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18 REVIEW OF ECONOMIC STUDIES

(Efron et al., 2004). For any given ρ, β, and γ , the expression for et (θ) is linear in W:

et (θ) = yt − xtβ − W (ρyt + xtγ ) = ỹi t (β) − W x̃t (ρ, γ ),

where ỹi t (β) ≡ yt − xtβ and x̃t (ρ, γ ) ≡ ρyt + xtγ and, following the strategy above, is instru-
mented with xt . This motivates a two-step optimization routine:

min
θ∈�=�1×�2

G N T (θ, p) = min
(ρ,β,γ )∈�1

[
min

Wi j ∈�2
G N T (θ, p)

]
,

where the expression in brackets has a computationally efficient solution through the LARS
algorithm. The numerical optimization is then subsequently conducted over the parameter space
of (ρ, β, γ ) only. We also impose row-sum normalization. Details of the implementation are
expanded in Supplementary Appendix Section C.2.

A second (adaptive) step provides improvements by re-weighting the penalization by the
inverse of the first-step estimates (Zou, 2006):

θ̃∗(p) = (1 + p2/T )

· arg min
θ∈�

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
gN T (θ)′ MT gN T (θ) + p∗

1

∑
{i, j :W̃i j �=0,
i, j=1,...,N ,

i �= j}

|Wi, j |
|W̃i, j |c

+ p2

∑
{i, j :W̃i j �=0,
i, j=1,...,N ,

i �= j}

∣∣Wi, j
∣∣2

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
,

(10)

where W̃i, j is the (i, j)th element of the first-step estimate of W. We follow Caner and Zhang
(2014) and set c = 2.5. If W̃i, j < 0.05, we set W̃i, j = 0.05. This ensures that the second-stage
estimates can be non-zero even if the first-stage estimates were zero or small. The computational
improvement—described above for the first-stage estimator—is also applied in the adaptive
stage.

As a third and final step, we fix the support of θ̃∗(p), S = {ρ, β, γ } ∪ {Wi j : W̃ ∗
i j �= 0} and

estimate the final parameters without penalization. This takes as arguments only the elements of
θ̃∗(p) that were estimated as non-zero in the adaptive step. In essence, this step boils down to a
standard GMM approach,

θ̂S(p) = arg min
θ∈S

{
gN T (θ)′ MT gN T (θ)

}
. (11)

Importantly, Caner and Zhang (2014) show that the third-step estimator is asymptotically
normal, with a known and easy-to-compute distribution,

δ′
[(

Ĝ ′MT Ĝ
)−1 · (

Ĝ ′MT �MT Ĝ
) · (

Ĝ ′MT Ĝ
)−1

]1/2 · √
N T/m̃ · (θ̂S − θ0)

d−→ N (0, 1),

where Ĝ ≡ Ĝ(θ̂) = ∇gN T (θ) and � ≡ E[gN T (θ)gN T (θ)′].24 This allows us to conduct hypoth-
esis testing and inference on the ρ, β, γ and the non-zero elements of W.

24. This applies in the case of small p2. In the case of large p2, the asymptotic distribution is pre-multiplied by

Kn = I+p2[Ĝ(θ̂ )′�̂−1Ĝ(θ̂)]−1

1+p2/N T . See Theorem 4 of Caner and Zhang (2014).
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de Paula et al. IDENTIFYING NETWORK TIES FROM PANEL DATA 19

We write p = (p1, p∗
1, p2) as the final set of penalization parameters. Conditional on p, the

estimate of the procedure is θ̂ (p). As in Caner and Zhang (2014, p. 35), the penalization param-
eters p are chosen by the BIC criterion. This balances model fit with the number of parameters
included in the model.25

In Supplementary Appendix C.2, we provide further implementation details, including the
choice of initial conditions. Of course, other estimation methods are available, and our iden-
tification results do not hinge on any particular estimator. Our aim is to demonstrate the
practical feasibility of using the adaptive elastic net estimator rather than claim it is the optimal
estimator.26

3.2. Simulations

We showcase the method using Monte Carlo simulations. We describe the simulation proce-
dures, results, and robustness checks in more detail in Supplementary Appendix D.1. Here, we
just provide a brief overview to highlight how well the method works to recover social networks
even in relatively short panels.

For each simulated network, we take a fixed network structure W0 and simulate panel data
as if the data generating process were given by (1). We then apply the method to the sim-
ulated panel data to recover estimates of all elements in W0, as well as the endogenous and
exogenous social effect parameters (ρ0, γ0). Our result identifies entries in W0 and so naturally
recovers links of varying strength. It is long recognized that link strength might play an impor-
tant role in social interactions (Granovetter, 1973). Data limitations often force researchers to
postulate some ties to be weaker than others (say, based on interaction frequency). In contrast,
our approach identifies the continuous strength of ties, W0,i j , where W0,i j > 0 implies node j
influences node i.

The stylized networks we consider are a random network and a political party network in
which two groups of nodes each cluster around a central node. The real-world networks we
consider are the high-school friendship network in Coleman (1964) from a small high school in
Illinois, and one of the village networks elicited in Banerjee et al. (2013) from rural Karnataka,
India.

Summary statistics for each network are presented in Supplementary Table A1A. The four
networks differ in their size, complexity, and the relative importance of strong and weak ties.
For example, the Erdös–Renyi network only has strong ties, while the political party network
has twice as many strong as weak ties. For the real-world networks, the mean out-degree distri-
butions are higher, so the majority of ties are weak, with the high school network having around
80% of its edges being weak ties. All four networks are also sparse.

For the stylized networks, we assess the performance of the estimator for a fixed network
size, N = 30. We simulate the real-world networks using non-isolated nodes in each (so N = 70
and 65 respectively).27

25. Following Caner and Zhang (2014), the choice of p, which we denote as p̂, is the one that minimizes

BIC(p) = log
[

gN T

(
θ̂ (p)

)′
MT gN T

(
θ̂ (p)

)]
+ A

(
θ̂ (p)

)
· log T

T
,

where A(θ̂ (p)) counts the number of non-zero coefficients among {W1,2, . . . , WN ,N−1}, and larger than a numerical
tolerance, which we set at 10−5. See also Zou et al. (2007).

26. See the alternative approaches of Gautier and Tsybakov (2014), Manresa (2016), Lam and Souza (2016), and
Gautier and Rose (2016).

