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AdS/CFT correspondence with a three-dimensional black hole simulator
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One of the key applications of AdS/CFT correspondence is the duality it dictates between the entanglement
entropy of anti–de Sitter (AdS) black holes and lower-dimensional conformal field theories (CFTs). Here we
employ a square lattice of fermions with inhomogeneous tunneling couplings that simulate the effect rotationally
symmetric three-dimensional (3D) black holes have on Dirac fields. When applied to 3D Banados-Teitelboim-
Zanelli (BTZ) black holes we identify the parametric regime where the theoretically predicted two-dimensional
CFT faithfully describes the black hole entanglement entropy. With the help of the universal simulator, we further
demonstrate that a large family of 3D black holes exhibit the same ground-state entanglement entropy behavior
as the BTZ black hole. The simplicity of our simulator enables direct numerical investigation of a wide variety
of 3D black holes and the possibility to experimentally realize it with optical lattice technology.
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I. INTRODUCTION

Space-time geometry changes dramatically across the hori-
zon of a black hole. Classical particles or even light that fall
across the horizon can never escape, purely due to the struc-
ture of space-time. Surprisingly, quantum correlations can be
built across the black hole horizon, a phenomenon that leads
to Hawking radiation [1,2]. Conceptually, this mechanism is
equivalent to quantum tunneling across a potential barrier
[3,4]. This phenomenon is not only confined to astronomical
objects but can also be met in condensed matter or synthetic
quantum systems. Recently, signatures of Hawking radiation
have been identified in diverse systems, such as Bose-Einstein
condensates [5], quantum Hall effect [6], Weyl fermions
[7], critical Floquet systems [8], magnons [9], or chiral
interfaces [10].

It has been long hypothesized that the entanglement en-
tropy of quantum fields in black hole geometry contributes
to the Bekenstein-Hawking entropy, also known as the
area law [11–20]. The area-law behavior also appears in
Ryu-Takayanagi formula that enables holographic entangle-
ment entropy calculations using AdS/CFT correspondence
[21–24]. This holographic principle provides a bridge be-
tween the theories of gravity in D + 1 dimension with
quantum field theories in D dimension [25,26]. In particular,
AdS/CFT emerges as a powerful tool for probing certain
strongly coupled CFTs. For example, this correspondence
has been used to discover new strongly coupled phenomena,
non-Fermi liquids [27,28]. While the entanglement entropy
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of two-dimensional (2D) systems is fairly well understood
[29,30], the generalization to higher dimensions entails many
subtleties [30–34].

Here we present a quantum simulator of massless Dirac
fermions in the gravitational background of black hole hori-
zons. Our simulator is in three space-time dimensions, though
our approach can be effortlessly extended to higher dimen-
sions. It has been shown that the radiation of black holes due
to fluctuating gravity in the semiclassical limit is equivalent
to the radiation of scalar or fermionic particles in the black
hole background [35,36]. Hence our black hole simulator can
numerically and analytically probe static and dynamic proper-
ties of semiclassical quantum gravity that might be otherwise
inaccessible.

The simulator consists of a two-dimensional square lattice
of fermions. By choosing the tunneling couplings of the lat-
tice appropriately, the system can be effectively described by
Dirac fermions embedded in any black hole geometry [37]. To
test the validity of the simulator we employ the equivalence to
the Unruh effect [38] and show that the temperature of the
black hole radiation is accurately described by Hawking tem-
perature for a wide range of black hole profiles. Subsequently,
we investigate the entanglement entropy of three-dimensional
(3D) black holes. We identify the parametric regime where
the Banados-Teitelboim-Zanelli (BTZ) entanglement entropy
numerically obtained from our 3D black hole simulator is
in agreement with the theoretically predicted value of the
corresponding 2D CFT that lives on the boundary of the AdS
space-time [17–19,39–42]. Our work holds significance at
both fundamental and practical levels. From a fundamental
perspective, the proposed simulator offers a valuable tool
to investigate quantum correlations of black holes, estab-
lishing a “black hole laboratory” for exploring unresolved
questions in gauge/gravity dualities. Our work also provides
further supporting evidence for the conjecture that CFT2 also
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describes various non-BTZ black hole profiles near the hori-
zon, addressing the open problem of universality [43–45].

