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A B S T R A C T

We develop a comprehensive, geometrically-exact theory for an end-loaded heavy rod con-
strained to deform on a cylindrical surface. The cylinder can have arbitrary orientation relative
to the direction of gravity. By viewing the rod-cylinder system as a special case of an elastic
braid, we are able to obtain all forces and moments imparted by the deforming rod to the
cylinder as well as all contact reactions. This framework allows for the monitoring of stresses
to ascertain whether the cylinder, along with its end supports, is able to sustain the rod
deformations. As an application of the theory we study buckling of the constrained rod under
compressive and torsional loads, as well as the tendency of the rod to lift off the cylinder
under further loading. The cases of a horizontal and vertical cylinder, with gravity having only
a lateral or axial component, are amenable to exact analysis, while numerical results map out
the transition in buckling mechanism between the two extremes. Weight has a stabilising effect
for near-horizontal cylinders, while for near-vertical cylinders it introduces the possibility of
buckling purely due to self-weight. Our results are relevant for many engineering and medical
applications in which a slender structure is inserted into a cylindrical cavity.

. Introduction

The deformation of slender rod-like structures constrained to a rigid cylindrical surface is encountered widely in science,
ngineering and medicine. Applications include the buckling of drill strings within boreholes used in offshore oil-drilling opera-
ions (Hajianmaleki and Daily, 2014), the insertion of stents within arteries and veins in endoscopic surgery (Schneider, 2003) and
he soft robotic inspection of pipes in gas, oil or water supply systems (Rashid et al., 2020).

Buckling of such constrained rods inside boreholes has been studied extensively in the drilling industry. For convenient access to
il reserves, deviated and even horizontal wellbores are frequently used. The production of shale gas usually involves a combination
f horizontal drilling and hydraulic fracturing of the shale stratum (Bahrami et al., 2013). Compressive as well as torsional buckling
ave been studied under these inclined conditions, with weight of the rod, generally having both axial and lateral components,
aken into account (Paslay and Bogy, 1964). Weight is generally considered to be important in the buckling process. It is common
ractice that drill strings are compressed only in the lower sections and buckle under their own weight. Bucking is also a known
roblem, and weight a design concern, in flexible wormlike climbing robots (Wang and Yamamoto, 2017).

Critical buckling loads can be obtained from straightforward linear analysis. Nevertheless, there is a bewildering amount of
pproximate analyses in the drilling literature; see Cunha (2004) for a review of the sometimes conflicting results on critical loads.
he study of post-buckling behaviour requires nonlinear analysis. Whenever nonlinearity is considered in the literature it usually
rises in an ad hoc way by combining linear beam–column equations with the nonlinear cylindrical constraint (Mitchell, 1988,
002), rather than performing a systematic nonlinear analysis.
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Here we develop a general geometrically exact (hence nonlinear) theory for a rod constrained to deform inside a cylinder of
rbitrary orientation relative to the direction of gravity. Our only assumption is that the rod is at all times in contact with the
ylinder. Buckling loads depend on boundary conditions. We formulate boundary conditions for the axial and torsional loading of
clamped–clamped rod and find exact critical loads (up to negligible numerical error). Other boundary conditions could easily be

pplied instead.
Our approach is to view the rod-cylinder system as a braid of two strands winding around each other at constant distance. The

xact equilibrium equations for such a 2-braid have recently been derived (Starostin and van der Heijden, 2014). We just need to
pecialise the general theory to the case where one of the strands is rigid, which we do by imposing kinematic constraints. The
dvantage of this approach is that we have access to all forces and moments in both the rod and the cylinder, including the contact
eactions between the two. Exact expressions for all these individual strand forces and moments can be obtained explicitly in terms
f the overall braid forces and moments, which have to be computed numerically by solving the nonlinear (quasi-rod) overall braid
quilibrium equations.

The rod-cylinder contact problem is found to be 3-fold statically indeterminate, which means that for a full determination of all
trand forces and moments three constitutive conditions need to be specified that characterise the precise nature of the rod-cylinder
ontact. In previous work (Shah and van der Heijden, 2023) we have shown how static friction can be rigorously incorporated into
he theory, but here we make the common assumption of hard frictionless contact, in which contact between rod and cylinder is
aintained solely by a normal contact pressure. Friction does not normally play an important role in drilling, especially in the case

f vertical wellbores, and is ignored in most cited works.
In this paper we focus on the effect of gravity. As may be expected, for cylinders sufficiently close to horizontal, gravity, like

riction (Shah and van der Heijden, 2023), has a stabilising effect in the sense that it delays compressive buckling. Once buckling
as occurred, gravity has a further stabilising effect in that it helps maintain the cylindrical constraint. However, eventually, under
ufficiently high loads, the rod will lift off the cylinder, an effect not usually considered in the literature. By monitoring the normal
ontact pressure we are able to accurately determine the lift-off load (similar to the determination of the critical load for a heavy
od to lift off a horizontal plane in van der Heijden et al. (1999)). Other forces and moments can similarly be monitored to ascertain
hether the cylinder is able to sustain the required reactions under the applied loads. For instance, the cylinder (and its end supports)
as to resist the twisting moment induced by the rod deforming on it. Being able to compute such forces and moments will likely
e more important for free-standing tube or pipe systems than for holes bored in a wider solid.

We find that for near-horizontal cylinders gravity introduces mode-switching at critical weights, with heavier rods gradually
uckling into more oscillatory modes. Smaller inclinations from the vertical lead to smaller critical compressive loads, as expected,
nd a gradual transition to tension-dominated buckling in which buckling under self-weight is prevented by applying a tension
ather than induced by applying a compression. In both limiting cases of a horizontal and a vertical cylinder, in which gravity only
as a lateral or axial component, the critical buckling conditions can be obtained analytically. Intermediate inclinations require
umerical solution.

The paper is organised as follows. Section 2 sets up the braid theory and lists the equilibrium equations. In Section 3 these are
pecialised to the case of a rod on a cylinder and then slightly extended with the effect of gravity, resulting in a 15-dimensional
ystem of ordinary differential equations (ODEs). Individual strand equations are introduced and explicit expressions for all forces
nd moments, including the normal contact pressure, are obtained. In the process all Lagrange multipliers introduced to impose
he constraints are given a natural physical interpretation. In Section 4 the boundary-value problem for compressive buckling is
ormulated, with boundary conditions carefully designed to load the rod and not the cylinder. Critical buckling conditions are
btained and parameter continuation is used to compute post-buckling solutions and bifurcation diagrams, as well as to map out
he transition from horizontal to vertical buckling. By monitoring the normal contact pressure the tendency of the rod, if it was
erely lying in one-sided contact, to lift off the surface is investigated. Torsional buckling is briefly discussed as well. Finally,

ection 5 ends the paper with a discussion.

. Review of the elastic braid theory

.1. Strand reference frames and curvatures

The elastic braid theory as formulated by Starostin and van der Heijden (2014) describes a braid as consisting of two inextensible
nd unshearable elastic rods of lengths 𝐿 ∶= 𝐿1 and 𝐿2, modelled as a pair of smooth curves, 𝐫𝟏(𝑠) ∈ R3, 𝑠 ∈ [0, 𝐿1] and
𝟐(𝜎) ∈ R3, 𝜎 ∈ [0, 𝐿2], parametrised by their arclengths 𝑠 and 𝜎 respectively. The unit tangents to each of these curves are denoted
y 𝐭𝟏(𝑠) = d𝐫𝟏(𝑠)∕d𝑠 and 𝐭𝟐(𝜎) = d𝐫𝟐(𝜎)∕d𝜎.

The two curves are assumed to be at constant distance, 𝛥, in space. This means that there is a one-to-one mapping [0, 𝐿1] ↔
0, 𝐿2] ∶ 𝑠 ↔ 𝜎(𝑠) such that the chord vector 𝝆(𝑠, 𝜎) = 𝐫𝟐(𝜎(𝑠)) − 𝐫𝟏(𝑠) connecting the two curves is perpendicular to the two tangents
𝟏(𝑠) and 𝐭𝟐(𝜎(𝑠)) (we shall henceforth write expressions like 𝐭𝟐(𝑠) instead of 𝐭𝟐(𝜎(𝑠))).

Along each curve we define two moving orthonormal frames as follows (see Fig. 1). We first introduce the unit chord vector
𝟏(𝑠) = (1∕𝛥)[𝐫𝟐(𝑠) − 𝐫𝟏(𝑠)]. Along the first strand the so-called braid frame is then defined by {𝐭𝟏,𝐝𝟏,𝐮𝟏}, where 𝐮𝟏 ∶= 𝐭𝟏 × 𝐝𝟏, while
he material frame is defined by the vectors {𝐭𝟏,𝐝𝟎, 𝐯𝟏}, where 𝐝𝟎 and 𝐯𝟏 lie in the plane orthogonal to 𝐭𝟏, with 𝐯𝟏 ∶= 𝐭𝟏 × 𝐝𝟎. These
wo frames are linked by the first strand’s twist angle 𝜉1 that is measured from 𝐝𝟎 to 𝐝𝟏 and describes a rotation about 𝐭𝟏. Similarly,

along the second strand, its braid frame is defined by {𝐭𝟐,𝐝𝟏,𝐮𝟐}, with 𝐮𝟐 ∶= 𝐭𝟐 × 𝐝𝟏, and its material frame is defined by {𝐭𝟐,𝐝𝟐, 𝐯𝟐},
2

where 𝐝𝟐 and 𝐯𝟐 lie in the plane orthogonal to 𝐭𝟐, with 𝐯𝟐 ∶= 𝐭𝟐 × 𝐝𝟐. These two frames differ by a rotation about 𝐭𝟐, through the
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Fig. 1. A braid consisting of two rods at constant distance and their respective reference frames. Centrelines are drawn as thick blue curves while red curves
show how the material twists.
From: Starostin and van der Heijden (2014).

second strand’s twist angle 𝜉2, measured from 𝐝𝟏 to 𝐝𝟐. Finally, the two braid frames of each strand are related by the braid angle
𝜂 about 𝐝𝟏, measured from 𝐭𝟏 to 𝐭𝟐, so that 𝐭𝟏 ⋅ 𝐭𝟐 = cos 𝜂, as indicated in Fig. 1.

In order to describe the rotations of each of these reference frames in a more concise manner, each frame is represented using
orthogonal 3 × 3 matrices such that 𝑅11(𝑠) ∶= {𝐭𝟏(𝑠),𝐝𝟏(𝑠),𝐮𝟏(𝑠)}, 𝑅01(𝑠) ∶= {𝐭𝟏(𝑠),𝐝𝟎(𝑠), 𝐯𝟏(𝑠)}, 𝑅12(𝑠) ∶= {𝐭𝟐(𝑠),𝐝𝟏(𝑠),𝐮𝟐(𝑠)} and
𝑅22(𝑠) ∶= {𝐭𝟐(𝑠),𝐝𝟐(𝑠), 𝐯𝟐(𝑠)}.

The consecutive rotation sequences about 𝐭𝟏, 𝐝𝟏 and 𝐭𝟐 through the angles 𝜉1, 𝜂 and 𝜉2 respectively, relating all four orthonormal
frames to each other, are as follows:

𝑅11 = 𝑅01 𝑅1(𝜉1), 𝑅12 = 𝑅11 𝑅2(𝜂), 𝑅22 = 𝑅12 𝑅1(𝜉2), (1)

where

𝑅1(𝜉𝑖) =
⎛

⎜

⎜

⎝

1 0 0
0 cos 𝜉𝑖 − sin 𝜉𝑖
0 sin 𝜉𝑖 cos 𝜉𝑖

⎞

⎟

⎟

⎠

∈ 𝑆𝑂(3), 𝑅2(𝜂) =
⎛

⎜

⎜

⎝

cos 𝜂 0 sin 𝜂
0 1 0

− sin 𝜂 0 cos 𝜂

⎞

⎟

⎟

⎠

∈ 𝑆𝑂(3)

for 𝑖 = 1, 2 are orthogonal rotation matrices parametrised by the angles 𝜉1, 𝜉2 and 𝜂 respectively.
In order to represent the braid and material curvature components for each strand, four skew-symmetric 3 × 3 matrices �̂�, ̂̃𝜔, �̂�

and ̂̃𝛺 are defined for the four reference frames through

�̂� = 𝑅T
11𝑅

′
11, ̂̃𝜔 = 𝑅T

01𝑅
′
01, �̂� = 𝑅T

12𝑅
′
12,

̂̃𝛺 = 𝑅T
22𝑅

′
22. (2)

Here,

�̂� =
⎛

⎜

⎜

⎝

0 −𝑤3 𝑤2
𝑤3 0 −𝑤1
−𝑤2 𝑤1 0

⎞

⎟

⎟

⎠

and 𝑤 = (𝑤1, 𝑤2, 𝑤3)T

represent the skew-symmetric matrix �̂� in so(3) and axial rotation vector 𝑤 in R3 respectively. A prime denotes differentiation with
respect to the first-strand arclength 𝑠.

