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A B S T R A C T

Any clinically-deployed image-processing pipeline must be robust to the full range of inputs it may be presented
with. One popular approach to this challenge is to develop predictive models that can provide a measure of
their uncertainty. Another approach is to use generative modelling to quantify the likelihood of inputs. Inputs
with a low enough likelihood are deemed to be out-of-distribution and are not presented to the downstream
predictive model. In this work, we evaluate several approaches to segmentation with uncertainty for the task of
segmenting bleeds in 3D CT of the head. We show that these models can fail catastrophically when operating
in the far out-of-distribution domain, often providing predictions that are both highly confident and wrong.
We propose to instead perform out-of-distribution detection using the Latent Transformer Model: a VQ-GAN is
used to provide a highly compressed latent representation of the input volume, and a transformer is then used
to estimate the likelihood of this compressed representation of the input. We demonstrate this approach can
identify images that are both far- and near- out-of-distribution, as well as provide spatial maps that highlight
the regions considered to be out-of-distribution. Furthermore, we find a strong relationship between an image’s
likelihood and the quality of a model’s segmentation on it, demonstrating that this approach is viable for
filtering out unsuitable images.
1. Introduction

An important aim of medical image analysis is to develop algorithms
that can be deployed in clinical settings. These tools must be robust
to the full range of potential inputs they might receive in a clinical
context. There is increasing interest in the clinical deployment of
deep learning algorithms, which require training on a dataset before
deployment. We can expect clinical data to be much more diverse
than the typically clean, sanitised datasets on which these algorithms
are trained. Even if attempts are made to train on messier datasets
with images exhibiting artefacts and other issues, we would expect
that eventually the tool will be presented with data it has not seen
during training. We can classify inputs as either near out-of-distribution
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(OOD), meaning images similar to the intended input but containing
artefacts or corruptions, or far-OOD, such as images of the wrong
modality of containing the wrong organ of interest. Deep learning al-
gorithms perform well when operating in-distribution but can degrade
unpredictably and substantially when operating on OOD data (Pooch
et al., 2019; Stacke et al., 2019).

One approach to this problem is to incorporate measures of uncer-
tainty into the task-specific model itself – such as a classification or
segmentation network – enabling decisions to be referred to humans
when they are presented with difficult or OOD data samples (Yang
et al., 2021). The simplest approach uses the softmaxed probability of
the predicted class as a measure of confidence (Hendrycks and Gimpel,
2016) or the size of the pre-softmax logits (Hendrycks et al., 2019).
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Bayesian Neural Networks (BNN), which learn a distribution of weights,
are another alternative; one popular approach is to approximate a
BNN using dropout-based variational inference (Gal and Ghahramani,
2016). Another common approach is to employ an ensemble of neural
networks and use their degree of agreement as a measure of their
certainty (Lakshminarayanan et al., 2017). It has been shown that in-
corporating example outliers during training can improve performance,
but such methods have the significant downside of making assumptions
on the form outliers will take (Hendrycks et al., 2018; Roy et al., 2022).
A comprehensive evaluation of uncertainty methods for classification
found that the quality of uncertainty measures degraded as the size of
the distributional shift increased (Ovadia et al., 2019). Some work has
evaluated these methods in the context of image segmentation but is
typically confined to evaluating the utility of the uncertainty methods
in-distribution (Jungo et al., 2018; Nair et al., 2020); work that does
evaluate the uncertainty in an OOD setting typically investigates only
small dataset shifts such as increased noise (Haas and Rabus, 2021) or
lower quality scans (McClure et al., 2019).

A second approach is to filter out anomalous data before it is fed
to the task-specific network, termed OOD detection. The most popular
approach to OOD detection involves using a generative model that
can quantify the probability that a data sample is drawn from the
distribution on which the task-specific model was trained. These ap-
proaches are attractive for several reasons. They are fully unsupervised,
requiring no additional labels or examples of OOD data. They are also
decoupled from the downstream task, which allows them to be used as
reusable blocks in complex pipelines that may run a number of different
algorithms on the same data, potentially with different thresholds
based on how sensitive each downstream task is to OOD data. Of
the generative approaches, transformer-based architectures (Vaswani
et al., 2017) are attractive for two reasons. Firstly, they allow for
the computation of exact likelihoods, and secondly, they are proving
highly effective general-purpose architectures, achieving state-of-the-
art performance across a range of tasks in language (Devlin et al.,
2018; Brown et al., 2020) and, increasingly, vision (Dosovitskiy et al.,
2020; Zhai et al., 2022). The attention mechanism (Vaswani et al.,
2017) has quadratic memory scaling with sequence length, making it
computationally infeasible to use transformers to model the sequence of
raw pixel values in high-dimensional medical images. A recent body of
work has instead used transformers to model the compressed discrete
latent space (Esser et al., 2021) of an image obtained from a vector-
quantising model such as a VQ-VAE or VQ-GAN (Oord et al., 2017;
Razavi et al., 2019). In this work, we term these Latent Transformer
Models (LTM) in analogy to Latent Diffusion Models (LDM) that use a
similar latent backbone to train diffusion models (Rombach et al., 2022;
Sohl-Dickstein et al., 2015; Ho et al., 2020). LTMs have achieved state-
of-the-art unsupervised pathology segmentation for 2D and 3D medical
images (Pinaya et al., 2021, 2022) and can produce high-quality 3D
generative images of the brain (Tudosiu et al., 2020, 2022). These
results suggest that LTMs might be applied to fully 3D OOD detection
but, to our knowledge, no published work is attempting this.

