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ABSTRACT Bio-impedance analysis (BIA) is a non-invasive way of assessing body composition. It has 

been recently adapted for hand motion interpretation with promising results. However, heavily relying on a 

large number of electrode arrays and learning algorithms, a compact and optimized BIA recording strategy 

was yet thoroughly investigated. This paper uses computational modeling to facilitate the design of the BIA 

strategy. An anatomically accurate three dimensional (3D) upper-hand model was developed based on 

transient finite elements. The model can give helpful insight into the effect of stimulating electrodes at 

numerous positions on the upper arm, which is otherwise challenging to investigate in practical studies. 

Different electrode arrangements were designed to obtain the optimal arrangement for the bio-impedance 

analysis on the upper – arm based on electrical potential and current density distributions over and within the 

volume conductor. The impedance and phase variation were recorded for different sides of the arm using a 

systematic procedure based on the optimal electrode arrangement. The results show that the proposed 

modeling can be used to guided BIA strategy. 

INDEX TERMS Bio-impedance analysis, human-machine interface, transient finite element, upper-arm 

model, volume conductor  

I. INTRODUCTION 

The most frequently used wearable hand motion interpretation 

is based on surface electromyography (sEMG), particularly 

for controlling myoelectric prostheses. Yet sEMG is far from 

achieving human-like hand motion [1]. This limitation is 

primarily due to challenges related to sEMG signals. These 

include limited signal amplitudes of up to tens of mV with 

frequencies up to about 500 Hz, which are susceptible to noise 

and low-frequency interference. sEMG also exhibits limited 

spatial resolution, making the recording of deep muscle 

activity in the forearm challenging and limiting the number of 

recognizable degree of freedoms (DOFs) [2]. To address these 

limitations, alternative non-invasive ways of recording raw 

bio-signals may provide further advancement in the field. 

Bio-impedance analysis (BIA) is a promising approach for 

assessing body composition that has been recently explored as 

a human-machine interaction (HMI) method. Similar to 

sEMG, BIA involves placing electrodes on the skin. However, 

instead of recording spontaneous neural signals, BIA injects a 

current and measures resulting voltage potentials. Current-

induced voltage signals have a better signal-to-noise ratio 

(SNR) and are related to the body composition underneath the 

electrodes. In recent studies, BIA has been shown to be a 

viable approach for HMI, with the forearm enclosed by a 

flexible band containing an array of evenly distributed 

electrodes. The collected BIA dataset is then analyzed using 

machine learning algorithms to reflect upper limb movement 

[3], [4]. 

The placement of electrodes on the skin affects the quality 

and accuracy of BIA signal acquisition. To optimize the 

placement of electrodes, several factors need to be considered, 

including the number of electrodes, the geometry of the 

electrode array, and the spatial distribution as well as the 

placement of the electrodes relative to underlying muscle and 

bone structures [5]– [7].  

This paper develops an anatomically accurate human arm 

model that can be used to investigate the impact of the 

electrode placement for the BIA strategy. The models are 

implemented in finite element (FE) models (FEM) involving 

a volume conductor model representing various anatomical 

structures and the electrodes by their respective dielectric 

features and appropriate boundary conditions [8]. It has been 

shown that the optimal electrode position may be defined 



 

VOLUME XX, 2017 7 

based on electrical potential and current distributions using 

neuromodulator settings and the electrical properties of the 

anatomical layers [9], [10]. Thus, in this study, the optimal 

electrode placement was defined by: 

1． Penetrating inner structures with relatively higher and 

wider magnitudes (e.g., current density). 

2． Showing smooth electrical potential and current 

density variations within and over the model. 

The model was generated on the arm of the Duke model, as 

shown in Fig. 1(a). Two electrodes were placed on the skin 

layer for current excitation and are denoted as the Cathode and 

the Anode, as shown in Fig. 1(b). After discretization and 

simulation, the final bioimpedance can be obtained for 

analysis. 