Thus (2) defines the braid and material curvature components for each strand in the form of four axial vectors 𝜔 = (𝜔1, 𝜔2, 𝜔3)T,
𝛺 = (𝛺1, 𝛺2, 𝛺3)T, �̃� = (�̃�1, �̃�2, �̃�3)T and �̃� = (�̃�1, �̃�2, �̃�3)T, which respectively denote the rotation vectors of the braid frames
{𝐭𝟏,𝐝𝟏,𝐮𝟏}, {𝐭𝟐,𝐝𝟏,𝐮𝟐} and material frames {𝐭𝟏,𝐝𝟎, 𝐯𝟏}, {𝐭𝟐,𝐝𝟐, 𝐯𝟐}. The braid and material curvature components may then be
inter-related with each other by combining (2) with (1) to obtain the relationships

�̃� = 𝜔 − 𝜉′ , �̃� = 𝛺 + 𝜉′ , 𝛺 = 𝜔 cos 𝜂 − 𝜔 sin 𝜂, (3)
3

1 1 1 1 1 2 1 1 3
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�̃�2 = 𝜔2 cos 𝜉1 − 𝜔3 sin 𝜉1, �̃�2 = 𝛺2 cos 𝜉2 +𝛺3 sin 𝜉2, 𝛺2 = 𝜔2 + 𝜂′, (4)

�̃�3 = 𝜔2 sin 𝜉1 + 𝜔3 cos 𝜉1, �̃�3 = −𝛺2 sin 𝜉2 +𝛺3 cos 𝜉2, 𝛺3 = 𝜔1 sin 𝜂 + 𝜔3 cos 𝜂. (5)

The position vector of the second strand is given by 𝐫𝟐 = 𝐫𝟏 +𝛥𝐝𝟏. Differentiating this with respect to 𝑠 and using the inextensibility
onditions for each strand, given by 𝐭𝟏 = 𝐫′𝟏 and 𝜎′ 𝐭𝟐 = 𝐫′𝟐, allows the following relationships to be obtained:

𝜔1 =
(

𝜔3 −
1
𝛥

)

tan 𝜂, 𝜎′ =
1 − 𝛥𝜔3
cos 𝜂

. (6)

The second of these reveals that the arclength parametrisation of the braid is regular provided 𝜂 ∈ (−𝜋∕2, 𝜋∕2) and 𝜔3 < 1∕𝛥,
conditions that will be satisfied by all solutions we consider (see Starostin and van der Heijden (2014) for a discussion of these
conditions).

2.2. Overall braid equilibrium equations

The energy functional  for the two-strand braid may be constructed as

 = ∫

𝐿

0
𝑙 d𝑠 = ∫

𝐿

0

[

𝑙𝑒 (𝜔,𝜔′, 𝜉1, 𝜉
′
1, 𝜉2, 𝜉

′
2) − 𝐅 ⋅ 𝐭1 + ℎ𝜎′(𝜔)

]

d𝑠. (7)

The first term represents the total elastic strain energy density 𝑙𝑒 for the braid expressed purely in terms of the first-strand braid
curvatures 𝜔 = (𝜔1, 𝜔2, 𝜔3)T and the strand twist angles 𝜉1 and 𝜉2. The second term incorporates the work done on the braid by the
applied end load 𝐅. The final term arises due to the inextensibility constraint for the second strand, which is enforced with the help
of the constant Lagrange multiplier ℎ.

The equilibrium equations for the overall braid consist of the following set of Euler–Lagrange equations, expressed partly in
Euler–Poincaré form (Starostin and van der Heijden, 2014):

(a) Force and moment balance equations for the braid force (𝐅) and moment (𝐌) components 𝖥 = (𝐹1, 𝐹2, 𝐹3)T = (𝐅⋅𝐭𝟏,𝐅⋅𝐝𝟏,𝐅⋅𝐮𝟏)T,
𝖬 = (𝑀1,𝑀2,𝑀3)T = (𝐌 ⋅ 𝐭𝟏,𝐌 ⋅ 𝐝𝟏,𝐌 ⋅ 𝐮𝟏)T, expressed in the first braid frame {𝐭𝟏,𝐝𝟏,𝐮𝟏}:

𝖥′ + 𝜔 × 𝖥 = 𝟢, 𝖬′ + 𝜔 ×𝖬 + 𝗍1 × 𝖥 = 𝟢, (8)

where 𝗍1 = (1, 0, 0)T. Note that these are the standard Kirchhoff rod equations for the overall braid. 𝐅 and 𝐌 are the resultant
internal force and moment in the braid seen as a rod, i.e., a one-dimensional elastic body.

(b) ‘Constitutive relations’ for the braid viewed as a rod:

𝑀𝑗 = 𝜖𝜔𝑗
(𝑙), 𝑗 = 1, 2, 3, (9)

where 𝜖𝜁 (𝑙) ∶= 𝜕𝑙∕𝜕𝜁 − (𝜕𝑙∕𝜕𝜁 ′)′ is the Euler–Lagrange operator for an arbitrary variable 𝜁 .
In order to eliminate 𝜔1 in favour of the braid angle 𝜂 = 𝜂(𝜔1, 𝜔3), which has a clearer physical meaning, the Lagrangian
function 𝑙 (𝜔,𝜔′, 𝜉1, 𝜉′1, 𝜉2, 𝜉

′
2, 𝖥) may be transformed into a function 𝑓 (𝜔2, 𝜔3, 𝜂, 𝜂′, 𝜉1, 𝜉′1, 𝜉2, 𝜉

′
2, 𝐹1), thereby modifying the

integrand of (7) into

𝑓 = 𝑓𝑒 (𝜔2, 𝜔3, 𝜂, 𝜂
′, 𝜉1, 𝜉

′
1, 𝜉2, 𝜉

′
2) + ℎ

( 1 − 𝛥𝜔3
cos 𝜂

)

− 𝐹1, (10)

by using (6) to eliminate 𝜔1 and 𝜎′ and replace the derivatives 𝜔′
1 and 𝜔′

3 by 𝜂′. This in turn transforms the constitutive
relations (9) into

𝑀1 =
𝜕𝜂
𝜕𝜔1

𝜖𝜂(𝑓 ) =
𝛥 cos2 𝜂
𝛥𝜔3 − 1

[ 𝜕𝑓
𝜕𝜂

− d
d𝑠

( 𝜕𝑓
𝜕𝜂′

)]

, (11)

𝑀2 =
𝜕𝑓
𝜕𝜔2

, (12)

𝑀3 =
𝜕𝑓
𝜕𝜔3

−
𝜕𝜂
𝜕𝜔3

𝜖𝜂(𝑓 ) =
𝜕𝑓
𝜕𝜔3

−
𝛥 sin 𝜂 cos 𝜂
𝛥𝜔3 − 1

[ 𝜕𝑓
𝜕𝜂

− d
d𝑠

( 𝜕𝑓
𝜕𝜂′

)]

, (13)

where (6)1 has again been used to obtain explicit expressions for 𝜕𝜂∕𝜕𝜔1 in (11) and 𝜕𝜂∕𝜕𝜔3 in (13).
(c) Phase equations for the strand twist angles 𝜉1 and 𝜉2, with respect to the transformed Lagrangian function 𝑓 :

𝜖𝜉𝑖 (𝑓 ) = 0, 𝑖 = 1, 2, (14)

which may be rewritten as a set of first-order equations

𝑇𝑖 ∶=
𝜕𝑓
𝜕𝜉′𝑖

, 𝑇 ′
𝑖 ∶=

𝜕𝑓
𝜕𝜉𝑖

, 𝑖 = 1, 2, (15)

where the new variables 𝑇1 and 𝑇2 represent the internal strand torques within the first and second strands respectively. It
is worth noting from (15) that 𝑇1 and 𝑇2 become first integrals of the system in cases where the Lagrangian function 𝑓 does
not explicitly depend on the angles 𝜉1 and 𝜉2.
If the braid is subject to further constraints and 𝑓 depends on corresponding Lagrange multiplier variables (such as 𝜆, 𝜇 and
4

𝑇2 below), then those variables are also subject to standard Euler–Lagrange equations analogous to (14).
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Fig. 2. Schematic representation of an initially straight, end-loaded rod lying on an inclined cylinder, as described by the braid frame vectors and rotation
angles. (left) Front view. (right) Cross-sectional end view at 𝑠 = 𝐿.

3. Heavy rod on a cylinder

3.1. Kinematic constraints

Consider a transversely isotropic, inextensible, unshearable, intrinsically straight and linearly elastic rod of length 𝐿 that is
constrained to lie on a rigid cylinder of radius 𝛥; see Fig. 2. Rod and cylinder are viewed as a two-strand braid with the rod as
the first strand and the cylinder as the second. The overall braid is subjected to an axially applied end force 𝐹 (taken positive for
tension and negative for compression) and a twisting moment 𝑀 , as shown in Fig. 2. The centreline of the rod has constant distance
𝛥 from the axis of the cylinder. This situation is therefore described by the braid kinematics of Section 2.2.

Since the second strand’s material frame is constant along the strand (cylinder), we can take it as our fixed Cartesian reference
frame, so we set {𝐭𝟐,𝐝𝟐, 𝐯𝟐} = {�̂�, �̂�, 𝐣}. Using this, along with (2)4 and (3)–(5), the braid and material curvatures for each strand can
then be written as

�̃�1 = 0, 𝛺1 = −𝜉′2, 𝜔1 = −𝜉′2 cos 𝜂, �̃�1 = −𝜉′2 cos 𝜂 − 𝜉′1, (16)

�̃�2 = 0, 𝛺2 = 0, 𝜔2 = −𝜂′, �̃�2 = −𝜂′ cos 𝜉1 − 𝜉′2 sin 𝜂 sin 𝜉1, (17)

�̃�3 = 0, 𝛺3 = 0, 𝜔3 = 𝜉′2 sin 𝜂, �̃�3 = −𝜂′ sin 𝜉1 + 𝜉′2 sin 𝜂 cos 𝜉1, (18)

from which the following relationships can be deduced:

𝜔3 = −𝜔1 tan 𝜂, 𝜉′2 = (sin 𝜂)∕𝛥, 𝜎′ = cos 𝜂. (19)

Eq. (19)2 then enables the first- and second-strand braid curvatures to be expressed purely in terms of the braid angle 𝜂 as

𝜔1 = −(sin 𝜂 cos 𝜂)∕𝛥, 𝜔2 = −𝜂′, 𝜔3 = (sin2 𝜂)∕𝛥, (20)

𝛺1 = −(sin 𝜂)∕𝛥, 𝛺2 = 0, 𝛺3 = 0. (21)

3.2. Braid equilibrium equations

To incorporate the effect of gravity into the theory we let the cylinder have an arbitrary angle 𝛼 with the direction of gravity (the
vertical). Since the cylinder is assumed rigid, it is not allowed to sag; its weight is balanced by equal and opposite reactions set up
in the cylinder (and its supports). The rod is taken to have mass per unit length 𝑚. The acceleration due to gravity is denoted by 𝑔.
The rod’s weight has components in both the axial (�̂�) and lateral (�̂�) directions to the cylinder (see Fig. 2). The axial component is
treated as a force external to the braid and therefore added to the overall braid force balance equation (8)1. The lateral component
is treated as a force internal to the braid and is accounted for by means of a potential energy term in 𝑓 . The moment balance
equation (8)2 is unaltered by gravity. An independent self-contained variational derivation of the equations that follow is given in
Appendix.

