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Abstract. The human thalamus is a highly connected subcortical grey-
matter structure within the brain. It comprises dozens of nuclei with
different function and connectivity, which are affected differently by dis-
ease. For this reason, there is growing interest in studying the thalamic
nuclei in vivo with MRI. Tools are available to segment the thalamus
from 1 mm T1 scans, but the contrast of the lateral and internal bound-
aries is too faint to produce reliable segmentations. Some tools have
attempted to incorporate information from diffusion MRI in the seg-
mentation to refine these boundaries, but do not generalise well across
diffusion MRI acquisitions. Here we present the first CNN that can seg-
ment thalamic nuclei from T1 and diffusion data of any resolution with-
out retraining or fine tuning. Our method builds on a public histological
atlas of the thalamic nuclei and silver standard segmentations on high-
quality diffusion data obtained with a recent Bayesian adaptive segmen-
tation tool. We combine these with an approximate degradation model
for fast domain randomisation during training. Our CNN produces a
segmentation at 0.7 mm isotropic resolution, irrespective of the resolu-
tion of the input. Moreover, it uses a parsimonious model of the diffu-
sion signal at each voxel (fractional anisotropy and principal eigenvector)
that is compatible with virtually any set of directions and b-values, in-
cluding huge amounts of legacy data. We show results of our proposed
method on three heterogeneous datasets acquired on dozens of differ-
ent scanners. An implementation of the method is publicly available at
https://freesurfer.net/fswiki/ThalamicNucleiDTI.

1 Introduction

The human thalamus is a brain region with connections to the whole cortex [30,
6]. It comprises dozens of nuclei that are involved in diverse functions like cog-
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nition, memory, sensory, motor, consciousness, language, and others [32, 30, 14].
Crucially, these nuclei are differently affected by disease, e.g., the intralaminar
nuclei are involved in Parkinson’s [17], the anterior nuclei in Alzheimer’s [9, 10],
or the pulvinar in frontotemporal dementia [40]. Such differentiation has sparked
interest in studying the thalamic nuclei in vivo with MRI. This requires auto-
mated segmentation methods at the subregion level, as opposed to the whole
thalamus provided by neuromaging packages like FreeSurfer [15] or FSL [27], or
by convolutional neural networks (CNNs) like DeepNAT [41] or SynthSeg [7].

Different approaches have been used to segment thalamic nuclei. Some meth-
ods have attempted to register manually labelled histology to MRI [23, 20, 29],
but accuracy is limited by the difficulty in registering two modalities with such
different contrasts, resolutions, and artifacts. Diffusion MRI (dMRI) has been
used to spatially cluster voxels into subregions, based on similarity in diffusion
signal [25, 5, 31] or connectivity to cortical regions [6, 21]. Clustering based on
functional MRI connectivity has also been explored [42]. However, such clusters
are not guaranteed to correspond to anatomically defined nuclei.

Other methods have relied on specialised MRI sequences to highlight the
anatomical boundaries of the thalamus, typically at 7T [36, 24] or with advanced
dMRI acquisitions [4]. A widespread method within this category is “THOMAS”,
a labelled dataset of 7T white-matter-nulled scans that has been used to segment
the thalamic nuclei with multi-atlas segmentation [35] and CNNs [38]. The main
disadvantage of THOMAS is requiring such advanced acquisitions at test time,
which precludes the analysis of data acquired at sites without the required re-
sources or expertise, as well as of legacy data acquired with standard sequences.

