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A growing body of research suggests that movement aids facial expression 
recognition. However, less is known about the conditions under which the 
dynamic advantage occurs. The aim of this research was to test emotion 
recognition in static and dynamic facial expressions, thereby exploring the role of 
three featural parameters (prototypicality, ambiguity, and complexity) in human 
and machine analysis. In two studies, facial expression videos and corresponding 
images depicting the peak of the target and non-target emotion were presented 
to human observers and the machine classifier (FACET). Results revealed higher 
recognition rates for dynamic stimuli compared to non-target images. Such benefit 
disappeared in the context of target-emotion images which were similarly well (or 
even better) recognised than videos, and more prototypical, less ambiguous, and 
more complex in appearance than non-target images. While prototypicality and 
ambiguity exerted more predictive power in machine performance, complexity 
was more indicative of human emotion recognition. Interestingly, recognition 
performance by the machine was found to be superior to humans for both target 
and non-target images. Together, the findings point towards a compensatory 
role of dynamic information, particularly when static-based stimuli lack relevant 
features of the target emotion. Implications for research using automatic facial 
expression analysis (AFEA) are discussed.
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1. Introduction

Much of our understanding of facial expressions of emotions has come from studies of static 
displays typically captured at their peak (Dawel et  al., 2022). Static expressions have the 
advantage that they can be strictly controlled, allowing observers to focus on the key features of 
interest. Not surprisingly, static images have been widely used in studies exploring the 
recognition of the basic six emotions (Calvo and Nummenmaa, 2016; Barrett et al., 2019). Due 
to their lower ecological validity, however, the last two decades have seen increased questioning 
and criticism of this type of stimulus. Given that facial expressions evolve over time, they are 
intrinsically dynamic events. Accordingly, facial movement has been shown to aid expression 
recognition (e.g., Wehrle et al., 2000; Ambadar et al., 2005; Cunningham and Wallraven, 2009) 
and facilitate the extraction of emotion-relevant content from faces (for reviews, see Lander 
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et al., 1999; Krumhuber et al., 2013, 2023; Krumhuber and Skora, 
2016; Dobs et al., 2018), such as expression authenticity (Krumhuber 
et al., 2013; Zloteanu et al., 2018), naturalness (Sato and Yoshikawa, 
2004) and intensity (Biele and Grabowska, 2006; Widen and Russell, 
2015). Nonetheless, the effects of movement are not uncontested, with 
some studies showing little or no benefits of dynamic information 
(e.g., Knight and Johnston, 1997; Lander et al., 1999; Kamachi et al., 
2001; Fiorentini and Viviani, 2011; Gold et al., 2013). The present 
research aims to compare static versus dynamic expressions in human 
and machine analysis, thereby exploring the role of featural parameters 
in emotion recognition.

Despite substantial evidence showing a dynamic advantage, 
several studies have failed to find the respective benefits of movement. 
For example, the advantage was found to disappear when identification 
was already close to perfect, with static stimuli that were highly 
distinctive in expression (Kamachi et al., 2001 experiment 2; Kätsyri 
and Sams, 2008; Gold et  al., 2013). Also, the effect of movement 
diminished for static displays presented for more than 1,000 ms, which 
naturally allows for a deeper exploration of the facial stimulus (Bould 
and Morris, 2008; Kätsyri and Sams, 2008). Finally, movement of the 
face may not always be necessary for non-degraded or full-intensity 
expressions (Ambadar et al., 2005; Bould and Morris, 2008; Tobin 
et al., 2016; Blais et al., 2017). In those cases, static snapshots can 
be sufficient to recognise emotions. Such counterevidence aligns with 
arguments proposing a compensatory role of dynamic information, 
particularly when static cues are inaccessible or insufficient (Ehrlich 
et al., 2000; Wehrle et al., 2000; Atkinson et al., 2004; Ambadar et al., 
2005). For example, dynamic expressions aid the recognition of 
degraded or distorted stimuli such as in point-light displays, synthetic 
displays, or shuffled morphed sequences (e.g., Wallraven et al., 2008; 
Cunningham and Wallraven, 2009; Dobs et al., 2018; Plouffe-Demers 
et al., 2019). Similarly, facial movement facilitates the recognition of 
weakly expressed and non-basic emotions (guilt, shame), which may 
be more subtle and nuanced in their appearance (Ambadar et al., 
2005; Bould and Morris, 2008; Cassidy et al., 2015; Yitzhak et al., 2022).

While attempts have been made to specify the conditions under 
which the dynamic advantage occurs, it is still unclear when dynamic 
information matters and when it does not. In most past studies, static 
displays were used to depict the peak of the target emotion (Harwood 
et al., 1999; Kamachi et al., 2001; Bould and Morris, 2008; Gold et al., 
2013). Such high-intensity features, with their specific shapes and 
spatial arrangement, may leave little scope for the additional benefits 
offered by movement. The present research is the first to compare 
dynamic expressions with static images extracted from various time 
points of the facial display. In particular, we explore whether peak 
frames of the target emotion (e.g., the image frame with the highest 
surprise evidence within a surprise video; see Dente et  al., 2017) 
achieve recognition rates that are similar to dynamic stimuli (e.g., a 
full-length surprise video) and higher compared to those of non-target 
emotions (e.g., image frames with the highest anger, fear, disgust, 
happiness or sadness evidence within a surprise video).

Beyond this comparison of dynamic expressions to automatically 
extracted single images, the present work examines three key featural 
parameters and their contribution to emotion recognition. According 
to Basic Emotion Theory (BET), a small number of fundamental 
emotions are characterised by prototypical patterns of facial actions 
(Ekman, 1982, 1992). That is, when an emotion is elicited a particular 
set of action units is triggered by specific muscular movements 

(Ekman et  al., 2002). These unique configurations of prototypical 
facial displays offer a quick and accurate feature-based categorisation 
of expressions as they are unambiguously linked with discrete emotion 
categories (see Ekman, 2003; Calvo and Nummenmaa, 2016). Such 
categorical distinctiveness makes them perceptually salient, thereby 
providing a shortcut to emotion recognition (Calvo and Fernández-
Martín, 2013). Hence, facial displays closely resembling those 
prototypes are more easily and rapidly classified (Young et al., 1997; 
Matsumoto et al., 2009; Matsumoto and Hwang, 2014). Conversely, 
accuracy is thought to drop for non-prototypical expressions (Wagner 
et al., 1986; Motley and Camden, 1988; Naab and Russell, 2007; Barrett 
et al., 2019).

