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Huntington’s disease is caused by a CAG repeat expansion in the Huntingtin gene (HTT), coding for polyglutamine in the Huntingtin 
protein, with longer CAG repeats causing earlier age of onset. The variable ‘Age’ × (‘CAG’—L), where ‘Age’ is the current age of the 
individual, ‘CAG’ is the repeat length and L is a constant (reflecting an approximation of the threshold), termed the ‘CAG Age Product’ 
(CAP) enables the consideration of many individuals with different CAG repeat expansions at the same time for analysis of any vari
able and graphing using the CAG Age Product score as the X axis. Structural MRI studies have showed that progressive striatal at
rophy begins many years prior to the onset of diagnosable motor Huntington’s disease, confirmed by longitudinal multicentre studies 
on three continents, including PREDICT-HD, TRACK-HD and IMAGE-HD. However, previous studies have not clarified the rela
tionship between striatal atrophy, atrophy of other basal ganglia structures, and atrophy of other brain regions. The present study has 
analysed all three longitudinal datasets together using a single image segmentation algorithm and combining data from a large number 
of subjects across a range of CAG Age Product score. In addition, we have used a strategy of normalizing regional atrophy to atrophy 
of the whole brain, in order to determine which regions may undergo preferential degeneration. This made possible the detailed char
acterization of regional brain atrophy in relation to CAG Age Product score. There is dramatic selective atrophy of regions involved in 
the basal ganglia circuit—caudate, putamen, nucleus accumbens, globus pallidus and substantia nigra. Most other regions of the brain 
appear to have slower but steady degeneration. These results support (but certainly do not prove) the hypothesis of circuit-based 
spread of pathology in Huntington’s disease, possibly due to spread of mutant Htt protein, though other connection-based mechan
isms are possible. Therapeutic targets related to prion-like spread of pathology or other mechanisms may be suggested. In addition, 
they have implications for current neurosurgical therapeutic approaches, since delivery of therapeutic agents solely to the caudate and 
putamen may miss other structures affected early, such as nucleus accumbens and output nuclei of the striatum, the substantia nigra 
and the globus pallidus.
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Graphical Abstract

Introduction
Huntington’s disease (HD) is caused by a CAG repeat expan
sion in the Huntingtin gene (HTT) on chromosome 4, which 
codes for polyglutamine in the Huntingtin protein (Htt). HD 
classically manifests with a triad of signs and symptoms, includ
ing motor, cognitive and behavioural features.1,2 Diagnosis is 
traditionally made based on clinician assessment of motor signs 
using the unified Huntington’s disease rating scale (UHDRS),3

though recent developments have added cognitive changes as 
contributing to the diagnosis of manifest HD.4

The age of onset of HD is strongly influenced by the length 
of the CAG trinucleotide expansion within the Huntingtin 
(HTT) gene. Above a threshold of around 36–39 CAG, the 
longer the repeat length, the earlier the onset. To estimate 
the effects of the CAG repeat expansion over time, a variable 
of the form Age × (CAG − L), where Age is the current 
age of the individual, CAG is the repeat length and L is a 
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constant (reflecting an approximation of the threshold), was 
first proposed by Penny et al.5 It has subsequently been 
termed the ‘CAG Age Product’ (CAP) score.1,6 It enables 
the consideration of many individuals with the CAG repeat 
expansion at the same time for analysis of any variable and 
graphing using the CAP score as the X axis.

Huntington’s disease has traditionally been noted for se
lective striatal neurodegeneration, especially early in the 
course. The widely used Vonsattel neuropathological staging 
system focuses almost entirely on striatal atrophy and cell 
loss.7 However, there has been increasing appreciation that 
many other regions of the brain are affected, and in a recent 
review, HD was described as a ‘multisystem neurodegenera
tive disease’.8

Structural MRI studies have made possible great advances in 
our understanding of the natural history of neurodegeneration 
in HD. Initial single-site studies9 showed that progressive striat
al atrophy begins many years prior to the onset of diagnosable 
motor HD. This has been amply confirmed by several large 
studies, including the PREDICT-HD and TRACK-HD multi
centre studies, in North America and Europe, respectively, 
and the IMAGE-HD study in Australia.10–14 These studies, in 
addition to confirming the progressive early striatal atrophy, 
also called attention to atrophy in other areas such as subcor
tical white matter, for instance, as highlighted in the 
PREDICT-HD study. However, these previous studies, while 
very enlightening, have used different analytic methods and 
have emphasized slightly different results.