The first of our complete set of governing equations for the heavy rod on a cylinder are therefore the overall braid force and
moment balance equations, which read in componential form

𝐹 ′ + 𝜔 𝐹 − 𝜔 𝐹 = 𝑚𝑔 cos 𝛼 cos 𝜂, [𝐹 ] (22)
5
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𝐹 ′
2 + 𝜔3𝐹1 − 𝜔1𝐹3 = 0, [𝐹2] (23)

𝐹 ′
3 + 𝜔1𝐹2 − 𝜔2𝐹1 = −𝑚𝑔 cos 𝛼 sin 𝜂, [𝐹3] (24)

𝑀 ′
1 + 𝜔2𝑀3 − 𝜔3𝑀2 = 0, [𝑀1] (25)

𝑀 ′
2 + 𝜔3𝑀1 − 𝜔1𝑀3 = 𝐹3, [𝑀2] (26)

𝑀 ′
3 + 𝜔1𝑀2 − 𝜔2𝑀1 = −𝐹2. [𝑀3] (27)

For easy reference, a governing differential equation for a specific variable is here labelled by this variable within square brackets
[ ].

The remaining set of equilibrium equations are dependent on the precise form of the transformed Lagrangian function 𝑓 from
(10), in which the linearly elastic strain energy 𝑓𝑒 for the overall braid can be expressed as

𝑓𝑒 =
1
2
𝐵
(

�̃�2
2 + �̃�2

3

)

+ 1
2
𝐶 �̃�2

1 =
1
2
𝐵
(

𝜔2
2 + 𝜔2

3

)

+ 1
2
𝐶
[(

𝜔3 −
1
𝛥

)

tan 𝜂 − 𝜉′1
]2
, (28)

where the general relationship �̃�2
2+ �̃�2

3 = 𝜔2
2+𝜔2

3 obtained by combining (4)1 and (5)1 is used, along with (3)1 and (6)1, to re-express
he energy density function in terms of the first-strand braid curvature components 𝜔2, 𝜔3 and braid angle 𝜂, after elimination of
1. 𝐵 and 𝐶 are the bending and torsional stiffnesses of the rod respectively.

We need to add to 𝑓 the gravitational potential energy density 𝑉𝑔 of the distributed weight 𝑚𝑔 of the rod in the �̂� direction:

𝑉𝑔 = 𝑚𝑔 𝑥 sin 𝛼, (29)

here the position vector of the rod’s centreline on the cylinder is 𝐫𝟏 = 𝑥 �̂� + 𝑦 𝐣 + 𝑧 �̂� = −𝛥 cos 𝜉2 �̂� + 𝛥 sin 𝜉2 𝐣 + 𝑧 �̂�, with 𝑥 = −𝛥
orresponding to the bottom of the cylinder (see Fig. 2). Note that cos 𝜂 = 𝐭𝟏 ⋅ 𝐭𝟐 = 𝐫′𝟏 ⋅ �̂� = 𝑧′.

Insertion of (28) into (10), along with the inclusion of (29), then gives the final Lagrangian 𝑓 (𝜔2, 𝜔3, 𝜂, 𝜂′, 𝜉′1, 𝜉2, 𝜉
′
2, 𝜆, 𝜇, 𝑇2, 𝐹1)

or the heavy rod on a cylinder:

𝑓 = 1
2
𝐵
(

𝜔2
2 + 𝜔2

3

)

+ 1
2
𝐶
[(

𝜔3 −
1
𝛥

)

tan 𝜂 − 𝜉′1
]2

+ ℎ
( 1 − 𝛥𝜔3

cos 𝜂

)

− 𝐹1

+ 𝜆
(

𝜔3 −
sin2 𝜂
𝛥

)

+ 𝜇 (𝜔2 + 𝜂′) − 𝛥𝑚𝑔 sin 𝛼 cos 𝜉2 + 𝑇2
(

𝜉′2 −
sin 𝜂
𝛥

)

. (30)

Here the kinematic constraints (20)2 and (20)3 for the variables 𝜔2 and 𝜔3 are appended with the help of the Lagrange multipliers
𝜇 and 𝜆. Furthermore, due to the Lagrangian’s dependence on the second strand’s twist angle 𝜉2 as a result of gravity, the final term
containing the Lagrange multiplier 𝑇2 needs to be introduced to enforce the kinematic constraint (19)2 for 𝜉2. The multiplier is called
𝑇2 in anticipation of its role as a twisting moment associated with the angle 𝜉2, by analogy with its definition (15) in Section 2.

The first set of remaining equations follows from the phase-angle equations (15) with respect to the variable 𝜉1, which yield

𝑇 ′
1 ∶=

𝜕𝑓
𝜕𝜉1

= 0, 𝑇1 ∶=
𝜕𝑓
𝜕𝜉′1

= −𝐶
[(

𝜔3 −
1
𝛥

)

tan 𝜂 − 𝜉′1
]

= const., (31)

i.e., the first strand’s internal torque 𝑇1 is constant, and we deduce, with the help of (6)1, the following equation for 𝜉1:

𝜉′1 =
𝑇1
𝐶

+ 𝜔1. [𝜉1] (32)

Due to the rigidity of the second strand, Eq. (15) does not apply for 𝑇2. Instead, 𝑇2 is a Lagrange multiplier whose equation is
obtained from the Euler–Lagrange equation for 𝜉2:

𝜖𝜉2 (𝑓 ) = 0, ⟹ 𝑇 ′
2 = 𝛥𝑚𝑔 sin 𝛼 sin 𝜉2 = 𝑚𝑔𝑦 sin 𝛼. [𝑇2] (33)

The next set of equations arises from the application of the standard Euler–Lagrange equations to (30) for the three Lagrange
multipliers 𝜇, 𝜆 and 𝑇2, which lead to

𝜖𝜇(𝑓 ) = 0, ⟹ 𝜂′ = −𝜔2, [𝜂] (34)

𝜖𝜆(𝑓 ) = 0, ⟹ 𝜔3 = (sin2 𝜂)∕𝛥, ⟹ 𝜔′
3 = 2𝜔1 𝜔2, [𝜔3] (35)

𝜖𝑇2 (𝑓 ) = 0, ⟹ 𝜉′2 = (sin 𝜂)∕𝛥, [𝜉2] (36)

reproducing the constraint equations (20)2, (20)3 and (19)2 for 𝜔2, 𝜔3 and 𝜉2.
The final set of remaining equations consists of the constitutive relations (11)–(13), which after making use of (31)1 and (20)3,

provide expressions for the overall braid moment components 𝑀1,𝑀2 and 𝑀3 as

𝑀1 = −𝑇1 − 𝛥ℎ sin 𝜂 + 2 𝜆 sin 𝜂 cos 𝜂 + 𝛥𝜇′ + 𝑇2 cos 𝜂, (37)

𝑀2 = 𝐵 𝜔2 + 𝜇, (38)

𝑀3 = 𝐵 𝜔3 − 𝛥ℎ cos 𝜂 + 𝜆 − 2 𝜆 sin2 𝜂 − 𝛥𝜇′ tan 𝜂 − 𝑇2 sin 𝜂. (39)
6
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These are turned into differential equations for the remaining variables 𝜔2, 𝜆 and 𝜇 as follows. First, multiplying (37) by sin 𝜂 and
(39) by cos 𝜂 and adding them gives an expression for the constant ℎ,

𝛥ℎ = (𝐵 𝜔3 −𝑀3) cos 𝜂 − (𝑀1 + 𝑇1) sin 𝜂 + 𝜆 cos 𝜂, (40)

which in itself represents an additional conserved quantity for the system of equations. Subsequently differentiating (40) with respect
to 𝑠 and using Eqs. (35), (34), (25) and (27) for the derivatives 𝜔′

3, 𝜂
′,𝑀 ′

1 and 𝑀 ′
3 respectively, along with the constancy of 𝑇1 from

(31) and the constitutive relation for 𝑀2 given by (38) results in a differential equation for 𝜆 given by

𝜆′ = −𝐹2 − 𝜔2 (𝑇1 + 3𝐵 𝜔1) − tan 𝜂
(

𝜆𝜔2 −
𝜇
𝛥

)

. [𝜆] (41)

An analogous governing equation for 𝜇 can be obtained by substituting the expression for ℎ from (40) directly into (37) and resolving
for 𝜇′, which yields

𝜇′ =
cos 𝜂
𝛥

[

(𝑀1 + 𝑇1) cos 𝜂 − (𝑀3 − 𝐵 𝜔3 + 𝜆) sin 𝜂 − 𝑇2
]

. [𝜇] (42)

he final equation for 𝜔2 is acquired by differentiating (38) and using the known expressions for the derivatives 𝑀 ′
2 and 𝜇′ from

26) and (42) respectively, along with the algebraic expressions (20)1 and (20)3 for 𝜔1 and 𝜔3, which results in

𝜔′
2 =

1
𝐵

[

𝐹3 −
1
𝛥

(

𝑀1 + 𝑇1 cos2 𝜂
)

+ 𝜔1 (𝐵 𝜔3 − 𝜆) +
𝑇2 cos 𝜂

𝛥

]

. [𝜔2] (43)

To be able to plot rod configurations in three-dimensional space we append to the system of equations the equation for 𝑧,

𝑧′ = cos 𝜂. [𝑧] (44)

his gives a total of 15 ODEs for the variables 𝐹1, 𝐹2, 𝐹3, 𝑀1, 𝑀2, 𝑀3, 𝜉1, 𝑇2, 𝜂, 𝜔3, 𝜉2, 𝜆, 𝜇, 𝜔2 and 𝑧.
We observe that in addition to the overall braid equations (22)–(24), gravity enters the system of equations only through (33).

he equation for 𝑇2 is the equation of a circular shaft with distributed torque 𝛥𝑚𝑔 at circumferential angle 𝜉2. We therefore see that
he lateral gravity component acts as an internal (to the braid) distributed torque from the rod onto the cylinder.

.3. Intrastrand forces and moments

Once the solution for the overall braid is acquired from its equilibrium equations in Section 3.2, the individual strand equations
hat follow become particularly relevant for the determination of the contact force and moment reactions experienced within each
f the two strands.

On splitting the braid in terms of its individual strands and applying the balance of forces and moments to the overall system,
he braid forces and moments are related to the internal strand forces and moments through the equations

𝐅 = 𝐅(𝟏) + 𝐅(𝟐), 𝐌 = 𝐌(𝟏) +𝐌(𝟐) + 𝛥𝐝𝟏 × 𝐅(𝟐). (45)

ere, 𝐅(𝟏) = 𝐹 (1)
1 𝐭𝟏 +𝐹 (1)

2 𝐝𝟏 +𝐹 (1)
3 𝐮𝟏 and 𝐌(𝟏) = 𝑀 (1)

1 𝐭𝟏 +𝑀 (1)
2 𝐝𝟏 +𝑀 (1)

3 𝐮𝟏 denote the forces and moments in the first strand expressed
omponentially in terms of the first braid frame, while 𝐅(𝟐) = 𝐹 (2)

1 𝐭𝟐 + 𝐹 (2)
2 𝐝𝟏 + 𝐹 (2)

3 𝐮𝟐 and 𝐌(𝟐) = 𝑀 (2)
1 𝐭𝟐 +𝑀 (2)

2 𝐝𝟏 +𝑀 (2)
3 𝐮𝟐 represent

he forces and moments in the second strand expressed componentially in terms of the second braid frame.
Projection along the chord vector direction 𝐝𝟏 results in

𝐹2 = 𝐹 (1)
2 + 𝐹 (2)

2 , 𝑀2 = 𝑀 (1)
2 +𝑀 (2)

2 . (46)

he first strand’s constitutive relations for its moments 𝑀 (1)
1 ,𝑀 (1)

2 and 𝑀 (1)
3 are the standard ones for a hyperelastic rod and can be

btained from (9) if 𝑙 is replaced by the strain energy function for the first strand (equal to 𝑓𝑒 as given in (28), in which (6)1 can
e used to reintroduce 𝜔1) and the resulting first equation is combined with (32):

𝑀 (1)
1 = −𝑇1 = const., 𝑀 (1)

2 = 𝐵 𝜔2, 𝑀 (1)
3 = 𝐵 𝜔3. (47)

ince the second strand represents a rigid cylinder, free of elastic strains, there are no second-strand constitutive relations for its
oment components 𝑀 (2)

1 ,𝑀 (2)
2 and 𝑀 (2)

3 ; instead, they are reactions maintaining the rigidity constraints. 𝑀 (2)
2 is given by (46)2,

ut 𝑀 (2)
1 and 𝑀 (2)

3 are undetermined quantities, in addition to one of the pair 𝐹 (1)
2 ∕𝐹 (2)

2 from (46)1. Indeed, given a braid solution
𝐅,𝐌), we have nine equations for twelve strand force and moment components. The problem is thus 3-fold statically indeterminate.
t is necessary to make three constitutive assumptions characterising the specific form of inter-strand contact in order to obtain a
ully closed solution for all braid and strand variables.