The paper is organized as follows. Section II presents the 

method used to develop the model; Section III gives the results 

of the chosen BIA simulation. The discussion and conclusion 

are given in Sections IV and V, respectively. 

II. METHODS 

All models were developed in Simpleware (Synopsys, 

Mountain View, USA) using the design of the FE tools, and 

all simulations were carried out using COMSOL 

Multiphysics (COMSOL, Ltd, Cambridge, UK), which is 

module-based FE software widely used in physics and 

engineering design and optimization strategies. The 

AC/DC and Design modules were used for the electric 

simulations. The time-based solution method was used to 

calculate results to analyze the evolution of the impedance 

variation inside the human upper arm over time. These are 

detailed as follows. 

A. HUMAN ARM ANATOMICAL MODEL 
DEVELOPMENT 

The multi-layered realistic human hand model was generated 

based on the Duke model of a healthy male subject. Since the 

model consists of all anatomical layers, the region of interest 

(ROIs) was separated from the elbow to reduce the 

computation cost. The whole model was imported to 

Simpleware, and the region of the interest was separated 

from the whole body, as shown in Fig. 1(a) and (b). The arm 

model consists of the fundamental anatomical tissue layers, 

including skin, muscle, and bone. As each tissue layer was 

saved as Standard Tessellation Language (STL) surface 

triangulations, these were converted to the image data to 

generate accurate and efficient three-dimensional (3D) 

models using image processing tools. The process of 

segmentation entails the identification and labeling of the 

ROIs (e.g., skin, muscles, and bones) and the creation of 

 
 

FIGURE 1. (a) Shows the whole Duke model. (b) Shows region of interest (ROIs) and generation of upper anatomical arm model development. 
Electrode polarities are highlighted. (c) Shows discretization of the upper arm using appropriate FEM meshing settings. (d) Shows the 
distribution of the electrical potential within the upper arm based applied current pulse. (e) Shows the impedance (Z) and phase (Փ) variation of 
different anti-clock recording points over the arm for an electrode arrangement.  
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masks [8], [11]. The segmentation process was applied to 

each mask using automatic image processes, as shown in Fig. 

1(b). Manual segmentation was enforced on the anatomical 

layers and added details where the automation process was 

insufficient. Then, the morphological image filters (such as 

close filter and recursive Gaussian smoothing filters) were 

applied to the 3D domain of each tissue layer to obtain 

computationally efficient models. It is noted that the Boolean 

operations were applied to obtain appropriate boundaries and 

remove any overlapping sections between the tissue layers. 

Then, each model was discretized (as shown in Fig. 1(c)), 

simulated (as shown in Fig. 1(d)) and the results were 

recorded (as shown in Fig. 1(e)) based on given simulation 

settings. 

B. ELECTRODE DESIGN STRATEGY 

After the generation of the upper arm volume conductor, the 

electrode (the Cathode and the Anode) should be designed to 

simulate current flows from a stimulating electrode to a return 

electrode via conductive mediums. It has been shown that the 

electrode edge effect has a significant impact on patient 

comfort. High current levels in the sharp edges cause skin 

damage [12]. Circular geometry is still the gold standard for 

electrode design and is widely used for neuromodulators. 

Thus, electrodes were designed using smooth geometrical 

shapes (e.g., cylinder) and mounted to the human arm model 

in Simpleware. The radius of each electrode was set to 5 mm. 

The pitch of electrodes was chosen as 45 mm. Since the 

muscle layer covers the bony structure from wrist to elbow, 

electrode configuration was placed in various places on the 

arm to carry out quantitative comparisons on the effect of 

stimulating electrodes on the upper arm. Eight different 

electrode models (as shown in Fig. 2) were designed to 

investigate the impact of the electrode position placement on 

the BIA.  

