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Abstract 
Taking its departure point in critical mathematics education, mathematical competencies, and the 

use of digital technologies in mathematics teaching and learning, the paper sets out to discuss and 

describe a technocritical mathematics education. Not least this is due to the increase of hidden 

mathematics in technology of society today, both inside and outside the classroom. It is argued 

that a technocritical mathematics education must enable students to exercise the processes of 

“packing” and “unpacking” (hidden) mathematics as part of becoming citizens in a modern 

society. The paper raises the questions of what mathematical cases might enable students to 

develop competence with regards to these processes, and what might characterise such 

mathematical cases. Part of the answer to this point is a so-called embedded “matryoshka doll” 

feature of such mathematical cases. Two examples of mathematics-based technologies—public-

key cryptography and blockchains for crypto currency—on which our modern-day society are 



 

 
2 

deeply dependant are displayed and discussed in the light of a technocritical mathematics 

education. 
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Technocritical mathematics education; critical mathematics education; mathematical 

competencies; digital technologies; blackboxing. 

Introduction 

In a context of democracy and subject matter didactics, Misfeldt and Jankvist (2020) argue for a 

“technocritical mathematics education” which focuses on enabling students to “pack and unpack 

mathematics”. In this regard, packing and unpacking concern both the use of digital technology in 

the classroom and are related to students’ enquiring their own technological surroundings. It is 

well known that digital technologies in our everyday life hide a lot of mathematics. Almost twenty 

years ago, the now past applied mathematician and philosopher of mathematics Philip J. Davis 

said:  

It’s a wonderful subject, mathematics, of course, and the interesting thing is that it 

is coming into our lives more and more. The age is the mathematical age. Most of 

the mathematics is hidden. It’s invisible to people, because it’s in programs, it’s in 

chips, it’s in laws … So, you don’t see it—and if you don’t see it, you don’t think 

it is there. (Philip J. Davis in Jankvist & Toldbod, 2005, p. 321) 

The situation today appears to only have increased in respect to the hidden mathematics in society. 

Surprisingly, perhaps, this also goes for what is taking place inside the mathematics classroom 

(Misfeldt & Jankvist, 2020). With the heavy introduction of digital technologies (DT)—such as 
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dynamic geometry environments (DGE) and computer algebra systems (CAS)—in both lower and 

upper secondary schools, quite a bit of mathematics is hidden for the students today. Mathematical 

procedures are packed away into CAS procedures such as “solve” for solving linear equations and 

“desolve” for solving practically any type of differential equation, and DGE procedures such as 

“ruler” and “drag”. Such procedures have been documented to have both unintended negative 

consequences for the students’ mathematics learning due to blackboxing of mathematical 

processes and content (e.g., Buchberger, 1990; 2002; Jankvist et al., 2019) as well as new learning 

potentials such as a lever potential, which allows students to focus on conceptual mathematics 

without getting stuck in tedious calculations (e.g., Dreyfus, 1994; Heid et al., 2012). Even though 

these insights reveal different takes on the consequences of packing and unpacking mathematics 

for students’ learning, none of them talk about the processes of packing and unpacking as goals in 

their own right. This is the purpose of technocritical mathematics education (Misfeldt & Jankvist, 

2020), since this takes as its outset that the end goal of learning mathematics is citizenship and 

critical awareness, along with the fact that technology plays a large and growing role in shaping 

our society (Harari, 2016; Zuboff, 2019). 

Technocritical mathematics education is of course based on critical mathematics education 

(Skovsmose, 2023), which is primarily concerned with societal inequality from a mathematics 

education point of view. Even though research in critical mathematics education does address the 

role of DT in democratic processes related to inequity, economics, etc., it does not focus on the 

cognitive function of DT when working with mathematics; its focus is on the role of hidden 

mathematics in DT concerning critical and democratic processes in society. (e.g., Skovsmose & 

Yasukawa, 2004). The observation that DT hides mathematics both inside and outside of the 

mathematics classroom, i.e., in the wider society, calls for a new focus in mathematics education. 
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As put forward by Misfeldt and Jankvist (2020), perhaps a newly organised mathematics 

education, where the teaching and learning focus is on the “translation processes” that pack and 

unpack mathematics, respectively. That is, the transformations that hide and uncover mathematics 

in relation to the given situations and purposes. It thus becomes a democratic objective that 

students learn to distinguish between use of technology as lever potential and as black box, 

respectively. To be able to address complex problems from a holistic point of view, it is important 

to be able to simplify—or “hide”—single elements. Yet, from the point of view of citizenship in a 

democracy, it is important to be able to uncover the involved mathematics again, both in relation 

to mathematical concept formation and the use of mathematical models in society. To this end, DT 

in the form of mathematical software (DGE, CAS, etc.) plays a central role, since these tools train 

exactly this. Critical mathematics education has some similarities to mathematics that are related 

to “the real world” either by focusing on realistic contexts (Van den Heuvel-Panhuizen & Drijvers, 

2020), mathematical modelling (Cevikbas et al., 2023; Geiger, 2017; Lesh & Doerr, 2003; Maas 

et al., 2022;), or mathematics developed in practice (Nunes et al., 1993). However, the combination 

focusing on students’ empowerment and on critical and reflective uses of mathematics, is distinct 

for critical mathematics education and makes this perspective rather relevant when considering 

how mathematics can and should contribute to students’ mathematical literacy. 