In practical terms, our proposed simulator stands out as
both simple and powerful, and it offers itself various general-
izations. Additionally, it is based on a free theory, in contrast
to corresponding conformal field theories that often involve
interactions and thermal effects. This distinction introduces
complexities when calculating entanglement entropy in higher
dimensions. Consequently, our approach lays the foundation
for investigating spatial correlations in interacting theories
using a free theory in higher dimensions. Furthermore, our
quantum simulator comprises a free fermion lattice that can be
realized with many quantum technologies, such as cold atoms
or Josephson junctions. This presents an exciting opportunity
to simulate black hole physics in a laboratory setting [46,47].

II. THE MODEL

We now construct a universal simulator of a 3D Dirac
fermion in arbitrary black hole geometry. This simulator con-
sists of a square lattice of fermions with position-dependent
tunneling couplings. For simplicity we employ a rotationally
symmetric gravitational field with line element

ds2 = F (r)dτ 2 − F (r)−1dr2 − r2dθ2, (1)

where F (r) is a function only of the radial coordinate r. Dirac
fermions with mass m in the geometric background (1) satisfy

i /∇�(τ, r, θ ) = m�(τ, r, θ ), (2)

where /∇ = eμ
a γ a∂μ + 1

2|g|1/2 γ
a∂μ(|g|1/2eμ

a ). The dreibeins eμ
a

are defined by gμν = eμ
a eν

bη
ab, with ηab = diag(1,−1,−1).

The gamma matrices γ a satisfy the Clifford algebra
{γ a, γ b} = ηab. Due to the rotational symmetry of space (1),
the spinor � can be written as �(τ, r, θ ) = ψ (τ, r)χ (θ ),
where /∇θχ (θ ) = κχ (θ ) and /∇τ,rψ (τ, r) = ( κ

r iσ z −
imI2)ψ (τ, r) [48]. The parameter κ is a positive (nonzero)
integer, corresponding to angular momentum eigenvalues
[49]. In the massless limit (m → 0) and in the low-energy
regime (κ small) the region with large r is described by

/∇τ,rψ (τ, r) ≈ 0. (3)

This derivation can be generalized to higher dimensions.
We now encode the 3D Dirac equation (2) with black

hole background in a simulator consisting of a square lattice
of fermions. We employ a generalization of the procedure
employed in [35,50,51] for 2D black holes to the case of
radially symmetric 3D black holes. To avoid coordinate sin-
gularity at the black hole horizon, we perform a change
of variable dt = dτ + F (r)−1dr and work in the ingoing
Eddington-Finkelstein coordinates, ds2 = F (r)dt2 − 2dtdr.
We consider now the Dirac equation written in these coordi-
nates. As the Dirac spinor in (3) is massless, it can be written
as ψ (t, r) = [φ(t, r),−φ(t, r)]

T
/
√

2, i.e., the two compo-
nents depend on each other so they do not need to be encoded
independently in our lattice. As a result (3) simplifies to

∂tφ(t, r) = −[∂r (F (r)φ(t, r)) + F (r)∂rφ(t, r)]/4. (4)

The representation of (4) on a square lattice is obtained by
discretizing the spatial position with a lattice constant a (we

fix a = 1) and approximating the spatial derivatives with cen-
tral differences. This is followed by substituting φ = f̂ where
{ f̂i, f̂ †

j } = δi j and using the Heisenberg equation of motion

i∂t f̂ j = [ f̂ j,H], see Appendix A. In the low-energy limit
where φ is smooth and for slowly varying functions F (r),
the resulting lattice system can be described by free fermions
on a two-dimensional square lattice with nearest-neighboring
hopping

H = −1

4

∑
〈i, j〉

Fi( f̂ †
i f̂ j + H.c.), (5)

where Fi is the value of F (r), with r the polar distance of
the vertex i of the square lattice. The black hole geometry
dictates that F (r) in (1) turns from positive to negative as r
moves from outside to inside the black hole. The horizon is
positioned at rh where F (rh) = 0. Due to the lattice nature of
the simulator (A6) we can choose the couplings Fi to never
become zero everywhere around the circle with radius rh.
Nevertheless, the transition from positive to negative values of
Fi faithfully encodes the black hole space-time geometry. As
we demonstrate in the following, this simulator can faithfully
describe the properties of Dirac fermions near a black hole
horizon, taken to be at a large radius, where (3) is valid.

Here we will begin with the BTZ black hole profile. In
the presence of negative cosmological constant � = −1/l2,
the most prominent solution to Einstein’s equations is the
three-dimensional locally AdS3 BTZ black hole [52,53]. The
metric of the BTZ black hole with mass M is given by Eq. (1)
with F BTZ = (r2 − r2

h )/l2. The horizon of the BTZ black hole
is at position rh = 2l

√
2GM and its Hawking temperature

is given by TH = √
2GM/(lπ ). Next we will illustrate the

numerical determination of the Hawking temperature for the
BTZ black hole. Various other profiles will be considered in
the last section.

