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Abstract 

The increasing volume of ship traffic has resulted in new challenges for the supervision of maritime 

safety administration. The conventional manual monitoring approach for maritime traffic is 

inefficient and lacks specifics, particularly for supervising ships with abnormal trajectories. To 

address this issue, this study proposes utilizing the minimum description length criterion to extract 

features from ship trajectory data provided by the automatic identification system (AIS). This 

approach simplifies the compression of ship trajectories. Additionally, the dynamic time warping 

trajectory similarity measurement algorithm is employed to optimize the density-based spatial 

clustering of applications with noise algorithm. This optimization enables the clustering of ship 

trajectories and the acquisition of normalized ship motion trajectories. Furthermore, a ship trajectory 

prediction method based on a transformer model is proposed, and the normalized motion trajectory 

is used as the training set for model training. The trained ship trajectory prediction model is 

subsequently utilized to predict the target ship trajectory. The AIS ship trajectory data in the vicinity 

of Yantai Port were used for experimental verification. The results demonstrate the effectiveness of 

the proposed approach in identifying abnormal ship trajectories. 
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1. Introduction 

The rapid development of the automatic identification system (AIS) has enabled the acquisition 

of extensive ship motion trajectory data, providing a foundational basis for predicting ship behavior 

and monitoring abnormal ship behavior. In the realm of maritime research, ship trajectory clustering 

and anomaly detection algorithms have become focal points, particularly with the development of 

Internet technology and big data analysis (Yang et al., 2019). The significance of ship trajectory 

clustering analysis and anomaly detection lies in advancing shipping management intelligence, 

enhancing navigation safety, and enhancing the efficiency of the shipping industry. 

Research of anomaly detection was initially conducted using statistical methods (Kowalska 

and Peel, 2012), the form of normal trajectory model was a probability model of trajectory point 

information, which primarily include Kernel Density Estimation (KDE) (Ristic et al., 2008; Dai et 

al., 2020; Wang et al., 2022), Gaussian Mixture Model (GMM) (Laxhammar et al., 2009), Gaussian 

Process (GP) (Smith et al., 2012), Hidden Markov Model (HMM) (Shahir et al., 2014), and Bayesian 

Network (BN) (Mascaro et al., 2014; Zhen et al. 2017; d’Afflisio et al. 2021). The statistical method 

of anomaly detection uses statistical testing to determine whether the behavior of ship matches a 

statistical model representing conventional ship behavior. When the matching probability is low, it 

is considered as abnormal behavior. The disadvantage of statistical method is that the matching 

accuracy is related to historical data and ignores real-time scene. And this method is difficult to 

combine multi-source information, expert knowledge, etc., and is not suitable for ship trajectory 



anomaly detection in the increasingly complex marine traffic circumstance.  

In recent years, much effort has been done to improve the performance of the existing 

algorithms to make them applicable for ship trajectory anomaly detection in the increasingly 

complex marine traffic circumstance. Clustering, as a tool for big data analysis, is an unsupervised 

technique that does not depend on any prior knowledge. A trajectory clustering framework based on 

AIS data was designed to analyze routes, which considered the geographic spatial information and 

contextual features of ship trajectories, and thereby the density-based clustering algorithm 

automatically classified different routes (Sheng and Yin, 2018). A new features of local fast ship 

trajectories method was proposed to search for global and local features of ship trajectories (Tang 

et al., 2021). Soares et al., (2015) proposed an unsupervised method to segment trajectories without 

predetermined clear criteria. The DBSCAN algorithm (Ester et al., 1996) is a pioneer technique in 

the context of density-based clustering. Lei (2016) developed a framework called MT-MAD 

(maritime trajectory modeling and anomaly detection) to explore frequent movement behaviors and 

established a single index for combining anomaly scores to determine the suspicious level of each 

ship's trajectory. The DBSCAN approach is used to cluster course over ground (COG) and speed 

over ground (SOG) in AIS data, considering both density points and those with similar COGs and 

SOGs. To handle large datasets, an improved density-based spatial clustering of applications with 

noise (DBSCAN) clustering algorithm was introduced (Nooshin and Hamid, 2022; Li et al., 2020). 

Kontopoulos et al. (2021) clustered the track points and extracted the ship’s steering points based 

on the DBSCAN algorithm. DBSCAN algorithm was reused to cluster track lines, in which the 

Lagrange interpolation algorithm was used to fill the gaps between the steering points. Han et al. 

(2021) proposed an optimized DBSCAN algorithm for abnormal ship trajectories detection by 

clustering AIS ship trajectories with the same features, and ultimately validated the performance of 

this method using data from the Gulf of Mexico. To speed up the computational efficiency of the 

clustering algorithm. Yang et al. (2022) proposed Density based Trajectory Clustering of 

Applications with Noise (DBTCAN) algorithm. This method uses Hausdorff distance as a similarity 

measure to cluster trajectories of different lengths. Therefore, the DBTCAN algorithm can not only 

recognize noise trajectories but also adaptively select its optimal input parameters, which can be 

widely applied in ocean research.  