While prototypicality crucially functions as a perceptual indicator 
of emotion category, most of the facial expressions seen in everyday 
life are likely to be ambiguous, fractional, and/or blended (Scherer and 
Ellgring, 2007; Calvo et al., 2014). That is, they often convey a mixture 
of emotions (Halberstadt et al., 2009; Hassin et al., 2013; Parkinson, 
2013) or partial versions of configurations, with a great amount of 
idiosyncrasy and variability beyond uniform configurations of a single 
emotion (Du et al., 2014; Du and Martinez, 2015). To capture these 
deviations, it is therefore important to define a second 
featural parameter.

Ambiguity arises when an expression displays multiple basic 
emotions (i.e., when facial expressions are categorically ambiguous), 
thereby containing contradictory emotional information. Given that 
classification decisions typically rely on the most distinctive facial 
features (Fiorentini and Viviani, 2009; Calvo et al., 2012; Tanaka et al., 
2012; Du et al., 2014), ambiguous expressions are often subject to 
misclassification and interpretation biases (Calvo et al., 2012; Ito et al., 
2017; Kinchella and Guo, 2021). In turn, recognition accuracy is 
reduced (Calder et al., 2000b; Neta and Whalen, 2010) because people 
are perceptually less able to identify several emotions at once (Ito et al., 
2017; Kinchella and Guo, 2021). Neuroscientific evidence points 
towards the role of the amygdala, which encodes not only the intensity 
but also the categorical ambiguity of an expression (Ito et al., 2017). 
Since the processing of ambiguous displays requires more cognitive 
effort, confidence ratings tend to be  lower and reaction times are 
prolonged (Calvo et al., 2012; Wang et al., 2017).

Notwithstanding its importance, empirical evidence regarding 
expression ambiguity remains elusive mainly due to the lack of a 
common metric. While some studies define it as the degree of 
closeness to categorical boundaries (Halberstadt et al., 2009; Wang 
et al., 2017; Kinchella and Guo, 2021), others conceptualise it as the 
omission of core emotional cues (Matsumoto and Hwang, 2014). This 
could be problematic as both definitions indicate different expression 
characteristics. Additionally, most prior research has manipulated 
(rather than measured) ambiguity by creating blended, morphed, or 
composite face stimuli (Nummenmaa, 1988; Calder et al., 2000a,b). 
Such an approach may result in unnaturalistic displays which are not 
representative of the type of expressions seen in real-life situations. 
The present work therefore introduces a new ambiguity measure that 
is based on the perceived presence of two or more emotions.

Finally, expression intensity has been consistently shown to 
influence emotion recognition. Specifically, intense displays enhance 
accurate classification and response times (e.g., Young et al., 1997; 
Matsumoto, 1999; Matsumoto et al., 2002; Palermo and Coltheart, 
2004; Ambadar et al., 2005; Jones et al., 2018). Also, they lead to higher 
intensity and confidence ratings (Calder et al., 2000a; Recio et al., 
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2013), as well as agreement ratings between viewers (Matsumoto et al., 
2002; Matsumoto and Hwang, 2014). In contrast, weak expressions 
tend to be less accurately categorised (although above chance level, 
Matsumoto and Hwang, 2014) and are subject to greater confusion 
and uncertainty in emotion judgements (Matsumoto et  al., 2002; 
Bould and Morris, 2008; Ichikawa et al., 2014).

The intensity of expressions may play a crucial role in detecting 
individual facial configurations because intense expressions often 
contain diagnostic features of facial prototypes. Expression 
prototypicality is therefore likely to co-occur with higher expressive 
intensity. Only a few studies to date have tried to identify their relative 
influence, suggesting that prototypicality is a more important feature 
for emotion classification than intensity (Matsumoto et  al., 2002; 
Matsumoto and Hwang, 2014). Nonetheless, both parameters are 
likely to be  confounded as expression intensity usually concerns 
emotion-relevant facial actions such as those predicted by BET. This 
makes intensity not representative of the overall expressivity of the 
face, but of the degree of emotion in a facial expression. More intense 
emotional expressions (especially when they are posed) are likely to 
be  more prototypical and vice versa. In order to conceptualise 
expression intensity as a measure that is independent from its 
emotional connotation, we therefore introduce a new metric called 
“complexity” which captures the intensity of all action units in the face.

While traditional measures of intensity consider the strength of 
Action Units (AUs) contractions, our measure of “complexity” 
quantifies the number of contracting AUs, irrespective of their 
individual intensities. This approach captures the richness of facial 
actions without being influenced by the strength of individual AU 
contractions. Although the probabilities of AU-occurrences may 
correlate with their respective intensities, complexity provides a 
comprehensive representation of facial expressivity. This distinction is 
crucial as facial expressions often involve a mixture of AUs and may 
not strictly adhere to the prototypical expressions of basic emotions. 
As such, our measure of complexity offers a unique perspective that is 
distinct from traditional measures of intensity, which are typically tied 
to the intensity of emotion-specific AUs.

