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Abstract: Chronic kidney disease (CKD) is a global health burden with a continuously increasing
prevalence associated with an increasing incidence of diabetes and hypertension in aging populations.
CKD is characterized by low glomerular filtration rate (GFR) and other renal impairments including
proteinuria, thus implying that multiple factors may contribute to the etiology this disease. While
there are indications of ethnic differences, it is hard to disentangle these from confounding social
factors. Usually, CKD is detected in later stages of the disease when irreversible renal damage has
already occurred, thus suggesting a need for early non-invasive diagnostic markers. In this study, we
explored the urine secretome of a CKD patient cohort from Ghana with 40 gender-matched patients
and 40 gender-matched healthy controls employing a kidney injury and a more general cytokine assay.
We identified panels of kidney-specific cytokine markers, which were also gender-specific, and a panel
of gender-independent cytokine markers. The gender-specific markers are IL10 and MME for male
and CLU, RETN, AGER, EGFR and VEGFA for female. The gender-independent cytokine markers
were APOA1, ANGPT2, C5, CFD, GH1, ICAM1, IGFBP2, IL8, KLK4, MMP9 and SPP1 (up-regulated)
and FLT3LG, CSF1, PDGFA, RETN and VEGFA (down-regulated). APOA1—the major component
of HDL particles—was up-regulated in Ghanaian CKD patients and its co-occurrence with APOL1
in a subpopulation of HDL particles may point to specific CKD-predisposing APOL1 haplotypes in
patients of African descent—this, however, needs further investigation. The identified panels, though
preliminary, lay down the foundation for the development of robust CKD-diagnostic assays.

Keywords: CKD; biomarkers; Ghana; urine; cytokines; VEGFA; inflammation

1. Introduction

Chronic kidney disease (CKD) is defined by a glomerular filtration rate (GFR) <
60 mL/min per 1.73 m2 or the presence of kidney damage predominantly manifested by
proteinuria for 3 months or more [1,2].

Protein in urine as an indicator of kidney damage is often measured by the urine
albumin-to-creatinine ratio (UACR). Proteinuria and decreased GFR directly reflect physi-
cal properties of the filter between blood and urine constituted by an endothelial layer, the
glomerular basement membrane (GMB) and podocytes. This filter is coarse at the endothe-
lial side and fine at the podocytes and works in the dimension of nanometers in addition to
a negative polarity. Thus, bigger and negatively charged molecules, such as most proteins
under physiological conditions, cannot traverse this barrier. In proteinuria, larger proteins,
such as albumin, immunoglobulins G and M and α1-microglobulin, β2-microglobulin,
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correlating with the severity of histologic lesions [3], can traverse. These proteins can, as a
consequence, impair the re-absorption of other smaller molecules by the proximal tubular
epithelial cells and in final stages lead to toxic damage [3].

The increasing prevalence of CKD is largely influenced by the increase of diabetes and
hypertension among the aging population [4,5]. Although substantial percentages of CKD
patients will progress to more severe disease stages requiring dialysis or transplantation,
most patients die of associated cardiovascular disease (CVD) than of end-stage renal disease
(ESRD) [6]. Although diabetes is the most common cause of CKD, it is not clear why only
30% of patients with type 1 and 25 to 40% of patients with type 2 diabetes progress to
nephropathy irrespective of glycemic control [4,7,8].

Ethnic differences have been reported for diabetic nephropathy, particularly in Pima
Indians [4], and for focal segmental glomerulosclerosis (FSGS) in patients of African de-
scent, who have higher frequencies of the FSGS-predisposing APOL1 G1 and G2 haplo-
types, which on the other hand confer advantages against the sleeping sickness-causing
parasite—Trypanosoma brucei brucei [9]. A body of literature reports gender differences in
CKD [10–12], resulting in phenomena including gender-specific prevalence in dialysis and
mortality rates. The causes of these differences have not been fully elucidated. However,
differences in the levels of sex hormones and in the Renin-Angiotensin system may play
major roles, as well as behavioral compliance with the dialysis treatment, medication and
lifestyle restrictions.

Biomarkers for the early diagnosis of CKD are urgently needed and studies aiming at
their identification have been performed using serum [13] as well as urine samples [14,15].
While there are several reports focusing on single or only few proteins [16–18], to our
knowledge, there has been only one other study investigating CKD urine samples with
a cytokine array, which, however, was on a distinct platform not specific for kidney in-
jury markers [19]. This study identified higher levels of MMP9, MCP-1, RANTES, tissue
inhibitor of metalloproteinase (TIMP) 1, TNF-alpha, vascular endothelial growth factor
(VEGF), E-selectin, Fas, intercellular adhesion molecule 1, interleukin 2, matrix metallopro-
teinase (MMP) 2 and transforming growth factor beta and lower levels of urinary vascular
cell adhesion molecule 1 and platelet-derived growth factor in CKD [19].

In this study, aimed at gender-neutral and -specific CKD biomarker identification,
we investigated proteins secreted into the urine of a cohort of CKD patients and healthy
controls from Ghana using a general (Human XL) assay and a kidney injury-specific
cytokine assay.