Rong et al. (2020) employed the DP algorithm to identify turning points based on ship type, 

size, final destination, and other maritime traffic patterns. The DBSCAN method clusters turning 

points, and then combines the density region of these points by KDE. DBSCAN and the Kernel 

Density Estimation-based Outlier Factor processing algorithm was introduced to calculate the 

abnormal probability distribution value of trajectory points, eliminating low-probability distribution 

edge points (Jin et al., 2023). Bai et al. (2023) designed an adaptive threshold fast DBSCAN 

algorithm for vessel trajectory clustering. The fast DTW algorithm is used to reduce the 

computational complexity and ensure the accuracy of trajectory similarity, and the DBSCAN 

parameters are adaptively determined by combining the similarity distribution of trajectories with 

an improved K-adaptive nearest neighbor. However, the method is distance-based trajectory 

clustering algorithm and does not consider the speed and acceleration of ship, and thereby attracting 

the attention of more and more scholars in the field of artificial intelligence technology.  

Detecting anomalies in ship trajectories is a complex and challenging task due to the influence 

of the surrounding environment on the navigation statuses of both the own ship and other ships (Liu 

et al., 2022). Thus, artificial intelligence technology is increasingly applied in ship trajectory 



anomaly detection research. Traditional supervised learning techniques were employed to predict 

arrival time and reorganize data based on spatial grids. Deep learning architectures based on long 

short-term memory (LSTM) are also explored to address the next position prediction problem 

(Gözde et al., 2021). Park et al. (2021) employed the spectral clustering method to cluster ship 

trajectories and established a ship trajectory prediction model using bi-directional LSTM (Bi-

LSTM). The support vector machine is employed to predict the ship's next course at the exit of the 

traffic route in Tokyo Bay based on dynamic historical AIS data. Nevertheless, greater emphasis 

should be placed on enhancing prediction accuracy by increasing efforts (Nishizaki et al., 2018). 

Venskus et al. (2017) presented a self-learning adaptive classification method based on the self-

organizing map and virtual pheromone for ship trajectory anomaly detection. By utilizing the 

gradient descent algorithm, the verification dataset is used to calculate the pheromone intensity 

threshold for trajectory anomaly detection. Venskus et al. (2019) extended their previous work and 

studied a data batch processing strategy for neural network retraining to detect anomalies in 

streaming maritime traffic data. The results demonstrate that it is possible to reduce the retraining 

time while keeping the accuracy relatively unchanged. Mantecón et al. (2019) proposed a supervised 

deep learning framework for ship anomaly detection, utilizing a convolutional neural network to 

infer navigation states from the ship trajectory based on AIS information. Zhao and Shi (2019) 

combined DBSCAN and recurrent neural networks (RNN) to obtain the clustering ship trajectories 

and prediction of large-scale ship trajectories. Wen et al. (2020) clustered the ship trajectories based 

on DBSCAN algorithm to identify key regions, and then applied artificial neural networks to learn 

the relationships between key regions to generate reasonable routes for different ships. However, 

these algorithms face challenges related to parameter setting, noise recognition, and sensitivity to 

density distribution in datasets. With the development of deep learning technologies, Li et al. (2023) 

divided multiple different subsequences by quantifying the similarity of time distribution and 

matching the time distribution, and then constructed the adaptive transformer model based on 

transfer learning to conduct the accurate prediction of the future trajectory. However, limited by the 

long training and learning time of the mentioned models above, the time complexity of parameter 

calculation is still relatively high and cannot be used for trajectory prediction of a large amount of 

ship data.  

Given this background, analyzing and studying ship trajectory clustering analysis and anomaly 

detection based on machine learning becomes crucial. The main contributions of this paper are as 

follows: 

(1) The minimum description length (MDL) criterion is designed based on the model 

description length and the data description length using original AIS ship trajectory data, which 

ensures to extract ship trajectory features while well maintaining the trajectory features and shape. 

(2) The DBSCAN clustering algorithm using the dynamic time warping (DTW) trajectory 

similarity measurement method is proposed according to the position, speed and course of ship, 

which essentially solves the problem of slow accuracy and trajectory similarity between ship 

trajectories and clustering effectiveness. 

(3) A ship trajectory prediction model based on the transformer model is constructed for the 

anomaly detection of ship by using the transformer's self-attention mechanism to capture the long-

term dependency relationship between ship trajectory information. The results demonstrate that this 

method is superior to other algorithms in terms of effectiveness and reliability.  

This paper is organized as follows: Section 2 presents the proposed method for ship trajectory 



clustering analysis and anomaly detection. Section 3 presents the experiments setup include the 

datasets used in the experiments, evaluation results of the proposed method. At the end of this 

section, the proposed method is compared with other previous recent studies. Finally, the paper is 

concluded and some suggestions are given for future studies. 