27. Like Bramoullé et al. (2009), we exclude isolated nodes because they do not conform to row-sum
normalization.
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20 REVIEW OF ECONOMIC STUDIES

We evaluate the procedure over varying panel lengths (starting from short panels with T =
5), using various metrics. Given our core contribution is to identify the social interactions matrix,
we first examine the proportion of true zero entries in W0 estimated as zeros and the proportion
of true non-zero entries estimated as non-zeros. A global perspective of the proximity between
the true and estimated networks can be inferred from their average absolute distance between
elements. This is the mean absolute deviation of Ŵ and �̂ relative to their true values, defined as
M AD(Ŵ ) = 1

N (N−1)

∑
i, j,i �= j |Ŵi j − Wi j,0| and M AD(�̂) = 1

N (N−1)

∑
i, j,i �= j |�̂i j − �i j,0|. As

these metrics are closer to zero, more of the elements in the true matrix are correctly estimated.
Finally, we evaluate the procedure’s performance using averaged estimates of the endogenous
and exogenous social effect parameters, ρ̂ and γ̂ . In keeping with the estimation strategy in our
empirical application, we report unpenalized GMM.

3.3. Results

Supplementary Figure A1 shows the simulation results as evaluated using the six metrics
described above. Supplementary Figure A1A shows that for each network, the proportion of
zero entries in W0 correctly estimated as zeros is above 95% even when T = 5. The proportion
approaches 100% as T grows. Conversely, Supplementary Figure A1B shows the proportion of
strong non-zero entries estimated as non-zeros (defined as larger than 0.3) is also high for a small
T. It is above 70% from T = 5 for the Erdös–Renyi network, being at least 85% across networks
for T = 25, and increasing as T grows. As discussed above, the adaptive elastic net estimator
may only recover strong edges well, and not necessarily the weaker ones, due to the well-known
issue with shrinkage estimators that they tend to shrink small parameters to zero. We return to
this issue below.

Supplementary Figure A1C and D shows that for each simulated network, the mean absolute
deviation between estimated and true networks for Ŵ and �̂ falls quickly with T and is close to
zero for large sample sizes. Finally, Supplementary Figure A1E and F shows that biases in the
endogenous and exogenous social effects parameters, ρ̂ and γ̂ , also fall in T (we do not report
the bias in β̂ since it is close to zero for all T). The fact that biases are not zero is as expected for
a small T, being analogous to well-known results for autoregressive time series models.28

Supplementary Figure A2 shows that, as T increases, the procedure detects weaker links.
The figure also shows that, with low sample sizes, weak edges are generally not detected. This
pattern is consistent with the well-known fact that small parameters are likely shrunk to zero due
to the penalization (Belloni and Chernozhukov, 2011). The absence of weak edges also implies
that the strength of strong edges may also be over-estimated, since rows are normalized to one.
In Panel A, we show the distribution of the estimates of Ŵi j , with T = 25 and for the high-
school network. We show the distribution for the five most common values of W0,i j . We find that
most edges weaker than 0.5 are not detected; edges with a strength of 0.75 are substantially more
likely to be estimated as non-zeros. When they are detected as non-zeros, they are more likely to
be over-estimated. When we estimate W with T = 150, Supplementary Figure A2B shows that
virtually all edges with strength greater than 0.5 are estimated as non-zeros, and most edges with
strength 0.375 are also detected. We further see are more continuous distribution of estimates of
edge strength. Only edges smaller than 0.25 are not detected. Supplementary Figure A2C and D
shows a similar conclusion for the village network.

28. The bias in spatial auto-regressive models with a small number of observations even when the network is
observed is similarly documented by Smith (2009), Neuman and Mizruchi (2010), Wang et al. (2014), and others.
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Supplementary Figure A3 shows the simulated and actual networks under T = 100 time
periods. The network size is set to N = 30 in the two stylized networks, N = 70 for the high
school network, and N = 65 for the village household network. In comparing the simulated and
true networks, Supplementary Figure A3 distinguishes between kept edges, added edges, and
removed edges. Kept edges are depicted in blue: these links are estimated as non-zero in at least
5% of the iterations, and are also non-zero in the true network. Added edges are depicted in
green: these links are estimated as non-zero in at least 5% of the iterations but the edge is zero
in the true network. Removed edges are depicted in red: these links are estimated as zero in at
least 5% of the iterations but are non-zero in the true network. Supplementary Figure A3 further
distinguishes between strong and weak links: strong links are shown as solid edges (W0,i j > 0.3),
and weak links are shown as dashed edges.

Supplementary Figure A3A compares the simulated and true Erdös–Renyi networks. All
links are recovered. For the political party network, Supplementary Figure A3B shows that all
strong edges are correctly estimated. However, around half the weak edges are recovered (blue
dashed edges), with the others being missed (red dashed edges). As discussed above, this is
not surprising given that shrinkage estimators force small non-zero parameters to zero. Hence,
a larger T is needed to achieve similar performance to the other simulated networks in terms
of detecting weak links. For the more complex and larger real-world networks, Supplementary
Figure A3C shows that in the high-school network, the strong edges are all recovered. However,
around half the weak edges are missing (red dashed edges), and there are a relatively small num-
ber of added edges (green edges): these amount to 87 edges, or approximately 1.9% of the 4,534
zero entries in the true high-school network. A similar pattern of results is seen in the village
network in Supplementary Figure A3D: the strong edges are all recovered, and here the majority
of weak edges are also recovered.

Supplementary Table A1B compares the network- and node-level statistics calculated from
the recovered social interactions matrix Ŵ to those in Supplementary Table A1A from the true
interactions matrix W0. The random Erdös–Renyi network is perfectly recovered. For the politi-
cal party network, the number of recovered edges is slightly lower than in the true network (41
versus 45), and all edges are classified as strong. The mean of the in- and out-degree distributions
are slightly lower in the recovered network, and all three nodes with the highest out-degree are
correctly captured (nodes 1, 11, and 28), include both party leaders (individuals 1 and 11). We
then move to discussing the performance in the two real-world networks. In the high-school net-
work, 30% of all edges are correctly recovered, and they are all strong edges. As already noted in
Supplementary Figure A2, weak edges are not well estimated in the high-school network. This
draws two main consequences. First, the average in- and out-degrees are smaller in the recovered
network relative to the true network. Second, we over-estimate the number of strong edges (61
versus 113). This is a downside of row-sum normalization: because some weak edges get esti-
mated as zeros, the non-zeros are over-estimated so that the row adds to one. We do, however,
recover all three individuals with the highest out-degree. Finally, in the village network, half the
edges are recovered. The same phenomena of underestimating weak and overestimating strong
edges are again observed. We again recover the three households with the highest out-degree
(nodes 16, 35, and 57).