2. Materials and Methods

Participants in the present study were recruited from two academic medical centers in
urban regions of Ghana between 2012–2017. Persons with kidney disease were individuals
aged 1–74 years with estimated glomerular filtration rate (eGFR) < 60 mL/min/1.73 m2

(creatinine based chronic kidney disease epidemiology [CKD-EPI] collaboration equation
without race adjustment) [1] or albumin/creatinine ratio ≥ 3.0 mg/mmol (30 mg/g),
and persons with a confirmed diagnosis of membranous glomerulonephritis, focal and
segmental glomerulosclerosis/minimal change disease (FSGS/MCD) or childhood onset
nephrotic syndrome. The CKD-EPI equation without the race adjustment was used in
adults and the Schwartz formula [20] in children aged less than 16 years. We excluded
persons with obstructive uropathy, kidney tumors, multiple myeloma, polycystic kidney
disease and women who were pregnant. Healthy persons without CKD were defined as
individuals with eGFR ≥ 60 mL/min/1.73 m2 and albumin/creatinine ratio < 3.0 mg/mmol
(<30 mg/g). Random urine samples were collected from cases and controls and aliquots
of 10 mLs were taken into cryovials. All participants of this study are from African
ancestry. We were anticipating that ancestry might lead to some differences due to higher
prevalences of genetic variants, such as the known APOL1 risk haplotype [9,21], which
through regulatory networks might also affect the biomarker signatures.
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2.1. Ethics Statement

Ethics approval was obtained locally at each clinical site. The approval number
for the Case-Control study is: GHSERC: 07/03/2013. Written informed consent was
obtained from all participants. Participants unable or unwilling to give consent or who
were institutionalized were excluded.

2.2. Cytokine Assay Experiments

The urine samples were analyzed using the Human Kidney Biomarker Array (ARY019)
as well as the Human XL Cytokine Array kit (ARY022B) from Research And Diagnostic
Systems, Inc. (Minneapolis, MN, USA), according to the manufacturer’s protocols. For the
experiment series 1, the urine samples (control and CDK) were pooled prior to analysis. In
the experiment series 2, we analyzed another pool of urine samples (control and CDK).

In the experiment series 3, urine from one individual male control sample was com-
pared to the pooled male and female CKD samples. For each membrane, 1 mL of urine
was incubated overnight at 4 ◦C on the respective membranes. Detection was carried out
using a streptavidin-HRP and the ECL Prime WesternfBlot-Detectionreagent (Merck, Darm-
stadt, Germany) detection reagents. The obtained signal was analyzed using FIJI/ImageJ
software [22].

2.3. Image Analysis of Cytokine Assays

Scanned images of the cytokine assays were read into the FIJI/ImageJ software [22].
The semi-automatic grid finding was based on pre-processing via Gaussian blur (size 4)
and local maxima finding as described in Steinfath et al. [23]. Local maxima were detected
via the FIJI function “Find Maxima” and exported to a file in the csv format. The csv
file containing the local maxima was imported into the R programming environment to
detect the corners and interpolate the grid with the pre-defined size between the corners.
The interpolation routine took into account alleyways between blocks within the grid and
adjusted grid positions to local maxima, where existent. For positions without detected
local maxima, the interpolated values were used. Grid positions were read into the FIJI
Microarray Profile plugin by Bob Dougherty and Wayne Rasband (https://www.optinav.
info/MicroArray_Profile.htm, accessed on 21 December 2022), which was employed to
quantify the integrated densities of the spots. Grid positions were annotated with the
cytokine identifiers provided in the manuals of the manufacturer (Proteome Profiler Array
from R & D Systems, Human XL Cytokine Array Kit, Catalog Number ARY022B and
Human Kidney Biomarker Array Kit, Catalog Number ARY019).

2.4. Data Analysis of Cytokine Assays

Integrated densities of the spots quantified by the FIJI Microarray plugin were im-
ported into the R/Bioconductor [24] environment for further processing. Data were nor-
malized via the Robust Spline Normalization from the R/Bioconductor package lumi [25].
Cytokines were considered expressed when their integrated density was significantly
(p < 0.05) over the background spots, which were determined as spots with the minimum
density plus 0.05 (max_density–min_density). Differential expression was assessed via
the moderated t-test from the Bioconductor limma package [26]. Limma p-values were
adjusted for the false discovery rate (FDR) by the method described by Benjamini and
Hochberg [27]. Cytokines were considered as differentially expressed based on the criteria:
detection p-value < 0.05 in at least one condition, ratio < 0.667 (down-regulated), ratio > 1.5
(up-regulated), limma-p-value < 0.05, FDR < 0.25. Heatmaps were generated with the
function heatmap.2 from the gplots package [28] using Pearson correlation as similarity
measure. Bar plots were generated with the R-builtin function barplot. Dendrograms were
produced via the R package dendextend [29] using Pearson correlation as the similarity
measure and complete linkage as the agglomeration method.

https://www.optinav.info/MicroArray_Profile.htm
https://www.optinav.info/MicroArray_Profile.htm
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3. Results
3.1. Patient Characteristics

Urine samples from CKD patients aged 6–71 years and control urine samples from
probands with no history of CKD aged 11–68 were used (Table 1). The urine samples
were collected in Ghana at the University of Ghana Medical School. Decisive criteria for
the choice of CKD urine samples were the glomerular filtration rate (GFR) < 60 mL/min
per 1.73 m2, which is documented for CKD [29]. Furthermore, CKD is associated with
an elevated albumin creatine ratio (ACR) < 300 mg/g [30]. In experiment series 1, urine
samples of patients from group 1 were investigated, in experiment series 2, urine samples
of patients from group 2 were investigated and in experiment series 3, urine samples of
patients from group 1 were investigated.