By incorporating the distributed weight, the equilibrium equations for the first- and second-strand forces 𝐅(𝟏) and 𝐅(𝟐) are given
n vectorial form by

𝐅(𝟏)′ − 𝑚𝑔 sin 𝛼 �̂� − 𝑚𝑔 cos 𝛼 �̂� = 𝐩(𝟏),

𝐅(𝟐)′ = 𝐩(𝟐) 𝜎′, (48)
7
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where 𝐩(𝟏) = 𝑝(1)1 𝐭𝟏 + 𝑝(1)2 𝐝𝟏 + 𝑝(1)3 𝐮𝟏 and 𝐩(𝟐) = 𝑝(2)1 𝐭𝟐 + 𝑝(2)2 𝐝𝟏 + 𝑝(2)3 𝐮𝟐 are the contact pressures as experienced within the first and
second strand respectively. Similarly, the equilibrium equations for the first-strand and second-strand moments 𝐌(𝟏) and 𝐌(𝟐) are
given in vectorial form by

𝐌(𝟏)′ + 𝐭𝟏 × 𝐅(𝟏) = 𝐦(𝟏), 𝐌(𝟐)′ + 𝐭𝟐 × 𝐅(𝟐)𝜎′ = 𝐦(𝟐)𝜎′, (49)

where 𝐦(𝟏) = 𝑚(1)
1 𝐭𝟏 + 𝑚(1)

2 𝐝𝟏 + 𝑚(1)
3 𝐮𝟏 and 𝐦(𝟐) = 𝑚(2)

1 𝐭𝟐 + 𝑚(2)
2 𝐝𝟏 + 𝑚(2)

3 𝐮𝟐 are the contact moments as experienced within the first and
second strand respectively.

Finally, from force and moment balance we also have the following relationships between the contact reactions (deducible from
Eqs. (45), (48), (49) and the braid balance equations (22)–(24), which in vectorial form read 𝐅′ = 𝑚𝑔 cos 𝛼 �̂�, 𝐌′ + 𝐭𝟏 × 𝐅 = 𝟎):

𝐩(𝟏) + 𝐩(𝟐)𝜎′ + 𝑚𝑔 sin 𝛼 �̂� = 𝟎, (50)

𝐦(𝟏) + (𝐦(𝟐) + 𝛥𝐝𝟏 × 𝐩(𝟐))𝜎′ = 𝟎. (51)

These equations therefore serve as an efficient means of directly obtaining the contact loads in the second strand once those in the
first strand have been determined.

Before specifying the three constitutive contact conditions, we note that independent of the contact model employed we can
already conclude from (49)1 that 𝑚(1)

1 = 0, after directly substituting in the constitutive relations for 𝑀 (1)
1 , 𝑀 (1)

2 and 𝑀 (1)
3 from (47).

The vanishing of the contact moment 𝑚(1)
1 is a consequence of the special form of the strain energy density 𝑓𝑒 in (28). It need not

old for more general 𝑓𝑒 in (10). For instance, it does not hold for transversely anisotropic rods with different bending stiffnesses in
wo principal directions of the cross-section. For such rods the torque 𝑇1 is not constant and (47)1 would lead to a non-zero term on
he left-hand side of the equation for 𝑚(1)

1 in (49)1. (Note that for consideration of such anisotropic rods within the braid theory they
ould be required nevertheless to have circular cross-section in order to satisfy the constant-distance assumption of the theory.)

We now impose frictionless contact by specifying 𝑚(1)
2 = 0, 𝑚(1)

3 = 0 and 𝑝(1)3 = 0 as the three contact conditions. From this choice
ll force and moment components can be obtained. The calculation is lengthy but analogous to that for the weightless case in Shah
nd van der Heijden (2023) to which we refer for details. For the remaining first-strand forces we find

𝐹 (1)
1 = 𝐹1 +

(𝑀3 − 𝐵 𝜔3)
𝛥

+ 𝜆
(

𝜔3 −
1
𝛥

)

+
𝑇2 sin 𝜂

𝛥
, (52)

𝐹 (1)
2 = −𝜔2 (3𝐵 𝜔1 + 𝑇1), (53)

𝐹 (1)
3 = 𝐹3 −

1
𝛥

(

𝑀1 + 𝑇1
)

− 𝜆𝜔1 +
𝑇2 cos 𝜂

𝛥
(54)

nd

𝑝(1)2 =
(

𝑇1 + 3𝐵 𝜔1

)[𝑀1 + 𝑇1 cos2 𝜂
𝛥𝐵

−
𝐹3
𝐵

−
𝜔1
𝐵

(

𝐵 𝜔3 − 𝜆
)

−
𝑇2 cos 𝜂
𝛥𝐵

]

+
𝑇2 sin 𝜂

𝛥2
−
( 3𝐵 cos 2𝜂

𝛥

)

𝜔2
2 + 𝜔1

(𝑀1 + 𝑇1
𝛥

− 𝐹3

)

+ 𝜔3

(

𝐹1 +
𝑀3
𝛥

)

−
𝐵 𝜔2

3
𝛥

− 𝑚𝑔 sin 𝛼 cos 𝜉2, (55)

hile 𝑝(1)1 = 0, confirming that this choice of constitutive contact conditions indeed gives the frictionless case, with the normal
ontact pressure 𝑝(1)2 the only non-zero contact load acting on the rod.

The analysis is continued by evaluating the internal and distributed contact loads within the second strand, i.e., the cylinder, for
hich we find

𝐹 (2)
1 = 1

𝛥

(

(𝐵 𝜔3 −𝑀3) cos 𝜂 − (𝑀1 + 𝑇1) sin 𝜂 + 𝜆 cos 𝜂
)

= ℎ, (56)

𝐹 (2)
2 = 𝐹2 + 𝜔2 (𝑇1 + 3𝐵 𝜔1), (57)

𝐹 (2)
3 = 1

𝛥

(

(𝑀1 + 𝑇1) cos 𝜂 − (𝑀3 − 𝐵 𝜔3) sin 𝜂 − 𝑇2
)

(58)

nd

𝑀 (2)
1 = 𝑇2, 𝑀 (2)

2 = 𝜇, 𝑀 (2)
3 = 𝜆 cos 𝜂. (59)

ith these expressions all Lagrange multipliers are given natural physical meanings. The constant ℎ enforcing inextensibility of
he second strand (cylinder) becomes tension 𝐹 (2)

1 in the cylinder; the multiplier 𝑇2 for the twist angle 𝜉2, as anticipated, becomes
he twisting moment 𝑀 (2)

1 in the cylinder; 𝜇 for the 𝜔2 constraint becomes the bending moment 𝑀 (2)
2 ; and finally, by using (1)2 to

rite the first term in (59)3 as 𝜆𝐮𝟏 ⋅ 𝐮𝟐, we see that 𝜆 for the 𝜔3 constraint becomes the magnitude of the bending moment about
he circumferential axis 𝐮𝟏 of the rod’s first braid frame contributing a bending moment about the circumferential axis 𝐮𝟐 of the
ylinder.

For the distributed contact loads we find:

𝑝(2)1 = 0, 𝑝(2)2 𝜎′ = −𝑝(1)2 − 𝑚𝑔 sin 𝛼 cos 𝜉2, 𝑝(2)3 𝜎′ = −𝑚𝑔 sin 𝛼 sin 𝜉2, (60)

𝑚(2)
1 𝜎′ = 𝛥𝑚𝑔 sin 𝛼 sin 𝜉2 = 𝑇 ′

2 , 𝑚(2)
2 = 0, 𝑚(2)

3 = 0, (61)
8
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in particular confirming that the distributed twisting moment 𝑚(2)
1 acting on the cylinder corresponds to the twisting moment 𝑇2

induced by gravity.
In the weightless limit (𝑚𝑔 = 0, 𝑇2 = 0) all strand force and moment expressions above reduce to those in Shah and van der

eijden (2023) for the case of hard frictionless contact, with 𝑝(1)2 and 𝑝(2)2 in the chord direction the only non-zero contact loads.
From this complete instrastrand analysis the advantages offered by the braid theory over traditional single-rod theories become

learly apparent, particularly its ability of enabling the computation of all the reactions imparted to the cylinder by the rod.
For unilateral contact, physically realistic solutions require the normal contact pressure 𝑝(1)2 to have uniform sign. When 𝑝(1)2 < 0

the rod is deemed to be lying on the inside of the cylinder, while 𝑝(1)2 > 0 has it lying on the outside of the cylinder, with the cylinder
providing the required pressure, pointing inward to the cylinder in the former case and outward in the latter. We will only deal
with the former case in this paper. Where 𝑝(1)2 changes sign, the rod has to be deemed to lift off the cylinder unless prevented by a
normal force, for instance adhesion or a contact force in case the rod is placed between two narrowly spaced concentric cylinders
providing bilateral support.

4. Boundary-value problem for a clamped heavy rod in a cylinder

As an application of the equations we formulate and solve the two-point boundary-value problem for a clamped–clamped heavy
rod lying on a (inclined) cylinder. We consider both compressive and torsional loading. We use 𝐿 as the unit of length and 𝐵∕𝐿2 as
the unit of force, so that we can set 𝐿 = 1 (hence 𝑠 ∈ [0, 1]), 𝐵 = 1, 𝐶∕𝐵 = 1∕(1+ 𝜈), where 𝜈 is Poisson’s ratio. To get an impression
f a typical magnitude of the dimensionless weight parameter 𝛾 = 𝑚𝑔𝐿3∕𝐵 we consider realistic physical parameter values for a
teel drill string of circular cross-section with radius 𝑟 (Anon, 2004, 2008, 2016, 2020):

𝐸 = 2.0 × 1011 N m−2, 𝜌 = 7.8 × 103 kg m−3, 𝜈 = 0.3, 𝑟 = 5 cm, (62)
𝐿 = 3000 cm, 𝛥 = 0.01 × 𝐿 = 30 cm, 𝑅 = 𝑟 + 𝛥 = 35 cm, 𝑔 = 9.8 m s−2,

here 𝐸 is Young’s modulus and 𝜌 is the mass density. With 𝑚𝑔 = 𝜌𝐴𝑔, cross-sectional area 𝐴 = 𝜋𝑟2, 𝐵 = 𝐸𝐼 , second moment of
rea 𝐼 = 𝜋𝑟4∕4, we find

𝛾 =
4𝜌𝑔
𝐸

𝐿3

𝑟2
= 16.5, (63)

but note that 𝛾 is sensitive to 𝐿 and for long drill strings the value could very easily be much larger.
We take 𝛥∕𝐿 = 0.01 and 𝜈 = 0.3 in all our numerical calculations.