As pointed out by Davis in the introductory quote, if you cannot see the mathematics, you do not 

think it is there. For this reason, a technocritical mathematics education must begin with training 

the students in spotting situations and contexts involving hidden mathematics. More concretely, 

this means that the use of DT in mathematics teaching should include a direct focus on the 

processes of hiding mathematics and revealing already hidden mathematics. Still, it is clear that to 

exercise these processes, students must possess some mathematical capabilities and 
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understanding—they must possess mathematical competencies. In this paper, we thus ask the 

following questions: 

What might be examples of mathematical cases that enable students to develop and engage with 

the processes of packing and unpacking hidden mathematics related to use of DT? And what 

characterises these cases from a technocritical mathematics education point of view?  

As a means for addressing these questions, we provide two illustrative mathematical cases from 

our everyday surroundings: one related to public-key cryptography, which is used in much of our 

digital communication, online shopping, etc.; and one related to blockchain technology which is 

used in relation to crypto currency. But first there is a description of the theoretical perspectives 

on which we build our argumentation. In particular, we draw on two strands of mathematics 

education research that both—each in their own way—augment the critical mathematics education 

approach.  

Mathematics education theoretical perspectives 

We use three bodies of literature to describe the problématique. Critical mathematics education, 

which as mentioned above, focuses on the role mathematics plays in developing critical thinking 

and democratic citizenship, and serves to develop an awareness about how mathematics education 

may contribute to inequality. Furthermore, we relate to the Danish mathematical competencies, 

the so-called KOM framework (Niss & Højgaard, 2019), which focuses on how the ability and 

willingness to do mathematics is an important outset for participating in industry and democracy. 

The last body of literature we draw upon concerns what technology, and the use thereof in teaching, 

does to students’ conception of mathematics and their motivation for and ability to engage 

mathematically in society.  
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Critical mathematics education  

Critical mathematics education can be described in terms of its “concerns” or issues of interest. 

One of its main concerns is to provide students with a mathematical education that allows them to 

identify, judge and criticise the uses—and misuses—of mathematics in their own societal settings. 

Under this perspective, it is intended that students use mathematics as a tool that enables them to 

analyse and criticise their own societal reality. Skovsmose and Nielsen (2014) affirm that the 

concerns of critical mathematics education cover the following issues: 

(a) Citizenship identifies schooling as including the preparation of students to be an active part 

of political life. 

(b) Mathematics may serve as a tool for identifying and analysing critical features of society, 

which may be global as well as having to do with the local environment of students. 

(c) The students’ interest emphasises that the main focus of education cannot be the 

transformation of (pure) knowledge; instead, educational practice must be understood in 

terms of acting persons. 

(d) Culture and conflicts raise basic questions about discrimination. Does mathematics 

education reproduce inequalities which might be established by factors outside education 

but, nevertheless, are reinforced by educational practice? 

(e) Mathematics itself might be problematic because of the function of mathematics as part of 

modern technology, which no longer can be reviewed with optimism. Mathematics is not 

only a tool for critique but also an object of critique. 

(f) Critical mathematics education concentrates on life in the classroom to the extent that the 

communication between teacher and students can reflect power relations. (Skovsmose & 

Nielsen, 2014, p. 1257) 
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These six perspectives, when presented in totality, illustrate how critical mathematics education 

presents a coherent approach to mathematics education, which questions some of the naturalised 

understandings of what mathematics is and why it is taught. Issues (b) and (e) are of special interest 

to the discussion of the relation between mathematics and technology, because of the analytical 

apparatus that mathematics provides in understanding our technical surroundings (issue b), and 

because mathematics itself is part of technologies that have a questionable or problematic impact 

on our lives (issue e). Critical mathematics education has questioned and criticised the very idea 

of “modernity” conceived as an ideal of social progress based on the advancement of science and 

the development of technologies—in which mathematics has much to do—and where the 

objectivity and neutrality of science and technological advances are assumed and left 

unquestioned. 

One scholar who has questioned this presumed neutrality of modernity and the role of mathematics 

in its constitution is D’Ambrosio (1994): 

In the last 100 years, we have seen enormous advances in our knowledge of nature 

and in the development of new technologies. [...] And yet, this same century has 

shown us a despicable human behaviour. Unprecedented means of mass destruction, 

of insecurity, new terrible diseases, unjustified famine, drug abuse, and moral decay 

are matched only by an irreversible destruction of the environment. Much of this 

paradox has to do with an absence of reflections and considerations of values in 

academics, particularly in the scientific disciplines, both in research and in education. 

Most of the means to achieve these wonders and also these horrors of science and 

technology have to do with advances in mathematics. (D’Ambrosio, 1994, p. 443) 
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It is in this context that the notion of mathematics in action (Skovsmose, 2004) becomes important. 

The notion refers to the identification of the role of mathematics in the technological planning of 

society and in decision-making. The notion also considers how mathematics becomes installed in 

society and starts operating as part of technological devices, although in a way that is not visible 

to everyone.  