One approach that seamlessly supports training and test data of different
modalities is Bayesian segmentation, which combines a probabilistic atlas (de-
rived from one modality) with a likelihood model to compute adaptive segmen-
tations on other modalities using Bayesian inference [3]. A probabilistic atlas of
thalamic nuclei built from 3D reconstructed histology is available on FreeSurfer,
along with a companion Bayesian segmentation method to segment the nuclei
from 1 mm isotropic T1-weighted scans [18]. An improved version of this method
that incorporates dMRI into the likelihood model for more accurate segmenta-
tion has recently been released [37], but it inherits the well-known problems of
Bayesian segmentation with partial voluming (PV) [39]. While this tool works
well with high-resolution dMRI data (like the Human Connectome Project, or
HCP [33]), the lack of PV modelling is detrimental at resolutions much lower
than ∼1 mm isotropic; this is the case of virtually every legacy dataset, and many
modern datasets that use lower resolutions (e.g., to keep acquisition time short,
or for consistency with older timepoints in longitudinal studies, like ADNI [19]).

Finally, there are also supervised discriminative methods that label the tha-
lamus from dMRI. An early approach by Stough and colleagues [34] used a ran-
dom forest to segment the thalamus into six groups of nuclei. As features, they
used local measures like fractional anisotropy (FA) and the principal eigenvector
(V1 ), and connectivity with cortical regions. A recent approach [13] segmented
the whole thalamus (and other brain regions) using a CNN with six input chan-
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Fig. 1. Overview of the proposed method. (a) Generation of labelled training data.
(b) Training with domain randomisation. (c) Testing. Images are in coronal view.

nels – one per unique element of the diffusion tensor image (DTI ) at each voxel.
While these supervised approaches can provide excellent performance on the
training domain, they falter on datasets with different resolution.

Here, we present the first CNN that can segment the thalamic nuclei from
dMRI and T1 data out of the box, without retraining or finetuning. We use
domain randomisation to model resolution during training, which enables the
CNN to produce super-resolved 0.7 mm isotropic segmentations, independently
of the resolution of the input images. Aggressive data augmentation is used to
ensure robustness against variations in contrast, shape and artifacts. Finally,
our CNN uses a parsimonious representation of the dMRI data (FA+V1), which
makes our publicly available tool compatible with virtually every dMRI dataset.

2 Methods

A summary of our method is shown in Figure 1. We use the joint T1/DTI
Bayesian method in FreeSurfer to segment the thalamic nuclei from a large
number of modern, high-quality scans. These segmentations are used as silver
standard to train a CNN, thus circumventing the need for manual segmentations.
Our approach uses a hybrid domain randomisation and augmentation strategy
that enables the network to generalise to virtually any diffusion dataset.

2.1 Training dataset, preprocessing, and data representation

To make the CNN compatible with legacy datasets, we choose a simple represen-
tation based on the FA and V1 of the DTI fit at each voxel. DTI only requires 7
measurements and is thus compatible with even the oldest datasets. As in many
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DTI visualisation tools, we combine the FA and V1 into a single 3×1 red-green-
blue vector at every voxel. This RGB vector has brightness proportional to the
FA, and its colour encodes the direction of V1 as shown in Figure 1a.

To obtain accurate training segmentations from the Bayesian method in
FreeSurfer [37] we require a high-resolution dataset with reduced PV artifacts.
We choose the HCP, which includes 0.7 mm isotropic T1 and 1.25 mm isotropic
dMRI with 90 directions and three b-values (1000, 2000, and 3000 s/mm2). We
use the HCP to generate our targets and then generate training images at a wide
spectrum of resolutions by increasing the voxel size with a degradation model. We
consider two RGB images per subject, derived from DTI fits of the b=1000 and
b=2000 shells, respectively. For each of the two DTI fits, the Bayesian method
yields three different sets of segmentations (corresponding to three available like-
lihood models). All six segmentations are defined on the .7 mm grid (Figure 1a,
right), and comprise 23 thalamic nuclei per hemisphere (46 total) [37].

2.2 Domain randomisation and data augmentation

We employ domain randomisation and aggressive data augmentation for both
our T1 and diffusion data in order to model: (i) the degradation in quality
from HCP to more standard acquisition protocols, and (ii) the variability in
appearance due to differences in acquisitions and scanners at test time.

