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Abstract
Imputing missing values in imbalanced datasets remains an open challenge. Most methods assume data are missing at random
or follow a standard distribution, lacking robustness for complex real-world data. Electronic health records exhibit severe
class imbalance with non-random missingness, hindering model performance. We propose 𝑀3-BRITS for greater scalability
and flexibility, modeling temporal and cross-feature correlations to impute missing data, by optimizing sample similarity with
deep metric learning for self-supervised learning. Evaluating imputation alone avoids reduced diversity and model bias from
joint downstream tasks. Our model achieves superior performance to all baseline methods on four real-world datasets. This
shows promise for increasing model scalability and flexibility to handle complex real-world data.
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1. Introduction
The development of successful machine learning models,
leveraging data procured from Electronic Health Records
(EHRs), necessitates confronting the prevalent issue of
data missingness inherent in this extensive information
repository. Nevertheless, the assorted data types encap-
sulated within EHRs are gathered at variable time inter-
vals, mirroring both clinical and administrative decisions
enacted by healthcare practitioners to bolster patient
care. Consequently, the data amalgamates both static
and irregularly-sampled temporal data. For instance, vi-
tal signs like heart rate are often subject to regular mon-
itoring, while the recording of white blood cell (WBC)
count is not universally consistent across patients. This
is primarily because it is infrequently ordered for clin-
ically stable patients who are minimally suspected of
harbouring an infection [1].
The complex phenomenon of missingness in EHRs

poses significant challenges to imputation algorithms.
Beyond the high rates of missing data, over 50% of EHR
information is missing non-randomly [2, 3], making the
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volume of available training data for a specific outcome
of interest typically sparse, irrespective of the task in
question. This availability is greatly influenced by the
accuracy of class labels.
To elucidate, consider a predictive system for in-

hospital cardiac arrests, which necessitates training on
patient records that ultimately result in a cardiac arrest.
The incidence of cardiac arrest is estimated to be as low
as 2.3% of intensive care unit admissions [4], thereby
designating the target population as a minority, with sig-
nificantly less training data available compared to the
majority class (patients without a cardiac arrest).
Similarly, the clinical manifestations of patients diag-

nosed with the same disease can vary substantially [5],
rendering the population of interest (those with a specific
clinical presentation) a minority within any patient set.
As such, class imbalance is intrinsic to tasks focused on
EHRs [6], and each target group exhibits unique missing
data patterns that reflect the divergences of groups and
individuals from the standard distributions of measured
variables.

These divergences carry profound clinical implications
that must be considered to preserve the integrity of the
imputed data as well as the associated task [7]. Conse-
quently, the analysis and treatment of missingness in
EHRs require meticulous attention to ensure accurate
and meaningful machine learning model development.
The aforementioned complexities are well-

documented in retrospective studies evaluating
long-term missingness patterns in multi-center medical
data. In these analyses, significant variation was
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observed across tasks, variables, and time [3]. Such
sophisticated attributes undoubtedly constrain the appli-
cability of traditional statistical and machine learning
imputation methods [8, 9]. These methods typically
make strong assumptions about the data’s originating
distributions, markedly limiting the generalizability of
imputation algorithms.
Deep learning (DL) models, encompassing convo-

lutional neural networks (CNN) [10], recurrent neu-
ral networks (RNN) [11], and multi-layer perceptions
(MLP) [12], have demonstrated success in estimating
non-randomly missing values in temporal medical data.
Notwithstanding, in all successful imputations, the net-
work components (either recurrent or convolutional)
were trained in tandem with the classification/regres-
sion component [13]. Consequently, the imputation task
has been intimately linked with the downstream task,
making it challenging to determine the imputer’s contri-
bution to the predictor’s final performance.
Our study aims to address these gaps in managing

missing data in Electronic Health Records (EHRs) by ex-
tending the RNN model BRITS [13]. BRITS captures non-
randommissingness patterns both historically and across
features. We restructure imputation as a scalable, self-
supervised learning task using multiple masking metric
learning. This approach helps overcome issues related to
skewed distributions while enabling scalability for com-
plex EHR data imputation, accommodating non-random
missingness, mixed data types, and uneven sampling.

