INTRODUCTION

Regulatory B (Breg) cells play an important role in suppressing pathological immune responses, primarily through the production of the immunoregulatory cytokine interleukin (IL)-10. In humans, IL-10-producing B cells are enriched within the transitional B-cell population (CD19+CD24hiCD38hi) in peripheral blood (PB). Breg IL-10 production can be induced through B-cell activation via toll-like receptor and B-cell receptor ligation, or indirectly through T-cell-mediated activation via CD40:CD40 ligand (CD40L) interactions. Loss of Breg-mediated suppression, either through numerical deficiency or loss of function, has been implicated in the pathogenesis of several autoimmune and inflammation-mediated diseases. Immune thrombocytopenia (ITP) is an autoimmune blood disorder characterised by a low platelet count (<100 × 10^9/L) and bleeding risk. Dysregulated autoreactive T and B cells mediate an autoimmune attack against platelets and megakaryocytes resulting in the increased consumption and reduced production of platelets. Reduced numbers of circulating Bregs have been reported in patients with chronic ITP. However, it remains unclear whether this change is a cause or effect of ITP, or a consequence of treatment. Glucocorticoids are the recommended first-line treatment for adults with ITP, but the effect of these on Bregs is not...
well understood with literature currently limited to heterogeneous groups of patients with chronic ITP.\(^2\)

We aimed to assess circulating Breg numbers in patients with ITP and to evaluate how these are influenced by disease activity, chronicity and treatment. We also aimed to assess the effect of glucocorticoids on B-cell IL-10 production and to understand the mechanism of action of this effect.

METHODS

Blood samples from 75 newly diagnosed ITP patients recruited to the FLIGHT trial (ClinicalTrials.gov number: NCT03156452) were taken at baseline (when randomised; 47 men, 28 women; median age 60 years, range 17–87 years) and at 2 months follow-up (n = 61; 35 men, 26 women; median age 60, range 18–87 years). Full methods for FLIGHT have been previously published\(^6\)—in brief, patients were randomised using GraphPad Prism software. Mann–Whitney U-tests were performed between groups with a differential analysis for paired data. A value of \(p < 0.05\) was considered significant.

B-cell activation

PB was collected from HC into EDTA-coated vacutainers, and PBMCs were isolated using a density gradient. CD19\(^+\) B cells and CD4\(^+\) T cells were isolated from PBMCs by fluorescence-activated cell sorting and cultured at 1:1 ratio in the presence of anti-CD3 (1 \(\mu g/mL\)) or CpG (3 \(\mu g/mL\)) and anti-IgM (10 \(\mu g/mL\)), with or without dexamethasone (Dex) (1 \(\times 10^{-6}\) M). After 72 h of culture, protein transport was inhibited with GolgiStop (2 \(\mu g/mL\)) for 4 h and cell surface stained with Breg phenotyping panels. Intracellular cytokine staining was performed to examine IL-10 production.

Statistical analysis

Data analysis was performed using FlowJo software (TreeStar Software). Live singlets were gated, and the percentage of cytokine positive cells determined using fluorescence minus one controls (Figure 1A). Statistical analysis was carried out using GraphPad Prism software. Mann–Whitney U-tests were performed between groups with a differential analysis for paired data. A value of \(p < 0.05\) was considered significant.

RESULTS

To investigate the effect of immunosuppressive treatments on Breg proportions (%Bregs), we analysed samples from newly diagnosed ITP patients recruited to the FLIGHT clinical trial. For this newly diagnosed cohort, there was no statistically significant difference in the number of B regs in treatment naïve patients and HCs. Compared to baseline bloods, at 2 months follow-up marked reductions in %Breg were observed following a course of glucocorticoid treatment, either alone or in combination with mycophenolate mofetil (Figures 1B and S1A).

To further investigate the effects of immunosuppression, we also analysed samples from a smaller cohort of chronic patients with ITP. Chronic patients who were not receiving treatment showed no significant decrease in %Bregs compared to HC, whereas %Bregs were lower in patients receiving glucocorticoid or mycophenolate mofetil monotherapy. In contrast, the %Bregs in chronic ITP patients who received TPO-RAs (without glucocorticoid or mycophenolate mofetil) were similar to treatment naïve ITP patients (Figure 1C). All patients for whom repeat samples were available demonstrated reduced %Bregs after glucocorticoid treatment (Figure S1B).
To investigate the effect of glucocorticoid treatment on Breg function, we cultured blood samples from HC ($n = 10$) in vitro with Dex, a relatively pure glucocorticoid. We found that Dex significantly inhibited IL-10 production by CD19$^+$ B cells activated indirectly through anti-CD3-mediated CD4$^+$ T-cell activation. However, Dex had no effect on the
DISCUSSION

Previous studies reported reduced Breg numbers in patients with chronic ITP. Our results suggest that this reduction is predominantly driven by immunosuppressive treatment rather than ITP itself, regardless of disease duration. This replicates findings in myasthenia gravis and neuromyelitis optica patients, where Bregs are depleted in patients receiving glucocorticoid treatment. The underlying mechanism behind this depletion is not yet understood and studies have postulated that Dex might induce B-cell apoptosis or a change in the balance of B-cell populations. However, we did not observe any evidence to support these hypotheses when analysing our cohorts. In addition, our in vitro studies in HCs suggest that glucocorticoids impair Breg function via CD40L-mediated T-cell-dependent mechanisms, resulting in a failure to stimulate Breg IL-10 production in vivo which is consistent with the previous finding that glucocorticoids inhibit CD40 ligand expression of peripheral CD4+ lymphocytes.