Domain randomisation for resolution: at the crux of our method is the
domain randomisation of input resolutions. At every iteration, we randomly
sample the voxel dimensions for the T1 and DTI (independently) in two steps.
First, we sample a “coarse” scalar voxel size from a uniform distribution between
1 and 3 mm. Then, we sample the voxel side length in each direction from a
normal distribution centred on this “coarse” mean with σ = 0.2 mm.

Next, we resample the T1 and RGB channels to the sampled resolution. For
the T1, we use a publicly available PV-aware degradation model [8], which ac-
counts for variability in slice thickness and slice spacing. For the RGB, one should
theoretically downsample the original diffusion-weighted images, and recompute
the DTI at the target resolution. However, the exact characteristics of the blur-
ring depend on the set of directions and b-values, which will not be the same for
the training and test datasets. Moreover, recomputing the DTI is too slow for
on-the-fly augmentation. Instead, we apply the degradation model to the RGB
image directly, which can be done very efficiently. This is only an approximation
to the actual degradation, but in practice, the domain randomisation strategy
minimises the effects of the domain gap created by the approximation.

Data augmentations: we also apply a number of geometric and intensity aug-
mentations, some standard, and some specific to our dMRI representation.

- Global geometric augmentation: we use random uniform scaling between 0.85
and 1.15, and random uniform rotations about each axis between -15 and 15
degrees. Rotations are applied to the images and also used to reorient the V1
vectors.
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- Local geometric augmentation: we deform the scans with a piecewise linear de-
formation field, obtained by linear interpolation on a 5×5×5×3 grid. V1 vectors
are reoriented with the PPD method (“preservation of principle direction” [1]).
- Local orientation augmentation: we further generate a smooth grid of random
rotations between [−15◦, 15◦] around each principal axis using piecewise linear
interpolation on a 5× 5× 5× 3 grid. These are applied to each vector in V1 to
simulate noise and variations in principle direction
- DTI “speckles”: To account for infeasible FA and V1 voxels generated by po-
tentially unconstrained DTI fitting, we select random voxels in the low resolution
images (with probability p = 1×10−4), randomise their RGB values, and renor-
malise them so that their effective FA is between 0.5 and 1.
- Noise, brightness, contrast, and gamma: we apply random Gaussian noise to
both the T1 and FA; randomly stretch the contrast and modify the brightness
of the T1; and apply a random gamma transform to the T1 and FA volumes.

We note that these augmentations are applied to the downsampled images.
After that, the augmented images are upscaled back to 0.7 mm isotropic resolu-
tion. This ensures that all the channels (including the target segmentations) are
defined on the same grid, independently of the intrinsic resolution of the inputs
(Figure 1b). At test time, this enables us to produce .7 mm segmentations for
scans of any resolution (prior upscaling to the .7 mm grid).

2.3 Loss

We build on the standard soft dice loss [26], which is widely used in segmen-
tation with CNNs. Since some labels in the histological atlas are very small,
we implemented a grouped soft dice by combining nuclei into 10 larger labels.
We borrowed these groupings from [37]. We then combined this Dice with the
average Dice of the individual nuclei and the Dice of the whole thalamus into
the following composite loss:

L = −
∑
l

SDC(Xl, Yl)−
∑
g

SDC
(
{Xl}Gg , {Yl}Gg

)
− SDC ({Xl}l 6=0, {Yl}l6=0) , (1)

where, Xl = {xli} and Yl = {yli} are the predicted and ground truth probability
maps for label l ∈ [0, . . . , L]; Gg is the set of label indices in nuclear group
g ∈ [1, . . . , 10], label l = 0 corresponds to the background and SDC is the soft
Dice coefficient: SDC(X,Y ) = (2×

∑
i xiyi)/(

∑
i x

2
i +

∑
i y

2
i ).