Our model, 𝑀3-BRITS, employs BRITS as a backbone
and adaptively learns properties intrinsic to clinical time-
series data through self-supervised deep metric learning.
𝑀3-BRITS surpasses all existing imputation methods,
including BRITS, in realistic complex scenarios.

2. Related Work
Efforts to impute multivariate time series data have re-
sulted in numerous strategies. Among these, the GRUD
model [14] incorporates temporal decay for missing
data imputation, and its extensions, MRNN [15] and
BRITS [13], capture temporal dynamics and missingness
patterns across multiple features utilizing bidirectional
RNNs. However, the MRNN model’s limitation lies in
treating imputed values as constants without sufficient
updates during iterations. In contrast, BRITS, free from
specific data assumptions, has exhibited superior perfor-
mance across domains, indicating a need for enhanced
approaches such as ours.
Existing temporal imputation methods struggle in

managing class imbalances and disparate missingness
distributions, often evident in clinical data [16, 17]. Strate-
gies such as resampling [18], cost-sensitive [19], and en-
semble learning [20] are deployed to address class imbal-

ance, yet they inadequately handle uneven missingness
distributions. This inadequacy leads us to consider deep
metric learning [21], which enables intrinsic distribution
recalibration via sample distance learning.

Deep metric learning, necessitating indications of simi-
larity or dissimilarity, has shown success in handling com-
plex data types and structures, as demonstrated by Me-
LIM [22] and DECADE [23]. Unlike traditional deep clas-
sification methods, this approach doesn’t require class
balance within a minibatch, offering a promising solution
to data imputation challenges.
Models such as GRUU [24], V-RIN [25], and BRITS

illustrate the simultaneous execution of imputation and
downstream tasks within a single neural network, al-
though the results are not consistently satisfactory. We
argue that this integration might introduce model bias
due to potential divergence in classification and impu-
tation focuses. Consequently, our study concentrates
solely on the imputation process, aiming to minimize
such biases and enhance data restoration efficiency.

3. Terminology and Background
For a temporal interval observed over 𝑇 discrete time-
steps, we represent a multivariate time series as a matrix
𝑋 = {𝑥1, 𝑥2, ..., 𝑥𝑇}, composed of 𝑇 observations. Each ob-
servation, denoted by 𝑥𝑡 ∈ ℝ𝐷, is a vector of 𝐷 features.
These features encapsulate various modalities, namely
numerical (𝐷𝑛𝑢𝑚), categorical (𝐷𝑐𝑎𝑡), static (𝐷𝑠𝑡𝑎), and dy-
namic (𝐷𝑑𝑦𝑛) variables. It is crucial to note that ℝ𝐷 is
heterogeneous, encompassing structured data types that
extend beyond purely numerical features. This configu-
ration allows for a comprehensive representation of the
diverse data elements inherent in complex multivariate
time series.

Information related to missing values is encapsulated
within two derived matrices (see Fig. 1). The mask ma-
trix 𝑀 ∈ ℝ𝑇×𝐷 indicates whether each element of 𝑋 is
observed or missing:

𝑚𝑑
𝑡 = {

0, if 𝑥𝑑𝑡 is missing
1, otherwise

(1)

Additionally, given that the time elapsed between con-
secutive observations can vary across the interval, we
denote the time gaps at each time step 𝑡 as 𝛿𝑡. For features
observed over time steps, 𝛿𝑇 represents the gap between
the current time step (e.g., 𝑠𝑡) and the last observed value.
Given the potential for non-uniform sampling across fea-
tures in the data 𝑋, there is a corresponding variability
in 𝛿𝑡. The 𝛿 ∈ ℝ𝑁×𝐷 encodes the time gap between two
successive observed values for each feature 𝑑, providing
an additional indicator of temporal context to the dataset.



Figure 1: An example of multivariate time-series. 𝑥1−5: obser-
vations in time steps 𝑡1, ..., 𝑡5 with corresponding time-stamps
𝑠1−5 = 0, 4, 5, 7, 9. Feature 𝑑2 was missing during 𝑡2−4, the last
observation took place at 𝑠1. Hence, 𝛿25 = 𝑡5 − 𝑡1 = 9 − 0 = 9.