3.2. Strategy for the Identification of CKD Markers

Figure 1 shows the workflow used for identifying the CKD biomarkers. In the first
phase, experiment series 1 and 2 were performed on the kidney-injury cytokine assay
platform. Each experiment series consisted of 10 pooled male CKD urine samples, 10 pooled
female CKD urine samples, 10 pooled male healthy control urine samples and 10 pooled
female healthy control urine samples. Series 1 and 2 differed by the selection of distinct
individuals. In the second phase, experiment series 3 was performed on the Human
cytokine XL assay platform. The experiment series consisted of 10 pooled male CKD urine
samples, 10 pooled female CKD urine samples and 1 male healthy control sample.
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patients and healthy controls.

3.3. Identification of CKD Biomarkers Using the Human Kidney Biomarker Array

Figure 2 shows results of experiment series 1 on the kidney cytokine assay and the
identified CKD biomarkers. At the global level of the kidney cytokine expression, the
data segregated (Figure 2A) into two distinct clusters of CKD (male and female) and
healthy control (male and female). The heatmap (Figure 2B) and barplot (Figure 2C)
show biomarkers which were found up-regulated (up) in males (M): CLU, CXCL1, IL1RN,
IL10, RBP4 and SKP1, as well as biomarkers which were down-regulated (down): DPP4,
EGFR, MME, MMP9 and VEGF. The heatmap (Figure 2D) and barplot (Figure 2E) show
biomarkers which were found up-regulated (up) in females (F): ANPEP, ANXA5, B2M,
CCL2, CCN1, CLU, CXCL16, CST3, DPP4, EGF, IL6, IL10, HAVCR1, KLK3, LCN2, MMP9,
PLAU, RETN, SERPINA3, SKP1, TNFA, TNFSRF1A and TTF3, as well as biomarkers which
were down-regulated (down): AGER, EGFR, FABP1 and VEGF.
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Table 1. Characteristics of the patient cohort and the healthy individual cohort utilized in the cytokine assay analyses.

Group 1
Control female Control male CKD female CKD male

Age
eGFR

(mL/min per
1–73 m2)

number
Albumine

creatine ratio
(g/mmol)

Age
eGFR

(mL/min per
1–73 m2)

number
Albumine

creatine ratio
(g/mmol)

Age
eGFR

(mL/min per
1–73 m2)

number
Albumine

creatine ratio
(g/mmol)

Age
eGFR

(mL/min per
1–73 m2)

number
Albumine

creatine ratio
(g/mmol)

39 169.45 52815 0.68 11 70.77 52803 0.4 69 3 52866 107.25 24 84.05 52852 123.34
39 94.85 21206 1.11 26 153.98 52833 1.6 28 29 21245 8.27 41 123.38 52840 10.61
46 131.85 52855 0.85 46 92.64 52856 0.95 65 49 52838 1.67 28 153.97 52829 1925.38
47 145.27 52805 0.47 47 120.56 52839 1.06 49 51 52973 30.68 25 181.34 52830 17.89
20 134.71 21227 0.81 47 85.62 52839 1.06 38 75 52845 13.79 48 11.04 52842 2.69
24 74.53 21246 0.51 57 160.36 52777 1.03 39 92 21240 119.93 47 30.99 52875 0.91
25 113.26 21216 0.19 57 136.93 52823 0.48 25 93 52854 3.76 48 11.04 52842 2.69
70 134.61 52778 0.3 66 145.09 52818 0.67 35 99 21244 11.23 60 22.58 52828 87.79
51 150.26 52757 0.32 67 83.58 21241 0.36 46 114 52827 141.83 60 54.94 52862 3.05
50 119.12 21225 0.35 68 102.38 52861 1.71 60 123 52871 82.99 65 4.95 52832 0.54

Group 2
Control female Control male CKD female CKD male

Age
eGFR

(mL/min per
1–73 m2)

number
Albumine

creatine ratio
(g/mmol)

Age
eGFR

(mL/min per
1–73 m2)

number
Albumine

creatine ratio
(g/mmol)

Age
eGFR

(mL/min per
1–73 m2)

number
Albumine

creatine ratio
(g/mmol)

Age
eGFR

(mL/min per
1–73 m2)

number
Albumine

creatine ratio
(g/mmol)