In the Supplementary Appendix, we show the robustness of the simulation results to (1)
varying network sizes and (2) alternative parameter choices and richening the structure of shocks
across nodes. We also demonstrate the gains from using the adaptive elastic net GMM estimator
over alternative estimators, such as the Adaptive Lasso and OLS.
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A B

FIGURE 1
Network graph of U.S. states, geographic neighbours. (A) Geographic network and (B) geographic network (recovered

in simulations)
Notes: Panel A represents the continental U.S. states (N = 48). An edge is drawn between a pair of states if they share a geographic border.
State abbreviations are as used by U.S. Post Office (http://about.usps.com/who-we-are/postal-history/state-abbreviations.pdf). (B) The
outcome of a simulation exercise where the true network is the geographic network. 1,000 Monte Carlo iterations were performed. The
true parameters are ρ0 = 0.3, β0 = 0.4 and γ0 = 0.5. All specifications include time and node fixed effects. Kept edges are depicted in
blue: these links are estimated as non-zero in at least 5% of the iterations and are also non-zero in the true network. Added edges are
depicted in green: these links are estimated as non-zero in at least 5% of the iterations but the edge is zero in the true network. Removed
edges are depicted in red: these links are estimated as zero in at least 5% of the iterations but are non-zero in the true network. The figure
further distinguish between strong and weak links: strong links are shown in thick edges (with strength is greater than or equal to 0.3).

4. APPLICATION: TAX COMPETITION BETWEEN U.S. STATES

We apply our results to shed new light on a classic social interactions problem: tax competi-
tion between U.S. states (Wilson, 1999). Defining competing “neighbours” remains the central
empirical challenge in this literature. Theory provides some guidance on the issue through two
mechanisms driving interactions across jurisdictions: factor mobility and yardstick competition.

On factor mobility, Tiebout (1956) first argued that labour and capital can move in response to
differential tax rates across jurisdictions. Factor mobility leads naturally to the postulated social
interactions matrix being (1) geographic neighbours, given labour mobility and (2) jurisdictions
with similar economic or demographic characteristics, given capital mobility (Case et al., 1989).

Yardstick competition is driven by voters making comparisons between states to learn about
their own politician’s quality (Shleifer, 1985). Besley and Case (1995a) formalize the idea in a
model where voters use taxes set by governors in other states to infer their own governor’s qual-
ity. Yardstick competition leads naturally to the postulated interactions matrix being “political
neighbours”: states that voters make comparisons to.

In this application, the number of nodes and time periods is relatively low: the data cov-
ers mainland U.S. states, N = 48, for the years 1962–2015, T = 53. Our approach identifies
the structure of social interactions among “economic neighbours”, denoted Wecon. We contrast
this against a null that state taxes are influenced by geographic neighbours, Wgeo, as shown in
Figures 1A and 2A. With Wecon recovered, we can establish, beyond geography, what predicts
the strength of ties between states and provide fresh insights on drivers of tax competition.

Before using the real data, we confirm the estimator’s performance when the true network
is Wgeo in simulated settings. In line with the findings of the previous section, Figure 1B
shows that (1) the procedure recovers strong edges frequently (more specifically, 89% of the
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A B

FIGURE 2
Network graph of U.S. states, identified economic neighbours. (A) Economic network (kept and removed edges only)

and (B) economic network (all edges)
Notes: Figure 1B represents the continental U.S. (N = 48). The economic network is derived from our preferred specification, where we
penalize geographic neighbours to states, and allow for exogenous social effects. A blue edge is drawn between a pair of states if they are
geographic neighbours and were estimated as connected. A red edge is drawn between a pair of states if they are geographic neighbours
but were not estimated as connected. A green edge is drawn between a pair of states if they are not geographic neighbours and were
estimated connected. The left-hand side graph just shows red and blue edges. The right-hand side shows all three types of edges. State
abbreviations are as used by U.S. Post Office (http://about.usps.com/who-we-are/postal-history/state-abbreviations.pdf).

true strong edges are recovered) and (2) performance deteriorates when recovering weak edges
(72%). In all cases, the estimator does not add edges not in the true network. This suggests
recovered economic links that deviate from geographic links may indeed carry signal, while
weak links may not get detected. Finally, the estimator for ρ and γ may show some downward
bias with the sample sizes in the application, consistent with the simulations in Supplementary
Appendix Figure A1.

4.1. Data and empirical specification

We denote state tax liabilities for state i in year t as τi t , covering state taxes collected from real
per capita income, sales, and corporate taxes. We extend the sample used by Besley and Case
(1995a), that runs from 1962 to 1988 (T = 26).29 The outcome considered, �τi t , is the change
in tax liabilities between years t and (t − 2) because it might take a governor more than a year
to implement a tax program. Their model implies a standard social interactions specification for
the tax setting behaviour of state governors:

�τi t = ρ0

N∑
j=1

W0,i j�τ j t +
K∑

k=1

N∑
j=1

W0,i j x jktγ0,k +
K∑

k=1

β0,k xikt + αi + αt + εi t , (12)

29. Besley and Case (1995a) test their political agency model using a two-equation set-up: (1) on gubernatorial
re-election probabilities and (2) on tax setting. Our application focuses on the latter because this represents a social
interaction problem. They use two tax series: (1) TAXSIM data (from the NBER), which runs from 1977 to 1988 and
(2) state tax liabilities series constructed from data published annually in the Statistical Abstract of the U.S., that runs
from 1962 to 1988. All their results are robust to either series. We extend the second series.
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TABLE 1
Geographic neighbours

Dependent variable: change in per capita income and corporate taxes
Coefficient estimates, standard errors in parentheses

Besley and Case (1995b) Sample Extended sample

(2) 2SLS: IVs (4) 2SLS: IVs
are characteristics are characteristics

of geographic of geographic
(1) OLS neighbours (3) OLS neighbours

Geographic neighbours’ tax change (t − [t − 2]) 0.375*** 0.868*** 0.271*** 0.642***
(0.080) (0.359) (0.050) (0.200)

Period 1962–1988 1962–1988 1962–2015 1962–2015
First stage (F-stat) 14.2 24.2
Controls Yes Yes Yes Yes
State and year fixed effects Yes Yes Yes Yes
Observations 1,296 1,248 2,544 2,544

Notes: *** denotes significance at 1%, ** at 5%, and * at 10%. In all specifications, a pair of states are considered
neighbours if they share a geographic border. The sample covers 48 mainland U.S. states. In Columns 1 and 2, the
sample runs from 1962 to 1988 (as in Besley and Case, 1995b). In Columns 3 and 4, the sample is extended to run from
1962 to 2015. The dependent variable is the change in state i’s total taxes per capita in year t. OLS regressions estimates
are shown in Columns 1 and 3. Columns 2 and 4 show 2SLS regressions where each geographic neighbour’s tax change
is instrumented by lagged neighbour’s state income per capita and unemployment rate. All regressions control for state
i’s income per capita in 1982 U.S. dollars, state i’s unemployment rate, the proportion of young (aged 5–17) and elderly
(aged 65+) in state i’s population, and the state governor’s age. All specifications include state and time fixed effects.
With the exception of governor’s age, all variables are differenced between period t and period t − 2. Robust standard
errors are reported in parentheses.

where k = 1, . . . , K are the covariates for state i in period t. Tax setting behaviour is determined
by (1) endogenous social effects arising through neighbours’ tax changes (

∑N
j=1 W0,i j�τ j t );

(2) exogenous social effects arising through neighbours’ characteristics (
∑N

j=1 W0,i j x jkt ); and
(3) state i’s characteristics (xikt ), including income per capita, the unemployment rate, and the
proportions of young and elderly in the state’s population. All specifications include state and
time effects (αi , αt ). Due to the inclusion of the time effects αt , we normalize the rows of Wecon
to one. Supplementary Table A6 presents descriptive statistics for the Besley and Case (1995a)
sample and our extended sample.