We make three principal contributions in this work, focusing on
the problem of segmentation of haemorrhagic lesions in head CT data.
Firstly, we design a dataset containing both near- and far-OOD exam-
ples, allowing OOD detection methods to be comprehensively evalu-
ated. Secondly, we use this dataset to examine combined task-and-
uncertainty networks, evaluating segmentation uncertainty methods
and demonstrating they can catastrophically fail, producing confidently
wrong predictions. Finally, we apply LTMs to perform image-wide OOD
detection on 3D images. We find LTMs can effectively flag OOD data
that segmentation networks fail to perform well on, in both the near-
and far-OOD scenarios, demonstrating their viability as a filter in clin-
ical settings where robust and fully-automated segmentation pipelines
are needed. This work extends the methodical and experimental details
2

in Graham et al. (2021). p
2. Methods

In this work, we focus on the challenge of segmenting Intracere-
bral Haemorrhages (ICH) in 3D head CT data. The following sections
detail the development of OOD detections for model evaluation, the
trained segmentation networks, and the approach to training the LTMs.
Code for our method is available at https://github.com/marksgraham/
transformer-ood.

2.1. Datasets

We use three datasets in this work; two head CT datasets (one
used for training and an independent one for model evaluation), and a
non-head CT dataset.

The CROMIS CT dataset contains 687 head CT scans, and was used
for training all the models in this paper. All the CTs contain ICH and
were acquired across multiple sites in the United Kingdom as part
of a clinical trial (Werring, 2017; Wilson et al., 2018). Haemorrhage
segmentation masks were drawn on 221 scans by an experienced
researcher (PT).

The KCH CT dataset was used for algorithm validation. It consists of
7 clinical scans selected for the presence of ICH, all with ground-truth
asks provided by an experienced neuroradiologist (JMU). This dataset
as used to represent in-distribution test data, and it was further used

o produce a set of corrupted scans to test our algorithms in the near-
OD setting. We applied a range of distortions and corruptions to each
olume, designed to emulate a number of scenarios such as imaging
rtefact, image header errors, and errors in a preprocessing pipeline
hat may be run on volumes before data is input into a network. The
orruptions included: addition of zero-mean Gaussian noise with three
ifference variances, 𝜎 ∈ {0.01, 0.1, 0.2}, inversion through each of the

three central imaging planes (coronal, sagittal, and axial), removal of
the skull using the method described in Muschelli et al. (2015), setting
the image background to values not equal to 0, global multiplication
of all image intensities by a fixed factor (either 0.1 or 0.01), and the
deletion of a set of adjacent slices (or chunks) of the image (either in the
central or upper portion of the scan). When the images were inverted,
the same transformation was applied to the haemorrhage masks to
ensure they remained aligned with the image. In total, 15 corruptions
were applied to each image, creating a corrupted dataset of 705 images.
Examples of the corruptions are shown in Fig. 1.

The Medical Decathlon dataset was used to test our algorithms in
he far-OOD setting. The dataset consists of 3D medical images covering

variety of organs and imaging modalities, none of which are head
T. We selected 22 images (or as many available, if less than 22) from
he test sets of each of the ten classes. A more detailed description of
his dataset can be found in Simpson et al. (2019) and Antonelli et al.
2022). Examples of Medical Decathlon images are shown in Fig. 2.

Data processing was harmonised between all datasets as much as
ossible. All CT head images were registered to MNI space using an
ffine transformation, resampled to 1mm isotropic, tightly cropped to
176 × 208 × 176 grid, intensities clamped between [−15, 100] and

hen rescaled to lie in the range [0, 1]. For the images in the Decathlon
ataset, all were resampled to be 1mm isotropic and either cropped or
ero-padded depending on size to produce a 176 × 208 × 176 grid. All
T images had their intensities clamped between [−15, 100] and then
escaled to lie in the range [0, 1], and all non-CT images were rescaled
ased on their minimum and maximum values to lie in the range [0, 1].