.1. Compressive loading of a clamped heavy rod

Here we consider the case of a straight rod clamped at both ends and lying at the bottom of the cylinder while being compressed
y a force 𝐹 < 0 applied axially to the rod. The 15 boundary conditions for this problem are as follows:

(B1) 𝜉1 (0) = 0,
(B2) 𝜉2 (0) = 0,
(B3) 𝑧 (0) = 0,
(B4) 𝜂 (0) = 0,
(B5) 𝜔3 (0) = sin2 𝜂 (0)∕𝛥,
(B6) 𝑀2 (0) = 𝐵 𝜔2 (0) + 𝜇 (0),
(B7) 𝜉2 (1) = 0,
(B8) 𝜂 (1) = 0,

(B9) 𝑇2 (1) = 0,
(B10) 𝜆 (1) = 0,

(B11) 𝜇 (1) = 0,

(B12) 𝐹2 (1) = 0,
(B13) 𝑀3 (1) = 𝐵 𝜔3 (1),
(B14) 𝑀1 (1) = −𝑇1,
(B15) 𝐅 ⋅ 𝐭𝟐 (1) = 𝐹 .

The kinematical conditions (B2) and (B3) fix the end point (at 𝑠 = 0) of the rod’s centreline at (−𝛥, 0, 0) relative to that of the
ylinder’s at the origin (0, 0, 0). The angles 𝜂, 𝜉1, 𝜉2 form a set of Euler angles relating the rods’s body frame {𝐭𝟏,𝐝𝟏,𝐮𝟏} to the fixed
nertial (and cylinder) frame {�̂�, �̂�, 𝐣}. Conditions (B1), (B2) and (B4) enforce complete alignment of these frames at 𝑠 = 0, while
onditions (B7) and (B8) enforce the end tangents to be coaxial while still allowing for a twist (𝑇1) about the end tangent 𝐭𝟏(1)
hrough angle 𝜉1.

Conditions (B5) and (B6) are necessary to fix the values for the constants of integration from the differential forms of the algebraic
elations (35) and (38) for 𝜔3 and 𝑀2 respectively. The subsequent force and moment conditions (B9)–(B14) at 𝑠 = 1 specify that
he second strand, i.e., the cylinder, carries no internal loads at its ends, with all its force and moment components made to vanish
y ensuring 𝐅(𝟐) = 𝐌(𝟐) = 𝟎 from Eqs. (56)–(59). This means that any end loads applied to the overall braid are considered to simply
ct only on the first strand, i.e., the rod and not the second strand, i.e., the cylinder. Finally, condition (B15) sets the end value for
he axial component of the braid force 𝐅 ⋅ 𝐭𝟐 (1) = (𝐹1 cos 𝜂 − 𝐹3 sin 𝜂) (1) = 𝐹1 (1) = 𝐹 to the applied end compressive force 𝐹 , after
aking use of (B8). This leaves the end shear force component 𝐅 ⋅ 𝐣 (1) = 𝐅 ⋅ 𝐯𝟐 (1) = (𝐹1 sin 𝜂 + 𝐹3 cos 𝜂) (1) = 𝐹3 (1) unspecified, free

o take on any required value depending on the solution obtained, as usual in clamped loading.
9
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4.1.1. Linearisation
To find the critical buckling loads we solve the linearised boundary-value problem about the trivial straight solution. The trivial

ntwisted solution with 𝑇1 = 0 is given by: 𝐹1 = 𝐹 + 𝑚𝑔(𝑠 − 1) cos 𝛼, 𝐹2 = 𝐹3 = 0, 𝑀1 = 𝑀2 = 𝑀3 = 0, 𝜂 = 𝜔2 = 𝜔3 = 0, 𝜉1 = 𝜉2 = 0,
= 0, 𝜆 = 0 and 𝑧 = 𝑠, 𝑠 ∈ [0, 1]. Using an overbar to indicate the linearised variables, the linearised problem can be reduced to the

ollowing fourth-order equation in terms of �̄�:

�̄�′′′′ − 𝐹 �̄�′′ +
𝑚𝑔 sin 𝛼

𝛥
�̄� − 𝑚𝑔 cos 𝛼

(

�̄�′ + (𝑠 − 1)�̄�′′
)

= 0, (64)

subject to the four boundary conditions

�̄�(0) = 0, �̄�(1) = 0, �̄�′(0) = 0, �̄�′(1) = 0, (65)

which directly follow from (B2), (B4), (B7) and (B8) upon noting that �̄� = 𝛥𝜉2 and �̄�′ = �̄�. Note that (64) is the equation for a
beam–column on a linear foundation, with the effective foundation stiffness provided by the weight of the rod. The equation can
be solved analytically in the case of a horizontal cylinder (𝛼 = 𝜋∕2) so that gravity only has a lateral component (see Section 4.1.2).
t can also be solved in the case of a vertical cylinder (𝛼 = 0) so that gravity only has an axial component (see Section 4.1.4). For
ntermediate orientations of the cylinder (64) has to be solved numerically (see Section 4.1.3).

Having found �̄�, and hence 𝜉2 = �̄�∕𝛥, the variables �̄� and �̄�2 follow directly as

�̄� = �̄�′, �̄�2 = −�̄�′′. (66)

Other equations and boundary conditions yield

𝐹1 = 0, 𝐹2 = 0, �̄�1 = 0, �̄�3 = 0, �̄�3 = 0, �̄� = 0, �̄� = 𝑠, (67)

while the equations

𝜉′1 = −
�̄�
𝛥
, �̄� ′

2 = 𝛥𝑚𝑔 sin 𝛼 𝜉2, �̄�′ = −
�̄�2
𝛥

(68)

an be solved by successive quadrature applying the boundary conditions

𝜉1(0) = 0, �̄�2(1) = 0, �̄�(1) = 0. (69)

he shear force 𝐹3 can then be evaluated as

𝐹3 = −�̄�′′′ −
�̄�2
𝛥
, (70)

after which the final equation

�̄� ′
2 = 𝐹3 (71)

an be solved by quadrature using the last remaining boundary condition

�̄�2(0) = 𝐵�̄�2(0) + �̄�(0). (72)

his proves that the boundary-value problem with conditions (B1)–(B15) is well-posed.

.1.2. Horizontal cylinder (𝛼 = 𝜋∕2)
The characteristic equation for (64) in this case is given by

𝜆4 + 𝑎𝜆2 + 𝑏 = 0, where 𝑎 = −𝐹 , 𝑏 =
𝑚𝑔
𝛥

. (73)

We are in the case 𝑎2 > 4𝑏, giving four imaginary eigenvalues 𝜆1,2 = i𝑘1, 𝜆3,4 = i𝑘3 and the general solution

�̄�(𝑠) = �̄� cos 𝑘1𝑠 + �̄� sin 𝑘1𝑠 + �̄� cos 𝑘3𝑠 + �̄� sin 𝑘3𝑠, (74)

with

𝑘1 =

√

𝑎 −
√

𝑎2 − 4𝑏
2

, 𝑘3 =

√

𝑎 +
√

𝑎2 − 4𝑏
2

(75)

and hence

𝑎 = 𝑘21 + 𝑘23, 𝑏 = 𝑘21𝑘
2
3. (76)

Applying the boundary conditions leads to the critical buckling equation

2𝑘1𝑘3(1 − cos 𝑘1 cos 𝑘3) − (𝑘21 + 𝑘23) sin 𝑘1 sin 𝑘3 = 0. (77)

We note that in the weightless case (𝑚𝑔 = 0), 𝑘1 = 0 and (77) gives the classical critical loads 𝐹𝑐 = −𝑘23 for a clamped–clamped
column: 𝑘3 = 2𝑛𝜋, 𝑛 = 1, 2, 3,…, for odd modes, and solutions of tan(𝑘3∕2) = 𝑘3∕2, i.e., 𝑘3 = 8.9868, 15.4505, . . . , for even
modes (Timoshenko and Gere, 1985).
10
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Table 1
Enumeration of all mode-switchings up to 𝑚 = 10. (Δ = 0.01.)
𝑛 𝑚 𝑘1 = 𝑛𝜋 𝑘3 = 𝑚𝜋 𝛾𝑐 = 𝑛2𝑚2𝜋4Δ −𝐹𝑐 = (𝑛2 + 𝑚2)𝜋2 Modal pair

affected

1 3 3.1416 9.4248 8.7668 98.6960 1
2 4 6.2832 12.5664 62.3418 197.3921 1
1 5 3.1416 15.7080 24.3523 256.6097 2
3 5 9.4248 15.7080 219.1705 335.5665 1
2 6 6.2832 18.8496 140.2691 394.7842 2
4 6 12.5664 18.8496 561.0764 513.2194 1
1 7 3.1416 21.9911 47.7305 493.4802 3
3 7 9.4248 21.9911 429.5741 572.4371 2
5 7 15.7080 21.9911 1193.2614 730.3507 1
2 8 6.2832 25.1327 249.3673 671.1331 3
4 8 12.5664 25.1327 997.4691 789.5684 2
6 8 18.8496 25.1327 2244.3055 986.9604 1
1 9 3.1416 28.2743 78.9014 809.3076 4
3 9 9.4248 28.2743 710.1123 888.2644 3
5 9 15.7080 28.2743 1972.5341 1046.1781 2
7 9 21.9911 28.2743 3866.1668 1283.0486 1
2 10 6.2832 31.4159 389.6364 1026.4389 4
4 10 12.5664 31.4159 1558.5455 1144.8741 3
6 10 18.8496 31.4159 3506.7273 1342.2662 2
8 10 25.1327 31.4159 6234.1818 1618.6151 1

Eq. (77) has special solutions

𝑘1 = 𝑛𝜋, 𝑘3 =

√

𝑏
𝑛𝜋

= 𝑚𝜋, (78)

for integers 𝑛, 𝑚 > 0, 𝑛 ≠ 𝑚 and either both odd or both even. In fact, these solutions correspond to double roots of (77). We therefore
have mode-switching at critical weight parameters 𝛾𝑐 = 𝑚𝑔 given by 𝑏 = 𝑛2𝑚2𝜋4, with corresponding critical compressive loads 𝐹𝑐
given by 𝑎 = (𝑛2+𝑚2)𝜋2. By symmetry we may assume 𝑚 > 𝑛. Table 1 gives the first 20 critical mode-switching points (in order of 𝑚).

The mode switching involves the first pair of modes if (𝑚 − 𝑛)∕2 = 1, the second pair if (𝑚 − 𝑛)∕2 = 2, etc. Switching of the first
two modes is of particular interest because the first mode (by which we will always mean the mode with lowest critical load 𝐹𝑐)
is expected to be stable, while higher modes are unstable. Switching of the first mode occurs at critical values 𝑚𝑔 = 𝑛2(𝑛 + 2)2𝜋4,
𝑛 = 1, 2, 3,…, giving 𝑚𝑔 = 9𝜋4𝛥 = 8.7668, 64𝜋4𝛥 = 62.3418, 225𝜋4𝛥 = 219.1705, . . . (see last column in Table 1). Mode-switching
auses a pairwise interweaving of buckling curves coming out of the free-column critical loads at 𝑚𝑔 = 0, as can be seen by looking
head to Fig. 5.

The analytical results are confirmed by the bifurcation diagrams in Fig. 3 in which the end geodesic curvature 𝜔2(1) = −𝜂′(1) is
plotted against the applied end compression −𝐹 for various values of mg. The critical loads 𝐹 are seen to correspond to supercritical
pitchfork bifurcations from which symmetric pairs of post-buckling solution branches emanate. The diagrams are obtained by
numerically solving the full 15D boundary-value problem with the help of the continuation code AUTO (Doedel and Oldeman,
2007) using 𝐹 as bifurcation parameter.