The definition of this indicator follows:

𝛿𝑑𝑡 =
⎧

⎨
⎩

𝑠𝑡 − 𝑠𝑡−1 + 𝛿𝑑𝑡−1 if 𝑡 > 1, 𝑚𝑑
𝑡 = 0

𝑠𝑡 − 𝑠𝑡−1 if 𝑡 > 1, 𝑚𝑑
𝑡 = 1

0 if 𝑡 = 1
(2)

3.1. Overview of the BRITS Backbone
Our work extends BRITS’s assumptions, emphasizing
temporal and feature correlations embodied in 𝑋. BRITS
architecture, combining a fully-connected regression
module and a recurrent component, applies temporal
decay (Eq. (3)) and a decay factor to handle temporal cor-
relations and adjust influence based on temporal distance.
Missing values within an observation 𝑥𝑡 are managed via
a historical representation �̂�𝑡 and a masking vector 𝑚𝑡,
producing a complement vector 𝑥ℎ𝑐𝑡 that accounts for
missingness patterns (Eq. (3)-(6)).

𝛾𝑡ℎ = exp (−max(0, 𝑊𝛾ℎ𝛿𝑡 + 𝑏𝛾ℎ)) (3)

ℎ̂𝑡−1 = ℎ𝑡−1 ⊙ 𝛾𝑡ℎ (4)

�̂�𝑡 = 𝑊𝑥ℎ̂𝑡−1 + 𝑏𝑥 (5)

𝑥ℎ𝑐𝑡 = 𝑚𝑡 ⊙ 𝑥𝑡 + (1 − 𝑚𝑡) ⊙ �̂�𝑡 (6)

BRITS explores intra-observation correlations through
a fully-connected layer, generating 𝑥𝑓 𝑐𝑡 , a feature-wise
approximation of missing values (Eq. (7)). The concept
of decay extends to feature space, resulting in a learn-
able factor, ̂𝛽 𝑡, considering both temporal decay and the
masking vector (Eq. (8)-(9)). This integration produces
the imputed matrix 𝐶𝑡, effectively combining observed
and imputed data (Eq. (10)-(11)).

𝑥𝑓 𝑐𝑡 = 𝑊𝑧𝑥ℎ𝑐𝑡 + 𝑏𝑧 (7)

𝛾𝑡𝑓 = exp (−max(0, 𝑊𝛾𝑓𝛿𝑡 + 𝑏𝛾𝑓)) (8)

̂𝛽𝑡 = 𝜎(𝑊𝛽[𝛾𝑡𝑓 ∘ 𝑚𝑡] + 𝑏𝛽) (9)

𝑥 𝑐𝑡 = 𝛽𝑡 ⊙ 𝑥𝑓 𝑐𝑡 + (1 − 𝛽𝑡) ⊙ 𝑥ℎ𝑐𝑡 (10)

𝐶𝑡 = 𝑚𝑡 ⊙ 𝑥𝑡 + (1 − 𝑚𝑡) ⊙ 𝑥 𝑐𝑡 (11)

ℎ𝑡 = 𝜎(𝑊𝑡ℎ̂𝑡−1 + 𝑈ℎ[𝐶𝑡 ∘ 𝑚𝑡] + 𝑏ℎ) (12)

𝐶∗𝑡 =
𝐶𝑡𝐹 + 𝐶𝑡𝐵

𝑇

2
(13)

The final step (Eq. (12)) updates the hidden state via Re-
current Neural Networks (RNNs), leveraging various in-
dicators to learn functions of past observations. The bidi-
rectional recurrent dynamics approach integrates back-
ward information to tackle slow convergence, providing
paired outputs 𝐶𝑡𝐹 , ; 𝐶𝑡𝐵 and ℎ𝑡𝐹 , ; ℎ𝑡𝐵 (Eq. (13)).

In essence, BRITS exploits temporal and feature corre-
lations in multivariate time series data, employing decay
factors, a regression module, and a bidirectional RNN for
imputing missing values. The final hidden states are up-
dated using imputations and corresponding masks, with
the integrated processes visualized in Figure 2.