2.4 Architecture and implementation details

Our CNN is a 3D U-net [28, 11] with 5 levels (2 layers each), 3×3×3 kernels and
ELU activations [12]. The first level has 24 features, and every level has twice
as many features as the previous one. The last layer has a softmax activation.
The loss in Equation 1 was optimised for 200,000 iterations with Adam [22]. A
random crop of size 128×128×128 voxels (guaranteed to contain the thalami)
was used at every iteration. The T1 scans are normalised by scaling the median
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Fig. 2. Example segmentations from: (a) HCP (axial); (b) LOCAL (sagittal); and
(c) ADNI (coronal). Top: T1. Bottom: RGB encoding. The CNN produces accurate
segmentations at high isotropic resolution despite the heterogeneous acquisitions.

white matter intensity to 0.75 and clipping at [0, 1]. The DTI volumes are up-
sampled to the 0.7 mm space of the T1s (using the log domain [2]) prior to the
RGB computation. To generate a training target we combine all six segmenta-
tion candidates (three likelihood models times two shells) in a two step process:
(i) averaging the one-hot encodings of each segmentation, and(ii) coarsely seg-
menting into 10 label groups and renormalising the soft target.

For validation purposes, we used the Bayesian segmentations of 50 withheld
HCP subjects and 14 withheld ADNI subjects. Even though the Bayesian seg-
mentation of ADNI data is not reliable enough to be used as ground truth for
evaluation (due to the PV problems described in the Introduction), it is still in-
formative for validation purposes – particularly when combined with HCP data.
The final model for each network is chosen based on the validation loss averaged
between the HCP and ADNI validation sets.

3 Experiments & Results

3.1 MRI data

We trained our CNN on 600 subjects from the HCP dataset, as explained in
Section 2.1. For evaluation, we used three different datasets:

HCP: 10 randomly selected subjects (not overlapping with the training data),
with manual segmentations of 10 groups of labels (the same as in Section 2.3).

LOCAL: 21 healthy subjects (9 males, ages 53-80), each with a 1.1 mm isotropic
T1 and a test-retest pair of 2.5 mm isotropic dMRI (64 directions, b=1,000).

ADNI: 90 subjects from the ADNI, 45 with with Alzheimer’s disease (AD) and
45 healthy controls (73.8±7.7 years; 44 females), each with a T1 (1.2×1×1 mm,
sagittal) and dMRI (1.35×1.35×2.7 mm, axial, 41 directions, b=1,000).
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Manual Nuclear Whole Hist Manual Nuclear Whole
Bayesian 0.547 0.639 0.885 0.716 0.826 0.880 0.946
CNN No defm. 0.585 0.678 0.895 0.824 0.885 0.917 0.963
CNN single target 0.582 0.676 0.905 0.824 0.883 0.911 0.962
CNN full model 0.576 0.674 0.903 0.819 0.876 0.910 0.961
CNN majority vote 0.579 0.676 0.897 0.816 0.875 0.909 0.961
CNN no rotation 0.580 0.672 0.902 0.808 0.873 0.909 0.961
CNN no speckle 0.583 0.680 0.903 0.799 0.869 0.907 0.958
CNN average target 0.575 0.669 0.898 0.799 0.867 0.906 0.959
CNN Dice Loss 0.544 0.618 0.806 0.824 0.867 0.899 0.963

Model Dice with manual tracing: Test re-test Dice score:

Table 1. Mean Dice for ground truth comparison (left columns) and test re-test (right
columns). Dice is shown for labels grouped into: histological labels (“hist”, 23 labels),
manual protocol (“manual”, 10 labels), nuclear groups [37] (“nuclear”, 5 labels), and
whole thalamus. CNNs are sorted in descending order of average Dice across columns.

3.2 Competing methods and ablations

To the best of our knowledge, the only available thalamic segmentation tool
for T1/dMRI that can segment data of arbitrary resolution is the Freesurfer
Bayesian tool. We therefore compare our method with this algorithm, along with
seven ablations of model options: using only the Dice loss; three variations on the
way of merging the three candidate Bayesian segmentations into a training target
(average one-hot; majority voting; and selecting a segmentation at random); and
three ablations on the augmentation (omitting the “speckle” DTI voxels, the
random V1 rotations, and the piecewise linear deformation).