At critical values 𝛾𝑐 = 𝑚𝑔, listed in Table 1, two pitchforks coincide and modes switch, as illustrated by the insets in Fig. 3
showing the first four modes. For instance, the first and second modes have switched between Fig. 3(b) and (c), which are for mg
values straddling the first critical value in Table 1 with mode numbers (𝑛, 𝑚) = (1, 3). Associated with the codimension-two mode-
switching event is a complicated interaction between the bifurcating curves that depends on the precise nonlinearity of the problem.
We find that immediately after mode-switching along the first bifurcating branch there is a further, secondary, symmetry-breaking
(pitchfork) bifurcation that, upon further increase of mg, quickly moves to higher loads −𝐹 (indicated by the triangles in Fig. 3(c)).
Out of this bifurcation comes a branch of solutions towards smaller mg values (orange in the figure) that intersects the second-mode
branch in another secondary bifurcation before eventually connecting with the symmetrically related first-mode branch (second
triangle). Along this branch connecting the first- and second-mode branches the solution is non-symmetric and gradually morphs
from a first to a second mode (and then to a first mode again). At the intersection the solution has zero end curvature 𝜔2(1), so in
our bifurcation diagrams in Fig. 3 such modal intersections occur along the horizontal axis. At the subcritical symmetry-breaking
bifurcation along the first-mode branch stability is lost and a dynamic snap will occur (assuming no lift-off has occurred earlier).
This bifurcation pattern repeats itself at successive mode-switchings, as can be seen in Fig. 3(d), for 𝑚𝑔 = 30, just after the second
switching, with mode numbers (𝑛, 𝑚) = (1, 5). Here the third-mode branch has a symmetry-breaking bifurcation at 𝐹 = −2799.71,
well outside the plotted range, and the emanating (cyan) branch of non-symmetric solutions re-enters the plot and intersects the
fourth-mode branch in a secondary bifurcation on the horizontal axis.

Fig. 4 shows solutions along the symmetry-breaking branch for 𝑚𝑔 = 15 as they evolve from a first to a second mode (both in thick
lines). The figure illustrates the wider symmetry properties of (non-symmetry-broken) modes: 𝑦 is symmetric about the midpoint
of the rod (and 𝑇2 anti-symmetric) in one of the modes in an interacting pair of modes, and anti-symmetric (and 𝑇2 symmetric) in
the other mode of the pair. The order of modes of course changes at a mode-switching. Modes with symmetric 𝑇 have zero end
11
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Fig. 3. Bifurcation diagrams for mg = 0 (a), 5 (b), 15 (c) and 30 (d), showing solution curves for the first four modes (five for mg = 30) with consistent line
styles. Insets show 𝑦 vs 𝑠 for the first four modes taken along the downward branches, i.e., with negative end geodesic curvature 𝜔2(1) (implying �̄�′′(1) > 0 for
he linearised solution). The orange and cyan curves are non-symmetric solution branches connecting modes 1, 2 and modes 3, 4, respectively. Diamonds label
rimary critical loads, triangles label secondary symmetry-breaking bifurcations. (𝛥 = 0.01, 𝛼 = 𝜋∕2.)

Fig. 4. Solutions (𝑦 and 𝑇2) along the (lower) branch of non-symmetric solutions connecting the first- and second-mode branches between secondary bifurcations
t 𝐹 = −362.63 and 𝐹 = −164.78, respectively, in Fig. 3(c) for mg = 15. The (anti-)symmetric first and second modes at the bifurcations are shown in thick lines

(solid for the first mode, dashed for the second). (𝛥 = 0.01, 𝛼 = 𝜋∕2.)
12
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twisting moments 𝑇2(0) and 𝑇2(1) set up in the cylinder. These solutions are therefore self-balancing and do not require a torque to
e provided by the end supports. Modes with anti-symmetric 𝑇2, by contrast, require a torque to be provided by the end supports.

Fig. 5 shows the stability diagram. The thick solid curve labelled 𝐹𝑐,1 indicates where the straight solution goes unstable (buckles)
nder compression −𝐹 (assuming that this happens when the first critical load is reached at the given value of mg). Because of the
ode switching this curve consists of alternating pieces of the interweaving critical curves (dotted) coming out of the classical first

nd second critical loads at 𝑚𝑔 = 0 (marked by triangles). A similar pair of interweaving curves comes out of the third and fourth
ritical loads at 𝑚𝑔 = 0 and is included in the figure to illustrate the nature of the mode switching.

Also included in Fig. 5 is the lift-off curve labelled 𝐹lift where 𝑝 ∶= 𝑝(1)2 = 0 at some arclength point 𝑠 along the solution (see 𝑝
anels below) and lift-off of the rod from the cylinder is initiated. As expected, higher values of mg give larger ranges of post-buckling
oads −𝐹 before lift-off occurs. In the weightless case (𝑚𝑔 = 0) the rod immediately lifts off upon buckling. The panels below the
tability diagram show solutions under increasing compressive loads with solutions at lift-off highlighted and their 3D shapes shown.

The interaction between (pairs of) modal branches in Fig. 5 makes the present case of a beam on an effective linear foundation
nder fixed–fixed boundary conditions markedly different from the more frequently treated case of such a beam under pinned–
inned boundary conditions (Atanackovic, 1997). In the latter case the critical loads are given by 𝑘1 = 𝑛𝜋 and 𝑎 = 𝑘21 + 𝑏∕𝑘21, or
𝐹 = 𝑛2𝜋2 + 𝑚𝑔∕(𝑛2𝜋2𝛥), i.e., separate straight lines for modes 𝑛 = 1, 2, 3,….

.1.3. Inclined cylinder (0 ≤ 𝛼 < 𝜋∕2)
Fig. 6 shows stability diagrams for inclination angles 𝛼 = 𝜋∕3, 𝜋∕6, 𝜋∕18, 𝜋∕36, 𝜋∕90 and 0, corresponding to 30◦, 60◦, 80◦, 85◦,

8◦ and 90◦ inclinations from the horizontal. Both primary buckling (solid) and subsequent lift-off (dashed) curves are drawn. As
xpected, the stable region for post-buckling solutions, between these two curves, shrinks as the cylinder approaches the vertical
rientation, where lift-off occurs immediately upon buckling. We also observe that under decreasing 𝛼, the stability curves gradually
urn downwards in a clockwise rotation, reflecting the increasing importance of the axial weight component described by the
ourth term in (64), often neglected in the literature (e.g., (Mitchell, 2002)). This rotation eventually leads to intersections with the
orizontal axis, corresponding to critical weights mg at which the rod buckles purely under self-weight with 𝐹 = 0. For larger mg
he rod has to be held in tension 𝐹 > 0 to prevent buckling. If the end loading device cannot provide a tension, then a discontinuous
ump will occur when mg is gradually increased past the critical values. The critical weights mg are very sensitive to variations in
: a change in inclination from 88◦ to 90◦ leads to a decrease in critical mg from 125.95 to 74.63.

In the vertical limit (𝛼 = 0) the stability curves are very nearly straight lines (close inspection reveals a slight curvature) given
y

0.5290𝑚𝑔 − 𝐹 = (2𝜋)2 (first mode),

0.5143𝑚𝑔 − 𝐹 = 8.98682 (second mode).
(79)

ote that these limiting critical lines do not depend on 𝛥 (this is an immediate consequence of (64) when 𝛼 = 0) and therefore
lso apply in cases without cylindrical constraint; for instance, when in a slender and flexible climbing robot (with clamped ends)
dhesion in the front foot is deactivated and the robot is momentarily a free-standing column (Wang and Yamamoto, 2017).

We also note that the inclination angle 𝛼 behaves as an imperfection under which the interweaving curves at 𝛼 = 𝜋∕2 become
veering curves that avoid each other rather than intersect. So for 𝛼 ≠ 𝜋∕2 there are no longer critical mg values with double roots.
Such curve veering is a well-known phenomenon in degenerate eigenvalue problems, both in the context of buckling and in small
vibrations (Perkins and Mote, 1986; Pierre and Plaut, 1989).

In Fig. 7 solutions at different inclinations are compared. It is seen that inclination breaks symmetry of solutions about their
midpoint: they gradually become more sagged towards the 𝑠 = 0 end. The effect is not strong, however, even for weights as large
as mg = 140. Fig. 8 shows 3D shapes at three different inclinations for mg = 140.

Fig. 9 gives the bifurcation diagram for the vertical column at mg = 100 with solution curves presented for the first four modes.
The first mode arises in tension, the other modes are all compressive for this value of mg. There is no interaction between modes;
there are no secondary bifurcations.

4.1.4. Vertical cylinder (𝛼 = 0)
The case of a vertical cylinder, like that of a horizontal one, is amenable to exact analysis. With 𝛼 = 0, the linearised equation (64)

can be integrated once and written as

�̄�′′ − 𝐹 �̄� − 𝑚𝑔(𝑠 − 1)�̄� = 𝑐. (80)

This is the linearised equation for the classical problem of a column under self-weight in addition to a compressive force
−𝐹 (Timoshenko and Gere, 1985). The integration constant 𝑐 = �̄�′′(1) in (80) is essentially the end shear force 𝐹3(1) (see (70),
noting that �̄�2(1) = 0 by (B9)) required to keep the ends of the rod aligned. It must be found as part of the solution.

By transforming the independent variable according to 𝑡 =
(

𝑠 − 1 + 𝐹
𝑚𝑔

)

(𝑚𝑔)1∕3, (80) is turned into the inhomogeneous Airy
quation

̈̄𝜂 − 𝑡�̄� = 𝑐, (81)

here ̇(.) = d(.)∕d𝑡 and 𝑐 = 𝑐∕(𝑚𝑔)2∕3 is another constant, with general solutions

�̄�(𝑡) = 𝑐 Ai(𝑡) + 𝑐 Bi(𝑡) − 𝑐𝜋 Gi(𝑡), (82)
13
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Fig. 5. Stability diagram for the first buckling mode. The critical buckling curve, labelled 𝐹𝑐,1, is made up of alternating pieces of interweaving curves (light
dotted lines) coming out of the first and second critical loads on the vertical axis (marked by triangles) owing to the mode switching at mg = 8.7668, 62.3418
and 219.1705. Also shown by dotted lines are similar interweaving curves coming out of the third and fourth critical loads on the vertical axis. The dashed line
labelled 𝐹lift represents the lift-off curve, where the normal contact pressure 𝑝 locally vanishes. Panels below display solutions for a sequence of compressions
−𝐹 , with solutions at lift-off highlighted and their 3D shapes shown, at (from top to bottom) mg = 5, 40, 140 and 280 (indicated by diamonds in the stability
diagram). All solutions are taken along the downward branches in the bifurcation diagram. (𝛥 = 0.01, 𝛼 = 𝜋∕2.)
14
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Fig. 6. Stability diagram showing the buckling curve (solid) and lift-off curve (dashed) for decreasing angle 𝛼: 𝛼 = 𝜋∕3 (a), 𝜋∕6 (b), 𝜋∕18 (c), 𝜋∕36 (d), 𝜋∕90
(e) and 0 (f), corresponding to 30◦, 60◦, 80◦, 85◦, 88◦ and 90◦ inclinations from the horizontal. For 𝛼 = 0 buckling and lift-off curves coincide. Also included
are second- and some third-mode curves (dotted). Where the lowest critical load 𝐹𝑐,1 drops to zero, buckling is induced purely by self-weight. (𝛥 = 0.01.)

Fig. 7. Solutions for rods in a cylinder of increasing inclination: 𝛼 = 𝜋∕2 (solid), 𝛼 = 𝜋∕3 (long dashed), 𝛼 = 𝜋∕6 (short dashed) and 𝛼 = 0 (dotted). The top row
is for weight mg = 40 and constant compression 𝐹 = −200, the bottom row for mg = 140 and constant compression 𝐹 = −300. All solutions are ‘first-mode’
solutions. (𝛥 = 0.01.)

�̄�(𝑡) = 𝑐1Ai(𝑡) + 𝑐2Bi(𝑡) + 𝑐𝜋 Hi(𝑡), (83)

where Ai and Bi are the Airy functions and Gi and Hi are the Scorer functions (Vallée and Soares, 2010). The latter are defined by

Gi(𝑡) = Bi(𝑡)∫
∞

𝑡
Ai(𝜏)d𝜏 + Ai(𝑡)∫

𝑡

0
Bi(𝜏)d𝜏, (84)

Hi(𝑡) = Bi(𝑡)∫
𝑡

−∞
Ai(𝜏)d𝜏 − Ai(𝑡)∫

𝑡

−∞
Bi(𝜏)d𝜏, (85)

as can be obtained by the variation of constants method with the help of the Wronskian Ai(𝑡) Ḃi(𝑡) − Ȧi(𝑡)Bi(𝑡) = 1∕𝜋 (Vallée and
Soares, 2010).
15
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Fig. 8. 3D shapes for mg = 140 at lift-off (except for the vertical cylinder, which is at 𝐹 = −2400): 𝛼 = 𝜋∕3 (left), 𝛼 = 𝜋∕6 (middle), 𝛼 = 0 (right). (𝛥 = 0.01.)