2. Methodology 

To address the challenges related to long-term jumps and missing ship trajectories, a method is 

proposed to divide sub-trajectories and ensure the availability of ship trajectory data. The MDL 

criterion is utilized to extract ship trajectory feature points and derive ship trajectory features. In 

water traffic scenarios, the lengths of AIS ship trajectories cannot be made consistent for all 

trajectories. Therefore, in view of the lack of consideration for water traffic scenario factors when 

measuring ship trajectory similarity, a ship trajectory feature extension method is introduced, 

incorporating ship position, speed, and course. This extended feature set is used in conjunction with 

the DTW trajectory similarity measurement distance and the DBSCAN algorithm to achieve ship 

trajectory clustering. This approach enhances the accuracy of similarity measurement between ship 

trajectories and enables the generation of normalized ship motion trajectories. To address ship 

trajectory anomaly detection, a ship trajectory prediction method based on a transformer model is 

proposed. The normalized ship motion trajectory obtained from clustering serves as the training data 

for the network. This enables the transformer model to predict trajectories and serve as a tool for 

anomaly detection, completing the detection of ship trajectory anomalies. The flowchart depicting 

ship trajectory clustering and anomaly detection is illustrated in Fig. 1. 
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Fig. 1. Flowchart of ship trajectory clustering and anomaly detection. 

2.1 Feature Extraction of AIS Data 

The ship trajectory data consists of a large number of AIS data points. Meanwhile, due to the 



large tonnage of the ship, slow sailing speed, and gradual changes in motion status, a large overlap 

of ship attribute information exists between trajectory points in a short period of time. Certain 

trajectory points even possess identical position information, resulting in more redundancy in AIS 

data. In addition, there are a large number of outliers in the original AIS trajectory data. To enhance 

data mining efficiency, it is essential to ensure the accuracy, completeness, and conciseness of ship 

trajectory information. Therefore, preprocessing operations are conducted to extract ship trajectory 

feature points from AIS data before performing clustering analysis. The MDL criterion is chosen as 

the method for extracting trajectory feature points. This criterion allows for compressing ship 

trajectories and reducing data storage and transmission costs, thus facilitating data visualization and 

analysis. The fundamental idea of MDL is to encode and compress a given set of instance data using 

a specific model to save storage space. The compressed data, along with the model used, can be 

saved for future correct recovery of the instance data. The total data length to be saved corresponds 

to the sum total of the length of the encoded and compressed instance data and the length required 

to store the model. This combined length is known as the total description length. 

The MDL principle consists of two components: (1) the model description length (L(H)), which 

represents the length needed to describe the model H and can be interpreted as the complexity of 

the model itself. Generally, models with lower complexity feature shorter description lengths. (2) 

The data description length (L(D/H)), which denotes the length required to describe the data D under 

the given model H. It can be interpreted as the amount of information necessary to encode the data 

D using the model H. Typically, if the model H effectively explains the data D, the description length 

of data D will be shorter under the given model conditions. As shown in Fig. 2, for a trajectory {P1, 

P2, P3, P4, P5} in a string of trajectory data, in the MDL approach, each point in the trajectory is 

traversed to calculate the MDL under a compression model (MDLpar) and the MDL under a non-

compression model (MDLnopar) for that point. If MDLpar>MDLnopar, the point is considered a feature 

point. Assuming a trajectory sequence T = {P1, P2, ..., Pn} is divided into multiple segments, the set 

of feature points is denoted as P={ Pc1, Pc2, Pc3, ..., Pck}. The specific calculation formula for MDL 

is as follows: 

 
1

i

2 1

1

( ) log ( ( ))
k

i

j j

j

L H len P P
−

+

−

=  (1) 

  
1 1

2 1 1 2 1 1

1 1

( / ) log ( ( , )) log ( ( , ))
n k

x x y y x x y y

x y

L D H d P P P P d P P P P 

− −

+ + + +

− −

= +  (2) 

where Len(P) represents the length of sequence P, and dα and dθ are the vertical distance and angular 

distance between sequences, respectively. 
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Fig. 2 Instance diagram of MDL. 

According to the above formula, 
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The specific process of MDL principle compression trajectory is as follows: 
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Fig. 3 Flowchart of MDL compression trajectory. 

2.2 Cluster analysis of ship trajectories based on improved DTW distance algorithm 

Trajectory data obtained from the AIS is a type of spatiotemporal data that includes information 

such as position and time. Trajectory pattern mining and trajectory classification are essential 

components of trajectory data research (Wang et al., 2023). Trajectory pattern mining involves 

grouping similar trajectories together to analyze group behavior or periodic behavior of moving 

objects. On the other hand, trajectory classification entails establishing a model to analyze the 

similarity between trajectories and partitioning them into different states. When assessing trajectory 

similarity, it is crucial to select an appropriate trajectory similarity measurement algorithm. To 

determine the similarity between different trajectories, an improved DTW distance algorithm is 

proposed, and the DBSCAN method is employed for clustering. 