III. HAWKING TEMPERATURE

We demonstrate now that our simulator can faithfully re-
produce the theoretically predicted Hawking temperature of
black holes, see Appendix B. To determine the Hawking tem-
perature from our black hole simulator we use the equivalence
to the Unruh effect [54]. Black hole metrics are approximately
equal to the Rindler metric close to the horizon that has a
linear profile F R(r) = η(r − rh). A stationary observer close
to the black hole horizon can be equivalently described by
a locally accelerating frame of reference moving through a
flat Minkowski space-time. Therefore they will experience
the Unruh effect with a temperature given by the Hawk-
ing temperature, TH. To simulate this effect, we first encode
the Hamiltonian HM that describes Dirac fermions in local
Minkowski frame, with many-body ground state |0M〉. We
achieve that by taking a flat profile Fi = F in our simulator
of Eq. (A6). Then we simulate the local Rindler Hamiltonian,
which after diagonalization is given by HR = ∑

p Epc†
pcp,

with eigenmodes {cp}. Finally, the Rindler observer measures
the mode occupation 〈0M|c†

pcq|0M〉 = fFD(Ep, TH)δ(p − q),
where fFD(Ep, TH) = (eEp/TH + 1)−1 is the Fermi-Dirac dis-
tribution at the Hawking temperature TH and Ep’s are the
single-particle energies of the Rindler Hamiltonian HR, see
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FIG. 1. Hawking temperature TH , determined from a 3D black
hole simulator for BTZ black holes with profile F BTZ(r) = (r2 −
r2

h )/l2 (orange squares). (a) Data points are numerically measured
for l = 5 in a BTZ black hole profile. The solid line indicates the
corresponding fit to a Fermi-Dirac distribution, fFD(E , TH ), where
TH is extracted. (b) The measured temperature TH for a large range of
parameter l is in agreement with the theoretical Hawking temperature
within 0.46% error. Here we used system size L = 81 and horizon
radius rh = 20.

Appendix C. In the simulation, we take modes p close to the
ground state, where the continuum limit holds, and determine
the Fermi-Dirac distribution, as shown in Fig. 1(a), from
which we extract TH . Repeating this process for various BTZ
profiles, we find that the simulator reproduces the theoretical
predicted Hawking temperatures with remarkable accuracy
with an error of 0.46%, as shown in Fig. 1(b). We find that
accuracy increases with lattice size.

The source of the resulting thermality is due to the fact
that the Minkowski ground state exists on both sides of the
horizon, while the local Rindler modes only have support
outside of the horizon. Hence, projecting |0M〉 onto {cp} effec-
tively traces out the region inside the black hole, resulting in a
thermal state. In the following, we will employ this 3D black
hole simulator to investigate the entanglement entropy across
the event horizon and compare it to the Bekenstein-Hawking
entropy predicted. Through the AdS/CFT correspondence the
Bekenstein-Hawking entropy can also be understood as the
thermal entropy of the boundary CFT.

IV. ADS/CFT CORRESPONDENCE

We will first summarize how the AdS3/CFT2 correspon-
dence can theoretically determine the entanglement entropy
of a 3D BTZ black hole from the corresponding 2D boundary
CFT. Then we will employ our black hole simulator to calcu-
late the entanglement entropy across the horizon and identify
the parametric regime where it agrees with the CFT prediction
[21,22].

In the holographic context, the Ryu-Takayanagi formula
suggests that the entanglement entropy of a region A with a
length ξ on the boundary CFT2 is given by the area of the
minimal surface γ in the AdS3 space-time that is attached to
the two endpoints of region A [21,22], as shown in Fig. 2(a).
In the presence of a black hole in AdS3 space-time, this

FIG. 2. (a) The holographic AdS3/CFT2 duality is illustrated for
a black hole with path bipartitions the boundary in A that covers
the whole CFT and its trivial complement B and wraps around the
black hole horizon, separating it into regions A and B. (b) Red
circles indicate the entanglement entropy of a flat space-time whereas
the rest of the colors correspond to BTZ black holes with different
curvatures l . While TH changes as l varies, all of them have the same
entanglement entropy across the horizon. The slope gives an effective
Newton constant for the BTZ black hole as Geff = 0.7. (c) The CFT
entropy for various curvatures l (corresponding to different central
charges) and the BTZ entanglement entropy. The holographic cor-
respondence holds accurately in the large temperature limit rh � l .
(d) The entanglement entropy of flat space-time (red, points) and the
BTZ black hole (black, diamond) as a function of system size L, with
fixed radius rh = 20. The flat space-time entanglement (value shifted
by −44) scales with ln L (red, solid line), which indicates a violation
of area law. The black hole entanglement entropy saturates to a finite
value (black line). The linear size in (b), (c), and (d) is L = 101.