The present study has had the opportunity to analyse all 
three datasets together using a single image segmentation al
gorithm15 for all the scans. This has made it possible to com
bine data from a large number of subjects across a range of 
CAP scores. In addition, we have used a strategy of normal
izing regional atrophy to atrophy of the whole brain, in order 
to determine which regions may undergo preferential degen
eration. We demonstrate dramatic selective atrophy to re
gions involved in the basal ganglia circuit, such as caudate, 
putamen, nucleus accumbens, globus pallidus and substantia 
nigra. Most other regions of the brain appear to have slower 
but steady degeneration. These results have implications for 
the possibility of circuit-based spread of pathology in HD, 
suggesting pathophysiological mechanisms which may yield 
novel therapeutic targets. They also have implications for the 
design of neurosurgical approaches.

Materials and methods
Dataset
The data were obtained via CHDI from the previously published 
studies PREDICT-HD, TRACK-HD and IMAGE-HD.10–12

Each study was a longitudinal observational study including 
structural imaging. For PREDICT-HD, all HD subjects were 
premanifest at entry. TRACK-HD and IMAGE-HD had a mix
ture of premanifest and manifest subjects at entry. A similar ap
proach as in this study was used in Wijeratne et al.,16 though 

with a different imaging pipeline, different analyses and informa
tion regarding the individual studies is also summarized there.

Image preprocessing
All MRIs were automatically segmented via MRICloud,15 a 
public website platform for multi-contrast imaging segmenta
tion and quantification. In MRICloud, the process of T1-WI 
segmentation, used for volumetric analysis, involves: (1) image 
pre-processing (orientation and inhomogeneity correction, skull 
stripping), (2) image registration to multiple atlases based on a 
sequence of affine transformations and the Large Deformation 
Diffeomorphic Mapping (LDDMM) and (3) multi-atlas label
ling fusion (MALF) algorithm17–19 to fuse the parcellation labels 
of atlases for each scan. In this study, we used the atlas set 
‘Adult50–90yrs_287Labels_30atlases_M2_252_V10A’, com
posed by 30 brain MRIs of 50–90 year-old individuals, 
in which 287 brain structures are defined with a multi-level 
hierarchical ontology.20,21 The performance of MRICloud 
pipeline, compared with human evaluators and with 
other state-of-the-art algorithms, was described in previous 
publications.22–24

The original images as well as the results of the brain seg
mentation from MRICloud were visually inspected for quality 
control (QC). Images were excluded in the presence of arte
facts (e.g. too much motion) or in the case of incomplete cover
age (e.g. scans did not cover the top or the bottom of the brain). 
We excluded cases with obvious registration errors, mostly de
rived from the very first step of the image processing, the linear 
mapping to the templates. These errors are well known in im
aging processing and are usually related to large rotations in 
the interstice axis or particularities of the field-of-view. We 
opted not to perform any human correction on the segmenta
tion, as our aim is to report the results of a consistent auto
mated process across all the images. The sample sizes and 
participant demographic of all three datasets, before and after 
QC, are summarized in Table 1 in the supplementary material. 
After QC, the percentage of male subjects in each study is 
50%, 31.8% and 47% for IMAGE-HD, PREDICT-HD and 
TRACK-HD, respectively.

Regions of interest
The regions of interest (ROI) considered for further analysis 
were the putamen, caudate, globus pallidus, nucleus accum
bens, substantia nigra and thalamus, as well as the following 
cortical areas and white matter (WM) beneath them: precen
tral gyrus (PrCG, PrCWM), superior frontal gyrus (SFG, 
SFWM), superior parietal gyrus (SPG, SPWM), superior oc
cipital gyrus (SOG, SOWM) and superior temporal gyrus 
(STG, STWM). The ROIs were selected for their consistent 
segmentation, as we attempted to analyse all regions. 
However, some regions of great interest such as the subtha
lamic nucleus and ventral diencephalon were not considered, 
as we found that their low contrast in T1-WIs of this dataset 
leads to less reliable segmentation. Brainstem was also not 
considered because the variable level of scan coverage could 
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introduce artifactual variations. ROIs in both hemispheres 
were considered together as there is little evidence for signifi
cant asymmetry in HD.