Suppose we have two trajectory sequences, 𝑇raj1=[p1, p2,..., pn] and 𝑇raj2=[q1, q2,..., qm], where 

m and n represent the number of trajectory points in 𝑇raj1 and 𝑇raj2, respectively. The DTW distance 

between 𝑇raj1 and 𝑇raj2 can be calculated using Equation (5), where dist(p, q) refers to the 

Euclidean distance between trajectory points p and q. The Rest(𝑇raj1) and Rest(𝑇raj2) terms indicate 



the remaining trajectory segments of 𝑇raj1 and 𝑇raj2, respectively, after removing the first trajectory 

point. As illustrated in Fig. 4, the minimum distance between points on the trajectory sequence is 

calculated to determine the matching combination of trajectory points. During this process, certain 

trajectory points (such as q2 and p3) may be reused. Fig. 5 depicts the combination of all matching 

trajectory points in the form of a matrix. The shortest Euclidean distance matrix between each point 

of the two trajectory sequences is computed to determine the shortest matching path from the upper-

left corner to the lower-right corner of the matrix. The sum of the weights of the connections on the 

optimal path represents the DTW distance. 
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Fig. 4 Schematic of DTW calculation. 

 

Fig. 5 Diagram of DTW time-warping distance. 

The calculation process of the DTW algorithm is as follows: 

1) For two trajectories with assumed lengths of n and m, they are represented as point 

sequences of 𝑇raj1=[p1, p2,..., pn] and 𝑇raj2=[q1, q2,..., qm], respectively. 
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2) An n × m distance matrix D is defined, where D(i, j) represents the distance between point 

pi and point qj. 

3) An n × m cumulative distance matrix C is initialized, where C(i, j) represents the minimum 

distance between the partial trajectories from point p1 to point pi and from point q1 to point qj. 

4) The first line of C and the first line D are initialized, such that C(1,1) = D(1,1), C(i, 1) = ∞, 

and C(1, j) = ∞, where the range of i is [2, n] and the range of j is [2, m]. 

5) In i∈[2, n], j∈[2, m], the value of C(i, j) is calculated. Among them, D(i, j) represents the 

distance between point pi and point qj, whereas min{C(i−1, j), C(i, j−1), C(i−1, j−1)} represents the 

minimum value of three adjacent cells. 

6) The final DTW distance is C(n, m). 

Because ship AIS data contains dynamic trajectory information, including position, course, and 

speed, and considering that the course and speed in the trajectory information will also have a certain 

impact on ship trajectory similarity, the AIS data is expanded to include position, speed, and course. 

This expansion is achieved by using a feature vector expansion method, which extends the feature 

vectors of trajectory points from two-dimensional vectors (longitude and latitude) to four-

dimensional vectors (longitude, latitude, course, and speed). This comprehensive consideration of 

similarity allows for a more accurate calculation of distances between trajectory points. Assuming 

XT represents the ship's navigation characteristic data at time T, the expanded feature matrix can be 

expressed as follows: 

 =[ , , , ]T t t t tX x y s c  (6) 

Each row of the expanded feature matrix represents the feature vector of a trajectory point, 

where xt and yt represent the longitude and latitude, respectively. st indicates the speed, and ct 

indicates the course. DBSCAN is a density-based clustering algorithm that automatically discovers 

clusters of any shape in data and identifies noise points. In this study, the improved DTW distance 

algorithm is utilized as a replacement for the ε-field in DBSCAN clustering. 

2.3. Ship trajectory prediction and anomaly detection 

A ship trajectory prediction model based on the transformer architecture is developed using the 

normal trajectory model obtained from DBSCAN clustering as the foundation for data. 

Simultaneously, the criteria for trajectory anomaly detection are translated into feature deviation 

values, encompassing position, speed, and course. Real-time ship trajectory anomalies are detected 

by assessing the predictability of normal trajectories and the unpredictability of abnormal 

trajectories. 

2.3.1 Transformer model 

The proposed transformer model in this study incorporates several key components, including 

position coding, a multihead attention mechanism, residual connections, and normalization (Zhang 

et al, 2023). 

(1) Position coding 

The transformer architecture, being a parallel input model that lacks the sequential iteration 

advantage of RNN structures, necessitates the introduction of position coding to incorporate 

positional information. The input position information is expressed as follows: 
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where pos is the position of sample, dmodel is the total latitude of the input feature, i is the latitude 

label of the input feature, and the value range of i∈[0, dmodel/2]. 

(2) Multihead attention mechanism 

The main component of the transformer model is built using a multihead attention mechanism, 

which comprises the self-attention mechanism. The self-attention mechanism operates on input 

sequences by attending to different positions within the same sequence. In Fig. 6, the self-attention 

mechanism is exemplified using a2. In this mechanism, three parameters are generated: q, k, and v. 

For each q, calculations are performed with k from a1, a3, and a4 to produce attention scores. These 

scores are multiplied by their respective input v, resulting in four extracted vectors. These vectors 

are then added together to obtain the output, b2, produced by the self-attention model for a2. 