33 185.43 52768 1.32 17 72.7 21210 0.26 65 1 52865 0.68 22 157.26 52843 2.55
4 85.97 52811 0.71 18 83.16 21223 2.02 22 3 52877 0.62 24 19.68 52844 0.97
14 92.56 21213 0.52 21 165.3 21232 1.24 71 11 52834 0.91 28 5.37 52864 5.03
16 75.12 21214 0.37 24 153.06 21212 0.26 7 14 21237 0.68 33 194.92 52831 10
16 68.11 52812 2.51 33 217.41 52804 1.21 30 17 52859 1.04 35 24.3 52873 1.2
18 78.64 21231 0.86 37 151.17 21235 0.88 50 26 21238 0.6 37 13.96 52870 1.08
20 129.93 21229 0.76 48 123.11 21243 1.14 71 35 52867 0.53 39 5.92 21248 2.08
27 140.59 21218 1.92 49 68.92 52728 0.52 62 41 21249 2.78 39 8.5 52879 0.57
62 153.39 52825 1.84 59 85.61 52759 0.89 28 46 52857 46.4 44 5.15 52835 4.33
21 91.94 21217 0.78 63 87.59 52772 1.36 35 17 52858 7.2 59 3.07 52869 0.51
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Figure 2. CKD biomarkers identified on the Human Kidney Biomarker Array in experiment se-ries 1.
(A) Experiments cluster into CKD and healthy control based on the global kidney cytokine expression.
(B) Heatmap and (C) barplot of markers in males (M) that were up-regulated (up): CLU, CXCL1,
IL1RN, IL10, RBP4 and SKP1, and down-regulated (down): DPP4, EGFR, MME, MMP9 and VEGF.
(D) Heatmap and (E) barplot of markers in females (F) that were up-regulated (up): ANPEP, ANXA5,
B2M, CCL2, CCN1, CLU, CXCL16, CST3, DPP4, EGF, IL6, IL10, HAVCR1, KLK3, LCN2, MMP9,
PLAU, RETN, SERPINA3, SKP1, TNFA, TNFSRF1A and TTF3, and down-regulated (down): AGER,
EGFR, FABP1 and VEGF.

Figure 3 shows the results of experiment series 2 on the Human Kidney Biomarker
Array and the identified CKD biomarkers. On the global level of kidney cytokine expression,
the experiments clustered heterogeneously with respect to CKD and gender (Figure 3A).
The heatmap (Figure 3B) and barplot (Figure 3C) show markers which were found up-
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regulated (up) in males (M): ADIPOQ, AG, ANXA5, CCN1, FABP1, IL10, LCN2, MMP9,
RETN, SERPINA3, TNFA, TNFSF12 and VEGF, and which were down-regulated (down):
AGER, AHSG, ANPEP, CLU, CXCL16, MME and RBP4. The heatmap (Figure 3D) and
barplot (Figure 3E) show markers which were found up-regulated (up) in females (F):
AG, AHSG, CLU, IL1RN, MME, RETN, TNFSF12 and VCAM1, and which were down-
regulated (down): ADIPOQ, AGER, ANPEP, ANXA5, CCL2, CCN1, EGFR, IL6, MMP9,
PLAU and VEGF.

J. Pers. Med. 2022, 12, x FOR PEER REVIEW  8  of  18 
 

 

 

Figure 3. CKD biomarkers identified on the Human Kidney Biomarker Array in experiment 

series 2. (A) experiments cluster heterogeneously based on the global kidney cytokine expression. 

(B) Heatmap and (C) barplot of biomarkers in males (M) that were up‐regulated (up): ADIPOQ, 

AG, ANXA5, CCN1, FABP1, IL10, LCN2, MMP9, RETN, SERPINA3, TNFA, TNFSF12 and VEGF, 

and down‐regulated (down): AGER, AHSG, ANPEP, CLU, CXCL16, MME and RBP4. (D) 

Heatmap and (E) barplot of biomarkers in females (F) that were up‐regulated (up): AG, AHSG, 

CLU, IL1RN, MME, RETN, TNFSF12 and VCAM1, and down‐regulated (down): ADIPOQ, AGER, 

ANPEP, ANXA5, CCL2, CCN1, EGFR, IL6, MMP9, PLAU and VEGF. 

Figure 3. CKD biomarkers identified on the Human Kidney Biomarker Array in experiment series
2. (A) experiments cluster heterogeneously based on the global kidney cytokine expression. (B)
Heatmap and (C) barplot of biomarkers in males (M) that were up-regulated (up): ADIPOQ, AG,
ANXA5, CCN1, FABP1, IL10, LCN2, MMP9, RETN, SERPINA3, TNFA, TNFSF12 and VEGF, and
down-regulated (down): AGER, AHSG, ANPEP, CLU, CXCL16, MME and RBP4. (D) Heatmap and
(E) barplot of biomarkers in females (F) that were up-regulated (up): AG, AHSG, CLU, IL1RN, MME,
RETN, TNFSF12 and VCAM1, and down-regulated (down): ADIPOQ, AGER, ANPEP, ANXA5,
CCL2, CCN1, EGFR, IL6, MMP9, PLAU and VEGF.
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3.4. Summary of the Identified CKD Biomarkers in Experiment Series 1 and 2

Table 2 shows a summary of the CKD biomarkers identified in experiment series 1 and
2 for male CKD patients. Biomarkers identified in common in both series are underlined
and in bold font. In both series, IL10 was shown to be up-regulated and MME was shown
to be down-regulated in CKD.

