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Abstract
Recent research syntheses have identified several potentially high-leverage teaching 
strategies for improving low-attaining secondary school students’ learning of math-
ematics. These strategies include the structured use of representations and manipu-
latives and an emphasis on derived facts and estimation. This paper reports on 70 
semi-structured interviews conducted with low-attaining students in Years 9–10 
(ages 13–15) in England. The interviews addressed the students’ perceptions of 
learning mathematics and the teaching strategies that they experienced and believed 
were most helpful. Many students reported rarely using number lines, not spontane-
ously estimating answers and being unfamiliar with derived facts. During the inter-
views, with minimal direction, students often showed that they were well able to 
make use of these strategies; however, they did not report making spontaneous use 
of them independently. We conclude that many of the most well-evidenced and rec-
ommended strategies to support low-attaining students in mathematics appear to be 
unfamiliar and unvalued, and we discuss how this might be addressed.

Keywords Derived facts · Estimation · Low attainment · Manipulatives · 
Representations · Research-informed practice · Student perspectives

 * Colin Foster 
 c.foster@lboro.ac.uk

1 IOE, UCL’s Faculty of Education and Society, University College London, London, UK
2 Department of Mathematics Education, Loughborough University, Schofield Building, 

Loughborough LE11 3TU, UK
3 King’s College London, London, UK
4 University of Nottingham, Nottingham, UK

http://orcid.org/0000-0002-9196-4088
http://orcid.org/0000-0003-1648-7485
http://crossmark.crossref.org/dialog/?doi=10.1007/s10763-023-10420-8&domain=pdf


 J. Hodgen et al.

1 3

Introduction

Despite numerous attempts over recent decades to address the issue of low attainment in 
lower secondary school mathematics, it remains a serious and even growing problem (e.g. 
Hodgen et al., 2022; Marshall, 2013; Organization for Economic Co-operation and Devel-
opment [OECD], 2013; Shayer & Ginsburg, 2009). Low attainment has been a longstand-
ing concern of government policy in England (Foster 2022; Hodgen et al., 2022), particu-
larly because of the importance of mathematics to the economy, as well as to individuals 
(e.g. Layard et al., 2002; Vignoles et al., 2011). Since the 1970s, the percentage of very low-
attaining students at age 14 has approximately doubled, and this group now constitutes about 
one-sixth of the Year 9 (ages 13–14) cohort (Hodgen et al., 2010, 2012). These students 
have difficulty with questions based on concepts fundamental to the primary (i.e. elemen-
tary) school mathematics curriculum, and during the first 3 years of secondary school (ages 
11–14) the gap between the lowest- and highest-attaining students in mathematics increases.

Recent research syntheses (e.g. Hodgen et al., 2018) have identified several specific teach-
ing strategies that could be potentially high leverage for improving the learning of low-attain-
ing secondary school mathematics students, which have been communicated in a high-profile 
guidance report for teachers (Education Endowment Foundation, 2017). These ‘best bets’ 
include the structured use of representations and manipulatives (e.g. Carbonneau et al., 2013), 
derived facts (e.g. Dowker, 2009) and estimation (e.g. Dowker, 2015). The role of the teacher, 
and the particular teaching strategies that they choose to adopt, is always critical in enabling 
students to learn mathematics effectively (e.g. Ball et al., 2008; Watson et al., 2003), but this is 
especially so for lower-attaining students. While in recent years there seems to have emerged 
an increasing desire among schools and teachers to adopt evidence-informed practices in the 
classroom (e.g. Christodoulou, 2014; Willingham, 2010), what this might mean in practice, 
and how it is experienced by low-attaining students in mathematics, remains largely unknown.

In this paper, we report on 70 semi-structured interviews which we conducted with low-
attaining students in Years 9–10 (ages 13–15) in England as part of the Low attainment in 
mathematics project. In the interviews, we asked the students about their perceptions of learn-
ing mathematics in school, what they thought they found easy or difficult and the particular 
teaching strategies that they experienced. We specifically asked students about their experi-
ences of using the potentially high-leverage strategies identified in the review and promoted 
in the guidance report: representations and manipulatives, derived facts and estimation. Our 
analysis of this interview data addresses the question: What are low-attaining students’ per-
ceptions of learning mathematics, and in particular how do they perceive teaching strategies 
that involve representations and manipulatives, derived facts and estimation? Understanding 
students’ perspectives on their experiences of these strategies is important in considering how 
the strategies might be effectively implemented in classrooms, so as to improve low-attaining 
students’ experiences of school mathematics and progress in the subject.