CAP score calculation
We aim to track the volume changes of each ROI over CAP 
scores among all three datasets (PREDICT-HD, TRACK-HD 
and IMAGE-HD). CAP scores were calculated across all 
three datasets by the following equation: CAP = Age × 
(CAG − 33.66), where Age represents the age of subjects in 
years and CAG represents the (constant) length of the indivi
dual’s CAG repeat. A recent study25 has shown that MRI 
scans of far-from-onset HD subjects are, with one exception, 
essentially indistinguishable from controls, so we included 
controls under 40 years old to model very far from onset 
HD in this study. The exception is that there are small differ
ences in striatal volumes, which were attributed to early degen
eration or to subtle developmental differences. Modification of 
the CAP equation for controls is described in the supplementary 
material. Analyses were conducted with this modification or 
with the CAP score set at CAP = Age.

The regression model
In this study, we utilized a left-flat sigmoidal function and its 
statistical regression model, which are defined in detail in the 
supplementary material, to capture the volume changes of 
each ROI over CAP scores. The rationale for this model is 
that most brain structure volumes in expansion-positive indi
viduals far from onset are close to controls.25 Therefore, for 
CAG expansion-positive individuals very far from predicted 
onset, and for controls under 40, volumes can be modelled, 

as a first approximation, as constant. For all figures including 
controls, only controls under age 40 were used.

To reduce batch bias between datasets and subject groups, 
we considered datasets (PREDICT-HD, TRACK-HD and 
IMAGE-HD) and subject groups (i.e. controls, Pre-HD in 
Image-HD) as covariates in the statistical regression model. 
Subjects’ groups are defined according to the clinical criteria 
specified in their original dataset. We also included 
Intracranial Volume (ICV) as a covariate.

For a second set of analyses, the volume of each ROI was 
also normalized to the whole brain volume before statistical 
regression model fitting. The ICV corresponds to the volume 
inside skull, including CSF and brain parenchyma, while the 
whole brain volume includes only the volume of brain tissue, 
without CSF. Therefore, whereas ICV reflects the head size, 
whole brain volume is representative of the overall parenchy
mal atrophy. For changepoint analysis, we used a semi- 
parametric bootstrap method to calculate the P-values.

Results
Table 1 shows the clinical characteristics of the subjects. For 
this plot, and all the others in the main figures, CAP score for 
controls is calculated as described in the supplemental text. 
(Additional details of the subjects and QC of the scans are 
shown in Tables 1 and 2A and B in the supplementary material).

Figure 1 shows the individual longitudinal clinical data 
(‘spaghetti plots’) of Total Motor Score (TMS), Symbol 
Digit Modalities Test (SDMT), Total Functional Capacity 
(TFC) and Beck Depression Inventory (BDI), where each of 
these were available, versus CAP score. As expected, inflec
tion points in TMS and SDMT precede changes in TFC. 
Also, as expected, BDI (a reflection of depressive emotional 

Table 1 Demographic, genetic and clinical characteristics of all participants at enrollment

Controls (n = 178)a HD (n = 357)b

Variable Mean SD Range Mean SD Range Χ2 (df) P

Age (years) 45.2 11.0 22.6–71.9 43.6 11.3 18.6–71.6 2.0 (1) 0.161
CAP scorec 252.9 61.6 126.6 to 402.7 377.9 89.6 149.6–631.6 200.4 (1) <0.0001
CAG repeats 20.4 3.5 15 to 31 42.7 2.4 38–55 160.1 (1) <0.0001
UHDRS-TMS 2.6 3.2 0 to 19 9.3 11.1 0–47 60.3 (1) <0.0001
UHDRS-TFC 13.0 0.1 12 to 13 12.4 1.4 7–13 38.3 (1) <0.0001
SDMT 53.8 9.6 28 to 80 46.9 13.3 12–80 35.1 (1) <0.0001
BDI 4.8 5.3 0 to 22 6.4 7.2 0–43 1.7 (1) 0.195
Sex, male (%) 66 (37.1%) 149 (41.7%) 0.9 (1) 0.346
Study 0.3 (2) 0.881

