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ABSTRACT  

The domain of computational biomedicine is a new and burgeoning one. Its areas of concern 

cover all scales of human biology, physiology and pathology, commonly referred to as 

medicine, from the genomic to the whole human and beyond, including epidemiology and 

population health. Computational biomedicine aims to provide high fidelity descriptions and 

predictions of the behaviour of biomedical systems of both fundamental scientific and clinical 

importance. Digital twins and virtual humans aim to reproduce the extremely accurate 

duplicate of real-world human beings in cyber space, which can be used to make highly 

accurate predictions that take complicated conditions into account. When that can be done 

reliably enough for the predictions to be actionable, such an approach will make an impact in 

the pharmaceutical industry by reducing or even replacing the extremely laboratory intensive 

preclinical process of making and testing compounds in laboratories, and in clinical 

applications by assisting clinicians to make diagnostic and treatment decisions. 



1. Introduction 

Technologies originating with the digital revolution over the past twenty years have 

dramatically evolved multiple paradigms in the biomedicine and healthcare sectors. The use 

of computer models and simulation is now widespread to accelerate drug development in the 

pharmaceutical industry and to aid in diagnosis and treatment of diseases in clinical 

application. One of the major advantages of computational modelling is that it provides insight 

into the physical, chemical and biological bases of clinical interventions. These could be the 

underlying molecular interactions and mechanisms of drugs to their target biomolecules or a 

virtual three-dimensional view of the region of a patient’s anatomy on which surgeons may 

operate. Molecular level insights are often inaccessible experimentally while details of organs 

may not be visible without invasive procedures.  

As these computational models become more reliable, one would hope to use these methods 

to quantitatively predict the outcome of experiments or clinical operations prior to performing 

them. The computational methods may come to replace many experimental procedures. In 

this way, computational techniques should reduce time and cost in the industrial processes of 

drug discovery, which takes on average of more than 10 years and $2.6 billion to bring a new 

drug to market [1]. As far as clinicians are concerned, they can invoke clinical decision support 

systems (CDSS) to enhance decision-making in the clinical workflow. CDSS encompass a 

variety of tools, some based on knowledge, others on models and computation. While the use 

of knowledge management is still the main feature of CDSS, the components based on 

modelling and computation are starting to make an impact on decision making [2]. A recent 

study showed that a personalised CDSS may be created by constructing a computational 

pipeline at the molecular level with individual patients’ genomic data to select the optimal drugs 

for a given patient, based on the predicted ranking of the binding efficacy of the particular 

drugs to variant proteins [3]. 

Computational modelling can also convert images obtained from medical scans into highly 

realistic virtual 3D models which can be used for training and for rehearsing complex cases 



prior to surgery. Due to these potential benefits, computer-based techniques have been 

adopted as routine techniques by the scientific community, along with the pharmaceutical 

industry and the healthcare sector. 

The relentless enhancement in the performance of high-end computers, especially with 

advances in emerging embedded and many-core GPU accelerators of increasing diversity, is 

another key factor accounting for the increasing adoption of computer-based methods in 

science and industry in general, and in biomedicine in particular, over recent decades. In 1977, 

a “supercomputer” of that time—an IBM System/370 Model 168—was used for the first 

molecular dynamics simulation of a small protein [4] which had a top speed of a million (106) 

floating point operations per second (FLOPS), or a MegaFLOPS. In June 2022, the first 

machine to officially reach the exascale was announced, which achieved a peak performance 

of 1.102 exaFLOPS, or 1.102 quintillion (i.e. a billion billion or 1018) FLOPS. The machine is 

Frontier, built at Oak Ridge National Laboratory (ORNL) in Tennessee, USA. Just one second 

of job execution on the entirety of Frontier would have needed more than 31,000 years to 

complete for a “supercomputer” from 45 years ago.  