Fig. 9. Bifurcation diagram for a vertical column (𝛼 = 0) and mg = 100, showing curves for the first four modes. The first mode arises in tension (𝐹 = 14.3626).
Insets show 𝑦 vs 𝑠 for the first four modes taken along the downward branches.

Applying the boundary conditions (65) to (82) leads to the following characteristic equation to be satisfied for non-trivial
solutions (𝑐1, 𝑐2, 𝑐):

𝐷(𝐹 ,𝑚𝑔) ∶=
|

|

|

|

|

|

|

Ai(𝑡1) Bi(𝑡1) Gi(𝑡1)
Ai(𝑡2) Bi(𝑡2) Gi(𝑡2)

∫ 𝑡2
𝑡1

Ai(𝑡)d𝑡 ∫ 𝑡2
𝑡1

Bi(𝑡)d𝑡 ∫ 𝑡2
𝑡1

Gi(𝑡)d𝑡

|

|

|

|

|

|

|

= 0, (86)

where

𝑡1 =
(

1 + 𝐹
𝑚𝑔

)

(𝑚𝑔)
1
3 , 𝑡2 =

𝐹

(𝑚𝑔)
2
3

.

The integrals of the Airy functions Ai and Bi can be evaluated in terms of generalised hypergeometric functions 1𝐹2(𝑎1; 𝑏1, 𝑏2; ⋅), but
he Scorer functions Gi and Hi do not seem to have primitives in terms of standard or known special functions. However, Wolfram
athematica 13.0 (Wolfram Research, Inc., 2023) knows the Scorer functions and a graph of 𝐷(0, 𝑚𝑔) is given in Fig. 10. The roots

an be calculated numerically and give the following critical buckling weights:

𝑚𝑔 = 74.628569, 157.032783, 325.513452, ... (𝐹 = 0), (87)

n agreement with the results in Fig. 6(f) and (79). Replacing Gi by Hi in (86) simply reflects the graph in Fig. 10 about the horizontal
xis and therefore gives the same critical values.

The complication of having to deal with Scorer functions because of the inhomogeneous term in (81) may explain why the case
f a column with coaxial clamped ends is not normally considered in textbooks (Timoshenko and Gere, 1985; Atanackovic, 1997),
ven though this case is one of the standard cases in the buckling of weightless columns. The case is however treated in Engelhardt
1954), where the critical weight is estimated as 74.6285 ± 0.0005 in a careful analysis of series expansions.
16
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Fig. 10. Determinant 𝐷(𝐹 ,𝑚𝑔) for 𝐹 = 0. Roots give critical weights mg of pure self-weight buckling of a clamped–clamped column.

Fig. 11. Stability diagram for the first buckling mode of a twisted rod prepared at critical lift-off compression 𝐹lift. (𝛥 = 0.01, 𝛼 = 𝜋∕2.)

In fact, the critical weights for (80) with 𝑐 = 0, and with the boundary condition �̄�(1) = 0 correspondingly dropped, describing a
rod whose end at 𝑠 = 1 is free to sway sideways and therefore has zero end shear force, is given by the subdeterminant condition

|

|

|

|

|

Ai(𝑡1) Bi(𝑡1)
Ai(𝑡2) Bi(𝑡2)

|

|

|

|

|

=

√

3Ai
(

−(𝑚𝑔)
1
3
)

− Bi
(

−(𝑚𝑔)
1
3
)

3
2
3 𝛤

(

2
3

)
=

2(𝑚𝑔)
1
6

3
7
6 𝛤

(

2
3

)
𝐽 1

3

( 2
3
√

𝑚𝑔
)

= 0, (88)

here 𝐽 1
3

is the Bessel function of the first kind of fractional order 1/3, giving the first critical weight mg = 18.956266, in agreement
with the result quoted in Wang (1987), where this case is considered.

4.2. Torsional loading

Here we briefly consider torsional buckling in which the rod is again clamped at the ends while being subjected to an end force 𝐹
and controlled end twisting moment 𝑇1 (= −𝑀 (1)

1 ). 𝐹 is therefore now a constant, while 𝑇1 is the bifurcation parameter. The boundary
conditions are exactly identical to those listed in Section 4.1. The trivial, prebuckled straight solution now has 𝜉1(𝑠) = 𝑇1𝑠∕𝐶. The
inearisation about this straight solution, however, is still given by (64): 𝑇1 does not enter. Since 𝐹 is now a fixed parameter, this
quation will now generally only have the trivial solution �̄� = 0, i.e., torsional buckling does not occur. It also means that compressive
uckling is not affected by any pretwist 𝑇1. This result is consistent with, and explains, observations in Paslay and Bogy (1964) based
n the analysis of an assumed four-parameter displacement field for a heavy drill string.

The absence of torsional buckling can be understood by noting that in torsional buckling of a free rod the rod buckles into a
non-cylindrical) coiled 3D shape (van der Heijden et al., 2003). This shape is not available for a rod on a cylinder and consequently
orsional buckling is suppressed altogether. The results are confirmed in numerical continuation runs in which AUTO does not detect
ny bifurcations (branching points) under varying 𝑇1.

However, we can twist a post-buckling solution obtained by applying a compression −𝐹 first. If we prepare this solution right
t the lift-off point where 𝑝 goes zero locally, then applying a twist in one direction will stabilise the solution, while twist in the
17
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Fig. 12. Rod on top of the cylinder (𝛼 = 𝜋∕2, 𝛥 = 0.01.) (a) Bifurcation diagram for mg = 65 showing curves for the first four modes with mode shapes in insets
(all taken along the downward branches, i.e., 𝜔2(1) < 0). (b) Stability diagram showing critical branches for the first four buckling modes.

other direction will destabilise it. 𝑇1 > 0 is found to stabilise the solution but only up to a certain amount of twist, beyond which
the rod again lifts off. Fig. 11 shows a plot of this twist-induced lift-off for the first mode in the case of a horizontal cylinder.

4.3. Rod on top of the cylinder

Our equilibrium equations have a second trivial solution corresponding to the rod lying on rather than in the cylinder. This
solution will be unstable but could be stabilised by suitable interaction between rod and cylinder. To study buckling of this solution
we only need to replace boundary conditions (B2) and (B7) above by 𝜉2(0) = 𝜋 = 𝜉2(1). The frame alignment is then changed to
𝐭𝟏 = �̂�, 𝐝𝟏 = −�̂�, 𝐮𝟏 = −𝐣 and we now have �̄� = −�̄�′. The resulting difference in the linearised equation (64) is that the coefficient
of the �̄� term changes sign, corresponding to a negative foundation stiffness, which makes sense in this unstable problem as the
foundation now ‘helps’ buckling. We now have two real and two imaginary eigenvalues: 𝜆1,2 = ±𝑘1, 𝜆3,4 = i𝑘3 with 𝑎 = 𝑘23 − 𝑘21 > 0,
𝑏 = 𝑘21𝑘

2
3.

Numerical results for the case of a horizontal cylinder (𝛼 = 𝜋∕2) are displayed in Fig. 12. There is no interaction between
bifurcating branches in Fig. 12(a) (no mode-switching by interweaving curves). The stability diagram in Fig. 12(b) has the same
features as that for the vertical column in Fig. 6(f), with tensile buckling initiated (or prevented) at critical mg values along the
horizontal axis, reflecting the role of self-weight in the buckling of a rod lying on top of the cylinder. The critical values occur when
𝑘1 = 𝑘3 = 𝑏1∕4, where 𝑘1 solves cos 𝑥 cosh 𝑥 = 1, giving the successive critical values mg = 5.0056, 38.0354, 146.1763, . . . seen in
the figure. The curves in Fig. 12(b) are again very close to, but not exactly, straight lines.

5. Discussion

We have investigated the problem of an end-loaded, heavy, linearly elastic, isotropic rod constrained to deform on a rigid
cylindrical surface by employing a recently developed geometrically-exact theory of elastic two-stranded braids (Starostin and
van der Heijden, 2014), slightly extended to allow for an external gravity effect. The cylinder is here one of the strands of the
braid, constrained to be rigid, while the rod is the other strand. The (two) Lagrange multipliers (𝜆 and 𝜇) introduced to impose
the rigidity constraints on the second strand are shown to have natural physical interpretations as reactive bending moments in the
cylinder.

Since the cylinder is assumed to be rigid, gravity acting on it is balanced by equal and opposite reactions set up in the cylinder.
Axial gravity of the rod is included as an external effect in our braid formulation and added to the force balance equation for the
overall braid, while lateral gravity enters as an internal force to the braid, pulling down the rod but not the cylinder, thereby acting
as a distributed torque on the cylinder creating a twisting moment in the cylinder, the third reactive moment, 𝑇2.

A consequence of the rigidity of the second strand of the braid is that the rod-cylinder contact problem is 3-fold statically
indeterminate (the elastic braid is 1-fold statically indeterminate (Starostin and van der Heijden, 2014)). This means that for a
complete analysis of the problem three constitutive contact conditions have to be specified that characterise the nature of the
rod-cylinder interaction. As shown previously (Shah and van der Heijden, 2023), this framework allows for a completely general
and rigorous treatment of static friction, but here we make the assumption of hard frictionless contact in which the normal contact
pressure 𝑝 ∶= 𝑝(1)2 is the only non-zero contact load.

After specification of the contact conditions all strand forces and moments, including the six contact reactions, can be obtained
explicitly in terms of the overall braid variables. Our formulation thus gives access to all reactions in the supporting cylinder, which
can for instance be compared against critical strengths to ascertain whether the cylinder, along with its end supports, is able to
sustain the required reactions under compression of the rod into the cylinder (in Fig. 4(b), for instance, we have plotted 𝑇 ).
18
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Fig. 13. Comparison of our stability curves with the empirical fit in Eq. (89) (dashed curves). (a) 𝛼 = 𝜋∕2, i.e., horizontal cylinder; (b) 𝛼 = 𝜋∕3. (𝛥 = 0.01.)

As an application of our braid model we have studied buckling of a clamped straight rod under compressive and torsional loading.
Torsional buckling is suppressed on a cylinder, while in the absence of self-weight the compressive critical loads are identical to
those of an unconstrained column. Weight has a stabilising effect for near-horizontal cylinders, but gives rise to buckling purely
caused by self-weight for near-vertical cylinders. By monitoring the contact pressure 𝑝 between rod and cylinder we have obtained
critical lift-off loads as a function of weight as well as inclination.

For the two extreme cases of a horizontal and a vertical cylinder, buckling conditions can be derived analytically. The horizontal
case defines a problem of a beam on a linear foundation whose stiffness is given by the distributed weight of the rod. Compressive
buckling features mode-switching, known from beam-on-foundation problems governed by a fourth-order equation, in which heavier
rods buckle into increasingly more oscillatory modes. The vertical case, on the other hand, is governed by a second-order equation
and has (Sturmian) separate non-interacting modes with stability of heavier rods increasingly dominated by (supercritical) buckling
under self-weight. Our numerical results for intermediate inclinations map out this gradual transition from interweaving buckling
curves in the horizontal case to separate curves (in fact, nearly straight and parallel lines) in the vertical case through the process
of curve-veering.