holographic duality yields the entanglement entropy

SCFT(β, ξ ) = c

3
ln

[
β

πε
sinh

πξ

β

]
, (6)

where ε denotes the UV cutoff, c is the central charge, and
β is inverse temperature [21–23]. Note that (6) has the same
expression as the entanglement entropy of a thermal 2D CFT
[29]. We now specialize in the case of a BTZ black hole with
a large mass M. In this semiclassical limit, the minimal path
γ is shown in Fig. 2(a). This path gives the bipartition of
both the CFT in A that wraps around the whole space and
its trivial complement B, as well as of the black hole, where
A is the outside of the black hole and B is inside. As the
CFT bipartition is trivial, including the whole boundary, the
entropy SCFT is purely thermal. On the other hand, the black
hole entropy SBTZ probes the quantum correlations of its pure
ground state across the horizon. We now fix the boundary
temperature to the BTZ Hawking temperature, β = T −1

H , and
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use the Brown-Henneaux holographic formula, c = 3l/(2G)
[39], that relates the bulk properties of the black hole with the
central charge of the boundary. Taking the length scale of the
boundary to be ξ ∼ 2π l , we find that the thermal 2D CFT
entanglement is given by SCFT(T −1

H , 2π l ) [40,55,56].
We will now numerically determine the entanglement en-

tropy of the BTZ black hole, SAdS3BH,simulator, from the black
hole simulator. To that end we construct the correlation ma-
trix C with elements of the two-point correlation functions
Ci j = 〈�|c†

i c j |�〉, where |�〉 is a many-body ground state of
the Hamiltonian (A6) and i, j run through subsystem B. Then
the entanglement entropy between B and A is given by

SAdS3BH,simulator = −
∑

k

ζk log(ζk ) + (1 − ζk ) log(1 − ζk ),

(7)

where the ζk are the positive eigenvalues of C [57,58]. The
leading term in the resulting entanglement entropy of the
black hole is expected to satisfy area law behavior. For D = 3
the “area” law takes the form

S(rh) = k2πrh, (8)

where 2πrh is the perimeter of the horizon. The constant
k = 1/(4Geff ) can be expressed in terms of effective Newton
constant Geff when the S(rh) is interpreted as the Bekenstein-
Hawking entropy [12,59–63]. We navigate around debates
concerning both the species problem and the regularization
problem of entanglement entropy by subsuming both issues
within the definition of Geff [18,20]. Notably, we can manipu-
late Geff by modifying the regularization, or more precisely,
the lattice spacing in the model. As demonstrated in Ap-
pendix D, Geff is directly proportional to the lattice spacing.
In Fig. 2(b) we show that entanglement entropy obtained from
our simulator is given by an area law as in Eq. (8), with
an effective Newton constant Geff ∼ 0.7 when L = 101. In
Fig. 2(c) we see that the entanglement entropy of the 3D BTZ
black hole simulator determined numerically from (7) and the
entanglement entropy of the corresponding boundary CFT2,
dictated by (6), aligns remarkably well in the semiclassical
limit rh � l , where (A6) is valid. This agreement is shown
quantitatively in Fig. 2(c), either by increasing the radius rh for
fixed curvature l or by decreasing the curvature l for fixed rh.

Note that Hamiltonian (A6) describes massless free
fermions, and thus it is critical. Indeed, for a fixed value
of the radius, we find that the entanglement entropy of flat
space-time, encoded in the simulator by uniform couplings,
Fi = F , scales logarithmically with system size, as shown in
Fig. 2(d). On the other hand, the entanglement entropy across
the horizon of a black hole stabilizes with system size to a
finite-non-zero value, as shown in Fig. 2(d). This ensures that
the black hole entropy retains its “area” law behavior, unlike
the flat case that depends on the system size.