Figure 2: The backbone processes of BRITS

4. Methodology
We introduce the two components that facilitate scalable
and flexible imputation through the use of 𝑀3-BRITS, as
illustrated in Figure 3. In real-world temporal data, the de-
gree of heterogeneity varies across different domains. For
instance, healthcare data often demonstrate significant
class imbalance. Furthermore, the time-varying statistics
of various types of data present substantial challenges
for interpretation within a single location, a complexity
that amplifies when extended to multiple locations. This
makes the incorporation of all relevant prior knowledge
into the analytical model impractical. Traditional metric
learning techniques [26, 27] are designed to construct
task-specific distance metrics from data automatically.
To navigate this complexity, we extend the base model
by applying Self-Supervised Deep Metric Learning to
diminish task bias while facilitating the exploration of
individual properties.

Enhancing Self-Supervised Learning Performance
in Imbalanced Datasets The key advantage of self-
supervised learning is its inherent ability to handle im-
balanced datasets. By exploiting its capacity to learn
representative features from a vast corpus of unlabeled
data, self-supervised learning can effectively engage with
underrepresented classes that might otherwise remain
underexplored [28, 29]. By employing repeated masking



Figure 3: The structure of the proposed methods.

and generating a diverse array of examples, themodel can
discern valuable features distributed throughout the en-
tire data, inclusive of those fromminority classes, thereby
enhancing the overall representational richness. This
strategy can yield considerable benefits, especially under
conditions where labeled data is either scarce or imbal-
anced. Furthermore, self-supervised learning can provide
assistance in alleviating issues associated with overfit-
ting, which are frequently encountered when models
are trained on imbalanced datasets. Notwithstanding
these advantages, challenges might emerge, including
the identification of suitable auxiliary tasks and the risk
of learning non-discriminative features [30].

Online Hard Triplets Mining The directionality of
representations, whether originating from single-layer
BRITS or our 𝑀3-BRITS model, is employed to guide the
construction of triplets. The dual directional indicators
double the mini-batch size. This strategy applies to both
labeled and unlabeled data, ensuring each triplet is bal-
anced with one positive and one negative sample pair.
However, this paper primarily focuses on labeled data in
an effort to address the imbalance problem. Specifically,
one representation is assigned as the anchor (denoted as
𝑅𝐴), and another randomly chosen representation from
the same group is defined as the positive sample (denoted
as 𝑅𝑃). Concurrently, representations from a different
group within the same mini-batch are classified as nega-
tive samples (denoted as 𝑅𝑁).

Incorporating Self-Attention for Optimal Represen-
tation Learning In order to optimally learn repre-
sentations in each direction, we employ a methodology

analogous to BERT [31]. We initially prepend a learn-
able embedding, the [CLS] token, to the hidden states
as delineated in Equation 14. Each transformer encoder
layer comprises two sublayers: (a) a multi-headed self-
attention mechanism (MSA, as defined in Equation 15),
and (b) a feed-forward network (FFN, as defined in Equa-
tion 16). Residual connections [32] are utilized around
each of the sublayers in both the MSA and the FFN, fol-
lowed by layer normalization (LN). The [CLS] embedding
serves as 𝑅𝐴, 𝑅𝑃, 𝑎𝑛𝑑𝑅𝑁.

ℎ̂ = [CLS; ℎ0; ℎ1; ...; ℎ𝑡] (14)

ℎ̂′ = LN(MSA(ℎ̂) + ℎ̂) (15)

ℎ̂∗ = LN(𝐹𝐹𝑁 (ℎ̂′) + ℎ̂′) (16)

𝑅𝐴, 𝑅𝑃 ∈ [𝑓𝑟(𝑓𝑆𝐴(𝐻𝑛𝐹)), 𝑓𝑟(𝑓𝑆𝐴(𝐻𝑛𝐵))] (17)

𝑅𝑁 ∈ [𝑓𝑟(𝑓𝑆𝐴(𝐻𝑚𝐹)), 𝑓𝑟𝑓𝑆𝐴(𝐻𝑚𝐵))], 𝑚 ≠ 𝑛

where the 𝐻𝑛𝐹 represents the forward hidden states of
sample 𝑛, 𝐻𝑛𝐵 for backward. Among the constructed
triplets, we select all triplets that violate the following
condition:

∥ 𝑅𝐴 − 𝑅𝑃 ∥2 +𝜆 < ∥ 𝑅𝐴 − 𝑅𝑁 ∥2 (18)

𝜆 is a pre-set margin, meaning we only consider samples
that are easily confused with the anchor sample by a
margin 𝜆.