Quantifying featural parameters necessitates an objective 
classification of facial expressions, which is a time-consuming and 
resource-intensive process for human coders (De la Torre and Cohn, 
2011). With rapid advances in the field of affective computing, 
commercial and open-source algorithms for automated facial 
expression analysis (AFEA) are now widely available (Cohn and 
Sayette, 2010). These can reliably classify discrete emotions as well as 
facial actions (Littlewort et al., 2011; Lewinski et al., 2014). Given that 
most classifiers have been trained based on the theoretical principle 
proposed by the Facial Action Coding System (FACS, Ekman et al., 
2002; Calvo et  al., 2018), recognition performance is found to 
be comparable to human coders (Skiendziel et al., 2019; Krumhuber 
et al., 2021a) and other physiological measurements (Kulke et al., 
2020; Höfling et al., 2021), sometimes even outperforming human 
raters (Krumhuber et  al., 2021b). In most cases, the distinctive 
appearance of highly standardised expressions benefits the featural 
analysis by machines (Pantic and Bartlett, 2007).

Despite several attempts to validate AFEA, its performance on 
non-prototypical, subtle, and dynamic expressions needs further 
attention, with studies showing substantial variation in recognition 
success. For example, hit rates drop remarkably when an expression 
moves farther away from basic emotion prototypes (Stöckli et al., 

2018; Küntzler et al., 2021). Likewise, machines frequently misclassify 
expressions that are weak in intensity (Calvo et al., 2018; Küntzler 
et al., 2021), resulting in recognition rates often lower than those of 
humans (Mandal et al., 2015; Yitzhak et al., 2017). Since machines 
rely heavily on physical features of an expression (Del Líbano et al., 
2018), less prototypical and more subtle displays of emotion pose a 
greater challenge for AFEA (Calvo et al., 2018). This is particularly 
evident for dynamic expressions, which often include large segments 
of frames with comparatively subtle features. In consequence, 
machine accuracy has been shown to drop for dynamic compared to 
static stimuli commonly taken at the peak of the emotional display 
(Stöckli et al., 2018; Skiendziel et al., 2019; Onal Ertugrul et al., 2023). 
To date, the role of dynamic information in AFEA is still poorly 
understood, with performance varying substantially across stimulus 
conditions (Yitzhak et  al., 2017; Dupré et  al., 2019; Krumhuber 
et al., 2021b).

There is suggestive albeit ambivalent evidence for the dynamic 
advantage with inconclusive findings on why and when facial 
movements offer benefits for recognition. The present research aims 
to fill this knowledge gap by investigating the conditions under which 
dynamic information exerts its facilitative effects on emotion 
classification. It does so by comparing dynamic stimuli with static 
peak images that show either the target or non-target emotion 
(thereafter referred to as “target-images” and “non-target images”). In 
line with previous research on the dynamic advantage (Wehrle et al., 
2000; Ambadar et  al., 2005; Cunningham and Wallraven, 2009), 
we predicted superior recognition rates for dynamic displays when 
compared to static (non-target) images consisting of peak frames that 
are unreflective of the target emotion. In other words, images taken 
from any time point of the expression may show minimal benefits, 
resulting in recognition rates lower than those of dynamic expressions. 
However, the opposite pattern was expected for static images showing 
the peak frame of the target emotion (target-images). Given that these 
are highly distinctive and intense displays of the relevant emotion 
(Kamachi et al., 2001; Kätsyri and Sams, 2008; Gold et al., 2013), they 
should be easier to recognise, with performance rates exceeding those 
of dynamic expressions. To investigate what makes the expression 
recognisable, we  tested the relative contribution of three featural 
parameters – prototypicality, ambiguity, and complexity – to emotion 
recognition. If the stimuli closely resemble discrete emotion categories 
as proposed by BET, they should be more prototypical and intense as 
well as less ambiguous in appearance (Neta and Whalen, 2010; 
Matsumoto and Hwang, 2014; Jones et al., 2018). Stimuli that show 
well-recognisable discrete emotions should also be more complex 
than most other patterns of facial actions. Furthermore, prototypicality 
and ambiguity as its counterpart should predict emotion recognition, 
particularly in machines which have often been trained on posed/
acted datasets (Pantic and Bartlett, 2007), making them potentially 
superior to human observers in classification accuracy (Krumhuber 
et al., 2021b).

Two studies were conducted to test the above hypotheses. Study 1 
focused on AFEA to compare video (dynamic), target and non-target 
images (static), and define measures of prototypicality, ambiguity, and 
complexity. As a way of validating the machine data, we also obtained 
ratings from human observers on target and non-target images. Study 
2 focused on human observers with the aim to replicate the findings 
from the first study with a subset of the stimuli and a larger sample 
of participants.
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2. Experiment 1

The first study aimed to test for the dynamic advantage in AFEA, 
thereby comparing recognition rates of video (dynamic), target and 
non-target images (static). Human observer ratings were also 
obtained for target and non-target images as a source of machine 
validation. In addition, we  explored the relative contribution of 
prototypicality, ambiguity, and complexity to image and video 
recognition, and whether video recognition can be predicted based 
on six images that represent the respective peak expressions for the 
basic emotions.

2.1. Method

2.1.1. Stimulus material
162 facial expression videos portraying the six basic emotions 

(anger, disgust, fear, happiness, sadness, and surprise) were obtained 
from Krumhuber et al. (2021b). Stimuli originated from a range of 
databases showcasing a mixture of emotion elicitation procedures 
(e.g., instruction to perform an expression, scenario enactment, 
emotion-eliciting tasks). For each video, machine analysis was 
performed using a commercial software called FACET (Littlewort 
et al., 2011), which provides estimates for facial expressions of the six 
basic emotions (anger, disgust, fear, happiness, sadness, surprise) and 
20 Action Units (AU1, 2, 4, 5, 6, 7, 9, 10, 12, 14, 15, 17, 18, 20, 23, 24, 
25, 26, 28, and 43; Ekman et al., 2002). It outputs evidence scores on 
a frame-by-frame basis, estimating the likelihood that a human 
observer would code the frame as containing each emotion and action 
unit. Evidence values are shown on a decimal logarithmic scale 
centred around zero, with zero indicating 50% probability, negative 
values indicating that an expression is likely not present, and positive 
values indicating that an expression is likely to be present (Dente 
et al., 2017).