It was ensured that each electrode configuration had good 

contact with the skin to obtain accurate electrical potential 

distribution within the model. Each electrode model was 

combined with the anatomical arm model, and the meshing 

settings were adjusted to generate the FEM model. The most 

detailed geometries were meshed using finer mesh settings to 

maintain realistic tissue architecture without losing detail 

through smoothing operations. After adjusting the mesh 

settings from the model configuration in Simpleware, the 

model was exported to COMSOL to explore the electrical 

impedance variation based on given tissue electrical 

parameters and applied boundary conditions.  

C. BOUNDARY CONDITIONS AND DISCRETIZATION 

The outermost layer was defined around the models to 

imitate infinity as shown in Fig. 3(a). The radius of the layer 

was gradually increased until no significant variation was 

observed in the electrical potential [8], [11], [13]. Dirichlet 

boundary condition was applied to the external boundaries of 

the mentioned sphere using (1). This condition sets potential 

at the boundaries to zero at infinity [14]. Given the insulation 

at the boundary of the body, this domain was set to be a non-

conductive layer to obtain accurate electrical potential 

distributions within the volume conductor. 

where δΩ represents the most external boundary and the 

dielectric parameters of the external layer (sphere) are set 

according to Table I, and V shows electrical potential.  

V(δΩ) = 0 (1) 

 

FIGURE 3. (a) Shows boundary condition. The outermost layer 
(sphere) is chosen as ground boundary. (b) Represents mesh plot 
of the arm model using an electrode arrangement.  

 

FIGURE 2. Shows eight different electrode arrangements (EAs) over the arm. Each arrangement is labelled. Two EAs are shown in each arm 
model. Anode is highlighted in red, and the cathode is highlighted in blue.  
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After defining boundary conditions, it is vital to choose 

the appropriate discretization settings to obtain accurate 

simulation results. The tetrahedral meshing setting (as shown 

in Fig. 3(b)) was used to discretize the models to solve partial 

differential equations. Since the medium has different 

geometry, the region of interest (e.g., electrode and upper 

arm layers) was relatively finer meshed compared to the 

outermost layer to reduce computation cost. Thus, electrode, 

skin, muscle, and bone domains were meshed using a 

minimum element size of 1 μm and a relatively lower growth 

rate (1.1) to obtain results in a reasonable time. Since the 

outermost layer (sphere) was far from the region of interest, 

the tetrahedral element size was selected to be larger by using 

the Normal tetrahedral setting. This resulted in about one 

million finite elements for each model. 

D. TRANSIENT FINITE ELEMENT SIMULATION 

Traditionally, tissue impedances have been implemented as 

pure resistances based on the previous study [15]. It has been 

shown that the capacitive effect has an impact on the 

electrical potential distribution within the volume conductor 

[13], [16]. Thus, the study was designed based on the 

transient approximation of Maxwell equation (2) shown 

below: 

 

where σ is the tissue conductivity, V is the electrical potential 

in the representative geometry, 𝜀0𝜀𝑟 is the tissue permittivity, 

and the values are set according to Table I. ∇ is the 

Hamiltonian operator. After defining the solution method, an 

isotropic and homogeneous electrical conductivity value (in 

S/m) and tissue permittivity was assigned to each sub-

domain of each upper arm model based on 50 kHz, as shown 

in Table I [17]. The wave propagation and inductive effects 

were assumed to be negligible.  

Since it was also aimed to calculate the current density 

variations within and over the model, the current density was 

calculated using (3). 

 

where J represents calculated current density, E indicates 

eveninduced electrical field and D shows displacement. 

The simulation source was designed based on a fully 

differential sinusoidal waveform based on 50 kHz in 

COMSOL as shown in Fig. 4(a). After choosing the 

sinusoidal waveform, the Analytic function was applied to 

the generated waveform to construct a periodic sinusoidal 

waveform based on the defined frequency magnitude. The 

periodic sinusoidal current pulse was constructed by 

choosing the Sine parameter and adding angular frequency. 