IMAGE-HD 21 (11.8%) 42 (11.8%)
PREDICT-HD 62 (34.8%) 132 (37.0%)
TRACK-HD 95 (53.4%) 183 (51.3%)

Comparison of HD and control participants in aggregate for the IMAGE-HD, PREDICT-HD and TRACK-HD studies. Only data from those participants whose imaging data (3 T only) 
passed the quality-control check are included. SD, standard deviation; Χ2, Chi-square; df, degrees of freedom; CAP, CAG-Age Product; UHDRS, unified Huntington’s disease rating 
scale; TMS, total motor score; TFC, total functional capacity; SDMT, symbol-digit modalities test and BDI, Beck depression inventory. Χ2 values and corresponding P-values are from 
the Kruskal–Wallis test for continuous variables and the Χ2 test for the nominal variable (sex). 
aFor control participants, CAG repeats were reported by PREDICT-HD only (n = 62), UHDRS by PREDICT-HD and TRACK-HD only (n = 157 for TMS and TFC), and BDI by 
PREDICT-HD and IMAGE-HD (n = 56). 
bFor HD participants, BDI was reported only by PREDICT-HD and IMAGE-HD (n = 122); UHDRS-TFC was reported only by PREDICT-HD and TRACK-HD (n = 312). 
cArbitrary value for CAP score for controls calculated as described in the text.
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state) shows no clear relationship to CAP score—emotional 
changes in HD do not occur with the predictability of motor 
or cognitive changes.

Figures 2 and 3 show the individual longitudinal volumet
ric data for selected regions (‘spaghetti plots’) from all three 
studies, plotted against CAP score. Intracranial volume is 
one of the covariates (but whole brain volume is not). 
Regions in the basal ganglia circuit have the most striking de
clines in volumes with greater CAP scores.

Figures 4 and 5 show individual longitudinal volumetric 
data for selected regions (‘spaghetti plots’) from all three 
studies, plotted against CAP score. Intracranial volume 
(ICV) is a covariate, as above, but here there is also nor
malization by whole brain volume. This analysis highlights 
the extent to which regions in the basal ganglia circuit have 
the most striking declines in volumes with greater CAP 
scores.

Figure 6 shows the summary trend lines for selected re
gions. A. Covariate intracranial volume only. B. Covariate 
intracranial volume plus normalization by whole brain vol
ume. These comparisons highlight the extent to which re
gions in the basal ganglia circuit have the most striking 
declines in volumes with greater CAP scores, especially 
when normalized by whole brain volumes. Note that regions 

whose relative volumes increase in Panel B do not have actual 
increase in volume—they just have less atrophy than the 
whole brain, i.e. they are relatively spared.

Supplemental Fig. 1 shows additional brain regions. 
Supplemental Fig. 2 shows additional brain regions, normal
ized by whole brain volume. Supplemental Fig. 3 shows ana
lyses with control CAP = Age. Supplemental Fig. 4 provides 
the CAP score at first slope change for the sigmoidal model 
applied to each volume, and its standard deviation. Only vo
lumes for which the sigmoid fitting was better than a linear 
model are listed. A provides results for covariate intracranial 
volume only and B for normalized by whole brain volume. 
Results in both cases indicate an earlier changepoint for pu
tamen and caudate, followed by a group of structures that in
clude the globus pallidus, the nucleus accumbens and the 
white matter in the precentral cortex. Several of the changes 
detected in un-normalized volumes lose their significance 
after normalization, suggesting that these changes are in 
part due to global brain volume loss.