Within each video, six frames with the highest individual evidence 
value for the six basic emotions were identified based on the raw 
FACET output. Extractions were performed automatically via Python 
and FFmpeg. Among the six frames, one image was indicative of the 
“target” emotion (e.g., the frame with the highest surprise evidence 
score from a video that was labelled by the dataset authors as surprise), 
and five images were indicative of “non-target” emotions (e.g., frames 
with the highest anger, disgust, fear, happiness, and sadness evidence 
scores from a surprise video; see Figure 1). To this end, a total of 972 
static facial images (162 videos × 6 images) were extracted. The 
number of portrayals was equally balanced across disgust, fear, 
happiness, and surprise (168 images each), except for anger (144 
images) and sadness (156 images) which had fewer portrayals because 
they were not available in some of the databases. All image stimuli 
were rendered in colour and had an approximate resolution of 
550 × 440 pixels.

To achieve comparability with the confidence ratings provided by 
human observers, the raw FACET evidence values for each of the six 
basic emotions and 20 AUs were initially converted into probabilities 
by using the formula provided in the FACET documentation 
(iMotions, 2016) and then into confidence odds scores (for a similar 
procedure see Krumhuber et  al., 2021a). Let xijk  represent the 
evidence value for emotion or AU k  in image j  from video i. This 

value can be converted into probability pijk( )  and odds oijk( ) units 
using Eqs. 1, 2, respectively:

 
pijk xijk

=
+ −
1

1 10  
(1)

 
o

pijk
ijk

=
−

1

1 1/  
(2)

2.1.2. Human observers

2.1.2.1. Participants
One hundred and fifty-four participants (76 females), aged 

between 18–60 years (M = 29.78, SD = 11.85), volunteered to take part 
in the study. Participants were recruited face-to-face or online via the 
departmental subject pool and Prolific Academic’s digital recruitment 
platform. Participants received course credits or £10 for taking part in 
the study. All participants were White/Caucasian and identified as 
British or European and ordinary residents in the UK. Ethical approval 
was granted by the Department of Experimental Psychology at 
University College London, United Kingdom.

2.1.2.2. Procedure
To reduce participation time, a subset of 162 facial images 

portraying the six basic emotions were extracted from the 972 static 
expression stimuli and were randomly presented. As such, every 
participant viewed one image from each video. The number of 
portrayals was balanced across the six emotions. Each facial expression 
was presented for 15 s using the Qualtrics software (Provo, UT). For 
each facial stimulus, participants rated the extent (from 0 to 100%) to 
which each of the six emotions (anger, disgust, fear, happiness, 
sadness, and surprise) is recognisably expressed in the face. At least 
one emotion rating per image (greater than 1% for any emotion) had 
to be  given. Participants could respond using multiple sliders (if 
applicable) to choose the exact confidence levels for each 
response category.

2.1.3. Parameters

2.1.3.1. Prototypicality
We defined expression “prototypicality” as the degree to which the 

combination of AUs estimated to be present in a facial expression 
matches the prototypical facial expression configuration proposed by 
Basic Emotion Theory (Ekman, 1992). The FACS manual (Ekman 
et al., 2002) was used to define the full prototype and major variants 
of each basic emotion. The odds of FACET AU scores for the target 
emotion were summed up and weighted by a factor of 1 (full 
prototype, e.g., AU1 + 2 + 5 + 26 for surprise) or 0.75 (major variant, 
e.g., AU1 + 2 + 5 for surprise). This resulted in an estimated 
prototypicality score for each image, with higher scores indicating 
greater prototypicality of the expressed emotion (for a similar 
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procedure, see Krumhuber et al., 2021a). Prototypicality for emotion 
k  in image j  from video i was calculated as:

 
PRO O wijk

l

v
ijkl kl=

=
∑

1  
(3)

where Oijkl is the FACET-estimated odds that image j  from video 
i contains prototype l  from emotion k  and wkl is the weight of 
prototype l  from emotion k  (i.e., 1 if a full prototype and 0.75 if a 
major variant). To calculate the prototypicality for emotion k  in video 
i (across all m  images), we  averaged the prototypicality for that 
emotion across all m images (i.e., m = 6).

 
PRO

m
PROik

j

m
ijk=

=
∑1

1  
(4)

2.1.3.2. Ambiguity
We defined expression “ambiguity” as the degree to which the 

facial expression is classified as containing multiple basic 
emotions, which makes the expression categorically unclear 
(Kinchella and Guo, 2021). To this end, we  used normalised 
entropy as a metric to represent the amount of uncertainty in 
emotion classification for each image (Shannon, 1948). Entropy 
is high when multiple emotions have high estimated probabilities 
and low when only a single emotion has a high estimated 
probability. The ambiguity of image j  from video i (in terms of 
the q  different emotions) was calculated using the 
following equation:

 ( )1 log
q ijk

ij k
p

AMB
q=

= −∑
 

(5)

FIGURE 1

Example of image selection procedure, showing the highest FACET evidence values for each of the six basic emotions as extracted from a surprise 
video (A). The surprise image (bottom right) is the target image for the surprise video (as labelled by the dataset authors), whereas the other five mages 
are non-target images (B). Reproduced with permission from (Nadia Mana / Battocchi et al., 2005).
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where pijk is the FACET-estimated probability that image j  from 
video i contains emotion k . (Note that the logarithm bases do not 
matter due to their division). To calculate the ambiguity for video i 
(across all m images), we averaged the ambiguity across all m images 
(i.e., m = 6).

 
AMB

m
AMBi

j

m
ij=

=
∑1

1  
(6)

2.1.3.3. Complexity
We defined expression “complexity” as the average estimated 

probability across all 20 FACET AU estimates in each image. This 
resulted in an estimated complexity score for each image, with higher 
scores indicating more complex expressions (with evidence of more 
AUs present). This complexity measure therefore differs from other 
conceptualisations of “intensity” by taking all FACET AUs into 
account and using their probability of occurrence rather than their 
estimated intensity. The complexity for image j  from video i was 
calculated as:

 
COM

m
Pij

l

f

ijl=
=
∑1

1  
(7)

where pijl  is the FACET-estimated probability that image j  from 
video i contains AU l  and f = 20 (i.e., the superset of all estimated 
AUs). To calculate the complexity for video i (across all m  images), 
we averaged the complexity across all m images (i.e., m = 6).