Indeed, as noted by Skovsmose (2020), “most often the mathematics that is brought into action is 

operating beneath the surface of the practice” (p. 605). An example used by Skovsmose (2020) to 

illustrate this, is the process of shopping at the supermarket. Particularly the moment in which the 

cashier scans the bar codes of the products to calculate the total of the purchase, and the shopper 

uses her credit card so that an electronic reader subtracts from her bank account the amount of 

money that covers the total of the purchase. Even though neither the shopper nor the cashier are 

required to do any arithmetic to perform this process, and although there is no mathematics in 

sight, there is a considerable amount of mathematics involved in the process: 

The items are coded and the codes are read mechanically; the codes are 

connected to a database containing the prices of all items; the prices are added 

up; the credit card is read; the amount is subtracted from the bank account 

associated to the credit card; security matters are observed; schemes for 

coding and decoding are taking place (Skovsmose, 2020, p. 605). 

There are two important things to consider here. First, that mathematics-based technology is found 

everywhere in modern societies: in banking transactions, in different forms of electronic 

communication, in economic planning, in insurance companies and risk calculations, in techniques 

for surveillance and control, in military devices, etc. Mathematics in action is an integral part of 
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the socio-technological structures of modern society. Second, that mathematics in action can have 

different qualities—not necessarily positive ones. They can be “productive, risky, dangerous, 

benevolent, expensive, dubious, promising, and brutal” (p. 607). An example to illustrate this kind 

of undesirable qualities is the use of drones by the American military in the Afghanistan war: 

The operation of the drone includes a range of mathematics brought in action. 

The identification of a target includes complex algorithms for pattern 

recognition. The operation of a drone can only take place through the most 

sophisticated channels of communication, which in turn must be protected by 

advanced cryptography. Channels of communication as well as cryptography 

are completely mathematized. The decision of whether to fire or not is based 

on cost-benefit analyses: Which target has been identified? How significant is 

the target? What is the probability that the target has been identified correctly? 

What is the probability that other people might be killed? What is the price of 

the missile? Mathematics is operating in the middle of this military logic. 

(Skovsmose, 2020, p. 606). 

As pointed out by Skovsmose (2020), mathematics in action often seems to act in an ethical 

vacuum that is determined by an “objective” authority attributed to mathematics. Moreover, he 

argues that this “objectivity” of mathematics is a myth that needs to be challenged. Overcoming 

such a myth is an educational challenge for mathematics education, since this should provide 

conditions for students to uncover, identify and critically reflect on any form of mathematics in 

action. We believe that it is in such contexts that the development of a technocritical mathematics 
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education becomes necessary, where focus is on the (increasing) amount of mathematics in action 

that is encoded into digital technologies as well as practices building on such technologies.  

Constructs related to the use of DT 
Some three decades ago, Buchberger (1990) argued that before students should be allowed to use 

DT in a blackboxing manner, they must have studied the mathematical “area thoroughly, i.e., they 

should study problems, basic concepts, theorems, proofs, algorithms based on the theorems, 

examples, hand calculations” (p. 13). The work with the mathematical content is what Buchberger 

(1990; 2002) refers to as the “whiteboxing stage”. The order of this whiteboxing stage before any 

blackboxing, he named the “whitebox/blackbox principle” for using DT, in his case CAS.  

Three decades later much has happened to the use of DT in the mathematics classroom. Jankvist 

and Geraniou (2021) argue that Buchberger to some extent appears to have disregarded the 

potential of DT themselves serving a whiteboxing purpose in students’ work with unfamiliar 

mathematical areas. This role was, however, acknowledged by Cedillo and Kieran (2003), in their 

introduction of the term “grayboxing” as well as by Drijvers (1995), who early on was critical of 

a too strict interpretation of Buchberger’s principle. Grayboxing combines blackboxing and 

whiteboxing, acknowledging that mathematics learning may take place in an environment that 

combines the two. For example, in a context of algebra, Cedillo and Kieran (2003) point out that 

DT can serve as “a mediator of algebra learning—a tool that helps create simultaneous meaning 

for the objects and the transformations of algebra” (p. 221). Jankvist and Geraniou (2021) propose 

to “define whiteboxing, still as the opposite of blackboxing, but to be when digital technology 

serves the purpose of revealing mathematical aspects otherwise hidden or inaccessible to the 

students” (p. 222).  
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Hence, the situation of DT in the mathematics classroom is not as black-white as one might expect 

at first sight. DT serve the purpose of packing down by blackboxing, but they may also play a role 

in concept formation and potentially unpacking hidden mathematics. This is to say that a balance 

must be struck between the role of DT as a lever potential (Dreyfus, 1994) and the fact that 

blackboxing in itself may leave students dependent on DT and with little experience of performing 

low-level mathematical processes (Nabb, 2010) as well as not being able to account for these (e.g., 

Jankvist & Misfeldt, 2015; Jankvist et al., 2019).  

In recent years, the use of computers in mathematics education has also started to address the 

intersection between mathematics and computer science. This has mainly been done under the 

heading of working with computational thinking in the mathematical classroom (Kallia et al., 

2021; Pérez, 2018; Tamborg et al., 2023; Weintrop et al., 2016; Wing, 2006). Computational 

thinking is seen as related to problem solving, algorithms, recursion and abstraction (Wing, 2006), 

as well as to data, modelling, programming and system thinking (Weintrop et al., 2016). The focus 

on computational thinking in the teaching and learning of mathematics suggests that these tools 

allow for new mathematical processes and meaning making that has some affinity to computer 

science (Pérez, 2018; Ye et al., 2023). This means that mathematics has an increased responsibility 

to address students’ ability to understand their technological surroundings. However, it also means 

that the ability to understand data, algorithms and recursion will be increasingly available as 

learning objectives and capabilities in the mathematics classroom.  