Table 2. CKD markers identified in male CKD patients in experiment series 1 and 2.

Cytokine CKD_M_ExpSeries1 CKD_M_ExpSeries2

ADIPOQ up

AG up

AGER down

AHSG down

ANPEP down

ANXA5 up

CCN1 up

CLU up down

CXCL1 up

CXCL16 down

DPP4 down

EGFR down

FABP1 up

IL1RN up

IL10 up up

LCN2 up

MME down down

MMP9 down up

RBP4 up down

RETN up

SERPINA3 up

SKP1 up

TNFA up

TNFSF12 up

VEGF down up

Table 3 shows a summary of the CKD biomarkers identified in experiment series 1 and
2 for female CKD patients. Biomarkers identified in common in both series are underlined
and in bold format. In both series, CLU and RETN were shown to be up-regulated and
AGER, EGFR and VEGF were shown to be down-regulated in CKD.

3.5. Identification of CKD Biomarkers on the Human XL Cytokine Assay

After identification of CKD biomarkers on the Human Kidney Biomarker Array we set
out to identify CKD-associated cytokines which include both pro-and anti-inflammatory
molecules. Figure 4 shows results from experiment series 3 on the human XL cytokine
assay and the identified CKD inflammation-associated biomarkers. On the global level of
cytokine expression, the data segregated (Figure 4A) into two clusters of CKD (male and
female) and healthy control (male). The heatmap (Figure 4B) and barplot (Figure 4C) show
biomarkers which were found to be up-regulated (up) or down-regulated (down) in males
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(M). The heatmap (Figure 4D) and barplot (Figure 4E) show markers which were found
up-regulated (up) or down-regulated in females (F). Interestingly, we found a large overlap
between up-and down-regulated cytokines between both genders. Some biomarkers that
were up-regulated in experiment series 3 overlapped between females (F) and males (M) in
CKD: APOA1 (up), ANGPT2 (up), C5 (up), CFD (up), GH1 (up), ICAM1 (up), IGFBP2 (up),
IL8 (up), KLK4 (up), MMP9 (up) and SPP1 (up). Other markers that were down-regulated
in experiment series 3 overlapped between female (F) and male (M) in CKD: FLT3LG
(down), CSF1 (down), PDGFA (down), RETN (down) and VEGFA (down).

Table 3. CKD markers identified in female CKD patients in experiment series 1 and 2.

Cytokine CKD_F_ExpSeries1 CKD_F_ExpSeries2

ADIPOQ down

AG up

AGER down down

AHSG up

ANPEP up down

ANXA5 up down

B2M up

CCL2 up down

CCN1 up down

CLU up up

CST3 up

CXCL16 up

DPP4 up

EGF up

EGFR down down

FABP1 down

IL1RN up

IL6 up down

IL10 up

HAVCR1 up

KLK3 up

LCN2 up

MME up

MMP9 up down

PLAU up down

RETN up up

SERPINA3 up

SKP1 up

TNFA up

TNFSF12 up

TNFRSF1A up

TTF3 up

VCAM1 up

VEGF down down
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Figure 4. CKD biomarkers identified on the Human XL cytokine assay in experiment series 3 show
significant overlap between males and females. (A) Data cluster into CKD and healthy control
based on global cytokine expression. (B) Heatmap and (C) barplot of markers in males (M) that
were up-regulated (up) or down-regulated (down). (D) Heatmap and (E) barplot of markers in
females (F) that were up-regulated (up) or down-regulated (down). Markers in experiment series 3
that overlapped between females (F) and males (M) that were up-regulated in CKD: APOA1 (up),
ANGPT2 (up), C5 (up), CFD (up), GH1 (up), ICAM1 (up), IGFBP2 (up), IL8 (up), KLK4 (up), MMP9
(up) and SPP1 (up). Markers in experiment series 3 that overlapped between females (F) and males
(M) that were down-regulated in CKD: FLT3LG (down), CSF1 (down), PDGFA (down), RETN (down)
and VEGFA (down).
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Table 4 shows a summary of CKD markers identified in experiment series 3 for male
and female CKD patients and independent of gender, taking the mean of male and female
values. Markers identified as overlapping in males and females are underlined and in bold
format. This summary table highlights the large overlap between male and female CKD
markers on the human XL cytokine platform.

Table 4. CKD-associated cytokine biomarkers identified as common and specific between males and
females, based on experiment series 3.