Teaching Strategies for Low‑Attaining Students in Mathematics

There is limited detailed evidence in the research literature concerning how low-attain-
ing students in England are currently taught, particularly regarding specific teaching 
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strategies, and many schools continue to focus their teaching of low-attaining students 
on remedial mathematics presented procedurally (Connolly et  al., 2019). Scherer 
et al.’s (2016) review of the research literature on interventions directed at addressing 
mathematical learning difficulties found consistent evidence for the benefits of direct 
and explicit instruction, but direct instruction was defined in different ways by differ-
ent authors. To understand in more depth how and why particular approaches may be 
more or less effective than others, it is necessary to focus on particular strategies that 
teachers employ in their teaching of low-attaining students and to examine how they 
operate, as well as how they are experienced in the classroom. A recent research syn-
thesis of evidence concerning effective strategies for teaching low-attaining students 
in mathematics indicated the importance of addressing students’ specific mathemati-
cal weaknesses, through appropriate use of explicit instruction, concrete manipula-
tives, representations and worked examples (Hodgen et al., 2018). This synthesis was 
developed into a high-profile guidance report, presenting these strategies practically 
for teachers and recommending their use (Education Endowment Foundation, 2017).

In this paper, we focus on three recommended strategies presented in these docu-
ments (Education Endowment Foundation, 2017;  Hodgen et  al., 2018) that show 
promise as potentially high-leverage strategies for teaching low-attaining students in 
mathematics: derived facts, computational estimation and the use of representations, 
particularly number lines. These are more than simply ‘calculation strategies’: they 
are strategies that the teacher can use to help students build a deeper and more mem-
orable understanding of concepts. Based on the best-available research, these reports 
recommended these strategies as among the ‘best bets’ for improving the learning 
of low-attaining students in mathematics. They are likely to support threshold con-
cepts, meaning concepts that dramatically transform how a student thinks, and con-
sequently are key to further progression (Meyer & Land, 2006a, b). We briefly sum-
marise here the evidence base behind these recommendations.

Gersten et al.’s (2009) review indicated that improving arithmetic (fact) retrieval 
is essential to supporting students who struggle with mathematics (see also Geary, 
2011). However, arithmetic (fact) retrieval is not simply a matter of a set of asso-
ciations that are learned by rote, and Baroody (1999) highlighted the importance of 
developing what he termed ‘covert non-retrieval strategies’. Key to this is the use of 
derived facts (i.e. using a known fact, such as 8 + 8 = 16, to solve a related problem, 
such as 8 + 9 = 16 + 1 = 17; Dowker, 2009; Gaidoschik et  al., 2017; Gray & Tall, 
1994). Star et al. (2009) argued that computational estimation is critical to the devel-
opment of number sense and fluency (see also Baroody, 1999; Dowker, 1992, 2015; 
LeFevre et al., 1993). Ruthven (1998) described how:

pupils had been encouraged to develop and refine informal methods of mental 
calculation from an early age; they had been explicitly taught mental meth-
ods based on ‘smashing up’ or ‘breaking down’ numbers; and they had been 
expected to behave responsibly in regulating their use of calculators to com-
plement these mental methods. (Ruthven, 1998, pp. 39-40)

By seeing how one number fact is related to—and may be derived from—another, 
students build a deeper understanding of numbers and their properties.
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Hodgen et  al.’s (2018) review supported the benefits of using visual represen-
tations (e.g. Gersten et  al., 2009) and concrete manipulatives (e.g. Carbonneau 
et  al., 2013) with low-attaining students. However, to be effective, teaching needs 
to explicitly highlight the mathematical ideas represented by these tools. Particular 
attention has focused on the use of number lines to help students to develop their 
understanding of numerical magnitude (Schneider et  al., 2018) and the sense that 
rational numbers are ‘numbers’ that extend the whole number system (Siegler et al., 
2010; see also Bartelet et al., 2014). Number lines, whether hand-drawn or printed 
on the page, or embodied in concrete, physical manipulatives (cubes, Cuisenaire 
rods or washing lines), offer a powerful way to visually embody both cardinal and 
ordinal aspects of number (Hodgen et al., 2018).

Consequently, in our semi-structured interviews with low-attaining students, as 
well as discussing their broader perceptions of learning mathematics, we focused 
specifically on students’ experiences and awareness of these particular strategies and 
their use. We sought to gain insight into if and how low-attaining mathematics stu-
dents experience these strategies, while aiming to keep the interviews open enough 
to gain broader insight into their perspectives on learning mathematics, so as to pro-
vide them with the space to give voice to what they perceived to be important.