Since analyses by CAP scores including controls require 
somewhat arbitrary methods to assign controls a CAP 
score, we also conducted analyses using HD cases only. 
Figures 7–10 show similar analyses with CAG expansion 
cases only, no controls. Supplemental Figs 5 and 6 show 

Figure 1 Individual longitudinal clinical data (‘spaghetti plots’) from all three studies (PREDICT, TRACK and IMAGE). TMS: total 
motor score; SDMT: symbol digit modalities test; TFC: total functional capacity; BDI: Beck depression inventory. Datasets appear in the following 
order: Track-HD: Premanifest, Track-HD: Early, Track-HD: control, Predict-HD: Low/Medium, Predict-HD: High, Predict-HD: Control, 
Image-HD: Pre-HD, Image-HD: Symp-HD, Left_flat_sig model. No available data for TFC from Image-HD and BDI from Track-HD.
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analyses of additional brain regions. Figure 11 shows trend 
lines for CAG expansion subjects only. These analyses also in
dicate preferential atrophy of the structures in the basal gan
glia circuit.

Discussion
These data highlight the selective vulnerability to progressive 
atrophy in HD of subcortical regions in the basal ganglia cir
cuit. They raise the interesting possibility that there are 
circuit-based processes underlying regional brain atrophy 
in HD. As expected, the striatum has profound selective, 
early degeneration. Other regions of the brain within the stri
atal circuit also have selective severe degeneration. The glo
bus pallidus in particular has severity of degeneration 
comparable to that of the striatum. In addition, regions in 
the basal ganglia circuit such as the nucleus accumbens and 
substantia nigra also have preferential atrophy. By contrast, 
most of the other brain regions examined appear to undergo 
slow but steady atrophy within a narrower range, with some 
being relatively spared.

A great strength of the study is the analysis of the large 
number of structural MRI images using the same analytic 
pipeline.15 This permits the combining of different datasets, 
and enhances the generalizability of the results. To our 
knowledge, this study represents the most comprehensive de
lineation of the natural history of regional brain atrophy in 
HD to date, combining TRACK, PREDICT and IMAGE par
ticipants. We encapsulated an extensive list of brain regions 
and showed individual trend lines to underscore selective 
alteration of the basal ganglia circuitry during disease pro
gression. We also identified the time course of slope change 
for regions of interest, which highlights early striatal 
degeneration.

Another great strength is that the combination of the three 
datasets includes subjects with a wide range of CAP scores. 
Most subjects were relatively early in the course of HD, i.e. 
in the premanifest period, though some started in the mani
fest period, and some ‘converted’ to motor manifest HD26

during the course of the study. Diagnosis of HD in these stud
ies was made using clinician assessment of motor signs using 
the unified Huntington’s disease rating scale (UHDRS),3 not 
the more recent incorporation of cognitive changes.4 Thus, 

Figure 2 Individual longitudinal volumetric data for selected regions (‘spaghetti plots’) from all three studies (PREDICT, 
TRACK and IMAGE), plotted by CAP score. Covariate intracranial volume only (CAG expansion positive individuals and controls < age 40). 
Regions in the basal ganglia circuit have the most striking declines in volumes with greater CAP scores. Datasets appear in the following order: 
Track-HD: control, Track-HD: Premanifest, Track-HD: Early, Predict-HD: control, Predict-HD: Low/Medium, Predict-HD: High, Image-HD: 
control, Image-HD: Pre-HD, Image-HD: Symp-HD, Left_flat_sig model.
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overall there is a range of subject CAP scores, covering well 
the key period of early to moderate brain atrophy, which 
would not have been available studying any single dataset.

However, there are a number of limitations which must be 
acknowledged. The automated analysis platform,15 while 
highly sophisticated and capable of dealing with selective re
gional brain atrophy due to the use of the LDDMM method, 
does not have the face validity of expert manual segmenta
tion for each individual region. However, it would be impos
sible to analyse so many scans without automated image 
analysis. As described in the methods, all scans did have 
manual quality control. Another segmentation issue, faced 
by both humans and computational methods, is that small 
regions, and those with relatively low contrast, may be especial
ly liable to inconsistent results. Therefore, the results must be 
interpreted in the light of the regional segmentation reliabil
ity.24 There are some important regions which were too small 
or too uncertain to segment and were not included, such as 
the brain stem, subthalamic nucleus and ventral diencephalon. 
There is little evidence of asymmetric atrophy is HD, so our 
study did not analyse the two hemispheres separately, though 
this could be explored in the future if felt to be desirable. 
Furthermore, our results are limited to volumetric analysis. 
Other methods such as voxel-based morphometry, or other 