This increase in computing power enables us to perform complex calculations at very high 

speeds, with the simulation settings closer to real world situations. The first MD simulation of 

a protein mentioned above [4] simulated a small protein in vacuo for 9.2 picoseconds. Today 

it is routine to run simulations for systems consisting of tens to hundreds of thousands of atoms 

for tens of nanoseconds or longer. During the COVID-19 pandemic, computational modelling 

and simulation play an important role in the understanding of the SARS-CoV-2 virus and in 

the early drug development to find potential therapeutic compounds. One of the studies, which 

won the ACM Gordon Bell award in 2020, used Summit supercomputer to simulate the spike 

protein and viral envelope with a model consisting of 305 million atoms [5]. As one of the 

authors stated: “we are giving people never-before-seen, intimate views of this virus, with 

resolution that is impossible to achieve experimentally”. The molecular systems we study 

today are much more realistic as to their physiological conditions, with proteins being 



surrounded by water and ions, frequently including portions of cells membranes if required. 

The force fields used to describe the interactions between all the atoms in these simulations 

have also significantly improved, helping in some respects to make the simulations more 

accurate.  

It should be noted that, while we can run such spatially enormous structures, it does not mean 

we can run them for long enough to extract anything useful from them. In the particular case 

of spike protein and viral envelope simulation [5], a total of ~702 ns trajectories were collected. 

The biological processes such as receptor binding and membrane fusion, however, occur over 

much longer timescales, from microseconds to hours. The larger the simulation domain, the 

longer the timescale one must run over; owing to the serial nature of time evolution of almost 

all codes employed on supercomputers, this unfortunately often means that the processes of 

interest get further and further out of reach for the computers available. This is why we need 

to use multiscale methods, to bridge between time scales. During the COVID-19 pandemic, 

for example, multiple mathematical models were used to evaluate the virus spread, to control 

of infectious diseases, and to define an optimal strategy for vaccine administration [6]. 

The speed with which such simulations are executed is itself of critical concern as, if it can be 

done quickly enough, enables decision-makers to take appropriate actions in a restricted 

“time-critical” window of time. Pharmaceutical companies need to quickly weed out 

compounds that may have toxicity issues or poor pharmacokinetics in preclinical studies, the 

so-called “fail fast, fail early” strategy, before making expensive late-stage investments during 

clinical trials. It is hoped that such work can be accomplished in silico rather than actual 

experimental assays. In healthcare, a computerised CDSS need to deliver actionable 

recommendations to clinicians at the point of care, on time scales that are sufficiently rapid to 

be used in a decision-making context. The ability for clinicians to determine correct patient-

specific interventions quickly should improve the efficiency of healthcare, providing better 

patient outcomes while eliminating unnecessary costs.  

 



2. Methods and protocols 

Computational approaches have been widely used in biomedicine. Here we will summarise a 

few areas where the impacts are representative. 

2.1. Drug development 

A major step in drug discovery is to identify lead compounds which have high binding affinities 

with a protein target. This happens at the early preclinical stage. The binding affinity, also 

known as the free energy of binding, is the single most important initial indicator of drug 

potency, and the most challenging to predict. It can be determined experimentally by a number 

of methods, with various accuracies but is generally expensive, error prone and time 

consuming. Alternatively, one may seek to calculate the binding energy computationally. Here, 

methods drawn from computational chemistry offer a route forward; these are primarily based 

on in silico molecular dynamics (MD), for which several approaches to determining the free 

energy are possible. 

The most common approaches for free energy predictions are the endpoint and the 

alchemical approaches [7]. As the name indicates, the endpoint methods are based on 

simulations of the final physical states of a system, namely the bound and unbound 

states in the drug binding case. The most well-known endpoint methods are molecular 

mechanics Poisson–Boltzmann surface area (MM/PBSA) and molecular mechanics 

generalized Born surface area (MM/GBSA) [8]. The alchemical approach computer the 

free energy change by a “alchemical” path which is nonphysical. The process 

transforms, for example, one ligand into another, or a given amino acid residue into a 

mutated form, by morphing one chemical species of group directly into another. As the 

free energy is a state function, it does not matter which path, physical or nonphysical, 

is used to compute changes in it. MD simulations are performed using alchemical 

transformations to accelerate otherwise much more expensive and less reliable 

physical pathways to compute free energies. To further improve the precision and to 



generate reproducible predictions, ensemble-based approaches have been 

development, both for the endpoint and alchemical methods. The formal is called 

enhanced sampling of molecular dynamics with approximation of continuum solvent 

(ESMACS) [9], and the latter called thermodynamic integration with enhanced sampling 

(TIES) [10]. 