Then, the plot parameters were defined using defined 

frequency, lower limit, and upper limit. In all the simulated 

cases, the stimulation current was set up to 10 µA injected 

from the Anode (red) electrodes and received from the 

Cathode (blue) electrodes as shown in Fig 4(b). Then, a 

biphasic wave current pulse with a 10 µA amplitude and a 

pulse duration of 10 µs was applied to the electrodes for each 

model. This was implemented in COMSOL by the terminal 

current of negative value for the cathodes and positive value 

for the anodes. The electrode-tissue interface contact 

impedance was assumed to be zero for simplicity reasons. 

Also, it has been shown that the significant differences in 

electrical parameters for muscles in a different direction (the 

axial direction compared to the radial direction) may have a 

notable influence on the simulation results [16], [18]. Thus, 

it is essential to include anisotropy of the electrical properties 

of the associated materials to get a qualitative understanding 

of the processes involved and accurately interpret the 

outcome of the simulations accordingly. 

∇ ∙ (𝜎∇𝑉 − 𝜀0𝜀𝑟∇
𝜕𝑉

𝜕𝑡
) 

(2) 

𝐽 =  𝜎 ∙ 𝐸 +
Δ𝐷

Δt
 

(3) 

 
 

FIGURE 4. (a) Shows the waveform of the differential source 
current. The anode (E1) current is highlighted in black, and the 
cathode (E2) is highlighted in blue. (b) Represents the volume 
conductor of the upper arm and applied the current source using 
electrode arrangements. Using transient simulation allows for 
considering the capacitive (Ct) and resistance (Rt) impact of the 
tissue on the results. Sin(ωt) shows a sinusoidal current pulse. 

TABLE I 

TISSUE CONDUCTIVITIES 

Tissue layer Conductivity 

(S/m) 

Relative Permittivity 

(F/m) 

Skin 2.73𝑒−4 1.13𝑒3 

Muscle (long.) 0.35 1.01𝑒4 

Muscle (trans.) 0.105 4𝑒4 

Bone 0.02 2.64𝑒3 

Outermost sphere 10𝑒−12 1 
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It is noted that the same current pulse with associated level 

and frequency magnitude was designed and applied to all 

electrode models for a fair comparison.  

III. RESULTS 

The first step of this study was to define the optimal electrode 

arrangements (EA) based on the electrical potential and 

current density variation within the model by evaluating the 

smooth and broader distribution within the arm volume 

conductor. Then, the optimal EA was used to analyze the 

impedance recording detailed as follows. From the simulation, 

both the electrical current density and electrical potential 

variations over the upper arm for different current excitation 

electrode pairs were investigated. 

A. ELECTRICAL CURRENT DISTRIBUTION OVER 
DIFFERENT EAs 

The electrical current density for different EAs is shown in 

Fig. 5. To compare the EAs based on current density 

distributions, the minimum range is set 1 𝑚𝐴/𝑚2. The same 

settings of the streamline were defined in COMSOL to 

visualize the current density variation over the arm model-

based electrode settings. The results for EA 8 show wider 

and deeper current density distributions compared to the 

remaining. 

 
 

 
 

 
 

FIGURE 5. Shows the distributions of the electrical current density variation within the arm model using different electrode arrangements (EAs). 
The electrical current density distribution streamlines are highlighted for each EA. 
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B. ELECTRICAL POTENTIAL DISTRIBUTION OVER 
DIFFERENT EAs 

For impedance measurements, eventually, the developed 

voltages are measured. Hence the electrical potential 

variation over the upper arm for different current excitation 

electrode pair placements is also looked at. For comparison, 

electrical potential contours are clamped from ±0.1 mV to 

±0.5 V. However, the color range is set to ±0.5 mV to make 

a clearer difference between polarities as shown in Fig. 6. 

The results for EA 2, EA 4, and EA 8 clearly have smooth 

electrical potential variation compared to the remaining EAs. 

However, the results for EA 8 have wider electrical potential 

variation over the arm and it is spread inner layers more than 

EA 2. Although the negative polarity of EA 1 and EA 7 

shows wider electrical potential variation. This is not valid 

for the positive polarity. Also, this wider variation does not 

have smooth electrical potential within and over the arm. 