morphometry-based techniques might give complementary 
results.27–29

Other limitations involve the range of CAP scores. Our 
trend lines are limited to the range of CAP scores between 
200 and 600, because we do not have sufficient data outside 
of that range. These studies did not include images from HD 
individuals with severe disease, who are often difficult to 
scan because of involuntary movements or other clinical is
sues. In addition, there is a lack of individuals very far 
from predicted onset.

Because of the recent important study from Scahill et al.,25

we know that individuals very far from onset have most re
gional volumes essentially equivalent to normal, with the ex
ception of slight but significant differences in striatal 
volumes; therefore, we have used the expedient introduction 
of normal controls into the analysis in order to overcome this 
limitation. The slightly different striatal volumes in the very 
far-from-onset individuals25 could be due to atrophy begin
ning even earlier in the natural history of HD or due to a con
tribution from developmental differences in HD30–33 or 
possibly both. If the former is correct, then the use of controls 
as surrogates for very far-from-onset subjects will give a 
good overall description of the extent of atrophy. If the latter 
is correct, then our striatal data should be interpreted as 

Figure 3 Individual longitudinal volumetric data for selected regions (‘spaghetti plots’) from all three studies (PREDICT, 
TRACK and IMAGE), plotted by CAP score. Covariate intracranial volume only (CAG expansion positive individuals and controls < age 40). 
Regions in the basal ganglia circuit have the most striking declines in volumes with greater CAP scores. Refer to Fig. 2 for complete dataset list.
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reflecting a combination of a small component of develop
mental differences, plus the major component of degener
ation. Because of the lack of a large number of subjects 
with CAP less than 200, it is difficult to define the CAP scores 
at which atrophy begins, so we do not attempt to draw con
clusions here about the initiation of atrophy in different 
regions.

The use of the multiplier to assign the control subjects the 
equivalent of a CAP score is arbitrary. However, it helps to 
spread their data out over a larger range of scores. The 
goal of the study was to compare the relationship of atrophy 
of different brain regions in the HD subjects with CAP 
scores, and the use of the controls to substitute for very far 
from onset subjects will apply to all brain regions equally. 
We show that the overall patterns of results are very compar
able using control CAP = Age (supplemental Fig. 3) or ana
lysing the CAG expansion subjects only (Figs 5–7) without 
inclusion of controls.

Our results are broadly similar to those of Wijeratne 
et al.,16 though we have emphasized longitudinal trajectory 
(including with normalization for total brain volume), rather 
than effect sizes and markers and power for clinical trials. 
Technical differences include the analytic pipelines used, 

and the inclusion of the 1.5 T scans from PREDICT in their 
study, but not in the current study. Another study of 
Wijeratne et al.34 detected early changes in subcortical re
gions of the striatum using the Gaussian process progression 
model but with only TRACK and PREDICT participants, 
whereas we included the IMAGE study and a more thorough 
list of brain regions to demonstrate evidence of circuitry- 
based atrophy. They confirmed that structural brain atrophy 
provides improved prediction of onset of manifest HD, as 
previously shown in the PREDICT dataset alone.26 While 
they state that ‘monotonicity in the group-level volumetric 
evolution was enforced,’ nevertheless, their model, which in
volves many degrees of freedom, has the curves changing dir
ection (for instance, caudate turns up towards the end, while 
lateral ventricle turns down), which does not fit the biology 
of HD. We believe that the sigmoid function that we used 
provides a better reflection of the progressive monotonic 
but non-linear nature of neurodegeneration in HD, and we 
show that it provides a statistically superior fit to the data 
compared to a linear model. Our results are also congruent 
with those of Abeyasinghe et al.,35 though their focus on de
scribing trajectories (using Freesurfer) for subjects with dif
ferent CAP scores was very different from the current one. 