Method

We conducted 70 semi-structured interviews (Kvale, 2008) with low-attaining 
students in Years 9–10 (ages 13–15), in parallel with a set of interviews with 
their teachers (Foster et  al., under review). We sought to discover the students’ 
perceptions of learning mathematics, what they found easy or difficult and the 
teaching approaches that they reported finding helpful. More specifically, and 
emanating from the literature outlined above, we were interested in the extent to 
which the students would recognise, and report using, different representations, 
particularly number lines and arrays. We also wanted to know whether students 
would show awareness of derived facts, an ability to use them and an understand-
ing of when these might be useful; in particular, whether they might use them 
spontaneously or with prompting. Finally, we wanted to know what understand-
ings students might display regarding ideas of estimation or approximation, and 
how they might handle requests to give estimated answers.

Participants

We approached five secondary schools, all of which were willing to participate, and 
asked them to identify low-attaining students from Years 9–10 (ages 13–15) for the 
interviews. We defined low-attaining as the lower 40% of the school cohort, which 
although broad represents the group of students who typically do not go on to obtain 
the gatekeeping ‘level 4’ at General Certificate of Secondary Education (GCSE) 
mathematics, the standard national qualification taken at age 16.
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We asked schools to select students available and willing to speak to a researcher. 
We chose to interview older students within compulsory secondary schooling (ages 
11–16), as we expected these students to have more experience of secondary school 
mathematics to reflect on, and perhaps to be more confident speaking to an unfa-
miliar interviewer. We did not ask for students from Year 11 (age 15–16), as this is 
the year of the GCSE public examination, and schools would be reluctant to release 
students in this year group from their normal activities.

We interviewed a total of 70 students (see Table 1). Each interview lasted about 
25 min and was held in a quiet room on the school site, with just the student and 
the interviewer present, and each interview was audio recorded. Any student writ-
ten work produced during the interview was collected and scanned. None of the 
interviewers, the authors of this paper, had a pre-existing relationship with either the 
school or with any of the individual teachers or students. The head teacher, math-
ematics teachers, students and their parents were provided with information sheets 
describing the research project, which they read before we sought their informed 
consent to participate. Ethical approval for the project was obtained from the Uni-
versity of Nottingham Research Ethics Committee.

All of the participating schools were mixed-gender comprehensive schools in 
England (i.e. non-selective and non-fee-paying), and all of the schools used setting 
for mathematics. All of the schools also provided teachers for interview, who were 
currently teaching a lowest set mathematics class within the same age range, and 
were experienced in doing so. The analysis of these teacher interviews is reported 
elsewhere (Foster et al., under review) and the labelling of the schools in Table 1 
matches that used there.

Interview Protocol

The protocol was devised to elicit students’ perspectives chiefly on four issues: three 
of the key areas arising from our literature review (representations and manipula-
tives, derived facts and computational estimation), together with students’ percep-
tions of learning mathematics. We asked what students thought that they found easy 
or difficult and the teaching approaches that they reported finding helpful. Beginning 

Table 1  Interview participants

School Age range School type Location Number of 
students inter-
viewed

A 11–16 Community college Midlands 41
B 11–16 Church of England academy Midlands 2
C 11–16 Academy Midlands 13
D 11–18 Free school London 11
E 11–18 Academy London 3

TOTAL 70



 J. Hodgen et al.

1 3

with these broader questions was intended to help settle the students at the start of 
the interview and enable them to feel comfortable.

Each student was interviewed individually by one of the authors, who collabora-
tively developed the protocol in detail together across a series of planning meetings. 
The authors began the interview process by observing several of each other’s inter-
views, in order to ensure a consistent approach. Not all aspects of the protocol could 
be covered with every student, due to time constraints, but the interview materials 
used were structured in the four sections described below. The complete interview 
protocol is provided in the Appendix, and the mathematics questions used for dis-
cussion are given in Fig. 1. We did not use all of these questions with all students, 
partly due to lack of time, but also to ensure that the interview experience was a pos-
itive one for each student and students did not risk experiencing repeated ‘failure’. 
In particular, we ensured that each interview ended with student success and that the 
student felt comfortable about the experience when leaving.

The interview was semi-structured, with an overall structure comprising four 
sections:

Perceptions of Learning Mathematics

After asking students for their consent to take part in the interview, we stated that 
we were interested in how they learn mathematics, what they found easy or hard 
and what helped them to learn. A pen and blank paper were available throughout the 
interview for the student to write on whenever they wished. We had available some 
mathematics questions (Fig. 1), which we sometimes drew on in the later sections of 
the interview.

1. What number is the arrow pointing to?

2. What is 10 more than 3597?
3. Look at this calculation: 86 + 57 = 143
    Find a quick way to work out the answer to 85 + 57 = ?
4. Look at this calculation: 15 × 24 = 360
    Find a quick way to work out the answer to 16 × 24 = ?
5. Which number is nearest in size to 2.9 multiplied by 7?