Despite the obvious differences, the use of DT in the mathematical classroom is a good starting 

point for investigating technologies in our surroundings. Some of the phenomena are similar. 

Mathematics is hidden or blackboxed in digital surroundings both in the classroom and outside the 
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classroom. The way that teachers and students talk about blackboxing and whiteboxing as a 

strategy to learn with DT, does have a potential to transfer to discussions about how mathematics 

is hidden in our digital surroundings outside the classroom. 

The KOM framework 
As mentioned above, we draw on the KOM framework that considers the ability and willingness 

to do mathematics as an important outset for participating in industry and democracy, and that 

provides us with a language of mathematical mastery. This way we will be able to discuss 

citizenship and democratic participation in work life in relation to the use of DT. Niss (2016) states 

that DT on the one hand may “enhance a wide variety of mathematical capacities”, but on the other 

hand, also may “replace some mathematical competencies”, which surely is not desirable, since 

DT can: 

[…] replace students’ creation of meaning and understanding of mathematical 

concepts and results; replace reasoning and sound and critical judgment; replace 

problem-solving competency; replace symbols and formalism competency, 

including the ability to perform basic computations; construct, interpret, or validate 

mathematical models; and replace the work needed to understand “what?,” “how?,” 

and “why?” in mathematics. (Niss, 2016, pp. 248–249). 

The KOM framework is a theoretical approach that conceptualises the meaning of “being 

mathematically competent” (Niss & Højgaard, 2011; 2019). Within this theoretical framework the 

notions of “mathematical competence” and “competencies” as well as their possible roles in the 

teaching and learning of mathematics, are fundamental. The notion of mathematical competence 

is defined as: 
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Someone’s insightful readiness to act appropriately in response to all kinds of 

mathematical challenges pertaining to given situations. It is essential to stress that 

the ‘situations’ referred to in this definition need not be mathematical in and of 

themselves, as long as they (may) generate mathematical challenges. (Niss & 

Højgaard, 2019, p. 12, emphasis in the original text) 

As can be inferred from the definition above, the situations referred to may include intra- or extra-

mathematical contexts. As noted by Niss and Højgaard, such situations: 

Actually or potentially call for the activation of mathematics in order to answer 

questions, solve problems, understand phenomena, relationships or mechanisms, or 

to take a stance or make a decision, endeavours that give rise to the “challenges” 

we have in mind in the definition.  (2019, p. 12) 

The mathematical competence in turn is constituted by a set of eight mathematical competencies. 

These are the mathematical competencies of: thinking; problem handling; modelling; reasoning; 

representation; symbols and formalism; communication; and aids and tools (for more elaborated 

descriptions, please refer to Niss and Højgaard, 2011; 2019). It is important to note that, although 

they are usually presented separately, these competencies may overlap—depending on the 

situation and context where they are activated. It is also important to note here that it is not possible 

for an individual to possess a mathematical competency completely and exhaustively. That is to 

say, the framework assumes that the mathematical competencies of individuals are manifested in 

different contexts and situations but never in its full range. KOM offers three dimensions to 

characterise the degree of possession of a mathematical competency by an individual: degree of 

coverage, the extent to which the individual possesses all the aspects of the competency; radius of 
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action, the range and variety of different contexts and situations in which the individual can 

successfully activate the competency; and technical level, the level and degree of sophistication of 

how the individual manages the mathematical concepts, results, theories and methods (Niss & 

Højgaard, 2019). The KOM framework addresses a paramount concern in mathematics education, 

namely, to change focus in education from facilitating students’ learning of specific mathematical 

content towards teaching them a mathematical approach to life. The KOM framework allows a 

reification of mathematical processes that enable us to discuss these processes that we endorse in 

the teaching of mathematics across various specific classroom contexts, even though specific 

teaching situations can never be fully described by the eight mathematical competencies.  

Two illustrative “mathematics in action” cases 

In this section, we provide two illustrative mathematics in action cases from modern day society 

that rely on quite a bit of embedded, hidden, and packed mathematics.  

Situating the cases 

Before we dwell into the mathematical details of the two mathematics in action cases, it makes 

sense to describe the technological and social situations that exist around these. As mentioned in 

the introduction, the first case is that of public-key cryptography, which dates back to the 1970s 

and today is the basis for much of our online communication. The second case is that of 

blockchains, which is the technology behind crypto currency that was invented approximately 15 

years ago and now is a major player on the financial market.  

These cases are chosen because both exemplify a type of mathematics that has become important 

for public political discussions over the last decades as a response to the increased digitalisation. 
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Cryptography and privacy are important themes when discussing the relation between state and 

citizen. Encrypted web browsing and text message services are, on the one hand, a guarantee for 

individual privacy, and on the other hand, a guard against criminals who could otherwise steal 

one’s bank information when shopping online, or spy on people when texting their secret friends 

over services such as WhatsApp and Signal. Also citizens of autocratic regimes, and anyone with 

perhaps legitimate interests and information needs that are criminalised in the country that they 

live in, benefit from encryption.  