 
COM

m
COMi

j

m
ij=

=
∑1

1  
(8)

2.1.4. Data preparation
FACET recognition accuracy for both video and image was 

calculated by determining whether the emotion with the highest 
recognition score matched the target emotion label given by the 
database authors. As FACET is an algorithm-based classifier that 
provides the same values across trials, recognition accuracy was 
binary in the form of either 0 (incorrect) or 1 (correct). To compare 
FACET and human performance, the recognition scores by human 
observers were also converted into this binary format as a function of 
whether the majority (> 50%) of participants correctly recognised the 
target emotion.

2.2. Results

2.2.1. 6-images as predictor of video recognition
We first tested whether emotion classification accuracy of the 

video can be predicted from the recognition of the 6 extracted images. 
For this, a multilevel logistic regression model predicting video-level 
emotion classification accuracy (by FACET) was estimated with a 
random intercept for each video and fixed slope for the sum of correct 
image-level emotion classification accuracy (per video). The results 

revealed a significant main effect (exp(β) = 2.86, Wald = 35.63, 
p < 0.001, exp(95%CI) [2.10, 4.22]), indicating that the odds of correct 
video-level emotion classification increased by 186% for each 
additional correct image-level emotion classification.

2.2.2. Video vs. target image vs. non-target 
images

To examine whether recognition accuracy differs as a function of 
stimulus type (video vs. target image vs. non-target images), a 
multilevel logistic regression analysis with a random intercept by 
video was conducted on the FACET accuracy data. The odds of correct 
emotion classification were significantly higher for target images than 
for non-target images (exp(β) = 40.66, Wald = 99.48, p < 0.001, 
exp(95%CI) [20.40, 88.10]) and were significantly higher for the video 
(exp(β) = 6.47, Wald = 48.37, p < 0.001, exp(95%CI) [3.87, 11.12]) than 
for non-target images (see Figure 2). Interestingly, the odds of correct 
emotion classification were significantly lower for the video than for 
target images (exp(β) = 0.16, Wald = 21.98, p < 0.001, exp(95%CI) 
[0.07, 0.34]). As such, the dynamic advantage only occurred for 
non-target images, but not target images. Overall, recognition 
accuracy was highest for the target image, followed by the video and 
non-target images (see Figure 2).

We conducted another multilevel logistic regression analysis with 
stimulus type (target vs. non-target images) and rater type (FACET vs. 
human observers) as predictors and with a random intercept for each 
video. The results revealed significant main effects of stimulus type, 
(exp(β) = 7.05, Wald = 74.47, p < 0.001 exp(95%CI) [4.52, 10.98]) and 
rater type (exp(β) = 1.65, Wald = 16.16, p < 0.001 exp(95%CI) [1.29, 
2.11]), as well as a significant interaction between the two 
(exp(β) = 2.38, Wald = 6.23, p = 0.035 95%CI [1.20, 4.70]). For both 
FACET and humans, target images were better recognised than 
non-target images (ps < 0.001). Thus, the target peak image seemed to 
be a better exemplar of the expression in human and machine analysis. 
Results also revealed that recognition accuracy of FACET was 
significantly higher than that of humans for both target and non-target 
images (ps < 0.001).

2.2.3. Prototypicality, ambiguity, and complexity 
of expression

To investigate what makes the expression recognisable, separate 
Welch’s t-tests were conducted to compare stimulus types (target vs. 
non-target images) in terms of prototypicality, ambiguity, and 
complexity. As expected, target images were significantly more 
prototypical (Mtarget = 64.08, SD = 34.11 vs. Mnon-target = 37.18, SD = 33.16), 
t(226.03) = 9.21, p < 0.001, d = 0.81, less ambiguous (Mtarget = 29.79, 
SD = 25.60 vs. Mnon-target = 46.99, SD = 22.20), t(212.16) = 5.18, p < 0.001, 
d = 0.75, and more complex (Mtarget = 28.22, SD = 7.76 vs. 
Mnon-target = 24.60, SD = 9.72), t(272.75) = 5.18, p < 0.001, d = 0.38, than 
non-target images.

Next, we examined the relative contribution of each parameter to 
emotion classification accuracy. For this, a multilevel logistic 
regression model predicting each image’s classification accuracy was 
estimated with random intercepts for each video and fixed slopes for 
prototypicality, ambiguity, complexity, rater type, and the interaction 
of rater type with the other three measures. Results revealed a 
significant main effect of prototypicality (exp(β) = 1.05, Wald = 135.06, 
p < 0.001, exp(95%CI) [1.04, 1.05]), ambiguity (exp(β) = 0.99, 
Wald = 9.63, p = 0.002, exp(95%CI) [0.98, 0.99]), and complexity 
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(exp(β) = 1.04, Wald = 8.36, p = 0.004, exp(95%CI) [1.01, 1.06]). All 
three parameters showed a significant interaction effect with rater type 
(ps < 0.01). Post-hoc tests revealed that the effects of prototypicality 
(exp(β) = 1.02, Wald = 32.14, p < 0.001, exp(95%CI) [1.01, 1.03]) and 
ambiguity (exp(β) = 1.01, Wald = 7.90, p = 0.005, exp(95%CI) [1.00, 
1.02]) were significantly greater for FACET than for humans. In 
contrast, the effect of complexity (exp(β) = 1.03, Wald = 10.91, 
p < 0.001, exp(95%CI) [0.95, 0.99]) was significantly greater for 
humans than FACET (see Figure 3 and Table 1).