 

Fig. 6 Diagram of b2 calculation. 
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The attention score matrix (Fig. 7) composed of α is calculated using Q and K. Subsequently, 

the final output matrix of attention layer comprising b is calculated using V and the attention score 

matrix. The output result is recorded as Attention(Q, K, V): 
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where Q is the query matrix, K is the key matrix, V is the value matrix, and X is the input matrix; W, 

Q, K, and V are linear transformation weight matrices, and softmax is used to calculate the weight. 

dk is the dimension of input data. 



 

Fig. 7 Calculation process of attention score. 

The calculation of the sub-attention mechanism involves applying linear transformations to the 

K, Q, and V matrices. These linear transformations serve to capture different aspects of the input 

and enable the model to focus on multiple levels of information. After each self-attention operation, 

the outputs from multiple attention heads are spliced together to form the final output. This allows 

the model to integrate information and enhance its overall performance. The multiple-head attention 

mechanism, denoted as MultiHeads, can be represented as follows: 

 1( , , ) ( , , ) o

hMultiHeads Q K V Concat head head W=   (11) 

 ( , , )Q K V

i i i ihead Attention QW KW VW=  (12) 

where 
Q

iW , 
K

iW , and 
V

iW  are the linear transformation weight matrices of the i-th head of Q, 

K, and V, respectively, and Wo is the linear transformation weight matrix after the multihead 

attention matrix is concatenated, Concat is a feature concatenation function. 

(3) Residual connection 

The submodule of the transformer model primarily consists of a multihead attention 

mechanism layer and a feedforward layer. Between these layers and the input layer, as well as 

between the attention layer and the feedforward layer, there exist residual connections and data 

normalization. Residual connections allow for the connection of input and output data, addressing 

the issues of gradient vanishing and weight matrix degradation. The dimensions of the input and 

output data from the attention layer are consistent, facilitating the residual connection. The residual 

connection formula for the multihead attention mechanism (H) and the residual connection formula 

of feedforward (H’) are as follows: 

 ( , , )inputH X Attention Q K V = +  (13) 

 ( )H H Feedforward H = +  (14) 

where Xinput is input sequence. 

2.3.2 Ship trajectory prediction model based on Transformer model 

In order to detect ship trajectory anomalies and construct a transformer model for predicting 

ship trajectory data, a threshold-based detection method is proposed. The approach involves 

defining trajectory clusters obtained through clustering as normalized ship motion trajectories 

within a selected water area. These trajectories are then used as training data to train the constructed 



transformer model, enabling the transformer to learn the normal ship motion trajectory model and 

predict future trajectory points using the historical trajectory point data of the target ship. The 

transformer network, composed of attention mechanisms, features excellent parallel capability and 

omits the processing steps of previous historical experience. The specific process steps are 

illustrated in Fig. 8 and can be summarized as follows: 

(1) Dataset construction: The dataset consists of ship trajectory data following clustering 

analysis. Trajectories that can participate in clustering are selected as normalized motion trajectories 

within the specified area to establish the dataset. The dataset is divided into a training set and a test 

set, with an 8:2 ratio based on the ship's MMSI number. Each ship's trajectory data includes 

longitude, latitude, speed, and course, and a single trajectory's feature value at time t is denoted as 

Xt = [xt, yt, st, ct]. 

(2) Data formatting: To simplify the data, the time interval between trajectory data points is 

adjusted to 1 min and the data is normalized. The deviation standardization method is employed for 

normalization, and the transformer model is used to normalize the data obtained from ship trajectory 

feature prediction. The standardization formula for deviation is as follows: 

 * X Min
X

Max Min

−
=

−
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where Max and Min are the maximum value and minimum value in the sample data, respectively. X 

is the original training data, and X* is the normalized data. 

 

Fig. 8 Trajectory prediction process based on Transformer model. 

(3) Step size and output: In order to achieve multivariate prediction with the transformer model, 

the original data is first transformed into a supervised learning dataset. The dataset is then converted 

into trajectory feature data {Xt, Xt+1,..., Xt+n} to serve as the input for the transformer model. Herein, 



the input consists of the trajectory feature values of 10 consecutive time points, whereas the output 

corresponds to the trajectory feature values of the 11th time point. This setup allows the model to 

be trained on the input–output pairs and predict future ship trajectories. 

When constructing the transformer model, the original encoder and decoder of the transformer 

is not used, and the decoder is replaced with a fully connected layer. The general process for 

prediction is as follows: 

1) Input encoding: The input sequence is passed through an encoder, generating a series of 

encoding vectors. Each encoding vector encapsulates a portion of information from the input 

sequence. 

2) Initialization of the output: A special starting symbol is added to the output sequence, and it 

is converted into a vector representation using an embedding layer. This vector serves as the output 

for the first time step. 