Figure 4 Individual longitudinal volumetric data for selected regions (‘spaghetti plots’) from all three studies (PREDICT, 
TRACK and IMAGE), plotted by CAP score. Covariate intracranial volume, plus normalization by whole brain volume (CAG expansion 
positive individuals and controls < age 40). This analysis highlights the extent to which regions in the basal ganglia circuit have the most striking 
declines in volumes with greater CAP scores. Refer to Fig. 2 for complete dataset list.
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They found that striatal volumes alone captured much of the 
variance in disease progression expressed by clinical vari
ables, highlighting the importance of imaging as a potential 
outcome measure for clinical trials. It would be interesting 
to compare the results of the analyses in this study with simi
lar analyses of Freesurfer data or other analytic pipelines.

Most regions of the brain, including many regions shown 
in the supplementary data, appear to undergo slow but stea
dy atrophy over the longitudinal course of HD. By contrast, 
the striatum and other regions in the basal ganglia circuit 
undergo preferentially severe degeneration. This suggests 
the possibility of two mechanisms underlying neuronal de
generation in HD—perhaps all regions of the brain are af
fected by cell-autonomous mechanisms with roughly 
equivalent rates of atrophy, including white matter re
gions.36 This would be consistent with many animal model 
studies showing that not just neurons but other cells can con
tribute to HD pathogenesis. The cerebellum is sometimes 
thought of as a control region relatively unaffected by HD. 
However, our data suggest that cerebellum, while one of 
the relatively less affected regions, is within the broad group 
of regions undergoing slow but steady atrophy, and for in
stance is quite comparable to the hippocampus.

While these regions have relatively steady atrophy, there is 
substantial variation from case to case, so there are likely to 
be many opportunities for more detailed study of individual 
regions, and for clinical correlations, as have been done in 
the individual datasets. For instance, regional cortical atro
phy has been shown in each dataset individually.12,37,38

For the cortex, thickness may be more revealing than volu
metric analysis, but even in the current study using cortical 
volumes, there appear to be differences in different regions. 
Newer methods of analysing cortical thickness39 may be use
ful for clinical correlations. Also, subcortical regions may 
have interesting correlations. For instance, amygdala atro
phy was correlated with depression in the IMAGE dataset.40

This finding suggests different HD phenotypes may be asso
ciated with alterations of specific structures, apparent at 
various timepoints throughout disease progression, not all 
of which are revealed in our study.

By contrast the striatum and other regions within the basal 
ganglia circuit undergo preferential and more profound de
generation. The basal ganglia selectivity raises the possibility 
of pathogenesis dependent on neuronal circuits, as has been 
suggested previously.1,41–44 Excitotoxicity has long been be
lieved to contribute to HD pathogenesis in the striatum.45

Figure 5 Individual longitudinal volumetric data for selected regions (‘spaghetti plots’) from all three studies (PREDICT, 
TRACK and IMAGE), plotted by CAP score. Covariate intracranial volume, plus normalization by whole brain volume (CAG expansion 
positive individuals and controls < age 40). This analysis highlights the extent to which regions in the basal ganglia circuit have the most striking 
declines in volumes with greater CAP scores. Refer to Fig. 2 for complete dataset list.
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There is considerable evidence for excitotoxic injury in 
HD.46 The severe involvement of the globus pallidus would 
appear inconsistent with excitotoxicity. The projection from 
the cortex to the striatum provides massive glutamatergic in
put to medium spiny neurons, and thus could be a substrate 
for excitotoxicity. However, the projection from the stratum 
to the globus pallidus is purely comprised of inhibitory neu
rons using GABA as a transmitter. Thus, excitotoxicity 
would not be possible for this synaptic interaction, though 
it is conceivable that glutaminergic innervation from the sub
thalamic nucleus47 could contribute. It must be acknowl
edged that the pallidum has relatively few neurons 
compared to the striatum,48 so it may be that atrophy there 
results from massive loss of afferent terminals as well as 
neuronal loss.49 White matter pathology has been well 

established in HD.50–54 The thalamus receives basal ganglia 
projections, but is not preferentially affected; however, it has 
many nuclei that do not receive basal ganglia projections, so 
a subnuclear or shape analysis may be more revealing.