Finally, we explored the partial association of each parameter with 
video-level recognition accuracy. For this, a multilevel logistic 
regression model predicting video-level emotion classification 
accuracy (by FACET) was estimated with random intercepts for each 
source database and fixed slopes for video-level prototypicality, 
ambiguity, and complexity. Results revealed a significant main effect 
of prototypicality (exp(β) = 1.01, Wald = 7.54, p = 0.006, exp(95%CI) 
[1.00, 1.02]), and ambiguity (exp(β) = 0.97, Wald = 26.12, p < 0.001, 
exp(95%CI) [0.96, 0.98]). The main effect of complexity was 
marginally significant (exp(β) = 0.98, Wald = 3.81, p = 0.051, 
exp(95%CI) [0.95, 1.00]). In general, the odds of recognition accuracy 
increased by 1% for each unit increase in prototypicality, while it 
decreased by 3% for each unit increase in ambiguity (see Table 2).

2.3. Discussion

The results of the first study demonstrated considerable variation 
in recognition accuracy as a function of stimulus type. On average, 
recognition accuracy was highest for target images, followed by the 

video and non-target images. In accordance with previous findings 
(Harwood et al., 1999; Gepner et al., 2001; Ambadar et al., 2005; Bould 
and Morris, 2008), movement (in the form of videos) aided emotion 
classification over non-target images that were generally less 
prototypical and complex but more ambiguous than target images. 
Such a dynamic advantage was absent in comparison to static images 
which showed the expression at its peak intensity of the target 
emotion. Additionally, accurate recognition of the video was 
successfully predicted by the six images, pointing towards the 
usefulness of single images in video prediction.

Regarding featural parameters, higher prototypicality and 
complexity but lower ambiguity encouraged correct recognition in 
both humans and the machine. While prototypicality and ambiguity 
were better predictors of machine performance, complexity (as a 
reflection of overall expressivity) was more effective in predicting 
human accuracy. These findings are in line with prior works suggesting 
that AFEA relies heavily on specific facial configurations (Zeng et al., 
2009; Krumhuber et al., 2021a) due to its training on a few – often 
posed/acted – datasets (Pantic and Bartlett, 2007) while humans tend 
to process expressions more holistically including all facial actions 
(Calvo et  al., 2012). When comparing human and machine 
performance, a similar pattern was observed in the sense that accuracy 
decreased for non-target (vs target) images. Interestingly, the machine 
outperformed humans on both types of static stimuli, thereby 
extending previous findings on target emotion recognition 
(Krumhuber et al., 2021a). With the absence of video ratings from 
human observers, however, no firm conclusion can be  drawn 
regarding the role of movement versus static information in human 
emotion classification. To rectify this shortcoming, a second study was 

FIGURE 2

FACET and human recognition accuracy for video, target- and non-target images. Error bars represent upper and lower bounds of 95% confidence 
interval. Dashed red line indicates 1/6 conservative chance level (Krumhuber et al., 2021b).
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TABLE 2 Model estimates for FACET video recognition accuracy, showing main effect estimates in logits, upper and lower bounds of exponentiated 
95% confidence intervals, and significance of each predictor (Study 1).

Predictor exp(β) Wald L95%CI H95%CI p

Prototypicality 1.01 7.54 1.00 1.02 0.006**

Ambiguity 0.97 26.12 0.96 0.98 >0.001***

Complexity 0.98 3.81 0.95 1.00 0.051

FIGURE 3

Predicted power of prototypicality, ambiguity, and complexity for image recognition accuracy in FACET and humans. Regression line indicates the 
relationship between image recognition accuracy (red: FACET, blue: Human) and individual scores of (A) prototypicality, (B) ambiguity, and 
(C) complexity. The line shades represent upper and lower bounds 95% confidence interval at each predictor score point.

TABLE 1 Model estimates for FACET and human image recognition accuracy, showing main and interaction effect estimates in logits, upper and lower 
bounds of exponentiated 95% confidence intervals, and significance of each predictor (Study 1).

Predictor exp(β) Wald L95%CI H95%CI p

Prototypicality 1.05 135.06 1.04 1.05 >0.001***

Ambiguity 0.99 9.63 0.98 0.99 0.002**

Complexity 1.04 8.36 1.01 1.06 0.004**

Prototypicality:Rater 0.99 23.06 0.98 0.99 >0.001***

Ambiguity:Rater 0.99 6.70 0.98 1.00 0.010*

Complexity:Rater 1.02 8.68 1.01 1.04 0.003**
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conducted in which human observers rated all three types of stimuli: 
video (dynamic), target and non-target images (static).

3. Experiment 2

The second study aimed to replicate and extend the findings of the 
first study with solely human observers, thereby using a subset of the 
stimuli and a larger sample of participants. For this purpose, 
we obtained human ratings of three stimulus types (video, target, and 
non-target images) and analysed the relative contribution of 
prototypicality, ambiguity, and complexity to emotion classification. 
We  further explored the extent to which video recognition can 
be predicted based on performance for single images.

3.1. Method

3.1.1. Stimulus material
To select a diverse set of stimuli, 8 videos per emotion were taken 

from Study 1. This resulted in a total of 48 videos (8 videos × 6 
emotions) and 288 images (48 videos × 6 images). The size of the 
image and video stimuli was approximately 550 × 440 pixels.

3.1.2. Human observers

3.1.2.1. Participants
Three hundred and three participants (141 females), aged between 

18–60 years (M = 35.99, SD = 10.84), volunteered to take part in the study. 
Participants were recruited online via a digital recruitment platform 
(Academic Prolific). Participants were compensated £7 for taking part in 
the study. All participants were White/Caucasian who identified 
themselves as British or European and were ordinary residents in the 
UK. Ethical approval was granted by the Department of Experimental 
Psychology at University College London, United Kingdom.

3.1.2.2. Procedure
The experiment was programmed using the Qualtrics software 

(Provo, UT). In the first block, participants were randomly presented 
with one of the six images extracted from each video, yielding 48 
images showing each of the six basic emotions. In the second block, 
48 videos displaying each of the six basic emotions in dynamic form 
were presented in a randomized order. Measures of emotion 
recognition were the same as in Study 1.