Much of the earlier literature on tax competition has focused on endogenous social effects
and ignored exogenous social effects by setting γ = 0. Our identification result allows us to
relax this restriction and estimate the full typology of social effects described by Manski (1993).
This is important because only endogenous social effects lead to social multipliers from tax com-
petition, and they are crucial to identify as they can lead to a race-to-the-bottom or suboptimal
public goods provision (Brennan and Buchanan, 1980; Wilson, 1986; Oates and Schwab, 1988).

4.2. Preliminary findings

Table 1 presents our preliminary findings and comparison to Besley and Case (1995a). Through-
out this section, we refer to “OLS estimates” as the estimates of the main equation (12) when W0
is postulated as Wgeo or Wecon and ρ0, γ0,k , and β0,k are estimated by OLS.30 Column 1 shows

30. We postulate that W is Wecon obtained by running the procedure in Section 3, retrieving Ŵ , and re-running
model (12) with W = Ŵ . For such OLS estimates, we use robust standard errors and ignore the sampling uncertainty in
the estimated Wecon.
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those estimates where the postulated social interactions matrix is based on geographic neigh-
bours, exogenous social effects are ignored and the panel includes all 48 mainland states but
runs only from 1962 to 1988 as in Besley and Case (1995a). Social interactions influence guber-
natorial tax setting behaviour: ρ̂OLS = 0.375. Column 2 shows this to be robust to instrumenting
neighbours’ tax changes using the instrument set proposed by Besley and Case (1995a): namely,
instrumenting for �τ j t using geographic neighbours’ lagged changes in per capita income and
unemployment rates. These instruments are in the spirit of using exogenous social effects to
instrument for neighbours’ tax changes. ρ̂2SLS is more than double the magnitude of ρ̂OLS,
suggesting tax setting behaviours across jurisdictions are strategic complements.

Columns 3 and 4 replicate both specifications over the longer sample, confirming Besley and
Case’s (1995a) finding on social interactions to be robust. ρ̂2SL S is again more than double ρ̂OLS.
The result in Column 4 implies that for every dollar increase in the average tax rates among
geographic neighbours, a state increases its own taxes by 64 cents. This is similar to the headline
estimate of Besley and Case (1995a).31

4.3. Endogenous and exogenous social interactions

We now move beyond much of the earlier literature to first establish whether there are endoge-
nous and exogenous social interactions in tax setting. We first focus on the endogenous and
exogenous social interaction parameters, and in the next subsection, we detail the identified
social interactions matrix, Ŵecon. To do so, we need to modify slightly how we instrument for
neighbours’ tax changes: the instrument set proposed by Besley and Case (1995a) based on
geographic neighbours’ characteristics will generally be weaker when estimating the full specifi-
cation in (12) because the instruments are now directly controlled for in (12). We use an adaptive
elastic net GMM approach, which instruments neighbours’ tax changes with the characteristics
of all other states. With the inclusion of endogenous and exogenous social effects, this represents
our preferred approach.

Columns 1 and 2 of Table 2 show OLS and GMM estimates for ρ obtained from the
adaptive elastic net procedure, where we still set γ = 0 but use our preferred instrument set:
ρ̂GMM = 0.709 > ρ̂OLS = 0.649. Columns 3 and 4 estimate the full model in (12). Relative to
when exogenous social effects are assumed away (γ = 0), the OLS and GMM estimates of ρ
are smaller, but we continue to find robust evidence of endogenous social interactions in tax
setting. The specification in Column 4 represents our preferred one: ρ̂GMM = 0.452 (with a stan-
dard error of 0.132). This value meets the requirements on ρ in Corollaries 3 and 4 for global
identification.32

4.4. Identified social interactions matrix

Figure 2 shows how the structures of economic (Ŵecon) and geographic networks (Wgeo) differ,
where connected edges imply that two states are linked in at least one direction (state i causally

31. Nor is the magnitude very different from earlier work examining fiscal expenditure spillovers. For example,
Case et al. (1989) find that U.S. state governments’ levels of per-capita expenditure are significantly impacted by the
expenditures of their neighbours, with a one-dollar increase in neighbours’ expenditures leading to a 70-cent increase in
own-state expenditures.

32. Supplementary Table A7 shows the full set of exogenous social effects (so Columns 1 and 2 refer to the
same specifications as Columns 3 and 4 in Table 2). Exogenous social effects operate through economic neighbours’
unemployment rate, demographic characteristics, and their governor’s age.
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TABLE 2
Economic neighbours

Dependent variable: change in per capita income and corporate taxes
Coefficient estimates, standard errors in parentheses

No exogenous social effects Exogenous social effects

(1) OLS (2) GMM (3) OLS (4) GMM

Economic neighbours’ tax change (t − [t − 2]) 0.649*** 0.709*** 0.402*** 0.452***
(0.047) (0.035) (0.044) (0.132)

Period 1962–2015 1962–2015
Controls Yes Yes Yes Yes
State and year fixed effects Yes Yes Yes Yes
Observations 2,544 2,544 2,544 2,544

Notes: *** denotes significance at 1%, ** at 5%, and * at 10%. The sample covers 48 mainland U.S. states running from
1962 to 2015. The dependent variable is the change in state i’s total taxes per capita in year t. We allow for exogenous
social effects in Columns 3 and 4. OLS regressions estimates are shown in Columns 1 and 3. Columns 2 and 4 show
the GMM estimates where each economic neighbours’ tax change is instrumented by the characteristics of all states.
All regressions control for state i’s income per capita in 1982 U.S. dollars, state i’s unemployment rate, the proportion
of young (aged 5–17) and elderly (aged 65+) in state i’s population, and the state governor’s age. All specifications
include state and time fixed effects. With the exception of governor’s age, all variables are differenced between period t
and period t − 2. Columns 1 and 3 report robust standard errors in parentheses. Columns 2 and 4 report standard errors
adopting the procedure described in Caner and Zhang (2014).

impacts state taxes in j, and/or vice versa). This comparison makes clear whether all states geo-
graphically adjacent to i matter for its tax setting behaviour and whether there are non-adjacent
states that influence its tax rate.