Our study is the first to examine PB Breg numbers before and after 2 months treatment in a newly diagnosed, treatment naïve cohort of ITP patients recruited to the FLIGHT clinical trial. Two months follow-up is considered sufficient to assess the effect of immunosuppressive treatment on circulating Breg numbers. No further blood samples were taken from these patients although they were clinically followed in the trial up for a median of 18 months and up to 24 months. We found a reduction in circulating Breg numbers in newly diagnosed patients treated with immunosuppressive agents. The consistent observation in the smaller chronic ITP cohort is additional supporting evidence of treatment effect on circulating B regulatory cell numbers. This reduction was not seen in treatment naïve newly diagnosed patients, or those with chronic ITP on non-immunomodulatory TPO-RAs or not receiving treatment. These findings highlight the need to consider the influence of previous or current treatments when describing immunological changes in patients with ITP.

Our study is limited by its small sample size for some subgroups, observational nature and our cohorts were neither age nor sex matched even though we did not observe any association between regulatory cell numbers and either age or sex. Furthermore, it is important to note that all changes described in this study were observed in PB only. It is therefore feasible that Breg numbers in the spleen, lymph nodes or other tissues may differ.

In conclusion, we demonstrate that in newly diagnosed ITP patients, immunosuppression either with systemic glucocorticoid or mycophenolate mofetil, is associated with reduced Breg numbers. This reduction is evident by 2 months. A similar association with immunosuppression and reduced Breg numbers was found in a smaller chronic ITP cohort. We also present preliminary data suggesting glucocorticoids affect Breg function, with reduced IL-10 production mediated indirectly via the effects of glucocorticoids on T cells. These data highlight the need for research to disentangle immune changes associated with treatment from those that drive or are a consequence of the underlying disease. It is currently unclear whether the reduction in Breg numbers and function associated with glucocorticoid treatment is of any adverse consequence. Similarly, it is unknown whether restoration of Breg numbers with TPO-RAs may contribute to the sustained responses off treatment observed in up to a third of patients.

AUTHOR CONTRIBUTIONS
Charlotte A. Bradbury was the lead clinical investigator and CI for the FLIGHT trial. Richard W. J. Lee jointly led the laboratory studies with Charlotte A. Bradbury. Madeleine L. Stimpson conducted the laboratory work and initial analysis of the data. Philippa J. P. Lait, Emily L. Williams and Lauren P. Schewitz-Bowers contributed to sample analysis and Julia Wolf contributed to data analysis. Julia Wolf, Madeleine L. Stimpson and Bruno Charbit wrote the manuscript, which was reviewed and amended by all authors. All authors have made valuable contributions to the research design, delivery and provided feedback on the manuscript.

FUNDING INFORMATION
This project is partly funded by the National Institute for Health Research (NIHR) under its Research for Patient Benefit (RfPB) Programme (Grant Reference Number PB-PG-0815-20016 – CAB) and Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology (ELW, PJPL, LPS-B and RWJL). The views expressed are those of the author(s) and not necessarily those of the NIHR or the Department of Health and Social Care. In addition, project-specific funding was received through a grant from the British Medical Association.

CONFLICT OF INTEREST STATEMENT
RWJL and LPS-B are inventors of an IL-17-based method to identify patients likely to be resistant to glucocorticoid treatment (US Patent App. 15/106,411). The other authors have no conflict to declare.

DATA AVAILABILITY STATEMENT
De-identified data may be available to researchers subject to investigator and sponsor approval of a proposal.

ETHICS STATEMENT
Ethical approval was granted for the Flight Trial (ClinicalTrials.gov number NCT03156452, EudraCT number 2017-001171-23; REC Ref: 17/SW/0127), the ‘low platelet study’ (REC ref: 15/LO/2088) and for the healthy control cohort (UK NHS Research Ethic Committee reference: 04/Q2002/84).

PATIENT CONSENT STATEMENT
All patients and healthy volunteers provided written informed consent.
CLINICAL TRIAL REGISTRATION (INCLUDING TRIAL NUMBER)
Flight Trial: ClinicalTrials.gov number NCT03156452, EudraCT number 2017-001171-23. Low platelet blood study: ISRCTN95606674.

ORCID
Madeleine L. Stimpson https://orcid.org/0000-0003-0256-1701
Julia Wolf https://orcid.org/0000-0003-0478-508X
Bruno Charbit https://orcid.org/0000-0002-5478-482X
Emily L. Williams https://orcid.org/0000-0003-3506-9668
Charlotte A. Bradbury https://orcid.org/0000-0001-5248-8165

REFERENCES

SUPPORTING INFORMATION
Additional supporting information can be found online in the Supporting Information section at the end of this article.