V. ENTANGLEMENT ENTROPY OF VARIOUS
BLACK HOLES

We now consider several lapse functions, each correspond-
ing to different black hole profiles, see Fig. 3(a). While they
all have different Hawking temperatures, they produce the
same area law behavior in their entanglement entropy as the

FIG. 3. (a) Different lapse functions with horizon at rh = 20
indicated by the vertical black line. (b) All entanglement entropies
are perfectly aligned, regardless of their Hawking temperature (α =
l = 5, rh = 25). The average slope of different lapse functions gives
Geff ∼ 0.7 with a standard deviation given by 0.008 for L = 101. The
black solid line shows the average slope.

BTZ black hole, see Fig. 3(b). Obtaining the same entropy for
different black holes is known as the problem of universal-
ity [43–45]. Such behavior is expected for BTZ black holes
with different temperatures. Indeed, in the semiclassical limit,
the entanglement entropy (6) is given by SCFT ∝ cl/β for
β � l . The AdS/CFT relates rh ∝ l2/β, and via the Brown-
Henneaux formula, c is proportional to l/G. Thus the entropy
is independent of any particular characteristics of the black
hole, such as its Hawking temperature.

Such an argument cannot be directly generalized when
non-BTZ black holes are considered. Nevertheless, our simu-
lator (A6) can explain this universal behavior for all black hole
profiles parameterized by overall constants in the following
way. Overall factors in the lapse function F (r) of the black
hole geometry become also an overall factor in the simulator
Hamiltonian (A6). Since the two-point correlation matrix is
invariant to such overall factors, the entanglement entropy
stays the same for different black hole profiles even if they
have different Hawking temperatures. Hence, any black hole
profile that has negligible nonlinear terms around the horizon
compared to the lattice spacing, e.g., the ones considered in
Fig. 3(a), can be described by the same thermal CFT as the
BTZ black hole.

VI. CONCLUSIONS

We have shown that our simulator is able to probe the
quantum correlation properties of black holes. We observed
that a whole set of 3D black holes has the same entanglement
entropy as that predicted by the CFT2 dual to the BTZ black
hole. Our results are in line with the interpretation of the
Bekenstein-Hawking entropy as topological entanglement en-
tropy [64]. Indeed, (6) indicates that the universal term comes
from additive part, Stop = c ln[sinh(πξ/β )]/3, without UV
cutoff. This topological term describes the thermal entropy of
black hole in the semiclassical limit.

Our universal black hole simulator is given in terms of free
fermions that are analytically tractable, making it viable to
theoretical investigations, while it can be readily realized in
the laboratory [46,47]. Moreover, it can be directly applied
also to higher dimensions, thus offering a simple and versatile
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medium to probe more complex questions, such as investigat-
ing the effect of black hole geometry on interacting fermions.
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APPENDIX A: DIRAC EQUATION TO LATTICE
REPRESENTATION

The 3D Dirac equation in a rotationally symmetric ge-
ometry and away from the origin, r � 1, reduces to a 2D
equation involving time and the radial coordinate /∇2Dψ2D ≈
0. For 2D massless Dirac fermions the most general spinor
takes the form ψ2D = [φ(t, r),−φ(t, r)]T /

√
2. Hence, the

Dirac equation becomes

∂tφ(t, r) = −[∂r (F̃ (r)φ(t, r)) + F̃ (r)∂rφ(t, r)]/4. (A1)

The dependence on the angular coordinate θ has been sup-
pressed as we are interested in the r � 1 limit, i.e., away from
the origin [see the derivation of (3) in main text].

The representation of (A1) on a fermionic lattice is ob-
tained by discretizing the spatial position with a lattice
constant a (we fix a = 1). For simplicity, we consider a square
lattice with fermionic tunneling couplings that depend on the
radial distance r in order to reproduce (A1). Note that as
the contributions from the angular part are suppressed away
from the origin, there is freedom in choosing its “angular”
couplings in the direction perpendicular to the “radial” one.
To be more concrete, we introduce lattice indices ( j, k). If r is
parallel to the x axis, then ∂φ j,k ≈ [φ j+1,k − φ j−1,k]/2, which
creates a contribution of tunneling in the x direction, which
is the radial direction. If we add an angular contribution (y
direction) of tunneling then the derivative becomes ∂φ j,k ≈
[φ j+1,k − φ j−1,k + A(φ j,k+1 − φ j,k−1)]/2 and the kinetic term
will have an angular dependence that will be negligible in
the r � 1 limit. To make the couplings compatible with the
rotational symmetry of the black hole geometry, we choose
A = 1 throughout the lattice, which makes the kinetic term
contributions locally symmetric along the x and y directions.
Moreover, note that as the propagation is along a square
lattice, we adopt the Manhattan distance rather than the Eu-
clidian one. This change in distance measure deforms the
geometry of the black hole away from the x or y axis with-
out changing its thermalization properties nor its correlations
across the horizon as we numerically verified.