The left-hand panel of Figure 2 shows the network of geographic neighbours (whose edges
are coloured blue), onto which we superimpose edges not identified as links in Wecon; dropped
edges are in red. The vast majority of geographically adjacent states are irrelevant for tax set-
ting behaviour. The right-hand panel of Figure 2 adds new edges identified in Ŵecon that are
not part of Wgeo; these added edges are in green and represent non-geographically adjacent
states through which social interactions occur. For tax-setting behaviour, economic distance is
imperfectly measured if we simply assume interactions depend only on physical distance.

Table 3 summarizes the comparison between Wgeo and Ŵecon. Wgeo has 214 edges, while
Ŵecon has only 49. Ŵecon and Wgeo have 9 edges in common. Hence, the vast majority of geo-
graphical neighbours (205/214 = 96%) are not relevant for tax setting. Ŵecon has 40 edges that
are absent in Wgeo, and the identified social interactions are more spatially dispersed than under
the assumption of geographic networks. This is reflected in the far lower clustering coefficient
in Ŵecon than in Wgeo (0.042 versus 0.419).33

4.5. Links and reciprocity

Our estimation strategy identifies the continuous strength of links, W0,i j , where W0,i j > 0 is
interpreted as state j influencing outcomes in state i. This is useful because recent developments
in tax competition theory, using insights from the social networks literature, suggest links need
not be reciprocal (Janeba and Osterleh, 2013).

33. The clustering coefficient is the frequency of the number of fully connected triplets over the total number of
triplets.

D
ow

nloaded from
 https://academ

ic.oup.com
/restud/advance-article/doi/10.1093/restud/rdae088/7748054 by D

O
 N

O
T U

SE Institute of Education m
erged w

ith 9000272 user on 10 January 2025



de Paula et al. IDENTIFYING NETWORK TIES FROM PANEL DATA 27

TABLE 3
Geographic versus economic networks

Geographic network Economic network

Number of edges 214 49
Edges in both networks 9 9
Edges in W-geo only 205
Edges in W-econ only 40
Clustering 0.419 0.042
Reciprocated edges 100% 12.2%
Degree distribution across nodes (states)

Out-degree 4.458 (1.597) 1.021 (0.144)
In-degree 1.021 (1.246)

Notes: This compares statistics derived from the geographic network of U.S. states to those from the estimated economic
network among U.S. states. The number of edges, edges in both networks, edges in W-geo only, edges in W-econ only,
counts the number of edges in those categories. Reciprocated edges is the frequency of in-edges that are reciprocated
by out-edges (by construction, this is 100% for geographic networks). The clustering coefficient is the frequency of
the number of fully connected triplets over the total number of triplets. The degree distribution across nodes counts the
average number of connections (standard deviation in parentheses): we show this separately for in-degree and out-degree
(by construction, these are identical for geographic networks).

Table 3 reveals that only 12.2% of edges in Ŵecon are reciprocal (all edges in Wgeo are recip-
rocal by definition). Hence, tax competition is both spatially disperse and asymmetric. In most
cases where tax setting in state i is influenced by taxes in state j, the opposite is not true.

Given common time shocks αt in (12), row-sum normalization is required and ensures∑
j W0,i j = 1. Hence, for every state i, there will be at least one economic neighbour state j∗

that impacts it, so W0,i j∗ > 0. This just reiterates that social interactions matter. On the other
hand, our procedure imposes no restriction on the derived columns of Ŵecon. It could be that a
state does not affect any other state. To see this in more detail, the final rows of Table 3 report
the degree distribution across states, splitting for in-networks and out-networks. In Wgeo, the in-
degree is by construction equal to the out-degree, as all ties are reciprocal. The greater sparsity
of the network of economic neighbours is reflected in the degree distribution being lower for
Ŵecon than Wgeo. In Ŵecon, the dispersion of in- and out-degree networks is very different (as
measured by the standard deviation), being nearly nine times higher for the in-degree. Hence,
one reason for so few reciprocal ties being in the economic network is that out-degree network
ties are rarely also in-degree ties.

This asymmetry in Ŵecon further suggests that some highly influential states drive tax setting
behaviour in other states. To see which states these are, Figure 3 shows a histogram for the
number of out-degree links from states. Twenty states have an out-degree of zero, so their tax
rates have no direct impact on any other state’s tax setting behaviour. The most influential states
in terms of the highest out-degree are Alabama (directly impacts tax setting behaviour in five
other states) and South Carolina, Pennsylvania, and Montana (which each directly impact tax
setting behaviour in four other states). Taking South Carolina as an example, the four states
that it directly impacts include its geographic neighbour, Georgia, as well as non-geographic
neighbours Missouri, Montana, and Virginia.

4.6. Factor mobility or yardstick competition?

We use Ŵecon to shed light on the roles of factor mobility and yardstick competition in driving
tax competition. To do so, we estimate the factors correlated with the existence of links between
states i and j in Ŵecon relative to Ŵgeo. For state pairs with non-zero links in either Ŵecon or Ŵgeo,
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28 REVIEW OF ECONOMIC STUDIES

FIGURE 3
Out-degree distribution

Notes: The out-degree distribution calculated from geographic neighbour’s network (W-geo) is shown in blue. The distribution cal-
culated from economic neighbour’s network in (W-econ) is shown in red. State abbreviations are as used by U.S. Post Office
(http://about.usps.com/who-we-are/postal-history/state-abbreviations.pdf).

we define a dummy outcome Ŵecon,i j = 1 if a link between states i and j is estimated under
Ŵecon and Ŵecon,i j = 0 if a link between states i and j exists under Ŵgeo but not under Ŵecon. We
examine correlates of links using the following dyadic regression:

Ŵecon,i j = λ0 + λ1 Xi j + λ2 Xi + λ3 X j + ui j , (13)

estimated using a linear probability model. The elements Xi j , Xi , and X j correspond to charac-
teristics of the pair of states (i, j), state i, and state j, respectively. Covariates are time-averaged
over the sample period, and robust standard errors are reported.

Table 4 presents the dyadic regression results. Column 1 controls only for the distance
between states i and j: this is highly predictive of an economic link between them. This reflects
that the economic network of state i often comprises states are in the same region, but not nec-
essarily contiguous to state i. Column 2 adds two Xi j covariates to capture the economic and
demographic homophily between states i and j. GDP homophily is the absolute difference in the
states’ GDP per capita. Demographic homophily is the absolute difference in the share of young
people (aged 5–17) plus the absolute difference of the share of elderly people (aged 65+) across
the states. GDP homophily does not predict economic ties, whereas demographic homophily
does.