Cytokine CKD_mean_M_F_ExpSeries3 CKD_M_ExpSeries3 CKD_F_ExpSeries3

APOA1 up up up

ANG up

ANGPT1 up

ANGPT2 up up up

C5 up up up

CD3 down down

CHI3L1 up up

CFD up up up

CRP down down

FLT3LG down down down

CSF2 down down

GH1 up up up

ICAM1 up up up

IFNG up up

IGFBP2 up up up

IL3 up

IL8 up up up

IL22 up

KLK4 up up up

CCL2 down

CSF1 down down down

MMP9 up up up

MPO up up

SPP1 up up up

PDGFA down down down

PTX3 up up

RETN down down down

SERPINE1 up up

VEGFA down down down

3.6. Protein Interaction Network

Based on the identified differentially regulated cytokines, we set out to identify and
characterize a protein interaction network involved in the inflammatory pathophysiology
of CKD. Figure 5A shows the Protein interaction network generated via the STRING online
tool [31]. Via the STRING tool, enriched disease associations with Leukostasis and Artery
Disease (Figure 5C) were determined and a table of enriched Gene ontology Biological
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Processes was created (Figure 5D, top 25 terms sorted by strength is shown). These
pointed to the inflammatory response and included the highlighted term Regulation of
kidney development (strength = 1.8, false discovery rate = 0.0024). The proteins associated
with the regulation of kidney development (PDGFA, MMP9, VEGFA) are highlighted in
the network in Figure 5B.
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Figure 5. CKD biomarkers identified on the Human XL cytokine assay interact in a network regulating
the inflammatory response affecting kidney development. (A) STRING protein interaction network
(PPI) of CKD biomarkers identified on the Human XL cytokine assay. (B) PPI highlighting proteins
involved in the regulation of kidney development. (C) Disease associations found enriched by
the STRING tool are Leukostasis and Artery Disease. (D) Gene ontology Biological Processes found
enriched point to the inflammatory response and include the regulation of kidney development.

4. Discussion

In this two-phase analysis of cytokines in the urine of CKD patients and healthy indi-
viduals from Ghana, we identified urine-based cytokine biomarkers for CKD. In the first
phase, which was performed on a Human Kidney Biomarker Array, we found variability
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between males and females and also between the two experimental series, which consisted
of pooled urine samples from distinct individuals. This variability is a reflection of het-
erogeneity within biomarkers associated with CKD, which comprises a broad spectrum
of distinct diseases, such as diabetic nephropathy and focal segmental glomerulosclerosis.
Furthermore, there is much diversity in the genetic background of CKD and recent findings
on biomarkers associated with hitherto neglected areas, such as telomeres, CNVs, mtDNA
variants and sex chromosomes [32], which may gain attention in the future. This may also
help to explain the high heredity estimated at 30–75%, which at the moment is incompletely
understood [32]. A further aspect of heterogeneity is found in the definitions of CKD, which
on the one hand have to cope with the complexity of the disease, but on the other hand, lead
to strongly deviating assessments of CKD progression [33]. Among the kidney-associated
cytokines, we identified as variable between genders and experimental series LCN2 (alias
NGAL; up-regulated in male in experiment series 1 and in female in experiment series 2,
not significant in the others), which should be highlighted. NGAL had been established as
marker of acute kidney injury, but several problems, including its unpredictable release,
have led to increasing concerns about its diagnostic value [34].

For the sake of robustness, only biomarkers regulated in the same direction in both
experiment series are listed. The CKD biomarkers in male are: IL10 (Interleukin-10, up-
regulated) and MME (Membrane metalloendopeptidase, down-regulated). Sinuani et al.
reported that IL10, through increased proliferation of mesangial cells and mediated by
several other cytokines, induces progression of renal failure [35]. Dedicated single nu-
cleotide polymorphisms (SNPs) in the MME gene have been associated with a higher risk
for diabetic nephropathy in female diabetes type 1 patients [36]. The CKD biomarkers in
females are: CLU (Clusterin), RETN (Resistin, up-regulated), AGER (advanced glycosyla-
tion end-product specific receptor, alias RAGE), EGFR (epidermal growth factor receptor)
and VEGFA (vascular endothelial growth factor A, alias VEGF, down-regulated). CLU has
been reported to be elevated in kidney disease [37,38], although Guo et al. found that CLU
deficiency exacerbates renal inflammation and tissue fibrosis after ischemia-reperfusion
injury in mice [39]. For Resistin, there are reports on elevated levels in CKD, which are
associated with decreased glomerular filtration rate and inflammation [40]. AGER/RAGE
was reported to be elevated in the serum of CKD patients [41]. Up-regulation of EGFR has
been described for CKD, but EGFR inhibition in models of acute kidney injury (AKI) may
also have deleterious effects [42].

In the second phase, we used a more general cytokine (human XL) assay and found
a high percentage of cytokine biomarkers overlapping between both genders. The CKD
biomarkers regulated in the same direction between male and female are: APOA1, ANGPT2,
C5, CFD, GH1, ICAM1, IGFBP2, IL8, KLK4, MMP9 and SPP1 (up-regulated) and FLT3LG,
CSF1, PDGFA, RETN and VEGFA (down-regulated).