Nevertheless, some services are also becoming a haven for criminals. The value of private 

communication for criminals is of course not surprising. Currently it could seem that various 

solutions for encrypted messaging is a major battle ground between criminals and international 

police intelligence service as seen in the recent ANØM case (“ANOM,” 2023), where American 

and Australian intelligence services took over the control of an encrypted service used by criminals 

and kept running it while building cases against its users, leading to hundreds of arrests. Surely, 

this shows that criminals in general benefit a great deal from such services. All this is to say that 

the control over encryption raises several questions about the relation between state and citizens. 

To what extent does it make sense to ban encryption? And how can this be done in an international 

technology landscape? What is the balance between freedom and the control of crime? All these 

questions are political, yet they build on genuine techno-mathematical inventions.  

Blockchain and the derived cryptocurrencies are a large financial entity, even though the total 

value of cryptocurrencies is still less than one percentage of the entire world’s money. The idea in 

cryptocurrencies is a peer-to-peer means of value transportation that is not regulated by any state, 

and hence sets its owner free from governmental control. Many people argue that cryptocurrencies 
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have similarities to Ponzi schemes and hence possess a danger to the entire economy. In addition, 

the carbon footprint, and the occupation of computational resources for mining and maintaining 

cryptocurrencies are not trivial (Buiter, 2022). Surely, bitcoins and other cryptocurrencies are also 

often used by criminals. For all these reasons, there is an ongoing debate whether cryptocurrencies 

should be regulated or not, and if so, then how this could be done.  

Public-key cryptography 
Today, most cryptosystems draw on the idea of a so-called “one-way function”. That is an injective 

function, f, which for every x in its domain it is easy to calculate f(x), but for every y = f(x) in its 

range for all practical purposes impossible to calculate f −1(y) = x. The phrase “for all practical 

purposes” is of course not a well-defined mathematical term. Nevertheless, the idea is that it may 

take moments to calculate f(x), while it may take eons to calculate f −1(y). 

The idea of public-key cryptography is that a person, Bob he is usually called, by means of such a 

one-way function generates a public encryption key, one to which only he knows the decryption 

key, i.e., the inverse function. Another person, who is usually named Alice, interested in sending 

a secret message to Bob can then use his public key to encrypt a message and send it. Bob is then 

the only one capable of decrypting this message. Due to the nature of the one-way function, a 

cryptanalyst, Eve, eavesdropping on the line will not stand a chance of breaking the code, even 

though she knows both the encrypted message, dependent on f, and the public key. The situation 

is illustrated in Figure 1. Different mathematical fields offer different examples of such one-way 

functions, e.g., projective geometry and number theory. The latter is the most well-known and is 

oftentimes ascribed to Ron Rivest, Adi Shamir and Leonard Adleman (Rivest et al., 1978), and 

thus named RSA. RSA builds on the problem of prime factoring large numbers. 
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Figure 1. Public-key cryptography as originally described by Diffie and Hellman (1976). One public key 

(#1) is used to encrypt the message P before transmission. Another private key (#2) is used to decrypt after 

reception. 

 

Generating a very large number n, for example 200 digits long, by means of multiplying two, also, 

large primes p and q is a straightforward operation. However, going the opposite way, that is prime 

factoring n, is “for all practical purposes” impossible. In RSA, the public encryption key consists 

of two numbers; n, the product of two large (secret) primes p and q, and a number e which is 

determined in such a way that gcd(e, (p − 1)(q − 1)) = 1, gcd being the greatest common divisor. 

The encryption procedure on the message M, a natural number, revealing the cipher text C is 

defined as C ≡ Me (mod n), meaning that the integer C is congruent to the integer Me modulo the 

integer n. This means that n divides (C − Me) with remainder 0, n | (C − Me). The private decryption 

key, besides also consisting of n, consists of a number d, which is an inverse of e modulo (p − 1)(q 

− 1), that is to say ed ≡ 1 (mod (p − 1)(q − 1)) (d can be calculated using the Euclidean algorithm 

and Bezout’s identity). The decrypting procedure is defined as Cd ≡ M (mod n). 

From a mathematics point of view, we of course need to prove that the decryption procedure of 

RSA actually leads to the original message M. Rivest et al. (1978) did this using well established 
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results from number theory. To be exact, the proof builds on Euler’s theorem, the special case of 

this known as Fermat’s little theorem, as well as the so-called Chinese remainder theorem. We do 

not provide the proof here. Still, diving into these theorems illustrates yet another mathematical 

layer of the case. 

Cryptography is of course a good way to ensure privacy, but as mentioned above there are a 

number of political concerns around this technology, e.g., criminal activities, surveillance and 

espionage. From a critical mathematics education perspective, we argued earlier that we should 

(or even have to) provide students with the necessary mathematical (and quite arguably life) skills 

that enable them to identify, judge and criticise the uses—and misuses—of mathematics in their 

own societal settings. So, equipping our students with knowledge and understanding of public-key 

cryptography should better prepare them for the challenges brought forward by the current state 

and policies around online communications. How private are their own personal communications? 