The use of endpoint and alchemical approaches is not mutually exclusive but indeed can be 

even more powerful when performed in tandem. The former is less accurate but also less 

computationally expensive than the latter, which is well suited for use in the initial hit-to-lead 

activities within drug discovery. The alchemical approaches, on the other hand, are most 

relevant to lead optimization following the identification of promising lead compounds. A 

combination of the two methods, along with machine learning approaches, in a workflow has 

been proposed to accelerate COVID-19 drug discovery on high performance computers [11]. 

While the currently ongoing COVID-19 pandemic has a negative impact in many areas, the 

computer-aided drug discovery market does experience a boost, in which the aforementioned 

approaches have been extensively applied, separately or jointly, to find novel drug candidates 

and to reposition existing drugs. An exciting global collaboration, called the COVID Moonshot, 

has come together for the discovery of new, urgent drug treatment for COVID-19 [12]. We 

ourselves are currently participating in a large-scale collaboration in which ML, docking, 

endpoint and alchemical approaches are applied interactively to find promising drug 

candidates from libraries consisting of billions of compounds. The most attractive drug 

candidates are subsequently being studied experimentally with some under consideration for 

inclusion in possible clinical trials. 

2.2. Personalised medicine 

In the post-genomic era, we are all very familiar with the notion that one-size-fits-all has limited 

validity in medicine. A drug that works well in one person might not be effective for another at 

all. While percentage of patients responding fall in the range of 50–75% for many drugs, it can 

be as low as 25% for cancer chemotherapy [13]. This is because the way that a particular 



medication works depends on how it interacts with other molecules in our bodies. A small 

variation, one amino acid mutation in one protein, for example, can determine a drug as an 

effective medication or a medication that doesn’t work. In the past decade, the field of oncology 

has witnessed substantial changes in the way patients with cancer are managed, with 

increasing focus on personalised medicine based on genomic variants of individual patients. 

Pharmacogenomics, a combination of pharmacology and genomics, provides invaluable 

information on how an individual’s genetic profile influences the response to medication. It 

enables personalised medicine which uses therapeutics to a subset of patients based on their 

specific genetic and molecular feature, who are expected to benefit. Two mutations in the 

kinase domain of epidermal growth factor receptor (EGFR), exon 19 deletions and L858R 

substitution in exon 21, have been commonly reported in patients with non-small cell lung 

carcinoma (NSCLC) tumours. The kinase inhibitor drugs Gefitinib and Erlotinib are effective 

in patients with these mutations, while inefficient for patients without. Even having these 

mutations, drug resistances can arise through other mutations such as the so-called 

gatekeeper mutation T790M. 

One main reason for the occurrence of drug resistance arises from the binding affinity changes 

caused by mutations in the primary sequence of amino acid residues within the protein target. 

We have shown in our own previous publications how the ensemble-based binding free energy 

methods can be used to assess functional and mechanistic impacts of mutations in the case 

of EGFR [14], FGFR1 (fibroblast growth factor receptor 1) [15] and ER (estrogen receptor) [3] 

variants. The provision of extensive genomic sequencing technologies and the rising number 

of large-scale tumour molecular profiling programs across institutions worldwide have 

revolutionized the field of precision oncology. The treatment of patients with breast cancer, for 

example, has shifted from the standard of care, in which all patients receive similar 

interventions (such as mastectomy, axillary dissection, radiotherapy and chemotherapy), to 

personalized medicine, where molecular characteristics of individual patients is used for 

prognostics, risk assessment and selection of medical interventions [16]. Realistically, 



however, we still have a long way to go to deliver patient specific treatments comprehensively 

across the healthcare system, whereas the stratification of the population into clusters/groups 

which have closer similarities might well help get finer grained differentiation so as to provide 

better treatments to these distinct groups. As a potential component in CDSS [2], the 

computation of binding free energies can be used to provide recommendations for more 

accurate and personalised treatment based on patients’ specific genomic variances. In the 

longer term, a related approach could be used to design new drugs which are resistant to such 

mutations (see subsection 2.1. Drug development). 