3) Prediction of the output sequence: Starting from the first time step, the output vector and the 

encoding vector from the current time step are fed into the fully connected layer. The fully connected 

layer processes these vectors and generates the output vector for the next time step. This process is 

repeated until the length of the output sequence reaches the specified maximum value or the model 

produces a special ending symbol. 

4) Generation of final prediction: Each output vector in the output sequence is converted into 

corresponding markers to obtain the predicted output sequence. 

3. Experiment and discussion 

The source of the data come provided by a professional data manufacturer of China (The time 

coverage is from January to June in 2022), and the format of data is shown in Table 1. The focus of 

this study is the sea area near the Port of Yantai in China. To facilitate the study, AIS data from a 

rectangular water area within the Yantai sea area was extracted. The latitude and longitude ranges 

selected for this area are as follows: (121.37°–121.53°E), (37.53°–37.67°N). The extracted AIS data 

represents the original trajectory map within this specified water area. Fig. 9 displays the extracted 

original trajectory map, providing a visual representation of the ship trajectories observed in the 

study area. 

 

Fig. 9 Schematic of the original trajectory in the region. 

Table 1 Sample table of partial ship trajectory data 



Time MMSI longitude（°） latitude（°） speed（kn） course（°） 

6/11 16:01 413556760 121.390627 37.566217 8.1 82.3 

6/11 16:01 413301080 121.430653 37.654277 9.8 347.3 

6/11 16:01 636017220 121.401017 37.591267 9.9 172 

6/11 16:01 413020510 121.442738 37.587440 9.2 222.1 

6/11 16:01 414760000 121.441682 37.587040 9.3 224.8 

6/11 16:01 413556760 121.391107 37.566290 8.1 81.3 

6/11 16:01 413020510 121.442338 37.587088 9.2 222.1 

6/11 16:01 413020540 121.439147 37.581850 4.1 16.4 

6/11 16:01 414760000 121.441253 37.586712 9.3 226.4 

 

3.1 AIS data acquisition and preprocessing 

To address information errors in AIS data, this research utilizes interpolation and sub-trajectory 

partitioning methods to handle cases of missing speed, course, and trajectory points. Speed and 

course errors are directly supplemented using interpolation. However, for cases of missing trajectory 

points, it is necessary to distinguish between trajectory drift and trajectory point missing. Although 

the reasons for these abnormalities are similar, the difference lies in the duration of missing 

trajectory points. To differentiate between them, a clear threshold of 10 min is employed. If the time 

interval between adjacent points in a ship's trajectory with the same MMSI is less than 10 min, 

interpolation is used to supplement the missing points. However, if the interval exceeds 10 min, the 

trajectory is divided into two different sub-trajectories. It should be noted that sub-trajectory division 

may result in some sub-trajectories containing only single points or a small number of trajectory 

points. As these sub-trajectories do not effectively reflect the motion characteristics of the ship, only 

ship motion trajectories containing more than 100 data points are considered for further analysis in 

this research. The flowchart illustrating the process of sub-trajectory division is presented in Fig. 10, 

and Fig. 11 displays the trajectory image after the data cleaning procedure. 
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Fig. 10 Flowchart of sub-trajectory division. 

 

Fig. 11 Trajectory after data cleaning. 

To demonstrate the effect of MDL trajectory compression, two ships with MMSI 997760305 

and 413556260 were selected for compression. A comparison between the uncompressed and 

compressed trajectories of these ships is depicted in Fig. 12 and 13, respectively. 
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Fig. 12 Comparison between uncompressed and compressed trajectory of MMSI 997760305. 
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Fig. 13 Comparison between uncompressed and compressed trajectory of MMSI 413556260. 

Furthermore, after applying the MDL criterion to extract feature points and compress all ship 

trajectories in the sea area, the overall results are presented in Fig. 14. Both individual trajectory 

data and the entire region's ship trajectory data exhibit a simplified and adjusted representation, 

while preserving the original characteristics of the ship trajectories. 



 

Fig. 14 Schematic of trajectory after MDL criterion in Yantai Port. 

3.2 Ship clustering analysis 

In terms of measuring trajectory similarity, the Frechet distance, DTW distance, fast DTW 

distance (Bai et al., 2023), and the improved DTW distance algorithm (after expanding trajectory 

similarity) are employed. Using ship trajectory data from the Port of Yantai, the DBSCAN density 

clustering algorithm is utilized for clustering. 

 

Fig. 15 Diagram of the clustering effect based on Frechet distance. 



 

Fig. 16 Diagram of clustering effect based on DTW distance. 

 

Fig. 17 Schematic based on improved fast DTW distance. 



 

Fig. 18 Schematic based on improved DTW distance. 

 

Table 2 Clustering number of different distance formulas 

Distance similarity formula Clustering number 

Frechet distance 11 

DTW 12 

Fast DTW 12 

Improved DTW 13 

 

 

Fig. 19 Main shipping trajectory in the region. 