0.002 0.02 0.2 2 20 200 2000

Fig. 1  Mathematics questions for discussion
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We began by asking students what they were currently doing in mathematics and 
how it was going. If students had their mathematics notebook with them, they were 
invited to show us. Additional questions were used to encourage them to talk about 
their broad perceptions of learning mathematics:

Can you tell me about a maths lesson where you feel that you really learned 
something? What was it? Why was that lesson successful? What did the 
teacher do?

The intention was to capture at the start of the interview what students felt to 
be important in their mathematics lessons and elicit their perceptions and what 
approaches they felt were more or less effective for them.

Representations and Manipulatives

We asked students to talk about different representations of number that they might 
have used in mathematics lessons. Since the word ‘representation’ might not be 
clear or familiar to them, we asked questions such as:

If I asked you to draw me a picture to show me the number 8, what would you 
draw? Can you tell me about it? Is there anything else you could draw to show 
the number 8?

We specifically asked about arrays and number lines, as well as practical equip-
ment such as cubes, asking in what topics they had been used and for students to 
give us examples of how they were used. We were particularly interested in whether 
students ever made autonomous choices to use these representations or manipula-
tives for themselves, without being explicitly directed to do so by the teacher. We 
asked some students to answer questions 1 and 2 from Fig. 1, talking aloud about 
how they approached them.

Derived Facts

We also asked students about derived facts. Again, we did not necessarily expect 
students to be familiar with this term. We dealt with this in two ways. First, by ask-
ing students to answer questions 3 and 4 from Fig.  1, again inviting them to talk 
aloud about how they approached them. Second, and in order to address multiplica-
tive derived facts, we used the context of multiplication tables, asking:

Which times tables do you know?

Students were invited to indicate by pointing on a blank 12 × 12 multiplication 
grid. We then asked:

Do you just know them or do you work them out? If you work them out, how 
do you do it?
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For students who did not report using derived fact approaches in this context, we 
selected one multiplication table fact that they said that they knew, and asked:

Can you work out any other times tables – ones you don’t know – by starting 
with this one?

If the student was hesitant in responding, we would select an example that we did 
not expect them to be able to answer immediately. For example, if they had said that 
they knew 5 × 7 = 35, we might ask them how they could work out 6 × 7, or 15 × 7, or 
50 × 7, starting from 5 × 7 = 35.

We asked students whether they remembered being taught to do this kind of 
thing, or whether they reported ever choosing to use derived facts for themselves, 
without being directed to do so by the teacher.

Computational Estimation

We asked students what they understood by the words ‘estimate’ or ‘estimation’, and 
whether they ever estimate when the main topic being studied is not ‘estimating’; for 
example, to predict or check their answers. We sometimes asked students to answer 
question 5 (Fig. 1) in order to probe further their understanding of estimation.

Analysis

All of the audio recordings were transcribed in full, and the student written work 
was scanned and filed. The analysis was conducted following what Braun and 
Clarke (2022) described as a deductive approach, in which the coding and themes 
are largely directed by existing concepts and ideas.

Results

We now report our findings under the four themes that comprised the organising 
structure of our interview protocol, three of which were based around the strategies 
which emerged from the literature as potentially high leverage (Hodgen et al., 2018) 
and led to recommendations for teachers (Education Endowment Foundation, 2017). 
Throughout our presentation of results, we include specific quotes from students to 
illustrate the themes, referencing the individual students quoted by using the letter of 
the school (as in Table 1) followed by a number to distinguish the particular student 
at that school (e.g. ‘C2’ to indicate school C and the  2nd student we refer to).

Perceptions of Learning Mathematics

Many students reported a generally positive outlook on their school mathematics 
lessons, although they mostly described finding mathematics hard. Most seemed 
to like their mathematics teacher, and they were particularly appreciative of the 
large amount of one-to-one support available in their generally small (low set) 
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classes. However, a few complained that it was difficult to obtain as much of the 
teacher’s time as they would have liked, because the teacher was frequently occu-
pied with other students.

Many students said that the most useful aspect of individual help was the pro-
vision of longer, more detailed explanations than those that the teacher had pro-
vided to the whole class, and some students said that they found support from a 
teaching assistant or peers to be more helpful than that from the teacher. Many 
students said that they liked methods to be broken down into small steps and said 
that they wanted to be provided with lots of examples:

C1: Erm so like our teacher is like teaching us in steps, like how to do it in 
like easier ways.
INT: And does that help, having it in steps?
C1: Yes.
INT: Why does that help?
C1: Because like instead of doing it like in a complicated way, and take for-
ever in just doing it in an easy way like easy.
INT:So you like things to be as easy as possible, teacher make it as easy as 
possible?
C1: Yes.