2.3. Medical diagnosis with machine learning 

While artificial intelligence (AI) is the broad science of computer algorithms designed to mimick 

human cognitive functions such as learning and problem-solving, machine learning is a 

specific subset of AI that uses datasets to train a computer to learn observable phenomena 

[17]. Machine learning is particularly powerful for image-based pattern recognition and has 

become integral to feature detection in biomedical imaging. This is frequently of considerable 

benefit in the initial stages of segmentation and reconstruction of complex three-dimensional 

geometries. Machine learning also has considerable promise in classifying categories of 

observed behaviour and as a less computationally demanding surrogate for inclusion within 

clinically based decision support systems. While the availability of diagnostic images is rapidly 

increasing, they are underutilized in many countries and regions due to the lack of trained 

diagnostic specialists. Machine learning therefore brings considerable promise to clinical 

practice with medical images. A survey of the diagnostic performance based on medical 

imaging shows that deep learning models perform on a par with healthcare professionals [18]. 

By adding causal reasoning into machine leaning, the prediction can achieve expert clinical 

accuracy, i.e. an accuracy placing in the top 25% of doctors in the cohort [19]. An AI 

technology, known as InnerEye, has been used in some NHS hospitals to automate lengthy 

radiotherapy preparations for image guided radiotherapy. The UK government has recently 



set a pioneering £100m NHS consortium to use a ground-breaking artificial intelligence (AI) 

tool to speed up the diagnosis of breast cancer. 

It should be noted, however, that the biggest drawback in AL/ML is its total lack of explanatory 

power. Medical decision-making can and will never be made on the basis that an AI system 

advised someone to take an action. Mechanistic understanding is essential. That is why, in a 

new book co-authored by one of us (PVC) and Roger Highfield [20], we talk about “Big AI” – 

meaning AI which pays attention to our scientific understanding and conforms with the laws of 

nature (e.g. of physics and chemistry) and understand the structural characteristics of the 

problems being studied. There is vast amount of biology and medicine for which mechanistic 

understanding is lacking (exacerbated by the perpetual pressure to “translate” any basic 

medical findings to the clinic as soon as possible) so there is plenty of room for improvement. 

AI methods are riddled with biases of many kinds which are often implicit and may easily be 

missed by those producing such solutions; and there are lots of open problems to face once 

similar data is integrated from different sources, even if nominally being from the same 

measurements. In short, there are often big but hidden uncertainties in these systems. 

To derive the greatest benefit from working with AI, especially in healthcare, it is best to think 

of them like very junior colleagues. They are good at handling data and can learn quickly, but 

are prone to making mistakes. The indispensable expert-in-the-loop in AI-based models 

allows clinicians and scientists to respond to output of the software, explaining what and why, 

while themselves making the key clinical decisions. These responses from clinicians can in 

turn become training data for the AI to learn from. 

2.4. Human digital twins 

As defined by the National Cancer Institute at Frederick, “A digital twin is a virtual model used 

to make predictions and run simulations without disrupting or harming the real-world object”. 

It originates in engineering around 20 years ago, and is only now being seriously applied to 

medicine and biology. Here we focus on biomedicine, where the definition of digital twins 



covers different scales, from the cellular, organ, whole human, to population levels. For the 

purpose of personalised medicine, the digital twin, also known by different names including 

digital patient, “avatar”, virtual human and so on, is built by integrating and processing vast 

amounts of data from individual patients to create the virtual human body. It is evolving model 

which keep integrating new data and predicting future statuses.  