Loss Function This study utilizes the state-of-the-
art Multi-Similarity loss (MS loss) objective function, a
renowned metric learning objective [33]. The MS loss
function prioritizes the significance of the samples by
exploring the similarities within positive pairs and be-
tween negative pairs. The pairs that are most informative



are often indistinguishable and hence contribute more
substantially during the training process.

ℒ = 1
∣ 𝐵 ∣

∑
𝑖∈𝐵

{ 1
𝛼
log[1 + ∑

𝑛∈𝒩𝑖

𝑒𝛼(S𝑖𝑛−𝜖)] (19)

+1
𝛽
log[1 + ∑

𝑝∈𝒫𝑖

𝑒𝛽(S𝑖𝑝−𝜖)]}

where 𝛼, 𝛽, 𝜖 are hyperparameters; 𝐵 denotes mini-batch
samples.

5. Experiments
In this section, we carefully assess and analyze the per-
formance of 𝑀3-BRITS by comparing it with state-of-
the-art models using four real-world datasets in the do-
mains of healthcare, environment, and traffic. The mod-
els against which 𝑀3-BRITS is compared include BRITS,
GRUD, V-RIN(full), and MRNN. For all experiments, only
the best model from each study is employed for com-
parison. While a comparison with the 𝐸2GAN model
would have been intriguing, especially considering that
[34] does not provide a quantitative comparison with
BRITS, its inclusion in our study was precluded due to
the obsolescence of the publicly-available code based on
TensorFlow 1.7 and Python 2.7, rendering it incompatible
with our accessible GPU hardware.

5.1. Datasets
The four datasets chosen for experimental evaluation
each exhibit distinctive data distributions, with the
MIMIC-III database particularly noted for its high rate
of missing data. In our replication of the benchmarking
studies for these publicly accessible datasets, we opted
to bypass any steps that involved the removal of all-NaN
samples to preserve the original missingness inherent in
the data.

5.2. Implementation Details
In this study, we utilized the Adam optimizer across all
models, with the number of RNN hidden units fixed at
108. The batch size was determined based on the specific
dataset; MIMIC-Mortality and Air Quality were allocated
a batch size of 128, while Traffic and MIMIC-Physionet
Challenge were assigned a batch size of 64. To promote
stable training, each dataset was normalized to have zero
mean and unit variance. Randomly, we selected 10% of
each dataset for validation and another 10% for testing,
training the models on the remaining data. For the im-
putation task, we randomly masked 10% of observations
in each dataset to serve as the ground truth, which was
used as validation data. A 5-fold cross-validation method

Table 1
The mean absolute error (MAE) and mean relative error (MRE)
for all datasets.

Models Metric Air MIMIC-III (89) Traffic PhysioNet

𝑀3-BRITS
MAE / 0.297±0.006 / 0.249±0.004
MRE / 0.462±0.005 / 0.351±0.008

𝑀2-BRITS MAE 0.106±0.002 0.301±0.013 0.065±0.006 0.252±0.003
MRE 0.145±0.002 0.466±0.011 0.236±0.016 0.354±0.003

𝑀-BRITS MAE / 0.302±0.005 / 0.257±0.005
MRE / 0.468±0.004 / 0.363±0.003

BRITS MAE 0.120±0.003 0.305±0.014 0.073±0.012 0.263±0.010
MRE 0.165±0.004 0.473±0.012 0.266±0.032 0.371±0.007

MRNN MAE 0.292±0.009 0.519±0.015 0.151±0.012 0.555±0.012
MRE 0.400±0.004 0.804±0.004 0.548±0.022 0.783±0.013

GRUD MAE 6.139±0.151 2.653±0.228 0.133±0.013 0.496±0.016
MRE 8.414±0.317 4.112±0.380 0.484±0.028 0.700±0.006

V-RIN-full
MAE 0.166±0.003 0.303±0.012 0.140±0.012 0.273±0.013
MRE 0.227±0.001 0.470±0.008 0.507±0.023 0.386±0.012

was implemented to evaluate the models. Imputation
performance was gauged using the Mean Absolute Error
(MAE) and Mean Relative Error (MRE). As for the Mul-
tiple Masking strategy, we restricted multiple masking
operations to the training set alone.