3.2. Results

3.2.1. 6-images as predictor of video recognition
We first tested whether the 6 images can predict how well the 

video is recognised. For this, a multilevel logistic regression model 
predicting video-level emotion classification accuracy (by human) was 
estimated with a random intercept for each video and fixed slope for 
the sum of correct image-level emotion classification accuracy (per 
video). The results revealed a significant main effect (exp(β) = 2.43, 
Wald = 11.99, p < 0.001, exp(95% CI) [1.47, 4.03]), indicating that the 
odds of correct video emotion classification increased by143% for 
each additional correctly classified image.

3.2.2. Video vs. target image vs. non-target 
images

To examine whether recognition accuracy differs as a function 
of stimulus type (video vs. target image vs. non-target images), a 
multilevel logistic regression analysis with a random intercept by 
video was conducted on the human accuracy data. The odds of 
correct emotion classification were significantly higher for target 
images than for non-target images (exp(β) = 7.43, Wald = 15.29, 
p < 0.001, exp(95%CI) [2.72, 20.32]) and were significantly higher for 
the video (exp(β) = 6.11, Wald = 13.16, p < 0.001, exp(95%CI) [2.30, 
16.26]) than for non-target images. The odds of correct emotion 
classification were not significantly different between the target 
image and the video (exp(β) = 0.82, Wald = 0.10, p = 0.947, 
exp(95%CI) [0.24, 2.80]). Similar to Study 1, the dynamic advantage 
only occurred when the video was compared to non-target images, 
but not target images (see Figure 4).

3.2.3. Prototypicality, ambiguity, and complexity 
of expression

Using the machine data, we assessed prototypicality, ambiguity, 
and complexity of the stimulus types (target and non-target images). 
Overall, Welch’s t-tests showed that target images were significantly 
more prototypical (Mtarget = 80.82, SD = 27.17 vs. Mnon-target = 56.36, 
SD = 32.84), t(77.18) = 5.49, p < 0.001, d = 0.76, less ambiguous 
(Mtarget = 14.53, SD = 14.25 vs. Mnon-target = 33.71, SD = 21.22), 
t(94.25) = −7.76, p < 0.001, d = 0.95, and more complex (Mtarget = 27.38, 
SD = 6.73 vs. Mnon-target = 22.36, SD = 8.96), t(84.17) = 4.44, p < 0.001, 
d = 0.58 than non-target images. As such, the subset of 48 stimuli was 
sufficiently representative of the larger sample analysed in Study 1.

Next, we examined the partial contribution of each parameter to 
human emotion classification accuracy of images. For this, a multilevel 
logistic regression model predicting each image’s classification 
accuracy was estimated with random intercepts for each video and 
fixed slopes for prototypicality, ambiguity, and complexity. Results 
revealed a significant main effect of ambiguity (exp(β) = 0.96, 

FIGURE 4

Human recognition accuracy for video, target- and non-target 
images. Error bars represent upper and lower 95% confidence 
interval. Dashed red line indicates 1/6 conservative chance level 
(Krumhuber et al., 2021b).
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Wald = 7.60, p = 0.006, exp(95%CI) [0.94, 0.99]), complexity 
(exp(β) = 1.16, Wald = 13.63, p < 0.001, exp(95%CI) [1.07, 1.25]), and 
a marginally significant effect of prototypicality (exp(β) = 1.01, 
Wald = 3.14, p = 0.076, exp(95%CI) [1.00, 1.03]). In general, the odds 
of recognition accuracy increased by 1 and 16% for a unit increase in 
prototypicality and complexity respectively, while they decreased by 
4% for a unit increase in ambiguity (see Table 3).

Finally, we explored the predictive power of each parameter for 
human video recognition. For this, a multilevel logistic regression 
model predicting human video-level emotion classification accuracy 
was developed with random intercepts for each source database and 
fixed slopes for video-level prototypicality, ambiguity, and complexity. 
The results revealed a significant main effect of ambiguity 
(exp(β) = 0.95, Wald = 5.04, p = 0.025, exp(95%CI) [0.90, 0.99]), 
indicating that the odds of recognition accuracy decreased by 5% for 
each unit increase in ambiguity. The main effects of prototypicality 
(exp(β) = 0.99, Wald = 0.23, p = 0.629, exp(95%CI) [0.96, 1.02]) and 
complexity (exp(β) = 1.06, Wald = 1.23, p = 0.267, exp(95%CI) [0.96, 
1.22]) were not significant (see Table 4).

3.3. Discussion

Similar to the first study, there were substantial differences in 
emotion recognition accuracy across stimulus types. While target 
images and videos were similarly well recognised, accuracy for 
non-target images was significantly reduced. As such, movement may 
function as a facilitative factor particularly when static information 
fails to convey the target peak emotion. Correct classification of the 
extracted images was predictive of human recognition performance 
for the full video, suggesting that single images may be useful for 
conveying a given expression. As in Study 1, higher complexity but 
lower ambiguity contributed to classification accuracy. Furthermore, 
the effect of prototypicality was only marginally significant, with facial 
expressions likely to be processed by humans more holistically and in 
an integrated fashion (Calder et  al., 2000b; Calvo et  al., 2012). 
Together, these findings suggest that categorical ambiguity and 
complexity (overall expressivity) play an important role in human 
emotion recognition which seems to rely on features other 
than prototypicality.

4. General discussion

Past research has been inconclusive with regards to the conditions 
in which dynamic information matters. In two studies, dynamic 
expressions were more accurately classified than non-target images, 
with temporal information aiding emotion recognition. The results 
partially replicate previous findings on the dynamic advantage 
(Ambadar et al., 2005; Bould and Morris, 2008; Cassidy et al., 2015), 
showing that facial expressions are temporally structured in a way that 
is both meaningful and beneficial to observers. However, these 
movement-related benefits disappeared in comparison to static peak 
expressions of the target emotion. Insofar as target images represented 
static snapshots of a fully expressed emotion, they may have provided 
sufficient information for emotion classification. This was not the case 
for non-target images captured at various time points and indicative 
of peak expressions other than the target emotion. Together, these 
findings suggest a compensatory role of dynamic information, 
facilitating emotion recognition when static emotional cues are 
suboptimal or insufficient (Ehrlich et al., 2000; Wehrle et al., 2000; 
Atkinson et al., 2004).