How does society respect (or not) every citizen’s privacy? We are sure that students nowadays are 

brought up in a digitalised world, and some do not necessarily reflect on what “hidden” 

mathematics exist in the ways we communicate online, or even they simply do not care. Of course, 

we are not saying that all students need to care about every single detail and become experts in 

number theory and public-key cryptography. However, being exposed to the mathematical ideas 

behind secure online communications and “activating” mathematical thinking to understand the 

phenomena and mechanisms involved in public-key cryptography should foster students’ 

development of a mathematical way of thinking about the world that surrounds them and lead to 

mathematical competence necessary for their future societal life. From a digital technologies’ 

perspective, modelling the “problem” diagrammatically or with the help of digital technology (e.g., 

a simulation) would most certainly unveil some of the “mechanisms” of public-key cryptography 
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and help students unpack the hidden mathematics (see the next section as well). But one could ask: 

Is knowing how something works, but also “seeing” how something works with the help of 

technology necessary in mathematics education? The answer could be: It depends. Do we want to 

create problem-solvers, reflective and logical thinkers or do we want to develop efficient users of 

technology who are reliant solely on technology and its “magic” in solving problems for them? 

Both “types of citizens” can survive in a digitalised society. But what is key here is what the latter 

“type of citizen” is equipped to do (or not) when technology breaks. 

Blockchain  

The “one-way function” described in the previous section can also be used to create hash functions, 

which are digital identifiers for any dataset, mapping data to simple strings in an injective manner. 

In this case, no private key exists that allows us to calculate the inverse. A hash function can be 

used to guarantee that no one has messed with your data.  

As an example, say that you calculate the hash function of a word document, e.g., testament.doc, 

where you testament all your AC/DC t-shirts to your brother, write the hash down and place it in 

a secure place (it could be h(testament.doc) = 4353tfew4), and then keep the document on the 

family computer hard drive. If your sister now tampers with the document, so that she gets the t-

shirt from the “Highway to Hell” tour, the hash would be different, and the scam can be revealed. 

This use of one-way/hash functions has several applications. One of them is that they make 

blockchains possible. A blockchain is an open and connected database of information that can be 

read by everyone, but not copied or altered. The idea is to store data in a series (chain) of code-

blocks. Each block contains the data to be stored in the specific block and a little more information 

to make the chain secure. This extra information consists in that each block is given a hash label 
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(the result of calculating the hash function of the block), and this hash-label is stored in the block 

together with the hash-label of the previous block in the chain.  

 

Figure 2: A connected chain of data blocks containing information about testimonial information, if one 

block is tampered, the hash function is changed, and the chain is broken.   

Blockchains have several applications, cryptocurrency being one of them and smart contracts 

another. With blockchains, we can be sure about ownership and transactions of currency without 

keeping track of who owns what in a central governmental database. If the currency is spent once, 

the chain will be altered, and it cannot be spent again.    

There is a heavy critique and debate about the use of blockchains for cryptocurrency. As mentioned 

above, it has been argued that these currencies mainly act as Ponzi schemes and consume an 

enormous amount of energy while not adding anything good to human life. 

Similarly, to what was argued with regards to a critical mathematics education perspective for the 

public-key cryptography case, it seems reasonable to argue that a sound understanding of block 

chain is an important element in participating in political discussions about regulations and 

taxations of such monetary instruments. Debates over crypto currency often build on arguments 

where mathematics lends objectivity and security to the financial constructions in a way similar to 

what Skovsmose and Nielsen (2014) describe as: “Mathematics is not only a tool for critique but 
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also an object of critique” (p. 1257). This because the mathematical and precise nature of the 

blockchain does not guarantee a financial stable asset.  

Packing and unpacking—the “Matryoshka doll” metaphor 

In both mathematics in action cases above, a full understanding of the mathematical situation 

requires quite a bit of technical work and a high level of abstraction on behalf of the students. In a 

sense this makes these two cases hard to include in actual mathematics school teaching. 

Nevertheless, both cases point to mathematical artifacts that are important to learn about in order 

to promote democratic citizenship. Furthermore, if these artifacts should be taught in relation to a 

school topic, it seems relevant to teach them within our mathematics programmes. Yet, this leaves 

the question of how to do this without just talking “about” the cases, but providing the students 

with hands-on experiences with the involved mathematics, i.e., one-way functions, number theory, 

etc. The two cases have of course been chosen in such a way that they allow for packing and 

unpacking of the mathematics involved. 

Now, surely our education systems should equip students with the necessary skills to enter 

nowadays society, where digital technology makes frequent appearances in everyday life. Such 

skills include digital competencies, as well as mathematical competencies. To ensure that our 

students are critical thinkers and can understand the mathematics behind certain processes and 

activities that involve technology—or not—we may need to rethink the current mathematics 

curriculum (Pepin et al., 2023) to ensure that students have the necessary mathematical knowledge, 

but also the competencies needed, involving abstracting, reasoning, etc., as well as using tools to 

effectively reach a solution (to mention a few from the KOM framework).  
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Going back to the public-key cryptography case, we could break down the mathematics that needs 

to be taught to students at different levels as follows. Now, the very idea of public-key 

cryptography can be explained to students at a rather elementary level, e.g., by comparing with the 

idea of private-key cryptography and the potential risks of such. This will of course need to involve 

a discussion of the idea of a mathematical “one-way function”, to the extent that this is possible. 

Moving to lower secondary mathematics education, where the concept of function is known to the 

students, a deeper discussion of function and its inverse can be carried out. Also, actual number 

examples can be introduced, and the students can carry out their own calculations involving the 

numbers p, q, and e, as described in the case above. Surely, this will entail an introduction to the 

modulo operation and congruence (and the congruence sign), with which they may not be familiar. 