Using the product rule for finite difference formula

∂ (F̃j,kφ j,k ) ≈ [F̃j+1,kφ j+1,k − F̃j−1,kφ j−1,k

+ F̃j,k+1φ j,k+1 − F̃j,k−1φ j,k−1]/2, (A2)

Eq. (A1) becomes

φ̇ j,k = −Fj,k[φ j+1,k − φ j−1,k + φ j,k+1 − φ j,k−1]/4, (A3)

where for slowly varying F̃j,k we use Fj,k ≈ [F̃j,k + F̃n]/2,
where F̃n are nearest neighbors on the lattice. Next, substi-
tuting φ j,k = (−i) j (−i)k f̂ j,k , where f̂ obeys the Fermionic
canonical commutation relation { f̂ j, f̂ †

k } = δ jk , the Dirac

equation becomes

i ˙̂f j,k = −Fj,k[ f̂ j+1,k + f̂ j−1,k + f̂ j,k+1 + f̂ j,k−1]/4. (A4)

Making use of the Heisenberg equation of motion i ˙̂f j,k =
[ f̂ j,k,H], (A4), the resulting lattice system is described by free
fermions on a two-dimensional square lattice with nearest-
neighboring hopping:

H = − 1

4

∑
j,k

Fj,k[ f̂ †
j,k f̂ j,k+1 + f̂ †

j,k f̂ j+1,k

+ f̂ †
j,k f̂ j,k−1 + f̂ †

j,k f̂ j−1,k + H.c.]. (A5)

This can be written in compact form as

H = −1

4

∑
〈i, j〉

Fi( f̂ †
i f̂ j + H.c.), (A6)

thus reaching the Hamiltonian shown in the main text.

APPENDIX B: HAWKING TEMPERATURE
OF 3D BTZ BLACK HOLE

The most celebrated quantum property of black holes is
that quantum fluctuations escape their gravitational attraction.
These fluctuations are witnessed outside the black hole as
thermal radiation with temperature TH that depends on the
geometrical characteristics of the black hole, as Hawking fa-
mously predicted in 1974 [2]. We now demonstrate that the
fermionic lattice (A6) accurately describes 3D Dirac fermions
in black hole geometry by determining the temperature of the
escaped radiation.

Consider for concreteness the BTZ black hole with profile
F = (r2 − r2

h )/l2, where l is related to the cosmological con-
stant. Hawking temperature is given by

TH = 1

4π
∂rF (rh) =

√
2GM/(lπ ), (B1)

where G is the Newton constant and M is the mass of the black
hole related to the event horizon with MG = r2

h/(8l2). Thus
for given rh and l we can obtain the mass of the black hole.
To investigate the Hawking radiation with our lattice model,
we initially prepare a wave packet |ψ (0)〉 inside the black
hole and monitor its quenched evolution as it escapes through
the horizon. In particular, we initialize a single-particle state
|ψ (0)〉 = ∑

{n} λ{n}c†
{n}|0〉 in an equal superposition on the {n}

sites on the inner region of the black hole horizon. Subse-
quently, we let the system evolve in time and we measure the
probability density of the particle that is emitted outside the
black hole across the horizon at a given time t . Most of the
population remains trapped inside the black hole [65] until
eventually some escapes, via quantum tunneling [66] through
the horizon and moves to infinity.

The component of the wave packet outside the black hole
corresponds to Hawking radiation if the population P(E ) =
|〈E |ψ (t )〉|2 of modes |E〉 with energy E that are the eigen-
states of the Hamiltonian in the outer region. It is then
expected that the Hawking radiation takes the thermal form
P(E ) ∝ e−E/TH , where TH denotes the Hawking temperature.
We numerically evolve the wave packet |ψ (t )〉 and calculate

155124-5



DEGER, HORNER, AND PACHOS PHYSICAL REVIEW B 108, 155124 (2023)