The ultimate purpose of human digital twins is to use patient-specific modelling to provide 

support for actionable medical and clinical decisions. High-resolution models can be evaluated 

virtually for many possible kinds of medical interventions in order to find the best option for the 

patient. This includes the optimal drugs which benefit most for the patient with minimal side 

effects or the optimal clinical operation strategies. Although digital twinning is still at an early 

stage of development and adoption in the healthcare sector, the concept is already finding 

some actual as well as potential application areas including patient monitoring, disease 

prediction, personalised treatment, population health studies as well as in silico clinical and 

other kinds of health trials. Companies like ELEMBio (https://www.elem.bio/) spun out from 

Barcelona Supercomputing Center (BSC) are offering such services already; the Virtual 

Humans predictive modelling platform from ELEMBio allows biotech companies to run 

supercomputer-based in silico trials to assess the cardiac safety ranges of drugs. 

A prime example of the use of digital twins in medicine is the virtual human heart (Fig. 1), 

which is the culmination of research that stretches back more than half a century to 

experiments in the 1950s on the conveniently-large nerves from a squid. Today, remarkable 

progress has been made in creating realistic human digital heart. Here we provide but a few 

examples. Blanca Rodriguez’s team in Oxford makes human virtual heart predictions which 

are more accurate than comparable animal studies [21], offering a way to reduce vivisection. 

Our colleagues in the Barcelona Supercomputer Center have developed the Alya Red heart 

model [22], which typically takes 10 hours to simulate ten heart beats. Working with the 

company Medtronic, their simulations can help position a pacemaker, fine tune its electrical 

stimulus and model the effects of an innovative design called the micra [23]. It assesses the 



drug dosage and potential interactions between antimalarial drugs to provide guidance for 

their use in the clinic. Personalised virtual heart models, based on patient data, have been 

created by a team led by Reza Razavi at King’s College London to predict tachycardia [24], 

while in Johns Hopkins University, a team led by Natalia Trayanova is creating digital replicas 

of the heart’s upper chambers to guide the treatment of irregular heartbeats by the carefully 

targeted destruction of tissue [25]. In France, Dassault Systèmes has created a cohort of 

“virtual patients” to help test a synthetic artificial heart valve for regulators, working with the 

US Food and Drug Administration [26]. This represents another important milestone for Virtual 

You because, until recently, regulatory agencies have relied on experimental evidence alone. 

 
Fig. 1 Digital twin models for the cardiovasculature, which have paved the way for the dawn 
of precision cardiology. (a) “Digital Blood” and flow-diverting stents within Palabos (University 
of Amsterdam, Universite´ de Gene` ve, ATOS); (b) Alya Red virtual heart (Barcelona 
Supercomputing Center, University of Oxford); (c) OpenBF for vascular networks (University 
of Sheffield, SURFsara); (d) AngioSupport for coronary artery disease (LifeTec Group, 
SURFsara); (e) HemeLB model of blood flow in arteries (University College London); and (f) 
HemeLBAlya coupling for cardiovascular flow in virtual human scale geometries (University 
College London, Barcelona Supercomputing Center). 

 

There are other real and potential clinical applications of digital twins. CT2S is a digital twin 

workflow that allows prediction of the risk of hip fracture for an individual based on CT scans 

[27]. The clinical application of this code is to provide a more accurate intervention strategy 



for elderly people with weaker bones, such as those who are clinically defined as osteopenic 

but not receiving any treatments. The workflow provides a complete assessment of bone 

strength in 3D and analyse the risk factor of that particular individual in sustaining a fall in 

future. One of us (PVC) has worked with an international team to create a digital twin of a 

60,000-mile-long network of vessels, arteries, veins and capillaries using billions of data points 

from digitized high-resolution cross-sections of a frozen cadaver of a 26-year-old Korean 

woman, Yoon-sun. By taking over a German supercomputer, SuperMUC-NG for several days, 

they could show in a realistic way how virtual blood flowed for around 100 seconds through a 

virtual copy of Yoon-sun’s blood vessels down to a fraction of a millimetre across. The team 

is now charting variations in blood pressure throughout her body and simulating the movement 

of blood clots. Meanwhile, remarkable progress has been made in creating simple virtual cells 

[28] by Markus Covert at Stanford University, while at the Auckland Bioengineering Institute 

Peter Hunter and colleagues are working on an array of organs. Even the most complex known 

object, the human brain, is being simulated, for instance to plan epilepsy surgery in a French 

clinical trial. At last, the virtual human is swimming into view. 