Interestingly, APOA1 is connected to APOL1, which has been associated with FSGS in
haplotypes carried by patients of African descent. APOL1 is bound to HDL particles, of
which APOA1 is the major protein component, but only 10% of APOA1-containing HDL
particles have APOL1 [21]. We still need to confirm if these APOL1-positive HDL particles
play a special role in CKD. In comparison to the first phase, where we saw strong gender-
specific differences, in the second phase, we identified nearly the same markers regulated
in the same direction for both males and females. The large number of gender-specific
differences found on the Human Kidney Biomarker Array in the first phase is in line with
reports of gender differences in kidney function [43] and kidney disease [11]. It is tempting
to speculate that the more general cytokines measured on the human XL assay reflect more
gender-independent inflammatory processes which precede CKD.

Cytokines detected as differentially regulated on the Human XL cytokine assay as
well as the Human Kidney Biomarker Array were RETN (Resistin, down-regulated on the
Human XL cytokine assay), MMP9 (metalloproteinase 9, up-regulated on the Human XL
cytokine assay) and VEGFA (down-regulated on the Human XL cytokine assay). VEGFA
was regulated in the same direction on the Human Kidney Biomarker Array (down), while
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MMP9 was up-regulated in males in series 2 and females in series 1 and down-regulated
in males in series 1 and females in series 2; however, RETN, in contrast to the XL assay,
was up-regulated. As mentioned above for RETN, there are reports on elevated levels
in CKD [40]. MMP9 is described to be up-regulated in early stages of the disease and
down-regulated in later stages [44]. In our cohorts, this might reflect the predominantly
late disease stages in the distinct cohorts. For VEGFA, there are conflicting data on the
regulation in diabetic nephropathy going from up-regulation in rat models and also diabetic
patients [45], to no effect [46], to down-regulation when diabetic nephropathy leads to
glomerusclerosis [45]. For glomerusclerosis and tubulorinterstitial fibrosis down-regulation
has been reported [45].

We compared our detected biomarkers with association loci from GWAS and found
that VEGFA, which we detected as a biomarker, had been identified in GWAS for an
association with eGFR [47] and also in a further study by the CKD consortium for an
association with CKD, which, while not having a significant p-value, nevertheless pointed
in the same direction [48]. Furthermore, we found that CST3, which we found up-regulated
in females on the Human Kidney biomarker array (Figure 2E), was detected to be associated
with eGFR via GWAS by Köttgen et al. [47].

We anticipate that our detected biomarkers may foster the mechanistic understanding
of the development of CKD and further help to enable an earlier detection of the disease
and in cases not detected by the conventional markers. CKD diagnosis mainly relies on GFR
estimation indicating kidney dysfunction or albuminuria indicating kidney damage [49].
GFR estimations are hampered by limitations of creatinine [50]. Albumin does not work
as a marker in the non-albuminuric cases highly prevalent in non-diabetic CKD [17,51,52],
but is also common in diabetic CKD [16,49,53].

5. Conclusions

We conclude that our two-phase cytokine analysis of urine samples from CKD pa-
tients and healthy controls from Ghana has revealed panels of kidney-specific cytokine
biomarkers which are also gender-specific and a panel of gender-independent cytokine
markers. The gender-specific markers are IL10 and MME for males and CLU, RETN, AGER,
EGFR and VEGFA for females. The gender-independent cytokine markers were APOA1,
ANGPT2, C5, CFD, GH1, ICAM1, IGFBP2, IL8, KLK4, MMP9 and SPP1 (up-regulated) and
FLT3LG, CSF1, PDGFA, RETN and VEGFA (down-regulated).
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43. Sabolić, I.; Asif, A.R.; Budach, W.E.; Wanke, C.; Bahn, A.; Burckhardt, G. Gender Differences in Kidney Function. Pflüg. Arch.-Eur.
J. Physiol. 2007, 455, 397–429. [CrossRef] [PubMed]

44. Cheng, Z.; Limbu, M.H.; Wang, Z.; Liu, J.; Liu, L.; Zhang, X.; Chen, P.; Liu, B. MMP-2 and 9 in Chronic Kidney Disease. Int. J. Mol.
Sci. 2017, 18, 776. [CrossRef] [PubMed]

45. Schrijvers, B.F.; Flyvbjerg, A.; De Vriese, A.S. The Role of Vascular Endothelial Growth Factor (VEGF) in Renal Pathophysiology.
Kidney Int. 2004, 65, 2003–2017. [CrossRef] [PubMed]

46. Shimada, K.; Baba, T.; Neugebauer, S.; Onozaki, A.; Yamada, D.; Midorikawa, S.; Sato, W.; Watanabe, T. Plasma Vascular
Endothelial Growth Factor in Japanese Type 2 Diabetic Patients with and without Nephropathy. J. Diabetes Complicat. 2002, 16,
386–390. [CrossRef]

47. Köttgen, A.; Pattaro, C.; Böger, C.A.; Fuchsberger, C.; Olden, M.; Glazer, N.L.; Parsa, A.; Gao, X.; Yang, Q.; Smith, A.V.; et al. New
Loci Associated with Kidney Function and Chronic Kidney Disease. Nat. Genet. 2010, 42, 376–384. [CrossRef]