However, other students said that they were eager to get on with doing the task 
and did not want too much teacher talk:

D1: But all I like is like as soon as we get into the work. Like when the 
teacher like explains it a little bit, and like not too much... I don’t want her 
talking too. I just want a little bit of explaining so we can get onto it and 
then get on from there.

When asked which topics were difficult, students’ responses seemed to be 
influenced by topics that had been encountered recently. However, as would be 
expected from the literature, many students highlighted algebra as being espe-
cially difficult and, in some cases, they saw the topic as pointless.

Several students expressed frustration with forgetting:

INT: And so I’m interested in which topics and which things in maths are 
tricky and difficult … What do you think of as being quite hard in maths?
A1: It depends. Erm ... sometimes just like I get it at first and then when you 
don’t go over it I completely forget like factors, or stuff like that.
INT: And what is it that you would forget about something like factors?
A1: How you like separate the factors, like... it’s hard to explain.
…
A1: Like I would get it at first, and then like if you don’t go over it probably 
like in about two weeks or something I’ll completely forget about it.
INT: Yes. And so what works for you in terms of dealing with that?
A1: Probably repeating.
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The issue of forgetting, which emerged from our analysis of these perceptions, 
seemed important to students, given that it was mentioned frequently. Indeed, it may 
be noted that the other three themes, in their different ways, address strategies that 
teachers could use in order to attempt to make learning more meaningful and, conse-
quently, memorable for students (Education Endowment Foundation, 2017).

Representations and Manipulatives

When asked how they might represent the number 8, some students drew 8 dots or 
used tally marks, and one student drew a front door to a house with a number 8 on it. 
When asked for examples of diagrams or pictures that they might use in mathemat-
ics to represent numbers, many suggested area representations for fractions, either 
using circles or rectangles. Some mentioned common methods of layout for stand-
ard algorithms, such as the ‘bus stop’ for division, and others mentioned bar charts, 
Venn diagrams and line graphs. Several were positive in general about the value of 
representations:

INT: Are the pictures useful? Are they helpful?
C2: Yes they help me to … to understand a problem … Because you see on the 
… the diagram you see it … when you see a picture you understand.
A2: I find them [pictures] helpful when I am struggling with the work.

We specifically asked the students about number lines and arrays, and we also 
report below our observations on students’ use of fingers for calculation, which is 
something we noticed repeatedly during the interviews and their analysis.

Number Lines

Most students reported that they did not use number lines much. Many students said 
that they did not like them, either finding them too difficult and confusing, and too 
slow to draw, or else believing that they were too simple, and that they no longer 
required them. Many reported using number lines at primary school, and at sec-
ondary school only using them in the context of directed (positive and negative) 
numbers.

C3: I don’t really like to use them [number lines].
INT: You don’t like to use them, why is that? Are they…?
C3: No, I don’t know because I find it kind of confusing.
INT: Right you don’t find them helpful?
C3: Yes I don’t find it helpful.

Many students struggled to answer question 1 (Fig. 1) or did so only with consid-
erable assistance. Very few students approached question 2 (Fig. 1) by means of a 
number line and bridging through 10, with most opting for a standard column addi-
tion algorithm.
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Arrays

Few of the students were familiar with the word ‘array’. On showing them an exam-
ple, some said that they had not seen such things; others that they had used them “a 
really long time ago … in Year 3” (A3), generally for division. Most said that they 
did not use arrays, other than for calculating areas by counting squares. Reasons 
given were that they take too long to draw and were perceived to be unnecessary, but 
it seemed that some students were unfamiliar with possible uses of arrays for visual-
ising distributivity.

Fingers

Many students were observed to use their fingers during the interviews for various 
calculations, often with an apparent attempt to conceal this from the interviewer. 
(Andres and Persenti (2015) indicated the benefits of finger counting.) When asked 
about using fingers, students often stated that they preferred using their fingers to 
alternative representations, such as a number line. Occasionally, ‘fingers’ referred 
to shortcut methods, such as an instant way to see the tens and ones digits of the 
multiples of 9 by folding down a finger corresponding to which multiple of 9 was 
required. However, generally the finger strategies observed were coded as counting-
all, counting-on or counting-back. Some students were very reliant on fingers to 
carry out most of the calculations undertaken in the interview, and saw fingers as a 
way to be sure of the correct answer:

INT: But how would you kind of work it out so you were sure what it was?
A3: Erm I would do it on my fingers.