However, the notion of a greatest common divisor (gcd) as well as exponent and powers should 

not be altogether unfamiliar to the students. Of course, the Euclidean algorithm and Bezout’s 

identity could be “packed” away through an outsourcing to DT. At upper secondary level, a full 

unpacking with proof of the correctness of RSA, involving actual number theoretic results such as 

Euler’s theorem, the Chinese remainder theorem, etc. can be implemented. (For an example of 

such an implementation in upper secondary school, please refer to Jankvist, 2011).   

Having laid out all of the above, we do not propose that students need to be taught cryptography 

per se at school, but instead we simply propose that we should try to equip students with the 

competence to identify the “hidden” mathematics in various aspects of our lives and scientific 

disciplines, such as cryptography. Students should become critical thinkers as to how, when and 

for what purpose technology and mathematics may be used outside school. Of course, making 

some links to the mathematics that support a discipline such as cryptography, and mentioning those 

links at a high level, including blockchain and crypto currency, could encourage students to look 
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for the “hidden” mathematics in various other disciplines too. In other words, we envisage that 

providing students with “advanced” and real examples and presenting these as a necessary “tool” 

for secure digital communications, transactions, data protection, etc. would instil the need for 

looking further into the mathematics that may be hidden as a way to understand the world around 

them.  

As for blockchains, connecting information in an open chain, where the hash function ensures that 

information cannot be changed, is an example of using computational thinking to pack and unpack 

information. Students in lower secondary school can easily learn about the value of non-editable 

and chained information by looking at examples such as databases and cryptocurrency. 

Furthermore, by adding a little bit of programming and algorithmic thinking, it is possible to create 

or modify a simple blockchain, and if the students are up to it, it can be fun to create simple hash 

functions. Such hash functions can be rather elementary, e.g., basic words or character counts, or 

more advanced, e.g., hash functions that avoid or minimise unfortunate collisions (where two 

different documents lead to the same hash, making the blockchain insecure).   

How “deep” students’ mathematical knowledge is and how competent they may become in 

applying their knowledge outside school mathematics is a challenge for all educators. What 

activities we decide to include as part of their school education that help them in accessing the 

“hidden” mathematics, “seeing” and understanding its different layers (according to the 

matryoshka doll metaphor) of mathematical knowledge is vital. We surely want to support our 

future citizens in developing a technocritical mathematical discourse that will enable them to be 

active, critical, techno-mathematical literate members of their society. 
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Both cases of public-key cryptography and blockchains share the feature that they can be packed 

and unpacked according to the educational level and context. A teacher can decide how many 

layers to peel off. We can think of the two mathematics in action cases as possessing a “matryoshka 

doll” feature, where one can choose to focus only on the outer doll, the second outer, etc., or to 

simply go all the way. One can unpack or pack, depending on the educational needs at hand, while 

still illustrating to the students that (and how) mathematics is embedded in these technologies. Of 

course, we can also argue that such competence is necessary for students to have in the digital age, 

and therefore a teacher should consider how best to “train” her students. This could be viewed as 

a long-term “project work”, to be carried out perhaps even over several years (in educational 

contexts in which this is possible, like in the Italian educational system), where the teacher plans 

accordingly and reveals the different “matryoshka dolls” gradually to her students, considering 

when and whether students are ready as well as the best pedagogical approaches to do so. 

Towards a technocritical mathematics education 

From the perspective of critical mathematics education, the matryoshka doll metaphor can be used 

to highlight a few central aspects of the relation between technology in our society and the teaching 

and learning of mathematics education. When preparing students to become active citizens and 

participate in political life, the ability to pack and unpack mathematics can be crucially important. 

Opaque technologies can be unpacked with mathematical knowledge and approaches (as shown 

in the two cases above). Participation in debates about laws and regulations around such 

technologies requires that one can parcel the concerns in play with the appropriate mathematical 

depths and the right concerns “packed down” inside the doll. Also, “matryoshka dolls” are a way 

to look at the world around you as consisting of interesting things that can be opened with 
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mathematics. In a sense, this is not unlike taking a modelling perspective on the world and 

activating the analytic part of KOM’s modelling competency to critically analyse and evaluate 

existing or proposed models. Still, this is critical if we want students’ interest and ability to act in 

the centre of the educational enterprise, and if we want them to reflect upon inequalities and 

misconducts that often exist in a modern, highly technological society, and often are hidden away 

or encoded in technology. In a sense, we want students not only to use mathematics as a “tool for 

critique, but also an object of critique” (Skovsmose & Nielsen, 2014, p. 1257), as this enables them 

to understand and appreciate those possible inequalities and misconducts in our society. 

The mathematical competencies that are needed when opening and closing the matryoshka dolls 

change. At each level of the doll, specific mathematical competencies are needed. Yet, the deeper 

we penetrate the doll, the more is demanded of our possession of the specific mathematical 

competencies in play. This is where the KOM framework’s description of a person’s possession 

of a competency’s three dimensions: the degree of coverage, the radius of action, and the technical 

level (Niss & Højgaard, 2019) as mentioned earlier, may become relevant, and support in 

identifying the degree of possession of a mathematical competency by an individual.  