3.3 Results

Qualitative results are shown in Figure 2, which displays sample segmentations
for the three datasets. Our CNN successfully segments all scans at 0.7 mm
resolution, despite the different voxel sizes of the inputs. Quantitative results
are presented below for three experimental setups, one with each dataset.

Direct evaluation with manual ground truth using HCP: We first evalu-
ated all competing methods and ablations on the 10 manually labelled subjects.
Table 1 (left columns) shows mean Dice scores at different levels of granularity.
Thanks to the ground truth aggregation, domain randomisation and aggressive
augmentation, most of the CNNs produce higher accuracy than the Bayesian
method at every level of detail – despite having been trained on automated
segmentations from the Bayesian tool. The only ablation with noticeable lower
performance is the one using the Dice of only the fine histological labels (i.e., no
Dice of groupings), which highlights the importance of our composite Dice loss.
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Fig. 3. Comparison of Bayesian and CNN segmentation on ADNI. (a) ROC curves for
AD discrimination. (b) Axial view of RGB encoding of ADNI subject with Bayesian seg-
mentation overlaid. (c) Corresponding view of T1 scan. (d-e) Corresponding plane with
CNN segmentation. Red arrows point at oversegmentation by the Bayesian method.

Test-retest using LOCAL: Table 1 (right columns) shows Dice scores between
the segmentations of the two available sets of images for the LOCAL dataset, for
different levels of granularity. All the networks are more stable than the Bayesian
method, with considerably higher test-retest dice scores.

Best-performing CNN: Analysing the results from Table 1 as a whole, the CNN
with the highest mean Dice across the board is the one without local geometric
augmentation. We hypothesise that this is because the benefit of this augmenta-
tion is negligible due to the large number of training cases (600), and thus does
not compensate for the loss of performance due to the approximations that are
required to augment on the fly.

Group study using ADNI: We segmented the ADNI subjects with the best-
performing CNN, and computed volumes of the thalamic nuclei normalised by
the intracranial volume (estimated with FreeSurfer). We then computed receiver
operating characteristic (ROC ) curves for AD discrimination using a threshold
on: (i) the whole thalamic volume; and (ii) the likelihood ratio given by a linear
discriminant analysis (LDA, [16]) on the volumes of the 23 thalamic nuclei (left-
right averaged). The ROC curves are shown in Fig. 3(a). The area under the
curve (AUC ) and accuracy at the elbow are shown in Table 2. The LDA of the
nuclei volumes from both the CNN and Bayesian methods have similar discrim-
inative power. However, there is a sharp increase in the discriminative power
of thresholding the whole thalamus volumes from the CNN compared to the
Bayesian method. This indicates the external boundary of our method may be
more useful than that provided by the Bayesian method and often corresponds
to a reduction of oversegmentation into the pulvinar (Figures 3b-e).
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Method Whole thal AUC Whole thal acc. at elbow Nuclei AUC Nuclei acc. at elbow
Bayesian 53.3 57.8 81.9 74.4
CNN 67.1 70.0 78.3 75.6

Table 2. Area under the curve and accuracy at elbow for AD discrimination.

4 Discussion and conclusion

We have presented the first method that can segment the thalamic nuclei from
T1 and dMRI data obtained with virtually any acquisition, solving the problems
posed by PV effects to Bayesian segmentations. Using Bayesian segmentations
generated from multiple diffusion models while applying hybrid domain randomi-
sation and augmentation methods, we remarkably improve upon both the accu-
racy and reliability of our source segmentations. Nuclei volumes resulting from
the tool show similar discriminative power to those provided by the Bayesian
tool, while improving the utility of whole thalamus measurements and increas-
ing segmentation resolution. Crucially, our use of the FA and V1 representation
of dMRI data as input means that our tool is compatible with virtually every
dMRI dataset. Publicly sharing this ready-to-use tool will enable neuroimaging
studies of the thalamic nuclei without requiring any expertise in neuroanatomy
or machine learning, and without any specialised computational resources.
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