Another mechanism might involve prion-like transmission 
of mutant Htt from one neuron to another. Network-based 
preferential atrophy and the mechanism of prion-like trans
mission have been proposed in Parkinson’s disease and 
Alzheimer’s disease,28,55,56 as well as of course in prion dis
ease,57,58 though it may not be the only explanation for 
circuit-based atrophy. There are some striking data that fa
vour this mechanism for HD as well, including in-vitro and 
in-vivo experiments, and observation of human postmortem 
brain material from transplant studies.59–65 Other potential 
mechanisms include loss of growth factor transport, or 

Figure 6 Summary trend lines for selected regions. (A) Covariate intracranial volume only (CAG expansion positive and controls < age 
40). (B) Covariate intracranial volume and normalized by whole brain volume (CAG expansion positive and controls < age 40). These comparisons 
highlight the extent to which regions in the basal ganglia circuit have the most striking declines in volumes with greater CAP scores, especially when 
normalized by whole brain volumes. Note that regions whose relative volumes increase in Panel (B) do not have actual increase in volume—they 
just have less atrophy than the whole brain, i.e. they are relatively spared.
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Figure 7 Individual longitudinal volumetric data (‘spaghetti plot’) for selected regions. Covariate intracranial volume only (CAG 
expansion positive only, no controls). Datasets appear in the following order: Track-HD: Premanifest, Track-HD: Early, Predict-HD: Low/Medium, 
Predict-HD: High, Image-HD: Pre-HD, Image-HD: Symp-HD, Left_flat_sig model.

Figure 8 Individual longitudinal volumetric data (‘spaghetti plot’) for selected regions. Covariate intracranial volume only (CAG 
expansion positive only, no controls). Refer to Fig. 7 for complete dataset list.
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Figure 9 Individual longitudinal volumetric data (‘spaghetti plot’) for selected regions. Covariate intracranial volume, plus 
normalization by whole brain volume (CAG expansion positive only, no controls). Refer to Fig. 7 for complete dataset list.

Figure 10 Individual longitudinal volumetric data (‘spaghetti plot’) for selected regions. Covariate intracranial volume, plus 
normalization by whole brain volume (CAG expansion positive only, no controls). Refer to Fig. 7 for complete dataset list.
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altered synaptic connectivity,1,66–68 perhaps due to abnor
mal complement-mediated pruning.69 The recent identifica
tion of modifier genes involved in DNA repair has led to 
hypotheses based on somatic expansion of the CAG re
peat.70,71 The regional variation in somatic expansions72 ap
pears to match the regional variation in extent of atrophy; 
though more detailed studies of this relationship could be re
vealing. Thus, the apparent circuit-based preferential path
ology could have several explanations, as has also been 
proposed for PD.73 Furthermore, other mechanisms, such as 
cell-autonomous effects, must explain the overall atrophy pre
sent in later stage cases of HD, especially in juvenile onset HD.74

In conclusion, these data provide a comprehensive de
scription of the natural history of regional volumetric brain 

atrophy in HD. They highlight the widespread degeneration 
of many (and perhaps all) regions of brain over the course 
of HD. They also highlight the selective atrophy of regions 
in the basal ganglia circuit, with implications for pathogenesis 
and experimental therapeutics. These results support (though 
certainly do not prove) the hypothesis of circuit-based spread 
of pathology in HD, possibly due to spread of mutant Htt pro
tein, supporting therapeutic targets related to prion-like 
spread of pathology or other connection-based mechanisms. 
In addition, they have implications for current neurosurgical 
therapeutic approaches, since delivery of therapeutic agents 
solely to the caudate and putamen may miss structures af
fected early, such as nucleus accumbens, and output nuclei 
of the striatum, the substantia nigra and globus pallidus.

Figure 11 Summary trend lines for selected regions, CAG expansion positive only, no controls. (A) Covariate intracranial volume 
only. (B) Covariate intracranial volume, plus normalization by whole brain volume. These analyses also indicate preferential atrophy of the 
structures in the basal ganglia circuit.
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Supplementary material
Supplementary material is available at Brain Communications 
online.
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