Columns 3–5 then sequentially add in several sets of controls. For labour mobility, we use
net state-to-state migration data to control for the net migration flow of individuals from state i
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TABLE 4
Predicting links to economic neighbours

Linear probability model
Dependent variable = 1 if economic link between states identified, = 0 if geographically linked
Robust standard errors in parentheses

Economic and
demographic Labour Yardstick Tax Fixed

Distance homophily mobility competition havens effects
(1) (2) (3) (4) (5) (6)

Distance 0.890*** 0.921*** 0.921*** 0.940*** 0.940*** 1.287***
(0.081) (0.082) (0.082) (0.091) (0.091) (0.120)

Distance sq. −0.135*** −0.139*** −0.139*** −0.144*** −0.145*** −0.255***
(0.025) (0.024) (0.025) (0.027) (0.027) (0.039)

GDP homophily −0.063 −0.063 −0.083 −0.092 −0.219
(0.078) (0.079) (0.082) (0.085) (0.348)

Demographic homophily −1.745*** −1.745*** −1.047* −0.960 0.579
(0.552) (0.554) (0.605) (0.604) (1.240)

Net migration −0.033 −0.020 −0.185 −0.039
(0.603) (0.577) (0.612) (1.48)

Political homophily −0.337*** −0.321*** −0.287*
(0.120) (0.119) (0.155)

Tax haven −0.093**
(0.036)

Origin and destination FE No No No No No Yes
Adjusted R2 0.664 0.664 0.664 0.651 0.657 0.831
Observations 254 254 254 212 212 212

Notes: *** denotes significance at 1%, ** at 5%, and * at 10%. The specifications in all Columns are cross-sectional
linear probability models where the dependent variable is equal to 1 if an economic clink between states is identi-
fied, and zero if a geographic link exists between the states. A pair of states is considered a first-degree geographic
neighbour if they share a border. Distance and distance squared are calculated from the centroids of states’ cap-
ital cities. GDP homophily is the absolute difference of states’ GDP per capita. Demographic homophily is the
absolute difference of share of young (aged 5–17) plus the absolute difference of the share of elderly in states’ pop-
ulation (aged 65+). Net migration (in millions) based on individuals tax returns (Source: Internal Revenue Service,
https://www.irs.gov/statistics/soi-tax-stats-migration-data). Political homophily is equal to one if a pair of states have
governors of same party at given year. Nevada, Delaware, Montana, South Dakota, Wyoming, and New York are con-
sidered tax haven states. Time averages are taken for all explanatory variables. Robust standard errors are shown in
parentheses.

to state i (defined as the flow from i to j minus the flow from j to i).34 We then add a political
homophily variable between states. For any given year, this is set to one if a pair of states have
governors of the same political party. As this is time-averaged over our sample, this element
captures the share of the sample in which the states have governors of the same party. Lastly, we
include whether state j is considered a tax haven (and so might have disproportionate influence
on other states). Based on Findley et al. (2012), the following states are coded as tax havens:
Nevada, Delaware, Montana, South Dakota, Wyoming, and New York.

Column 5 shows that with this full set of controls, distance remains a robust predictor
of the existence of economic links between states. However, the identified economic network

34. We also experimented with alternative measures of labour migration, and the results were qualitatively the
same. State-to-state migration data are based on year-to-year address changes reported on individual income tax returns
filed with the IRS. The data cover filing years 1991 through 2015 and include the number of returns filed, which approxi-
mates the number of households that migrated, and the number of personal exemptions claimed, which approximates the
number of individuals who migrated. The data are available at https://www.irs.gov/statistics/soi-tax-stats-migration-data
(accessed September 2017).
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A B

FIGURE 4
Dynamic endogenous social effects (rho). (A) OLS and (B) GMM

Notes: (A) shows the OLS estimates of the endogenous social effects estimate (rho) with a Gaussian kernel with centre varying period-by-
period from 1962 to 2015. The variance of the kernel is set such that 75% of the weight is given to the first half of the data (i.e. pre-1988)
with the kernel centred at 1962. Panel B shows the GMM estimates. Shaded areas are the 95% confidence intervals of the period-by-
period estimates. Robust standard errors are shown in Panel A and standard errors based on the Caner and Zhang (2014) procedure are
shown in Panel B.

highlights additional significant predictors of tax competition between states: political
homophily reduces the likelihood of a link, suggesting any yardstick competition driving social
interactions occurs when voters compare their governor to those of the opposing party in other
states. Tax haven states appear to be especially less influential in the tax setting behaviours of
other states. This mirrors what was observed in Figure 3, where some of the prominent tax
havens—Nevada, Delaware, and New York—were all identified to have zero out-degree links.
The relatively weak influence of tax haven states eases concerns over a race-to-the-bottom in tax
setting behaviours.

Column 6 controls for state i and state j fixed effects. This reinforces the idea that distance
and political homophily correlate to the strength of influence states tax setting has on others (the
tax haven dummy cannot be separately identified in this specification). Labour mobility between
states does not robustly predict the existence of economic ties.

4.7. Dynamics

As in our identification result, our empirical approach has taken the network structure as fixed
over the entire sample period. In the context of tax competition over our study period, this might
be a strong assumption. We examine the issue in more detail by allowing the estimated Wecon
matrix to vary over time by changing the weight placed on observations from any given time
period. More precisely, for any given time period t, we weight observations using a Gaussian
kernel with its centre varying period-by-period from 1962 to 2015. The variance of the kernel is
set such that 75% of the weight is given to the first half of the data (i.e. pre-1988) when the kernel
is centred in 1962. Supplementary Figure A4 shows the kernel employed as we vary its centre:
the solid kernel is centred in 1962, the start of our sample—when we place the most weight on
observations from 1962. The static case considered previously is akin to using a uniform kernel
over all periods. This kernel weighting approach is outlined in Section 2.3.3. We fully describe
the algorithm in Supplementary Appendix Section C.2.

We begin by considering time-varying estimates of the endogenous and exogenous social
interaction parameters from the full model in (12). The results for the endogenous social interac-
tions parameter are shown in Figure 4, where the shaded areas are the 95% confidence intervals
of the period-by-period estimates. Figure 4A shows that OLS estimates of ρ̂ drift up over time,
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so the strength of endogenous interactions increases from around 0.35 in the late 1960s to 0.50
by the 2010s. In all periods, we can reject the null that the endogenous social effect is zero.
Recall the earlier static estimate was ρ̂OLS = 0.375.

Panel B shows the estimated endogenous social effect when we use GMM based on the
characteristics of all other states as IVs. This also drifts up from around 0.35 in the late 1960s
to .50 by the 2010s. In the majority of periods, we can reject the null of no endogenous social
effect.35

Figure 5 shows the evolution of Ŵecon over time as we centre the kernel on different peri-
ods, following the same colour-coding as in Figures 1 and 2. In all periods, geography-based
edges play little role, and over time, the economic network becomes denser. This highlights not
only that economic networks for tax competition always differ starkly from geography-based
networks, but that the nature of economic networks relevant to tax competition has changed
steadily over time.