The DBSCAN algorithm was employed to cluster ship trajectories based on the four trajectory 

similarity measurement methods. Each trajectory segment was considered as a core, and 

surrounding objects were traversed to obtain trajectory class clusters. The resulting clustering is 

depicted in the graph, where each color represents a different type of trajectory cluster. The 

clustering effect based on the four trajectory similarity measurement methods was evaluated, and 

the optimal clustering effect is observed. An analysis of the ship trajectories within the selected 



range revealed a total of 15 main ship navigation trajectories in the area (as shown in Fig. 19). Table 

2 provides a summary of the clustering results using the DBSCAN algorithm based on different 

similarity measurement methods. The proposed improved DTW distance yielded 13 clusters of ship 

trajectories near the Port of Yantai, closely aligning with the primary ship movement patterns. The 

DBSCAN algorithm based on the Frechet distance function resulted in 11 clusters. Both fast DTW 

and DTW yielded 12 clusters of ship trajectories near Yantai Port, mainly because the purpose of 

fast DTW was to reduce overfitting and improve computing speed. It can be observed that the DTW 

distance-based clustering outperformed the Frechet distance-based clustering within the research 

sea area. The DBSCAN algorithm utilizing the improved DTW distance effectively clustered ship 

trajectories into different clusters based on the shape characteristics of the trajectory space and the 

position characteristics of the start and end points. This improved accuracy in clustering algorithms 

is particularly valuable in areas with cross routes and high traffic intensity. The experiment 

demonstrated the accuracy and effectiveness of the ship normal trajectory model established using 

this method. 

3.3 Abnormal detection of ship trajectory 

The primary ship trajectory features include position, speed, and course, play a crucial role in 

detecting abnormal ship trajectories. The evaluation of deviation values in these features allows for 

the detection of trajectories that deviate from the normal trajectory model. 

The position of a ship serves as the most intuitive indicator of its trajectory status and is the 

most important evaluation factor in detecting abnormal ship behavior. The detection process 

involves ascertaining abnormalities in the behavior of the ship’s position; in the presence of such 

abnormalities, the ship’s course and speed are further examined for abnormalities. The abnormality 

with respect to the position of a ship is determined based on the AIS data transmitted by the ship by 

comparing the ship’s position with the predicted position and evaluating the distance deviation. 

Considering various factors such as meteorological and sea conditions, ship maneuverability, and 

collision avoidance behavior, it is challenging for ships to precisely adhere to their intended route 

while sailing at sea. Consequently, two deviation warning thresholds have been established during 

the detection of positional abnormalities: a low threshold of 150 m and a high threshold of 250 m. 

Abnormal situations surpassing the high threshold trigger an alert. As depicted in Fig. 20, the target 

ship’s trajectory is predicted using its current and historical trajectory points. Assuming that the next 

trajectory point after X3 is X4, two warning circles are defined based on the predicted point X4. 

Point X5 lies outside the warning circle due to abnormal ship course, while the abnormality of point 

X6 can be attributed to abnormal speed. According to this study, if we set the abnormal threshold 

for speed and course at 0.03 times of the predicted speed of 10 kn, then a normal trajectory would 

fall within the range of 9.7–10.3 kn for the actual speed. 



 

Fig. 20 Schematic of abnormal trajectory. 

The flowchart illustrating the process of ship trajectory anomaly detection is presented in Fig. 

21. By combining the historical trajectory of the ship with the transform model trained based on 

historical ship trajectories within the region to obtain the predicted trajectory of the target ship, the 

position of a ship trajectory status is detected for abnormal ship behavior, in the presence of such 

abnormalities, the ship’s course and speed are further examined for abnormalities. To evaluate the 

effectiveness of the experiment, two abnormal trajectories featuring abnormal steering and 

acceleration are selected. Fig. 22 and 23 depict the instances of abnormal steering and abnormal 

acceleration during ship sailing. 

 

Fig. 21 Anomaly detection process of ship trajectory. 



 

Fig. 22 Schematic of abnormal steering trajectory (trajectory 1#). 

 

Fig. 23 Schematic of abnormal acceleration trajectory (trajectory 2#). 

Fig. 24 illustrates the detected abnormal trajectory points during abnormal ship turning, which 

are marked with yellow circles as warning indicators. To assess the effectiveness of the detection, 

the differences between the real trajectory and the predicted trajectory are displayed in Fig. 25, 26, 

and 27. In Table 3, it can be observed that four abnormal trajectory points are successfully detected 

during the abnormal ship turning. However, according to the set course anomaly threshold, 

trajectory number 15 should also be detected as abnormal (assuming the starting point of the input 

trajectory is identified as 0 in the anomaly detection); however, it is not detected. 
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Fig. 24 Abnormal detection diagram of ship steering. 

 

Fig. 25 Schematic of the distance difference between the real trajectory and the predicted 

trajectory of ship steering. 

 

Fig. 26 Schematic of the course difference between the real trajectory and the predicted 

trajectory of ship steering. 
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Fig. 27 Schematic of the speed difference between the real trajectory and the predicted 

trajectory of ship steering. 

 

Table 3 Detection results when the ship turns abnormally. 