It seemed that several students had become stuck in inefficient methods from the 
past, which were perhaps never intended to have remained as their principal method:

INT: If you have got that method why do you bother with your fingers?
D2: I don’t know … It is just ... I used to do it in primary school.
INT: Yeah sure.
D2: I just keep doing it.

Derived Facts

When presented with question 3 (Fig.  1), most students proceeded to calculate 
85 + 57, usually by using a standard column algorithm, without reference to the 
given answer to 86 + 57. When their attention was drawn to the instruction to ‘Find a 
quick way’, or students were asked explicitly whether they could use the given result 
to help them, some students were then able to do so, with increasing confidence 
as subsequent, similar problems were presented. However, even with considerable 
prompting, many students found it very difficult to see that they could modify the 
given result by subtracting 1. This appeared to be an unfamiliar style of question for 
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most students, with students occasionally seeming unsure about whether they could 
assume that the given statement was correct. On being reassured about this, several 
students quickly made the intended deduction:

A1: You do 80 + 50, and then you add the 2, 5 and 7 to it.
INT: Okay. Yeah you could do that. What about this calculation they give you 
the answer to, why do you think that’s there?
A1: To check if we’ve done the process right.
INT: How does it help you check?
A1: Well you could do 86 + 57 and see if that answer’s right.
INT: I think they want you to assume that’s right. They’re telling you that and 
they want you to use that to help you get the answer to this one.
A1: Oh… Yeah, you just add one more. It’d be 144.
INT: So why are you adding 1?
A1: Wait, you take away 1. You take away 1.
INT: Okay. Why are you taking away 1?
A1: Because that’s 86 and that’s 85.

As would be expected, question 4 (Fig. 1), incorporating distributivity, was con-
siderably more difficult for students than question 3, and very few were able to suc-
ceed with this without considerable assistance.

When asking students about the multiplication facts that they knew, and how they 
would work out ones that they did not know, most students resorted to repeated addi-
tion, skip-counting up from zero, instead of starting from a nearer known fact. Over-
all, students showed a lack of flexibility, and while their repeated addition methods 
were sometimes accurate, they were slow. Some students acknowledged this but 
stated that they had more confidence in their slow methods:

A4: I don’t know, it’s just easier for people to do [count up in 6s, 12 times], 
than do it the way that they might get it wrong … But at least they get it right 
than doing it the way they don’t know.

Computational Estimation

Students displayed different understandings of the term ‘estimating’. Some equated 
this with rounding to a particular degree of accuracy, such as 1 decimal place:

INT: Can you give me an example of when you have done it [estimating]?
D3: Erm we count rounding as estimating … we are doing rounding, erm 
doing that instead of fully working the answer out.
INT: Can you give me an example?
D3: Like if we had 47 for example, we have to estimate how.... we have to 
round it up or down and since it is above 5 we will go up, but anything below 
5 we go down.
INT: So that’s rounding 47. Do you do anything with that or is that it
D3: That gives you 50.
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In many cases, students’ difficulties with rounding and place value meant that 
the answers that they obtained from rough calculations were several orders of 
magnitude away from the correct value. When tackling question 5 (Fig.  1), for 
example, one student responded that the answer to 2.9 × 7 would be about 0.002, 
because “It had a dot in it” (A5):

INT: So you picked it because it had a dot in it?
A5: Yeah.
INT: Mhm. Is it the only one with a dot in it?
A5: No. These two as well.
INT: Okay. So why did you pick this one?
A5: Probably has something to do with two point nine?
INT: Why?
A5: Because… I’m not sure.
INT: Okay! And why did you want to pick one with a dot in it?
A5: Because it has like more zeros in it. And it probably has something to 
do with the question.
INT: Because the number... One of the numbers in the question has a dot in it?
A5: Yeah. And it probably has more zeros… with the final answer.

Other students saw estimating as making a ‘wild guess’ or using everyday 
knowledge of typical sizes, checking an answer and having a gut feeling as to 
whether a value was too big or too small for a given calculation. One student 
related estimating to probability, where answers were perceived as uncertain.

Several students said that they did not estimate, or did not like to, and those 
that said that they did estimate were sometimes apologetic about it, seeing it as 
inferior to an exact calculation, and something to be done only as a last resort:

D3: Just when I’m lazy I will estimate … I’ll attempt the calculation but 
then I’ll probably end up estimating.
INT: Why would you do that?
D3: Because I might end up getting the calculation wrong and then to under-
stand why I had then ... I will just go to the conclusion, so you just estimate 
… As I see it is better than not leaving a question blank than having nothing 
at all there, because there is a chance that you still get it right.