Although the results for the positive polarity of the EA 3 

cover the whole wrist of the arm, this is not valid for the 

negative polarity. Although the negative polarity of the EA 

6 has wider electrical potential variation through the 

anatomical layers in the vicinity, the same trend is not 

observed for the positive polarity. 

The electrical potential is more penetrated within the arm 

model and spread over the arm using bottom EAs (EA 7 and 

EA 8) compared to others. By comparing the bottom EAs, 

EA 8 is considered an optimal electrode arrangement as it 

 
 

 
 

 
 

FIGURE 6. Shows the distributions of the electrical potential variation across the arm model using different electrode arrangements (EAs). The 
electrical potential distribution contours are highlighted for each EA. 
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has smooth and wider electrical potential variations. 

C. RECORDING PROCEDURE AND BIOIMPEDANCE 
EXTRACTION 

Since it was aimed to derive a map of the impedance 

variation at various places of the upper arm, the impedance 

recording position was defined based on systematic 

procedures using defined optimal EA. Ten different lines (as 

shown in Fig. 7(a); Line 1, Line 2, …, Line 10) were 

generated around the upper arm by keeping constant z 

coordinate; and varying x and y coordinates. Then, ten 

different points (Point 1, Point 2, …, Point 10) were chosen 

over each line by following incremental steps from the wrist 

through the elbow, as highlighted in Fig. 7(a).  

The second step of the study was to identify the optimal 

recording location over the upper arm based on the optimal 

EA. Thus, a systematic approach was used as follows. The 

electrical potential difference was calculated between two 

points using an anticlockwise direction for each voltage 

recording scenario, as shown in Fig. 7(b). The electrical 

potential difference was calculated using (4) for the each Vs. 

The following procedures were applied: i) the center point 

(highlighted in blue in Fig. 7b) was defined for each Vs. ii) 

the electrical potential difference was calculated using 

subtraction between the center point and all neighbor points’ 

electrical potential by following the anti-clock direction. 

This was repeated for all Vs. All Vs have eight electrical 

potential variation (as shown in (4)) apart from the last Vs. It 

is noted that the voltage difference was saved as a sinusoidal 

waveform for each Z = Vs/I. 

 

𝑉𝑆1 = [
𝑉62 − 𝑉61   𝑉62 − 𝑉71   𝑉62 − 𝑉72   𝑉62 − 𝑉73

𝑉62 − 𝑉63   𝑉62 − 𝑉53   𝑉62 − 𝑉52   𝑉62 − 𝑉51
]  (4)                        

Where  𝑉𝑆1 shows the electrical potential difference 

between the neighbors’ points based on the defined 

recording scenario, 𝑉𝑥𝑦 , x represents line number and y 

indicates point number. Rest of the voltages were recorded 

using the same measurement pattern. 

Then, the impedance value for each VS was recorded by 

dividing the sinusoidal voltage difference by the sinusoidal 

current. Eight different impedances were calculated by 

taking electrical potential difference for each VS (five 

variations was recorded for the last VS for each arm side as 

highlighted in yellow in Fig. 7(b) using optimal EA). This 

resulted in 37 impedance recordings for a side of the upper 

arm (e.g., the bottom side). The recording method was 

applied to four different sides (top, bottom, right, and left) of 

the arm using the same procedures as shown in (4). Thus, in 

total, 20 different Vs (VS1 to Vs20) and 148 impedance 

variations were recorded based on the optimal EA using the 

electrical potential difference between two points along the 

upper arm. The phase was measured by the delays between 

the recorded Vs and injection current sine wave forms. 