Figure 6 shows how the features of Ŵecon evolve as we place greater weight from early to later
periods. For each statistic, we plot the period-by-period estimate when we centre the kernel in
any given period. The resulting smoothed estimates are then shown. To ease exposition, networks
edges with W0,i j < 1/47 are removed. This cutoff is chosen as, in theory, states can only link
at maximum with 47 other states. Figure 6A shows the share of edges that are kept from the
previous estimate (centred in the previous period). We see relatively high stability in Ŵecon with
the smoothed estimate suggesting more than 60% of edges always being kept from one estimate
to the next, with this stability increasing from the late 1980s.

Figure 6B shows how the overlap between Ŵecon and Wgeo varies over time, as measured by
the share of edges that are only present in Ŵecon. There is little overlap between the two networks
over the entire sample. The smoothed estimate suggests that at least 80% of identified edges in
Ŵecon are never in Wgeo. The divergence between economic and geographic neighbours becomes
starker from the mid-1980s onwards.

Figure 6C and D shows how the clustering and reciprocity of links in Ŵecon vary as we shift
the weight to later observations. Clustering of Ŵecon increases from the 1960s through to the
early 2000s. Thereafter, social interactions in tax competition become sparser. We also observe
a reversal in the extent to which social interactions are reciprocal, with reciprocity rising to a
peak in the early 1980s—when 20% of ties were reciprocal—and slowly falling thereafter.

Taken together, the results suggest the nature of tax competition between U.S. states has
changed over time through two mechanisms: (1) the strength of endogenous social interactions
(ρ̂) has increased over time and (2) the network of states interacted with (Ŵecon) varies over
time. This has important implications for policy evaluation: the same intervention might have
different spillover effects if implemented at different moments in time due to the evolution of ρ̂
and Ŵecon. We consider this next using counterfactual simulations.

4.8. Counterfactuals

We use a counterfactual exercise to contrast how shocks to tax setting in a given state propagate
under Ŵecon, relative to what would have been predicted under Wgeo. We do so for both static and
dynamic estimates of Ŵecon. We focus on South Carolina (SC), a state with one of the highest
out-degree, as shown in Figure 3. We consider a scenario in which SC exogenously increases its
taxes per capita by 10%. We measure the differential change in equilibrium state taxes in state j

35. Standard errors are estimated without imposing the restriction that parameters vary slowly over time, and
fluctuations across periods reflect variations in the network across periods.
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32 REVIEW OF ECONOMIC STUDIES

FIGURE 5
Dynamic network graph of U.S. states, identified economic neighbours.

Notes: Each figure represents the continental U.S. (N = 48). The economic network is derived from our preferred specification, where we
allow for exogenous social effects. A blue edge is drawn between a pair of states if they are geographic neighbours and were estimated
as connected. A green edge is drawn between a pair of states if they are not geographic neighbours and were estimated connected. State
abbreviations are as used by U.S. Post Office (http://about.usps.com/who-we-are/postal-history/state-abbreviations.pdf).
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A B

C D

FIGURE 6
Dynamic network graph of U.S. states, identified economic neighbours. (A) Share of edges kept from previous

network. (B) Share of edges in W-econ only. (C) Clustering and (D) reciprocity.
Notes: The panels show various statistics of the estimated economic networks using a Gaussian kernel with its centre varying period-by-
period from 1962 to 2015. the variance of the kernel is set such that 75% of the weight is given to the first half of the data (i.e. pre-1988)
with the kernel centred at 1962. Panel A shows the share of edges kept from the network in the previous period. Panel B shows the share of
edges in W-econ only (compared to W-geo). Panel C shows the clustering coefficient of the estimated economic networks. Panel D shows
the share of reciprocated edges in the economic network. In all networks, edges smaller than 1/47 are removed. This cutoff is chosen as,
in theory, states can only link at maximum with 47 other states. The blue line shows the smoothed estimates across time periods.

under the two network structures using the following statistic:

ϒ j = log(�τ j t |Ŵecon) − log(�τ j t |Wgeo), (14)

so that positive (negative) values imply equilibrium taxes being higher (lower) under Ŵecon.36

Starting with the static case, Figure 7A shows for each mainland U.S. state the spillover
effects through the economic network of tax competition. This highlights positive spillovers on
tax rates in many states that are not geographic neighbours of SC. Figure 7B graphs ϒ j to make
precise how spillovers derived from Ŵecon diverge from those predicted under Wgeo. In 26 states,
ϒ j is smaller than .01% because both networks predict negligible spillovers to those states. In
the remaining 22 mainland states, there is a wide discrepancy between the equilibrium state tax

36. For Wgeo, we calculate the counterfactual at ρ̂GMM = 0.452, the endogenous effect parameter estimated in
our preferred specification, Column 4 of Table 2.
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A B

Positive values: higher equilibrium taxes under economic than geographic neighbors
Negative values: lower equilibrium taxes under economic than geographic neighbors

FIGURE 7
General equilibrium impacts of South Carolina tax rises. (A) Economic Network State’s Reaction to 10% increase in
SC taxes and (B) Economic Network, relative to Geographic Network State’s Reaction to 10% increase in SC taxes,

relative to Geographic Network
Notes: This shows the equilibrium impulse responses in taxes set in each state as a result of South Carolina increasing its tax change by
10%. We compare these derived tax changes under the identified economic network structure, relative to that assumed under a geographic
neighbours structure. We graph the log change in equilibrium taxes under economic neighbours, minus the log change in equilibrium
taxes under geographic neighbours. Positive values (red shaded) states indicate higher equilibrium taxes under economic neighbours
than geographic neighbours, and negative values (blue shaded) states indicate lower equilibrium taxes under economic neighbours than
geographic neighbours.

TABLE 5
General equilibrium impacts of South Carolina tax rises

Geographic neighbour network Economic neighbour network Ratio

Average tax increase 0.03 0.08 3.10
Variance tax increase 0.15 0.19 1.30
Tax dispersion 0.01 0.32 34.41
States with tax increase > 0.05% 12 26 2.17
States with tax increase > 0.5% 7 23 3.29
States with tax increase > 1% 4 20 5.00
States with tax increase > 2.5% 3 15 5.00
States with tax increase > 5% 3 15 5.00

Notes: This shows the equilibrium impulse responses in taxes set in each state as a result of South Carolina increasing
its tax change by 10%. The ρ coefficient is derived from our preferred specification to estimate the economic network
where we allow for exogenous social effects (based on a sample of 48 mainland U.S. states running from 1962 to 2015).
We compare these derived tax changes under the identified economic network structure, relative to that assumed under
a geographic neighbours structure. The final column shows the ratio of the same statistic derived under each network.

rates predicted under Ŵecon relative to Wgeo: ϒ j varies from −1 to 4.03. The long-run effect in SC
itself is also higher under Ŵecon than under Wgeo. The former states that given feedback effects,
the long-run increase in tax rates in SC from a 10% increase is 11.4%, while the geographically
based network implies a smaller equilibrium increase of 10.3%.