There was a strong preference among many students for attempting to calculate 
exactly rather than estimating, and many students did not seem to believe that the 
answer to a rough calculation should necessarily be at all close to the exact answer.

Discussion

Most of the 70 low-attaining students interviewed in this study reported enjoy-
ing their mathematics lessons and valuing their mathematics teacher and teach-
ing assistants. The students mostly displayed a positive affect for the learning of 
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mathematics, despite the difficulties which they appeared to experience across all 
of the areas of mathematics addressed in the interviews.

Many of the most well-evidenced strategies recommended for use with low-
attaining students, such as derived facts and estimation (see Dowker, 2009, 2015; 
Gray & Tall, 1994) and representations and manipulatives (e.g. Carbonneau et al., 
2013), did not appear to be familiar to the students. It seems that the students were 
not making use of many approaches and strategies which research suggests would be 
potentially beneficial to them in their learning of mathematics. For example, most 
students reported that they did not use number lines very often, and many expressed 
a dislike for them, sometimes suggesting that they viewed such representations as 
more suitable for younger-age students than for themselves. Instead of performing 
calculations by visualising empty number lines, the students interviewed tended to 
rely on standard written algorithms, which they did not always perform accurately, 
and which were always slow. Sometimes the students’ strategies led to answers that 
were orders of magnitude different from the correct answer, without them noticing. 
This might be less likely to happen with approaches emphasising computational 
estimation (e.g. Baroody, 1999) and/or visual approaches involving number lines, in 
which the approximate magnitude of the numbers is more salient (Schneider et al., 
2018; Siegler et al., 2010).

In a similar way, many of the students did not appear to recognise the power 
of using derived facts to obtain an unknown answer from a related known fact 
(Dowker, 2009; Gaidoschik et al., 2017; Gray & Tall, 1994). In the interviews, when 
students did not appear to be familiar with this process, it was briefly explained to 
them, and this often resulted in them immediately being able to use it successfully. 
It is not possible to say whether the students had been previously exposed to this 
approach, and had forgotten it, or whether this was something new to them. We do 
not have data on whether the students would have or should have encountered these 
strategies before in school. The students we interviewed had been taught by multiple 
different teachers over their secondary school years and at a wide variety of different 
feeder primary schools, meaning that it would not be possible to ascertain the range 
of different strategies and practices that had been introduced and used at different 
times. Therefore, we can report that students do not appear to recognise a strategy, 
or that they report never having seen it, but we cannot speculate on whether they 
might indeed have encountered it previously in some form.

It may be that the students’ experience is that they had been shown over many 
years a multitude of different strategies, but many of these strategies were not 
processes that they had available to call on and use reliably in any particular cir-
cumstance. It might be the case that focusing teaching for low-attaining students 
on fewer, high-leverage strategies, thereby allowing these to be experienced more 
deeply and rehearsed to a high level of performance, would provide the students 
with a much greater overall level of power to make sense of and tackle mathematical 
problems (Foster, 2022).

Several students seemed highly reliant on using their fingers for number calcula-
tions, or on slow, skip-counting-up or counting-on procedures, and some expressed 
a preference for doing this in high-stakes contexts, where they wished to be sure 
that their answers were definitely correct. The extra time which low-attaining 
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students are often entitled to in high-stakes examinations may result in these inef-
ficient approaches not being penalised, and perhaps therefore this has the unintended 
consequence of trapping students in laborious methods that may not be conducive 
to their subsequent progress. Helping students to move to more efficient strategies, 
and supporting them to move on from approaches that they may wish to cling to, 
because they have previously experienced success with them, would seem essential 
if students are to succeed with more demanding mathematical tasks. This may be 
difficult for the teacher who wishes to be sensitive to their students and to value the 
methods that they bring and appear to be comfortable with. Challenging students to 
move away from these methods and onto more efficient ones can be a fraught pro-
cess that teachers might wish to avoid. The tendency to ‘support’ and ‘scaffold’ low-
attaining students’ learning may sometimes unintentionally lead to the dominance of 
strategies that students might be better served by ‘moving on’ from.

Finally, it is noteworthy that estimation did not appear to be a strategy that stu-
dents found powerful in supporting their arithmetic work. In our parallel interview 
study with teachers of low-attaining students (Foster et al., under review), we found 
that teachers believed estimation to be an extremely valuable skill for their students, 
and something that they reported emphasising in their lessons. However, the teach-
ers also reported that their students (both high-attaining and low-attaining) were 
very reluctant to estimate in calculations, perceiving an estimate to be inferior to 
an exact answer. We also see that phenomenon in this student interview data, and 
yet it would seem that the ability to perform estimates would be of potentially par-
ticular benefit for low-attaining students. Low-attaining students often struggle to 
obtain accurate answers to mathematical questions, and efficient self-checking and 
self-correcting mechanisms could be highly advantageous. Devising effective ways 
of teaching estimation skills to low-attaining students would seem to be an urgent 
priority, both for success in school but also for helping students to develop robust 
number sense for everyday life.