In our numerical calculations we have to fix two dimensionless parameters for which we choose Poisson’s ratio 𝜈 and the
slenderness ratio 𝛥∕𝐿. Results can therefore be interpreted physically most readily for situations in which 𝐿 is constant. It is good
to realise though that fixing 𝛥∕𝐿 does not fix the relative size of rod and cylinder. Since 𝛥 is the distance between the axes of rod
and cylinder, our numerical results can be interpreted for a one-parameter family of ratios of rod-to-cylinder radii, 𝑟∕𝑅, such that
𝑅 − 𝑟 = 𝛥 (or 𝑅 + 𝑟 = 𝛥 when the rod is lying on the outside of the cylinder). In the case of a vertical cylinder, primary buckling
results are independent of 𝛥. Critical mg conditions such as in (87) can therefore also be interpreted in dimensional terms as critical
length conditions: for given mass per unit length m, the length of the tallest stable fixed–fixed column, for instance a leg of a light
raised platform, is given by the critical value

𝐿cr =
(

74.628569 𝐸𝐼
𝑚𝑔

)
1
3
,

factor of 1.58 taller than the critical height of a column whose upper end is free to move sideways.
Our results could be used to extract design formulae for critical buckling loads. Fig. 13 shows comparisons of our numerical

esults with the empirical fit of Dellinger et al. (1983) (see also (Tan and Digby, 1993; Hajianmaleki and Daily, 2014)) based on
xperimental data:

−𝐹𝑐,1 = 2.93 (𝐸𝐼)0.479 (𝑚𝑔)0.521
( sin 𝛼

𝛥

)0.436
. (89)

he agreement for a horizontal cylinder (𝛼 = 𝜋∕2) is reasonably good. For 𝛼 = 𝜋∕3 the fit deviates from the exact numerical
esults for large values of mg. Part of the explanation for this will be the frictional resistance (ignored in our study) encountered in
ractice as a result of which a larger compressive force is needed for buckling. Fits for smaller angles 𝛼 quickly deteriorate: (89)
oes not capture the clockwise rotation of the stability diagrams seen in Fig. 6. The formula is not meant to be valid for 𝛼 ≈ 0,
.e., near-vertical cylinders, where self-weight may become important. Looking at Fig. 6, for such orientations straight-line fits could
e used instead, such as in (79) for 𝛼 = 0.

Our theory can be straightforwardly extended to allow for nonuniform bending and torsional stiffnesses 𝐵 and 𝐶, as well as
onuniformly distributed mass 𝑚. Intrinsic curvature can also readily be included (see Shah and van der Heijden (2023) for an
xample of a helical rod), while the composite rod-cylinder modelling means that any interaction between rod and cylinder, such
s adhesion or electrostatics (Starostin and van der Heijden, 2014), can be incorporated. Other boundary conditions could also be
onsidered (several examples are discussed in Shah and van der Heijden (2023)). Conditions could for instance be formulated to
19
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study coiled buckling, by allowing one end of the rod to rotate around the edge of the cylinder. So-called helical buckling is widely
studied in the drilling literature (Mitchell, 1988; Tan and Digby, 1993; Huang and Pattillo, 2000; Cunha, 2004), but there is a lack
of explanation how these ‘helices’ (i.e., coiled configurations) are supposed to arise in an initially straight rod under the proposed
boundary and loading conditions.

Our theory makes no assumption about how the cylindrical constraint is maintained and therefore applies also in situations
here the rod winds on the outside of the cylinder, although in that case we require 𝑝(1)2 > 0 if the constraint is to be maintained

by hard rod-cylinder contact only. This situation arises in non-buckling problems in which a rod is wrapped around a cylinder and
then pulled, such as in the filament winding process under tensile loads used in the manufacturing of composite materials (Sofi
et al., 2018).
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Appendix. Self-contained reformulation of the braid theory

Here we give a self-contained variational formulation for the problem of a heavy rod on a cylinder by explicitly including
all kinematic relations as constraints in the Lagrangian. All equilibrium equations in Section 3.2 then follow from standard
Euler–Lagrange equations 𝜕∕𝜕𝜁 − (𝜕∕𝜕𝜁 ′)′ = 0 for all variables 𝜁 .

The full Lagrangian is

 = 1
2
𝐵
(

𝜔2
2 + 𝜔2

3

)

+ 1
2
𝐶
[(

𝜔3 −
1
𝛥

)

tan 𝜂 − 𝜉′1
]2

+
ℎ (1 − 𝛥𝜔3)

cos 𝜂

+ 𝜆
(

𝜔3 −
sin2 𝜂
𝛥

)

+ 𝜇
(

𝜔2 + 𝜂′
)

+ 𝑇2
(

𝜉′2 −
sin 𝜂
𝛥

)

− 𝛥𝑚𝑔 sin 𝛼 cos 𝜉2 + 𝑚𝑔𝑧 cos 𝛼

+ 𝜆1 (𝑥′ − 𝑡1𝑥) + 𝜆2 (𝑦′ − 𝑡1𝑦) + 𝜆3 (𝑧′ − 𝑡1𝑧) (90)
+ 𝜇1 (𝑑′1𝑥 − 𝜔1 𝑢1𝑥 + 𝜔3 𝑡1𝑥) + 𝜇2 (𝑑′1𝑦 − 𝜔1 𝑢1𝑦 + 𝜔3 𝑡1𝑦) + 𝜇3 (𝑑′1𝑧 − 𝜔1 𝑢1𝑧 + 𝜔3 𝑡1𝑧)

+ 𝜇4 (𝑢′1𝑥 + 𝜔1 𝑑1𝑥 − 𝜔2 𝑡1𝑥) + 𝜇5 (𝑢′1𝑦 + 𝜔1 𝑑1𝑦 − 𝜔2 𝑡1𝑦) + 𝜇6 (𝑢′1𝑧 + 𝜔1 𝑑1𝑧 − 𝜔2 𝑡1𝑧)

+ 𝜇7 (𝑡′1𝑥 − 𝜔3 𝑑1𝑥 + 𝜔2 𝑢1𝑥) + 𝜇8 (𝑡′1𝑦 − 𝜔3 𝑑1𝑦 + 𝜔2 𝑢1𝑦) + 𝜇9 (𝑡′1𝑧 − 𝜔3 𝑑1𝑧 + 𝜔2 𝑢1𝑧).

The first line contains the elastic energy in terms of the braid strain variables 𝜔2, 𝜔3 and 𝜂, with the constant-distance constraint (6)1
accounted for, and the second-strand inextensibility constraint imposed with multiplier ℎ. The second line imposes the cylindrical
rigidity constraints for the second strand with multipliers 𝜆, 𝜇 and 𝑇2. The third line contains the potential energy terms due to weight
in the lateral (𝑥) and axial (𝑧) directions, where 𝑥 = −𝛥 cos 𝜉2 has been used to replace 𝑥 in favour of the circumferential angle 𝜉2.
Since this 𝜉2 is an intrinsic braid variable, by writing the 𝑥 component this way we are treating the lateral weight component as a
force internal to the braid. The fourth line imposes the kinematic equation 𝐭𝟏 = 𝐫′𝟏 for the first strand with multipliers 𝜆𝑖 (𝑖 = 1, 2, 3),
while the final three lines impose the kinematic frame evolution equations

𝐭′𝟏 = 𝜔3 𝐝𝟏 − 𝜔2 𝐮𝟏,

𝐝′𝟏 = −𝜔3 𝐭𝟏 + 𝜔1 𝐮𝟏, (91)
𝐮′𝟏 = 𝜔2 𝐭𝟏 − 𝜔1 𝐝𝟏

for the first braid frame {𝐭𝟏,𝐝𝟏,𝐮𝟏} with multipliers 𝜇𝑖 (𝑖 = 1,… , 9). Here 𝜔1 is shorthand for the right-hand side of (6)1 and 12
extra kinematic variables have been introduced through the notation 𝐫𝟏 = (𝑥, 𝑦, 𝑧)T, 𝐭𝟏 = (𝑡1𝑥, 𝑡1𝑦, 𝑡1𝑧)T, 𝐝𝟏 = (𝑑1𝑥, 𝑑1𝑦, 𝑑1𝑧)T and
𝐮𝟏 = (𝑢1𝑥, 𝑢1𝑦, 𝑢1𝑧)T.

The derivation of the equations for most of the variables and Lagrange multipliers is straightforward and closely follows the
derivation in Section 3.2. We therefore focus on the equations for the new kinematic variables and multipliers 𝜆𝑖 and 𝜇𝑖 and show
that these yield the braid force and moment balance equations (22)–(27).

First, the Euler–Lagrange equations for the kinematic variables give
′ ′ ′
20

𝜆1 = 0, 𝜆2 = 0, 𝜆3 = 𝑚𝑔 cos 𝛼 (92)
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and

𝜇′
1 = 𝜔1 𝜇4 − 𝜔3 𝜇7, 𝜇′

2 = 𝜔1 𝜇5 − 𝜔3 𝜇8, 𝜇′
3 = 𝜔1 𝜇6 − 𝜔3 𝜇9,

𝜇′
4 = 𝜔2 𝜇7 − 𝜔1 𝜇1, 𝜇′

5 = 𝜔2 𝜇8 − 𝜔1 𝜇2, 𝜇′
6 = 𝜔2 𝜇9 − 𝜔1 𝜇3, (93)

𝜇′
7 = 𝜔3 𝜇1 − 𝜔2 𝜇4 − 𝜆1, 𝜇′

8 = 𝜔3 𝜇2 − 𝜔2 𝜇5 − 𝜆2, 𝜇′
9 = 𝜔3 𝜇3 − 𝜔2 𝜇6 − 𝜆3.

Eqs. (92) reveal that the 𝜆𝑖 are precisely the force components in the fixed frame: 𝐅′ = 𝑚𝑔 cos 𝛼 �̂�, 𝐅 = 𝜆1 �̂� + 𝜆2 𝐣 + 𝜆3 �̂�.
Next, we make the following identifications:

⎛

⎜

⎜

⎝

𝐹1
𝐹2
𝐹3

⎞

⎟

⎟

⎠

=
⎛

⎜

⎜

⎝

𝑡1𝑥 𝑡1𝑦 𝑡1𝑧
𝑑1𝑥 𝑑1𝑦 𝑑1𝑧
𝑢1𝑥 𝑢1𝑦 𝑢1𝑧

⎞

⎟

⎟

⎠

⎛

⎜

⎜

⎝

𝜆1
𝜆2
𝜆3

⎞

⎟

⎟

⎠

(94)

and

⎛

⎜

⎜

⎝

𝑀1
𝑀2
𝑀3

⎞

⎟

⎟

⎠

=
⎛

⎜

⎜

⎝

𝑢1𝑥 𝑢1𝑦 𝑢1𝑧 −𝑑1𝑥 −𝑑1𝑦 −𝑑1𝑧 0 0 0
0 0 0 𝑡1𝑥 𝑡1𝑦 𝑡1𝑧 −𝑢1𝑥 −𝑢1𝑦 −𝑢1𝑧

−𝑡1𝑥 −𝑡1𝑦 −𝑡1𝑧 0 0 0 𝑑1𝑥 𝑑1𝑦 𝑑1𝑧

⎞

⎟

⎟

⎠

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

𝜇1
𝜇2
𝜇3
𝜇4
𝜇5
𝜇6
𝜇7
𝜇8
𝜇9

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

. (95)

Differentiating these six relations and using (91), (92) and (93) then produces the balance Eqs. (22)–(27).
It may finally be verified that with the braid moment identification in (95) the Euler–Lagrange equations for 𝜔2, 𝜔3 and 𝜂 give,

after some rearrangement, the constitutive relations (37)–(39), from which the equilibrium equations for 𝜆, 𝜇 and 𝜔2 can be derived
by differentiation exactly as in Section 3.2.

Had we chosen to include the lateral weight term in the form 𝑚𝑔𝑥 sin 𝛼 in , instead of expressed in terms of 𝜉2, then the 𝜆1
equation would have become 𝜆′1 = 𝑚𝑔 sin 𝛼, which would have given additional terms on the right-hand side of all three Eqs. (22)–
(24). We would effectively have treated lateral weight as external to the braid as well. Moreover, the equation 𝜉′2 = (sin 𝜂)∕𝛥
could then simply have been appended to the system of equations without the need for the multiplier 𝑇2. The twisting moment
in the cylinder would have been computed as 𝑀 (2)

1 . All this would not have changed the physics of the problem: critical loads and
post-buckling rod configurations would have been the same.
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