48. Böger, C.A.; Gorski, M.; Li, M.; Hoffmann, M.M.; Huang, C.; Yang, Q.; Teumer, A.; Krane, V.; O’Seaghdha, C.M.; Kutalik, Z.; et al.
Association of EGFR-Related Loci Identified by GWAS with Incident CKD and ESRD. PLoS Genet. 2011, 7, e1002292. [CrossRef]

49. Lousa, I.; Reis, F.; Beirão, I.; Alves, R.; Belo, L.; Santos-Silva, A. New Potential Biomarkers for Chronic Kidney Disease
Management—A Review of the Literature. Int. J. Mol. Sci. 2020, 22, 43. [CrossRef]

http://doi.org/10.1038/nmeth.2089
http://doi.org/10.1093/bioinformatics/17.7.634
http://www.ncbi.nlm.nih.gov/pubmed/11448881
http://doi.org/10.1186/gb-2004-5-10-r80
http://www.ncbi.nlm.nih.gov/pubmed/15461798
http://doi.org/10.1093/bioinformatics/btn224
http://www.ncbi.nlm.nih.gov/pubmed/18467348
http://doi.org/10.2202/1544-6115.1027
http://doi.org/10.1111/j.2517-6161.1995.tb02031.x
http://doi.org/10.1093/bioinformatics/btv428
http://doi.org/10.1001/jama.2015.0602
http://doi.org/10.1093/nar/gku1003
http://www.ncbi.nlm.nih.gov/pubmed/25352553
http://doi.org/10.3389/fgene.2019.00453
http://www.ncbi.nlm.nih.gov/pubmed/31214239
http://doi.org/10.1111/imj.14770
http://www.ncbi.nlm.nih.gov/pubmed/32034854
http://doi.org/10.1159/000364937
http://doi.org/10.5500/wjt.v3.i4.91
http://doi.org/10.1159/000333006
http://doi.org/10.1016/S1043-2760(05)80013-X
http://doi.org/10.1155/2022/6572338
http://doi.org/10.1186/s12882-016-0348-x
http://doi.org/10.1038/sj.ki.5000089
http://doi.org/10.3389/fmed.2022.970423
http://www.ncbi.nlm.nih.gov/pubmed/36017003
http://doi.org/10.1155/2018/8739473
http://doi.org/10.1007/s00424-007-0308-1
http://www.ncbi.nlm.nih.gov/pubmed/17638010
http://doi.org/10.3390/ijms18040776
http://www.ncbi.nlm.nih.gov/pubmed/28397744
http://doi.org/10.1111/j.1523-1755.2004.00621.x
http://www.ncbi.nlm.nih.gov/pubmed/15149314
http://doi.org/10.1016/S1056-8727(02)00162-9
http://doi.org/10.1038/ng.568
http://doi.org/10.1371/journal.pgen.1002292
http://doi.org/10.3390/ijms22010043


J. Pers. Med. 2023, 13, 38 17 of 17

50. Levey, A.S.; Perrone, R.D.; Madias, N.E. Serum Creatinine and Renal Function. Annu. Rev. Med. 1988, 39, 465–490. [CrossRef]
51. Coresh, J.; Selvin, E.; Stevens, L.A.; Manzi, J.; Kusek, J.W.; Eggers, P.; Van Lente, F.; Levey, A.S. Prevalence of Chronic Kidney

Disease in the United States. JAMA 2007, 298, 2038–2047. [CrossRef] [PubMed]
52. Kodgirwar, P.S.; Jajoo, S.U.; Jajoo, U.N.; Taksande, B.A.; Gupta, S.S. Nonalbuminuric Chronic Kidney Disease: A Dominant

Presentation in Noncommunicable Disease Population of Rural Central India. J. Fam. Med. Prim. Care 2018, 7, 442–446. [CrossRef]
53. Koye, D.N.; Magliano, D.J.; Reid, C.M.; Jepson, C.; Feldman, H.I.; Herman, W.H.; Shaw, J.E. Risk of Progression of Nonalbuminuric

CKD to End-Stage Kidney Disease in People with Diabetes: The CRIC (Chronic Renal Insufficiency Cohort) Study. Am. J. Kidney
Dis. 2018, 72, 653–661. [CrossRef] [PubMed]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1146/annurev.me.39.020188.002341
http://doi.org/10.1001/jama.298.17.2038
http://www.ncbi.nlm.nih.gov/pubmed/17986697
http://doi.org/10.4103/jfmpc.jfmpc_87_17
http://doi.org/10.1053/j.ajkd.2018.02.364
http://www.ncbi.nlm.nih.gov/pubmed/29784612

	Introduction 
	Materials and Methods 
	Ethics Statement 
	Cytokine Assay Experiments 
	Image Analysis of Cytokine Assays 
	Data Analysis of Cytokine Assays 

	Results 
	Patient Characteristics 
	Strategy for the Identification of CKD Markers 
	Identification of CKD Biomarkers Using the Human Kidney Biomarker Array 
	Summary of the Identified CKD Biomarkers in Experiment Series 1 and 2 
	Identification of CKD Biomarkers on the Human XL Cytokine Assay 
	Protein Interaction Network 

	Discussion 
	Conclusions 
	References