FIG. 4. Hawking temperature of 3D BTZ black hole for L = 61
and error analysis. (a) Hawking temperature as a function of time.
The inset figure shows a semilog plot of energy modes located
outside of the horizon. The slope gives the Hawking temperature.
The margin of error in the inset is given in the bracket. (b) Hawking
temperature is calculated for different horizon radiuses rh and cosmo-
logical constants l−2. Only the weighted mean over t = 0.2 to t = 20
is shown. A single Dirac particle is initialized in a superposition of
four points at t = 0 (blue crosses) just behind the black hole horizon
with radius rh = 10 on a lattice with linear size L = 61, η = 10 and
α = 10−3. The dispersion of particle density is depicted at t = 1.
(b) The particle population that escaped the black hole appears as
Hawking radiation at t = 8. (c) Hawking radiation has thermal distri-
bution. The slope on the semilog plot yields a Hawking temperature
TH which is in good agreement with the theoretically predicted value,
for rh = 15, η = 10, and α = 10−3. (d) Time-averaged Hawking
temperatures over t = {0.2, 8.0} are depicted for a range of pa-
rameters η. The error bars indicate the standard deviation around
the mean. Good agreement with the expected Hawking temperature
TH = η/(4π ) is obtained apart from large values of η, due to the
finite lattice spacing, and for small η, due to finite-size effects.

the corresponding Hawking temperature from a slope in a
semilog plot, as shown in Fig. 4(a).

We find that the numerical Hawking temperature averaged
over early times has an error of 3%. At last, in Fig. 4(b) we
consider different l values over a range of horizons and find
good agreement between the numerical and theoretical values
of the Hawking temperature.

APPENDIX C: UNRUH TEMPERATURE
OF 3D BTZ BLACK HOLE

In (2 + 1)D, the Schwarzschild metric is given by

ds2 = f (r)dt2 − 1

f (r)
dr2 − r2dθ2, (C1)

where f (r) is some function such that f (rh) = 0 and changes
sign as we move across rh, where rh is the location of the event
horizon. Close to the horizon to the first order we have

f (r) ≈ f (rh) + (r − rh) f ′(rh) ≡ k(r − rh). (C2)

Therefore the metric close to the horizon is given by

ds2 = k(r − rh)dt2 − dr2

k(r − rh)
− r2dθ2. (C3)

Let us now define the new coordinate R2 = k(r − rh). Using
this coordinate, the metric is

ds2 = R2dt2 −
(

2

k

)2

dR2 −
(

R2

k
+ rh

)2

dθ2. (C4)

This looks very close to the Rindler metric describing a uni-
formly accelerating observer moving through a Minkowski
space-time. Let us make the final coordinate transformation
ρ = 2R/k, which gives us

ds2 =
(

kρ

2

)2

dt2 − dρ2 −
(

kρ2

4
+ rh

)2

dθ2. (C5)

If we simplify this metric further by assuming that ρ2 � rh,
then we arrive at the metric

ds2 = (αρ)2dt2 − dρ2 − r2
hdθ2, (C6)

where we have defined α = k/2 = f ′(rh)/2.
We are interested in the Dirac field on this background and

the Hawking radiation generated by it. In order to derive this,
we note that this metric looks like the metric for the space-
time M = R2 × S1, where R2 is a flat (1 + 1)D space-time
endowed with the Rindler metric with acceleration α, and S1

is a circle of radius rh. Therefore we expect the Dirac field to
exhibit the Unruh effect here and the angular portion to play
no role for large rh. In this coordinate system, the massless
Dirac equation reads

/∇2Dψ + 1

rh
∂θψ = 0, (C7)

where /∇ = eμ
a γ a∂μ + 1

2
√|g|γ

a∂μ(
√|g|eμ

a ), and /∇2D is simply
the case with the (1 + 1)D Rindler metric substituted in. As
the system is rotationally symmetric, we take the ansatz solu-
tion ψ (t, ρ, θ ) = e−imθφ(t, ρ), where φ is a two-component
spinor field. This yields the equation of motion:

/∇2Dφ + im

rh
φ = 0. (C8)

For large rh and small angular momentum m, we arrive at

/∇2Dφ = 0, (C9)

so the nontrivial dynamics of the field is governed by the
Dirac equation on a Rindler metric. Using the chiral γ -matrix
representation γ 0 = iσ x and γ 1 = σ y, where σ i are the Pauli
matrices, the (un-normalized) positive-energy solutions are
given by

ψk,m = uk
|ρ|ik/α

√|ρ| eimθ , uk =
{

u+ for k � 0
u− for k < 0 , (C10)

where u± are the two-component eigenvectors of σ z where
σ zu± = ±u± [54]. The negative-energy solutions are simply
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given by the complex conjugates. These solutions are only
valid for ρ > 0, as they exist only in a single Rindler wedge.