Blackboxing and whiteboxing are of course related to opening or closing the matryoshka doll. The 

literature on these topics (e.g., Buchberger, 1990; Jankvist et al., 2019; Jankvist & Misfeldt, 2021) 

points to potential problems that can occur when elements are blackboxed. Nevertheless, the 

matryoshka doll approach turns this around, and shows that the ability to blackbox and whitebox 

(in the sense described in Jankvist & Geraniou, 2021) mathematical complexity is as much an 

independent competence as it is a problem for mathematics learning. This is to say that in a sense 

the matryoshka doll is a prescriptive—or a normative version—of the blackboxing and 
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whiteboxing processes, which traditionally have been used to describe learning processes with 

technology. The new thing here, however, is that the ability to do the packing and unpacking is a 

goal in itself of mathematics teaching. 

Teachers are expected, to some extent required, to support students in this process of “unpacking” 

the mathematics behind tasks, such as the mathematics in action cases presented earlier. Of course, 

this process is not a straightforward one neither for students nor teachers, the latter who are meant 

to possess the necessary competencies for using pedagogically powerful technology-enhanced 

approaches to teaching mathematics. It is a process that needs time and commitment to appreciate 

how to systematically address this student competence. Hoyles et al. (2010) research on how to 

improve mathematics at work and how techno-mathematical literacies (TmL) can be integrated 

within working practices revealed the need for  

[…] employers to come to terms with the need for this new mathematical 

understanding [this here is the mathematics expressed and the ways in which math 

is communicated in particular workplaces] and to develop new pedagogical 

approaches for training, so as to make TmL more visible and available for 

exploration and development (p. 168).  

Similarly, we argue for the mathematics that is used in certain tasks but hidden to the “untrained” 

eye of a student, to become “more visible and available for exploration and development” with the 

help of the teacher (or a teacher educator); all these of course aimed at “training” students in 

becoming “active” and mathematically literate citizens. All in all, this is of course a rather 

challenging “project”, involving careful thinking about design of activities, the resources, and 

pedagogical approaches to be used. This careful thinking brings us back to the concerns of critical 
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mathematics education—particularly (c)—because it suggests that the primary aim of education 

should not merely be the transfer of knowledge in its pure form. Instead, education must be viewed 

through the lens of students as active participants, where educational practices are defined by their 

actions and interactions, and students are led to become more and more aware of both the content 

they are learning and of their learning processes. In other words, we want to identify ways in which 

to showcase to students how mathematics is a tool “for identifying and analysing critical features 

of society, which may be global” (Skovsmose & Nielsen, 2014, p. 1257), but at the same time are 

very relevant to the local environment of students. We therefore call for further research into 

technocritical mathematics education that can address these very issues. Based on our experience, 

for such a research field to embark and become sustainable, teachers should be strong believers in 

the value of technocritical mathematics education and actively engage in developing resources and 

transforming learning opportunities for their students, instead of being “receivers” of advice and 

guidance. Resources should be revisited on a regular basis to be refined and aligned with the 

evolution of techno-mathematical knowledge and technological advances. On-going collaborative 

work between mathematicians, mathematics educators and researchers, in-service teachers from 

different disciplines (e.g., mathematics, science, computer science) should be promoted and 

empowered. Such work aligns with Skovsmose’s (2004) idea of “mathematics in action”. 

Recognising that the role mathematics can play in the technological planning of society and in 

decision-making is paramount in educating “technocritical” and “techno-mathematical” citizens. 

Conclusions 

Returning to the outset of the paper, we asked what might be examples of mathematical cases that 

can enable students to develop and engage with the processes of packing and unpacking hidden 
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mathematics related to use of DT, and what might characterise such cases from a technocritical 

mathematics education point of view. We have provided examples of two such cases, public-key 

cryptography exemplified by RSA, and blockchains. Using Skovsmose (2004), we have 

characterised these cases as mathematics in action cases. Both cases display and discuss the 

“matryoshka doll” feature, i.e., that they can be packed and unpacked according to the 

mathematical level of students and mathematics programmes in question. A particular focus for 

developing students’ competence in performing the processes of packing and unpacking would at 

least involve fostering the following elements as part of students’ technocritical mathematics 

education: 

● Awareness of critical mathematics education’s focus on mathematics in action, in 

particular that mathematics comes to serve as a tool for identifying and analysing critical 

features of technology use in society for students. 

● Awareness of both intentional and unintentional blackboxing of mathematics in 

technology, and experience of how to engage in a process of whiteboxing the mathematics 

when needed.  

● Awareness of a wide range of mathematics in action cases that to some extent possess the 

“matryoshka doll” feature for students to exercise and develop their competence of packing 

and unpacking. 

● Acquiring the needed level of mathematical competencies to engage in the above-

mentioned elements of technocritical mathematics education. 

Finally, we must mention that technocritical mathematics education is thus not a question of 

adapting mathematics teaching to a use of digital technologies because these constitute new 
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learning paths. Nor is it about the fact that it is an end in itself that students become good at using 

the technologies. The key “problématique in play” is to develop the students’ critical competences 

in relation to their digital surroundings, and especially their ability to activate their mathematical 

competencies and content knowledge to this end. However, we are not only suggesting developing 

the students’ ability to criticise modern technology. Technocritical mathematics education is just 

as much a restructuring, driven by a positive and goal-oriented argument, about uncovering the 

hidden mathematics in technologies that govern our society in order to support democracy and 

empower students to actively participate in identifying and reflecting upon the potentially “hidden” 

mathematics. This can assist students to activate their mathematical knowledge and competencies 

to strengthen their technocritical thinking and their democratic participation in a modern 

technology-enriched society. 
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