 
 

FIGURE 7. (a) The electrical potential recording points and lines are shown. Ten different lines over the arm are generated and each line 
includes ten different impedance recording points. L10P8: Line 10, point 8. (b) Shows the impedance recording procedures by calculating the 
electrical potential difference between the neighbors’ points. Each recording scenario is highlighted in a different color. The location of the 
center point is highlighted in blue.  
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The results for the impedance and phase values based on 

different recording scenarios over the arm using the optimal 

EA are shown in Fig. 8. The results for the bottom (a), left 

(b), top (c), and right (d) sides of the arm are highlighted. 

      

         

      

FIGURE 8. Showing impedance and phase variation versus anti-clock recording scenario (Rs) by calculating the electrical potential difference 
between the recording points over the arm model using the optimal electrode arrangement. The impedance and the phase variations are shown 
for the bottom (a), left (b), top (c), and right (d) sides of the upper arm. It is noted that the position of the recording points is approximated. Փ 
shows the phase difference. 

 

 

 
 

 

 
 

 

 
 

 



 

VOLUME XX, 2017 7 

The maximum recorded impedance value is about 1 kΩ and 

the phase difference varies between 0° to 200°.  

The impedance and phase variation for the bottom side of 

the arm based on five different VS (VS1 to VS5) is shown in 

Fig. 8(a). It is clearly shown that there is a significant 

fluctuation in both impedance and phase variations. In most 

cases, when the impedance variation shows an increase, the 

phase difference variation shows the opposite trend. The 

impedance variation is relatively higher for the VS3, the value 

is between 800 Ω to 1 kΩ. The impedance variation for VS1 

and VS5 is comparatively lower. The recording range is about 

2 Ω to 50 Ω. The phase difference varies between 0 – 200. 

The results of VS3 and VS4 show higher impedance values. 

This is largely due to the injecting EA positions. 

The impedance and phase variation for the left side of the 

arm based on five different VS (VS6 to VS10) is shown in Fig. 

8(b). Although there is no linear increase or decrease in the 

magnitude of the impedance and phase difference based on 

anti-clock recordings, in general, the magnitude values of the 

impedance are higher for the recording points that are close 

to the bottom side of the arm. The impedance range is 2 Ω to 

100 Ω. It is shown that the maximum impedance VS is that 

of VS8 and VS9. 

The impedance and phase variation for the top side of the 

arm based on five different VS (VS11 to VS15) is shown in Fig. 

8(c). There is a significant reduction in the impedance 

variation compared to the other recording sides of the arm. 

The impedance range is 2 Ω to 20 Ω. The relative impedance 

recording position is identical to the other recording sides.  

The impedance and phase variation for the right side of the 

arm based on five different VS (VS15 to VS20) is shown in Fig. 

8 (d). Interestingly, the impedance variation and the phase 

difference are identical for VS18 and VS19. Although the phase 

difference variation is quite different, the impedance 

variation shows the same trend for VS16 and VS17. However, 

the impedance results are relatively higher for VS17 compared 

to VS16. The higher value of the impedance is recorded for 

VS18 and VS19. 

Overall, as can be observed in Fig. 8, for EA 8, relatively 

higher values of the impedance are obtained at the location 

that is close to the elbow for all impedance recording sides 

of the arm. 

IV. DISCUSSION 

It is not feasible to investigate the impact of the various EAs 

on the impedance variation of BIA of the upper extremity 

using the experimental test due to the variation of both 

geometrical and electrical parameters. It has been shown that 

dielectric properties of biological tissues, the anatomy of the 

body part around the muscle of interest, and the anatomy of 

the muscle itself have a considerable effect on the measured 

impedance. Thus, bio-computational models can be used in 

the design and development of BIA strategy in various 

applications by considering such variations [11], [13], [19]– 

[21]. 

The fundamental goal of this study was to perform a 

quantitative evaluation of a range of EAs on the impedance 

variation for BIA of HMI using computational modeling 

procedures as the process summarized in Fig. 1. Thus, the 

first step of this study was to identify the optimal EA based 

simulating larger area of the target muscle. As shown in Fig. 