5.3. Experimental Results
In the conducted experiments, we utilized three vari-
ants of our BRITS model, namely 𝑀3-BRITS, 𝑀2-BRITS,
and 𝑀-BRITS. The 𝑀3-BRITS model represents Multi-
ple Masking Metric Learning. Similarly, the 𝑀2-BRITS
denotes Multiple Masking Learning, and the 𝑀-BRITS
variant only encompasses Metric Learning. These differ-
ent versions allowed us to evaluate the effectiveness and
contribution of each component in a variety of real-world
datasets.

Table 1 presents the Mean Absolute Error (MAE) and
Mean Relative Error (MRE) across all evaluated datasets.
In the MIMIC-III (89) dataset, our 𝑀3-BRITS model
achieved the lowest MAE of 0.297, surpassing the perfor-
mance of all other models. Similarly, for the PhysioNet
dataset, 𝑀3-BRITS consistently demonstrated superior
performance, with an MAE of 0.249. Regarding the un-
labeled Air Quality and Traffic datasets, 𝑀2-BRITS out-
performed the other models, achieving the lowest MAE
values of 0.106 and 0.065, respectively. This suggests
that models with better generalization across datasets
are likely to capture properties that are translatable to
various data types.

Considering the MRE, no single model significantly
outperformed the others across all datasets. However, it
is noteworthy that, for each dataset, the MREs of our pro-
posed 𝑀3-BRITS and 𝑀2-BRITS models were generally
equivalent to, or better than, those of the other compet-
ing models. Baseline models, namely MRNN, GRUD, and
V-RIN-full, did not outperform our proposed models in
terms of either MAE or MRE across all datasets. This
underlines the efficacy of the 𝑀3-BRITS and 𝑀2-BRITS
methodologies in processing these real-world datasets.



6. Discussion and Conclusions
We propose 𝑀3-BRITS, an innovative architecture that
incorporates deep metric learning into the BRITS model
for imputing missing values in multivariate time series
characterized by non-randommissingness. Our empirical
findings indicate that 𝑀3-BRITS delivers state-of-the-art
performance across various datasets in the realm of time
series imputation.

The𝑀3-BRITS model advances the BRITS architecture
by optimizing sample similarity through self-supervised
deep metric learning. This approach allows for circum-
venting prevalent issues such as class imbalance, thereby
averting the imposition of artificial data distribution. By
assessing imputation performance in isolation, as op-
posed to jointly with downstream tasks, 𝑀3-BRITS pre-
vents the diminution of diversity and model bias that can
emerge from varying data focuses.

The experimental results substantiate that 𝑀3-BRITS
outperforms all baseline models. These outcomes under-
score how augmenting an imputation model with deep
metric learning and self-supervised learning empowers
it to manage more intricate data with non-random miss-
ingness, an area where other techniques might falter.
The 𝑀3-BRITS model presents a promising prospect for
achieving superior scalability and flexibility to address
challenges encountered in real-world time series data.

In forthcoming research, we aspire to evaluate the per-
formance of𝑀3-BRITS on additional complex healthcare
datasets, particularly those typified by high missing rates,
class imbalance, and mixed variable types. We will also
explore potential enhancements to 𝑀3-BRITS, inclusive
of the incorporation of other self-supervised learning
methodologies.
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A. Datasets
Traffic Dataset. The Metro Interstate Traffic Volume
Data Set, presents the hourly volume of traffic on the in-
terstate highway I-94 in Minneapolis-St Paul, MN, USA.2

Air Quality Dataset. The Beijing Multi-Site Air-
Quality Data offers hourly records of air pollutants.3

MIMIC-III Dataset. The Medical Information Mart for
Intensive Care III (MIMIC-III) constitutes an extensive,
freely accessible database, encompassing over 40,000 crit-
ical care patients.4

PhysioNet Challenge 2012 Dataset. The Predicting
Mortality of ICU Patients: The PhysioNet/Computing in
Cardiology Challenge 2012 is a publicly available medical
benchmarking dataset.5

2https://archive.ics.uci.edu/ml/datasets/Metro+Interstate+Traf-
fic+Volume

3https://archive.ics.uci.edu/ml/datasets/Beijing+Multi-Site+Air-
Quality+Data#

4https://physionet.org/content/mimiciii/1.4/
5https://physionet.org/content/challenge-2012/1.0.0/
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