And there is the remarkable story of how modelling and simulation of the spread of the COVID-

19 pandemic was common currency in the UK’s national newspapers and media for the best 

part of two years, being the only means we had available on which to take rational decisions 

about the kinds of NPI (non-pharmaceutical interventions) government could apply to reduce 

the spread of covid and the resulting deaths of tens of thousands of citizens. Our own work 

[29] has revealed the substantial level of uncertainty in one of the most influential models used 

in Britain (CovidSim). 

Quantitative methods and modelling, such as physiologically-based pharmacokinetic (PBPK) 

modelling, have been involved in the regulatory authorities, which is already well advanced — 

particular in the FDA. A recent example is the FDA approval of a generic diclofenac sodium 

topical gel, based on a totality of evidence including a virtual bioequivalence assessment 

instead of a comparative clinical endpoint bioequivalence study. What matters most here is 



how one can define in silico protocols that pass muster. Already it is well established that one 

must conform with specified verification, validation and uncertainty quantification (VVUQ) 

procedures. V&V has long been required e.g. by the American Institute of Mechanical 

Engineers, for the design of safety critical devices which engender the safety of human beings. 

To be used for regulatory decision-making, the models and simulations need to be sufficiently 

verified and validated (V&V) for their intended purpose. 

Summary and perspective 

Computational medicine will lead to not only better understanding of mechanisms for disease 

development and drug treatment but greatly improved healthcare. It should also contribute 

substantially to reduce the cost of healthcare. It can also accelerate drug development and 

reduce costs in pharmaceutical industry. Since around 2020, R&D across the pharmaceutical 

industry has no longer been a profitable activity. The success rate over all drug discovery 

projects in the industry is no more than about 4% of all those initiated. Computational medicine 

has potential to change the way drugs are developed in both speeding up the discovery 

process and reducing the costs, and thus to stimulate drug discovery efforts. Clinically 

implementing computational models, simulations and digital twins will make medicine truly 

personalised and predictive. 

We still have a long way to go towards developing an AI that comes close to the one between 

our ears but a good way to start is to place less blind faith in pure data and to give machines 

more scientific understanding of the world they inhabit. AI, in this ‘smarter’ incarnation that we 

call ‘Big AI’, features in a new book we have written, Virtual You, the first general account of 

how to make medicine truly predictive and personal by the use of digital twins - computer 

models that behave just like an individual person’s body. AI will play a role in this venture, 

since it has come a long way in the past decade. But we should never forget that we have 

seen several false dawns during its rise over the past half century (aficionados talk of ‘AI 

winters’). Today we are enjoying an AI summer, where machines excel over humans in very 

narrow domains, from playing Go to figuring out the structure of proteins in the body.  



But, amid all the hype, we should remember that computers have always been our superior in 

a narrow way: even the very first such devices could multiply and divide numbers with an ease 

beyond the ability of most people. Indeed, the current generation of AI is only as good as the 

data it has been trained on. Give it biased data, and you get biased answers because it makes 

statistical inferences, glorified curve fitting of these data.  

There is also a risk of what is called overfitting – you can think of it as over-learning so while 

AI can be so in thrall to what it was trained on it can’t reliably make sense – or generalise – its 

predictions to new data and circumstances, such as a new patient it has never encountered 

before. Even when AI works, after expending a lot of energy and compute power, we have 

little idea how it works: a machine learning algorithm trained to distinguish a chihuahua from 

a muffin would have no idea what either is.  

We need Big AI because, when our virtual twin gives insights into the right drug, lifestyle or 

diet, we need to understand how it came to its conclusions. In Virtual You [20], we discuss 

various examples of a new generation of ‘Big AI’, where the brute force of machine learning is 

augmented with physics based models, mathematical theories which describe how the world 

actually works. Big AI will play its role in the virtual human and also marks another step towards 

general artificial intelligence, when an AI agent is finally able to match us in any intellectual 

task. 
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