2, various EAs were generated and systematically placed 

over the upper arm to identify the most appropriate one for 

the BIA of HMI based on electrical potential and current 

density distributions. The impedance, phase difference, and 

induced electrical potential variations were calculated using 

appropriate boundary conditions and dielectric properties of 

the associated tissue layers based on the transient solution 

method. The results showed that EAs have a significant 

impact on the impedance, phase, and distribution of the 

electrical potential variation across the arm. The electrical 

current density results in Fig. 5 and the results for the 

potential results in Fig. 6 showed that EA 8 can be chosen as 

the optimal electrode based on the defined criteria. It was 

also shown that the recorded impedance range was in 

agreement with the existing study [22]. 

When the results based on the electrical potential and 

current density were considered for all EAs, the results for 

EA 8 indicated that the electrical potential was evenly 

distributed in the vicinity of the electrode and transmitted to 

the inner layers. This may be associated with the amount of 

the smooth distribution of muscle layer in this region. Since 

the conductivity of the muscle layer is relatively higher as 

shown in Table 1, the induced electrical potential showed 

smooth variation in this region. Also, Fig. 9 showed that the 

muscle in this region has a significant role in controlling 

hand movements (Anatomy.tv., Database, UCL). Thus, EA 

8 can be considered as an optimal EA based on these factors.  

The impedance values can be analyzed for the control 

most of hand movements. Therefore, the second step of this 

study was to analyze the optimal recording location of the 

human arm using optimal EA. As shown in Fig. 7, a 

methodology was proposed for the optimization of the 

 
 

FIGURE 9. Fig. 9. Shows muscle samples anatomy at the bottom of 
the arm territory and their functions. Using EA 8 may be possible to 
control these arm movements. 
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impedance recording location over the arm using BIA. The 

results for this were shown in Fig. 8 based on different 

locations of the arm using optimal EA. It is clearly shown 

that the magnitude of the impedance was higher in the 

location where it was close to the elbow of the arm for all 

recording sides of the arm. Apart from the impact of current 

densities, this may be related to the fact that the origin of the 

associated muscle is close to the elbow of the arm as samples 

indicated in Fig. 9. The impedance variation trend was the 

same for all recording sides as the impedance value was 

increased from the wrist towards the elbow of the arm then, 

it started to suddenly decrease at the vicinity of the elbow. 

This may be related to the amount of soft tissue in this region 

and the location of the electrode placement over the arm. 

This is also reflected on recorded impedance values being 

slightly higher for the right side of the arm compared to the 

left side. Despite the impedance variation showed a similar 

trend for most of the VS as shown in Fig. 8 (b), (d), the 

anatomical thickness is different for the right side of the arm 

compared to the left side. The lowest impedance variation 

was recorded for the top side of the arm (shown in Fig. 8(c)) 

mainly due to the distance between the current injection and 

recording locations. Even though injection current decayed 

when the distance is increased as shown in Fig. 5, yet 2 Ω to 

20 Ω were recorded. Hence top-side muscles can be easily 

monitored using low noise recording circuit.  

Thus, this study suggested placing the EA on the bottom 

side that is towards to elbow, for simulating a wide range of 

the arm muscle. This may help to control multiple 

movements of the arm and hand as shown in Fig. 9. 

V. CONCLUSION 

In this study, the multilayer FEM models of the human arm 

were developed to investigate the impact of electrode 

placement on impedance, phase, and electrical potential 

distributions along the upper arm using appropriate boundary 

conditions and dielectric properties of anatomical layers. The 

transient solution method was used to obtain more accurate 

results based on given measurement settings. The results 

showed that EAs have a significant impact on impedance 

variation. It was shown that the EAs can be defined based on 

electrical potential and current density variations along the 

upper - arm.  Since the main aim of the study was to simulate 

a wide range of the muscle layer, it was shown that recording 

the BIA at the bottom side of the arm towards the elbow may 

give the optimal recording strategy. Thus, the results can be 

used for guiding electrode position in, e.g., large-scale flexible 

printed electrode placement in BIA. 
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