As the Unruh effect requires us to measure the ground
state of the Minkowski space-time from the perspective of
the Rindler observer, we must also have possession of the
Minkowsi modes. The metric near the horizon can be written
as

ds2 = dt2 − dX 2 − r2
hdθ2, (C11)

where the relationship between the coordinates is given by
T = ρ sinh(αt ) and X = ρ cosh(αt ). The un-normalized
positive-energy solutions (using the same γ -matrix
representation) on this metric are given by

�k,m = ukeikX eimθ , (C12)

where uk is the same as defined in Eq. (C10), and N is
a normalization constant. The negative-energy solutions
are obtained from the complex conjugate. Note that these
solutions are valid for all X and so extend to the other side of
the Rindler wedge.

Let ap,n and bp,n be the particle and antiparticle modes of
the Rindler observer associated with the solutions Eq. (C10),
and let Ap,n and Bp,n be analogous for the Minkowski ob-
server. The Minkowski observer defines their vacuum state
(or ground state) as the state |0M〉 such that Ap,n|0M〉 =
Bp,n|0M〉 = 0 for all p and n. On the other hand, this state will
not be the vacuum for the Rindler modes, which is the source
of the Unruh effect. Noting that our quantum field can be ex-
pressed with respect to either the Rindler modes of Eq. (C10)
or the Minkowski modes of Eq. (C12), then this induces a
Bogoliubov transformation of their corresponding mode oper-
ators, allowing us to relate the Rindler and Minkowski mode
operators linearly as

ak,m =
∑

n

∫
dq[Aq,n(ψk,m, �q,m) + B†

q,n(ψk,m, �∗
q,n)],

(C13)
where

(ψ, φ) =
∫ ∞

0
dρ

∫ 2π

0
rhdθψ†φ (C14)

is the standard inner product for spinors on the spatial hyper-
surface induced by the metric of Eq. (C6). Note that in order
to perform this inner product between Minkowski and Rindler
modes one must express both in the same coordinate system.
Using the calculations of Ref. [54], the mode occupation of
the Rindler modes in the Minkowski vacuum is given by

〈0M|a†
p,maq,n|0M〉 = 1

eEp/T + 1
δmnδ(p − q), (C15)

where T = α/2π = f ′(rh)/4π .
The previous calculation is exact in the Rindler frame;

however, note that the Rindler frame exists only close to the
horizon. The Dirac modes of the black hole frame will extend
far from the horizon, but we note that these modes reproduce

FIG. 5. Entanglement entropy of BTZ (l = 5) black hole for L =
51. Different lattice spacings (a) show that Geff decreases as Geff ∝ a.

the Hawking/Unruh effect well. In order to simulate this
numerically on the lattice, we require two ingredients: the
Minkowski vacuum |0M〉 and the modes which diagonalize
the Hamiltonian in the Schwarzschild frame ap,m. The vacuum
|0M〉 is obtained easily as the many-body ground state of a
homogeneous 2D lattice Hamiltonian. We then generate the
Hamiltonian of the Schwarzschild frame and diagonalize it
numerically to find its modes ap,n. Then one can calculate
〈0M|a†

pap|0M〉 with possession of the correlation matrix of the
model. This effect will only work for low energies, as we are
approximating a continuum effect with the lattice.

Note that the Minkowski Hamiltonian exists throughout
the lattice, whereas the Schwarzschild Hamiltonian only has
support outside of the horizon. This fact is the source of
the thermality: probing the Minkowski modes with modes
that exist only outside the horizon effectively performs the
trace tr(|0M〉〈0M|) = e−βHent , where Hent is the entanglement
Hamiltonian. The fact that the modes in the Schwarzschild
frame produce a thermal spectrum implies the interesting
observation that the entanglement Hamiltonian must be ap-
proximately equal to the Schwarzschild frame Hamiltonian,
which was discussed in Ref. [54]

APPENDIX D: ENTANGLEMENT ENTROPY
LATTICE REGULARIZATION

As we are probing the quantum properties of the Dirac
field, the lattice regularization influences the resulting entropy,
S(rh). To that end, we consider the system to be of linear
size L and discretizing space with lattice spacing a = L/N ,
where N is the number of lattice points within L. If we fix
rh and L and we increase N , we then obtain that Geff ∝ a,
i.e., it goes to zero as N increases. If we fix N and L, i.e.,
fix the lattice spacing, then we obtain a fixed value for the
gravitational constant Geff . Subsequently, we change the ra-
dius rh to recover the area law dependence of the entanglement
entropy SA ∝ rh/L ∝ N . In the main text we choose a = 1 and
N = 101, which results in Geff ≈ 0.7. In Fig. 5 we consider
other lattice spacing values and show that S diverges and Geff

decreases with decreasing lattice spacing.
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