The serial number of the 

trajectory 

Distance difference from 

predicted position 
Course Speed Detection result 

12 373.54 214.96 16.9 Warning 

13 230.06 202.91 16.1 Warning 

14 315.80 189.32 15.2 Warning 

15 133.54 190.83 14.8 No warning 

17 255.25 202.09 14.4 Warning 

To analyze the second trajectory with the acceleration anomaly, the proposed anomaly 

detection method from this research is employed, resulting in the outcomes displayed in Fig. 28 to 

31. Fig. 28 demonstrates the detection of abnormal trajectory points—marked with yellow circles—

as a warning for abnormal ship acceleration. In order to assess the effectiveness of the detection, 

three discrepancies between the real trajectory and the predicted trajectory are presented in Fig. 29, 

30, and 31. Table 4 illustrates that five abnormal trajectory points are successfully detected during 

the abnormal ship turning. However, the speed anomaly with a serial number of 34 is not detected, 

even though it exhibits abnormal behavior. 
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Fig. 28 Abnormal detection diagram of ship acceleration. 
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Fig. 29 Schematic of the distance difference between the real trajectory and the predicted 

trajectory of ship acceleration. 

 
Fig. 30 Schematic of the course difference between the real trajectory and the predicted 

trajectory of ship acceleration. 

 
Fig. 31 Schematic of the speed difference between the real trajectory and the predicted 

trajectory of ship acceleration. 

 

Table 4 Detection results when the ship accelerates abnormally. 

The serial 

number of the 

trajectory 

Distance difference 

from predicted 

position 

Course Speed Detection result 
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29 207.42 35.5 11.1 Warning 

30 264.08 41.5 13.3 Warning 

31 157.08 44.1 14.6 Warning 

32 164.09 43.8 15.6 Warning 

33 157.00 51.1 14.9 Warning 

34 110.06 50.9 13.3 No warning 

The detection accuracy of the ship trajectory anomaly detection model based on transformer 

prediction can be calculated using the formula: DR = 1 − (N/M × 100%), where M represents the 

total number of abnormal trajectory points and N represents the number of undetected abnormal 

trajectory points in the anomaly detection results. For ship steering anomaly trajectories, the 

detection accuracy is determined to be 80%, indicating that 80% of the abnormal trajectory points 

were correctly identified by the model. Similarly, for ship acceleration anomaly trajectories, the 

detection accuracy is 83.3%, indicating that 83.3% of the abnormal trajectory points were accurately 

detected by the model. These high accuracy rates within the water area demonstrate the effectiveness 

of the model in assisting maritime safety administrations in identifying abnormal ship behavior. 

For the above two test trajectories, the proposed method is used to predict the ship trajectory 

compared with the traditional LSTM network, and the detailed results of trajectory prediction are 

shown in Table 5 and Table 6 respectively. It can be seen that the proposed method has the better 

predictive performance (i.e., the minor error) in two test trajectories on three evaluation indexes 

(position, course and speed). Among the 6 results of trajectory 1# adopting proposed method, the 

Mean error and Maximum error value has increased by 14.05%, 24.84%, 51.04%, 13.1%, 52.78% 

and 5.9% in position, course and speed, respectively. Similarity, for trajectory 2#, the Mean error 

and Maximum error value has increased by 15.62%, 32.2%, 30.38%, 18.21%, 61.3% and 4.48% in 

position, course and speed, respectively. 

Table 5 Prediction error based on transformer model 

Trajectory 

features 

trajectory 1# trajectory 2# 

Mean error Maximum error Mean error Maximum error 

Position 112.56 373.54 89.7 264.08 

Course 2.11 12.34 0.55 2.47 

Speed 0.34 3.2 0.41 3.2 

 

Table 6 Prediction error based on LSTM model 

Trajectory 

features 

trajectory 1# trajectory 2# 

Mean error Maximum error Mean error Maximum error 

Position 130.96 497.0 106.3 389.45 

Course 4.31 14.2 0.79 3.02 

Speed 0.72 3.4 1.06 3.35 

 

4. Conclusion 

In this research, a ship trajectory anomaly detection model is developed, taking into account 

the characteristics of AIS trajectory data in maritime traffic research. The proposed model includes 

an improved DTW algorithm that considers local trend characteristics and ship motion information, 

enhancing the accuracy of trajectory similarity measurement. Additionally, a transformer trajectory 

prediction model is constructed, incorporating a threshold-based anomaly detection method. The 



transformer model is trained using normalized motion trajectories obtained through DBSCAN 

cluster analysis, enabling it to predict ship trajectories based on historical data. The effectiveness of 

the proposed method is demonstrated through AIS data from the Port of Yantai, highlighting its high 

accuracy in detecting abnormal ship trajectories. Future research endeavors may involve considering 

the impact of meteorological environments, as such information can influence ship clustering and 

anomaly analysis. In addition, enhancing the adaptability of method parameters is one of the 

important research interests in the future. 
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