Conclusion

We have seen in the interviews with low-attaining students reported in this study 
that many of the most well-evidenced teaching strategies that are recommended for 
use with low-attaining students (Education Endowment Foundation, 2017; Hodgen 
et al., 2018), such as representations and manipulatives, and derived facts and esti-
mation (e.g. Carbonneau et al., 2013; Dowker, 2009, 2015; Gray & Tall, 1994), do 
not appear to be familiar to them, and certainly are not automated to a level where 
they are reliable tools to use. Consequently, it is not surprising that students did not 
express a fondness for these strategies or a tendency to use them autonomously.

There would seem to be an urgent need for carefully designed classroom inter-
ventions to be developed which explicitly teach these strategies in ways that enable 
low-attaining students to achieve high fluency and success with them. A strategic 
focus on a small number of potentially high-leverage strategies, such as derived 
facts and estimation, and use of key representations, such as the number line (Fos-
ter, 2022), could enable low-attaining students to access powerful ways of handling 
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numbers and develop enhanced number sense. Associated appropriate teacher pro-
fessional development would of course be equally necessary.

It is noteworthy that many of the students in this study expressed a disliking of 
manipulatives and number lines, despite both of these being well-evidenced strate-
gies (e.g. Carbonneau et  al., 2013; Siegler et  al., 2010) that are recommended in 
high-profile guidance reports for teachers (Education Endowment Foundation, 
2017; Hodgen et al., 2018). It may be helpful for teachers to know that students may 
be likely to resist these approaches, for a variety of reasons. This may help teach-
ers to be prepared not to assume that when they encounter students’ dislike of these 
strategies that this indicates that they are not appropriate, and are unsuitable for their 
students. It may be that until students have become very fluent with some of these 
tools they do not derive the kind of benefit from them that would encourage them 
to view these strategies favourably and make spontaneous use of them. There may 
be a need to persevere with these teaching strategies for longer than teachers might 
suppose.

It is not sufficient to address the problem of low attainment in mathematics 
merely by identifying high-leverage teaching strategies from the research literature 
and then recommending them for use. Strategies which require a long-term invest-
ment in teaching time and do not offer an immediate ‘quick win’ for students may 
be perceived as ineffective, but to support students’ progress in the long term it may 
be necessary to prioritise the recommended strategies and persevere with them. 
Explaining and justifying this rationale to students may enable them to become 
invested in the process and supportive of the approach.

Appendix. Interview protocol

We’re interested in how you learn maths and anything that makes maths hard or any-
thing that helps you to learn in maths.

Can you tell me about a maths lesson where you feel that you really learned 
something? What was it? Why was that lesson successful? What did the teacher do? 
Can you show me your book? Can you tell me what this was about?

Representations

If I asked you to draw me a picture to show me the number 8, what would you draw? 
Can you tell me about it? Is there anything else you could draw to show the number 
8? Could you show it on a number line?

Do you use number lines in lessons? When? Can you give me an example? What 
do you do with the number lines? Do you find them useful? For what? Why/why not?

Do you ever decide for yourself to draw a number line without your teacher telling you to?
Do you know what I mean by an ‘array’? I mean some dots or squares or some 

other object all lined up in rows and columns [draw an example]. Do you use arrays 
in maths? When? Can you give me an example? What do you do with them? Do you 
find them useful? For what? Why/why not?
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Do you ever decide to draw something like an array to help you in maths without 
your teacher telling you to?

Are there any other things that you can draw that help you to work things out in 
maths? When do you use them? Why?

Derived facts

[use items from Fig. 1 – “How would you do this?”].
Which times tables do you know? [Show a blank tables square.] Do you just 

know them, or do you work them out? If you work them out, how do you do it?
Let’s pick one times table that you know – for example 5 × 6 = 30 [or use their 

example].
Can you work out any other times tables – ones you don’t know – by starting with 

this one? [If unsure] For example, can you work out 5 × 7, or 15 × 7 or 5 × 17? How 
would you do it?

Estimation

[use items from Fig. 1 – “How would you do this?”].
Do you sometimes estimate the answer to a question, rather than work out an 

exact answer? When do you do that? Why?
Do you ever do that without the teacher telling you to, for example to check your 

answer? Why / why not?
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