As Ŵecon is spatially more dispersed than Wgeo, the general equilibrium effects are different
under the two network structures. Table 5 summarizes the general equilibrium implications for
tax inequality under Ŵecon and the Wgeo counterfactual. The average tax rate increase under
Ŵecon is three times that estimated under Wgeo. Moreover, the dispersion of tax rates across
states increases under Ŵecon relative to Wgeo. Finally, assuming interactions are based solely on
geographic neighbours, we miss the fact that many states have relatively small tax increases.
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A B

FIGURE 8
Dynamic general equilibrium impacts of SC tax rise shocks. (A) Average tax increase and (B) variance tax increase

Notes: The panels show equilibrium impulse responses in taxes set in each state as a result of South Carolina increasing its tax change
by 10%. These are based on estimated economic networks using a Gaussian kernel with its centre varying period-by-period from 1962
to 2015. The variance of the kernel is set such that 75% of the weight is given to the first half of the data (i.e. pre-1988) with the kernel
centred at 1962. Panel A shows the average tax increase for the kernel centred in each period (in grey dots) and the smoothed line (in
blue). The horizontal dashed line corresponds to the average tax increase if the network was considered to be static. Panel B shows a
similar construction for the variance of tax increase across states.

We can repeat the exercise using the dynamically estimated economic network. Throughout,
we calculate the general equilibrium effects of the same policy experiment: SC increasing its
taxes per capita by 10%. These general equilibrium effects vary over the sample period because
the strength of social interactions in tax competition vary (ρ̂G M M ), as shown in Figure 4, and
identified economic neighbours vary over time (Ŵecon), as shown in Figure 5. The results are
summarized in Figure 8. Placing weight on the early or later part of the sample generates similar
changes in average tax rates and their variance in general equilibrium—with both being lower
than simulated under the static model. Placing more weight on the middle of the sample period
generates higher changes in average tax rates and their variance in general equilibrium.

The differential general equilibrium impacts found as we place different weights across sam-
ple observations links to recent discussions on the external validity of internally valid causal
impacts based on micro-evidence. While the earlier literature has emphasized the potential
interaction of treatment effects with aggregate shocks (Rosenzweig and Udry, 2020) or how
behavioural responses to social insurance policies vary over the business cycle (Kroft and
Notowidigdo, 2016), our analysis provides another explanation for the changing impacts of poli-
cies where social interactions determine behaviour: changes in the strength of social interactions
and the network of economic interactions.

5. DISCUSSION

In a canonical social interactions model, we provide sufficient conditions under which the social
interactions matrix, and endogenous and exogenous social effects are all globally identified,
even absent information on social links. Our identification strategy is novel and may bear fruit in
other areas. The method is immediately applicable to other classic social interactions problems,
but where data on social links are either missing or partial. In fields such as macroeconomics,
political economy, and trade, there are core areas of research where social interactions across
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jurisdictions/countries etc. drive key outcomes, panel data exist over many periods, and the num-
ber of nodes is relatively fixed. Moreover, while our discussion and application have focused
on a continuous policy response (state taxes), our methods can also be applied to the exten-
sive margin of policy adoption and diffusion. Such diffusion models might generate network
interactions where some states influence the later adoption of economic and social policies in
other jurisdictions. This issue is studied by DellaVigna and Kim (2022) in the context of U.S.
state policies—they examine the diffusion of over 700 policies in the past 70 years. Their work
also suggests the nature of interactions across states has changed: while geographic proximity
is a good predictor of policy diffusion, they also find that since 2000, political alignment across
states has become the strongest predictor of diffusion.

In finance, high-frequency panel data is readily available and relevant for the study of core
research questions. For example, a long-standing question has been whether CEOs are subject
to relative performance evaluation, and if so, what is the comparison set of firms/CEOs used
(Edmans and Gabaix, 2016). More generally, our method can be readily applied to a large class
of economic questions around contagion, risk, and the fragility of economic and environmen-
tal systems. For example, since the financial crisis of 2008, it has become clear that linkages
between actors such as firms or banks are complex and often hidden, yet because endogenous
network interactions cause feedback loops and have multiplier effects, they can have enormous
implications for the evolution of a financial crisis or the propagation of supply shocks in aggre-
gate. Identifying such synchronicity is a critical first step to putting in place policies to reduce the
fragility of economic systems (van Vliet, 2018; Elliott and Golub, 2022; Goldstein et al., 2022).

Advances in the availability of administrative data, data from social media, mobile technolo-
gies, and online economic transactions all offer new possibilities to identify social interactions
with long panels or high-frequency data collection, where data on social ties will typically be
missing.

Three further directions for future research are of note. First, under partial observability of
W0 (as in Blume et al., 2015), the number of parameters in W0 to be retrieved falls quickly.
Our approach can then still be applied to complete knowledge of W0, such as if Aggregate
Relational Data is available, and this could be achieved with potentially weaker assumptions for
identification, and in even shorter panels. To illustrate possibilities, Supplementary Figure A5
shows results from a final simulation exercise in which we assume the researcher starts with
partial knowledge of W0. We do so for Banerjee et al. (2013) village family network, showing
simulation results for scenarios in which the researcher knows the social ties of the three (five,
ten) households with the highest out-degree. For comparison, we also show the earlier simulation
results when W0 is entirely unknown. This clearly illustrates that with partial knowledge of the
social network, performance on all metrics improves rapidly for any given T.

Second, we have developed our approach in the context of the canonical linear social inter-
actions model (1). This builds on Manski (1993) when W0 is known to the researcher, and the
reflection problem is the main challenge in identifying endogenous and exogenous social effects.
However, the reflection problem is functional-form dependent and may not apply to many non-
linear models (Blume et al., 2011, 2015). An important topic for future research is to extend
the analysis to non-linear social interaction settings. Relatedly, the canonical social interaction
model assumes that the same W0 governs the endogenous and exogenous channels. Despite the
relaxation we propose in Section 2.3.3, we see this as a limitation of the current method, and
future research is needed to allow for a fully flexible approach.

Finally, an important part of the social networks literature examines endogenous network
formation (de Paula, 2017; Jackson et al., 2017). Our analysis allows us to begin probing the
issue in two ways. First, the kind of dyadic regression analysis in Section 4 on the correlates
of entries in W0,i j suggests factors driving link formation and dissolution. Second, this leads
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naturally to a broad agenda going forward, to address the challenge of simultaneously identifying
and estimating time varying models of network formation and social interaction, all in cases
where data on social networks is not required.
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