In support of this notion, non-target images were found to be less 
prototypical and complex, as well as more ambiguous. Similar to past 
research (Matsumoto et  al., 2009; Matsumoto and Hwang, 2014) 
prototypicality played a crucial role, with expressions that more closely 
resemble BET predictions (Ekman et al., 2002) enhancing recognition. 
This applied particularly to the machine due to its history of training 
on posed/stylised expressions. For human observers, complexity was 
more important for emotion recognition. Consistent with previous 
work (Matsumoto et al., 2002; Jones et al., 2018), expression intensity 
(as measured by our new complexity metric) notably improved 
performance. Here, we showed for the first time that complexity can 
explain recognition performance without having to confound 
intensity with prototypicality and its BET-based assumptions. In the 
future, this allows for subtle expressions to be coded separately from 
non-prototypical expressions as both metrics tap into different 
characteristics. As predicted, ambiguous expressions were often 
subject to misclassification, with the simultaneous presentation of 
contradictory emotional cues increasing human and machine 
difficulty in recognising discrete emotions (Calder et al., 2000b; Neta 
and Whalen, 2010). While previous studies mainly relied on 

TABLE 3 Model estimates for FACET image recognition accuracy, showing main effect estimates in logits, upper and lower bounds of exponentiated 
95% confidence intervals, and significance of each predictor (Study 1).

Predictor exp(β) Wald L95%CI H95%CI p

Prototypicality 1.01 3.14 1.00 1.03 0.076

Ambiguity 0.96 7.60 0.94 0.99 0.006**

Complexity 1.16 13.63 1.07 1.25 >0.001***

TABLE 4 Model estimates for human video recognition accuracy, showing main effect estimates in logits, upper and lower bounds of exponentiated 
95% confidence intervals, and significance of each predictor (Study 2).

Predictor exp(β) Wald L95%CI H95%CI p

Prototypicality 0.99 0.23 0.96 1.02 0.629

Ambiguity 0.95 5.04 0.90 0.99 0.025*

Complexity 1.06 1.23 0.96 1.22 0.267
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techniques to create ambiguous stimuli, the present research 
introduced a new metric for quantifying ambiguity. This metric can 
be applied to any emotion rating data in future research that provides 
a probability for a closed set of emotion categories.

Machine recognition exceeded human performance for both 
types of static images. The finding extends prior work (Krumhuber 
et al., 2021a,b) by demonstrating a machine advantage for classifying 
expressions at the peak of the target emotion as well as other time 
points of the facial display (non-target images). In contrast to earlier 
studies showing a reduction in machine performance for low-intensity 
expressions (Calvo et al., 2018; Küntzler et al., 2021), we found that 
non-target images were better recognised by the machine than human 
observers despite their substantially lower prototypicality, greater 
ambiguity, and lower complexity. It should be noted, however, that 
stimuli were drawn from standardised datasets, which may benefit 
machine analysis (Pantic and Bartlett, 2007). Furthermore, our 
extraction procedure was designed to select peak images for other 
emotions to examine the underlying featural parameters. Therefore, 
the non-target images primarily differed from the target images in 
ambiguity and prototypicality, and less in complexity or intensity. 
Here, future work could systematically manipulate all three parameters 
to better understand their impact on human and machine 
recognition performance.

There is no doubt that video rating studies are costly and resource 
intensive. Automatic peak extraction may be an economic choice for 
addressing certain research questions by reducing the required 
presentation time of each stimulus. After accounting for potential 
fatigue effects in our human sample, we could present three times as 
many image stimuli in Study 1 than video stimuli in Study 2. This was 
the case even though our videos were relatively short and standardised. 
As is now widely recognised in the field, there is a need for studying 
more ecological behaviours such as those observed in the wild 
(Krumhuber et  al., 2017; Küster et  al., 2020, 2022). However, 
naturalistic stimuli tend to be considerably longer, less standardised, 
and less well annotated (Cowie et al., 2005; Girard et al., 2015; Benitez-
Quiroz et  al., 2016). Here, algorithmic approaches could help by 
allowing thin slices of stimulus materials to be  presented to 
participants. These could be static peak images or frame sequences 
extracted on the basis of machine parameters. As such, AFEA may 
provide a valuable tool to systematically define and extract appropriate 
research materials from otherwise seemingly “unwieldy” 
naturalistic datasets.

While present methods for identifying peak images vary between 
studies (Stöckli et al., 2018; Skiendziel et al., 2019; Onal Ertugrul et al., 
2023), both expert-based and algorithmic selection may be subject to 
biases (e.g., human experts might discard images that appear too 
ambiguous due to the presence of additional action units). Here, an 
algorithmic may be more objective because each action unit is assessed 
separately. However, algorithmic peak selection may suffer from other 
types of biases. For example, variable lighting during a video might 
result in the machine missing certain peaks that a trained human 
expert could have recognised. Thus, although algorithmic approaches 
might be particularly helpful for studying naturalistic datasets, further 
research will still be required to assess the reliability of these tools for 
more “in the wild” recordings.

The present work has taken first steps to blend AFEA with 
psychological research on human emotion recognition. The results 

extend previous work by introducing complexity as a novel metric of 
intensity that is largely decoupled from prototypicality and 
BET. We  argue that featural parameters such as prototypicality, 
ambiguity, and complexity reveal important new insights into human 
vs. machine differences. Specifically, complexity is a defining feature 
for humans who are likely to process expressions in a more integrated 
fashion. In contrast, machine algorithms such as FACET still mainly 
rely on prototypicality, achieving better performance on peak images 
than videos, especially if those are highly prototypical and complex, 
and low in ambiguity. The present research helps inform psychological 
studies into the mechanisms that underlie the dynamic advantage. 
Closing this knowledge might be particularly fruitful for future work 
on dynamic spontaneous expressions.1
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