.2. Uncertainty-aware segmentation networks

In order to test methods that both perform a task and are able to flag
OD data, we implemented and tested three segmentation uncertainty
ethods commonly employed in the literature. The first was intended

s a simple baseline and uses the softmax of the network’s output as a

er-pixel probability map, and can be seen as the segmentation-based

https://github.com/marksgraham/transformer-ood
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Fig. 1. Example of all the corruptions applied to one subject from the KCH head CT
dataset. All images are shown with the same intensity range. Corruptions are: Noise:
Adding Gaussian noise ∼  (0, 𝜎2), BG value: replacing background value of 0 with a
new constant value, Flip: invert image through described plane; Chunk: set a number
of parallel slices = 0, Skull strip: remove skull, Scaling: reduce global image intensity
by multiplying by a fixed factor.

variant of the classification method described in Hendrycks and Gimpel
(2016). The second method was an ensemble of 𝑁 neural networks,
identical in architecture, but each trained on a different subset of
the data (Lakshminarayanan et al., 2017). We chose 𝑁 = 5 based on
recommendations from (Ovadia et al., 2019). The third method was an
approximation of a BNN obtained through dropout-based variational
inference, training each dropout layer with a dropout probability of
𝑝 = 0.5 and using 5 passes during inference to approximate the
posterior (Gal and Ghahramani, 2016).

All networks used the same 3D UNet backbone (Ronneberger et al.,
2015; Falk et al., 2019) as implemented in MONAI1 (Cardoso et al.,
2022) as the ‘BasicUnet’ class, with (32, 32, 64, 128, 256) features

1 https://monai.io/.
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Fig. 2. Example of images from the ten classes in the Medical Decathlon dataset, used
as far-OOD data.

in the 5 encoding layers, LeakyReLU activations and instance nor-
malisation. Each network was trained using a batch size of 3 on
128 × 128 × 128 patches sampled from the volumes and augmented
with both affine and elastic transformations. The Dice loss was used
except for the baseline network, which was trained using cross-entropy
loss as Dice is known to provide poorly calibrated, overly-confident
predictions (Mehrtash et al., 2020). All networks were optimised using
AMSGrad (Reddi et al., 2019) with a learning rate set to 1𝑒−3, for a
maximum of 300 epochs with early stopping if the validation loss did
not improve for 60 epochs.

For each network, we sought to assign a single uncertainty value
to each predicted lesion, defined as a single connected component.
Firstly, we produced a per-voxel uncertainty map for each method. For
the baseline method, this was the per-voxel softmax of the network
output. For the remaining networks, we used the entropy between the
𝑁 predictions at each voxel,

(

1 −
∑𝑁

𝑖 𝑝𝑖 ln 𝑝𝑖
)

as described in Nair et al.
(2020), where we subtracted the entropy from 1 so that larger values
reflect higher certainty. We produce per-lesion certainty by taking

https://monai.io/
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Fig. 3. Overview of the LTM used for OOD detection. The VQ-GAN encodes the image and then quantises the encoding, according to a codebook of fixed size, to produce a
discrete representation. This 3D representation is unwrapped to produce a 1D sequence, and a transformer is used to learn the distribution of these 1D sequences. Full details of
the architecture are described in Section 2.3.
the average of the per-voxel measures across each lesion, where each
separate lesion is taken as each fully connected component from the
majority vote prediction of each network.

2.3. Latent transformer models

The LTM uses a VQ-GAN to compress the information content of
each 3D volume into a discrete latent representation and a transformer
to learn the probability density of these representations. An overview
of the method is shown in Fig. 3.

The VQ-GAN (Esser et al., 2021) consists of an encoder 𝐸 which
takes input 𝑥 ∈ R𝐻×𝑊 ×𝐷 and produces a latent representation 𝑧 ∈
Rℎ×𝑤×𝑑×𝑛 where 𝑛 is the dimension of the latent embedding vector.
The representation is quantised by finding its nearest neighbour, as
measured by an 𝐿2 norm, in a ‘codebook’ containing 𝐾 𝑛-dimensional
vectors. The representation is replaced with its nearest neighbour’s
codebook index, 𝑘. A decoder 𝐷 uses the quantised latent space to
reconstruct the input, 𝑥̂ ∈ R𝐻×𝑊 ×𝐷. A discriminator 𝐺 is used to
differentiate between real and reconstructed images, encouraging the
network to produce realistic reconstructions. Our implementation’s
encoder contains four levels, each consisting of a convolution with
stride = 2 and a residual layer, each followed by ReLU activations.
This produces a latent space 24 = 16× smaller along each dimension,
so an input with size 176 × 208 × 176 is compressed to a latent size
of 11 × 13 × 11 = 1573 elements. The codebook has 𝐾 = 256 elements,
each with dimension 𝑛 = 256. The decoder also contained four levels,
each consisting of a residual layer followed by a transposed convolution
with stride = 2. The codebook was updated using the exponential
moving average as described in Oord et al. (2017). The VQ-GAN paper
combined the mean-squared error and a perceptual metric (Zhang
et al., 2018) for the reconstruction loss — we used both these and
an additional 𝐿2 loss on the image’s Fourier representation (Dhariwal
et al., 2020), as recommended in Tudosiu et al. (2020). Given state-
of-the-art anomaly detection results have been reported in 2D using a
simpler VQ-VAE with MSE loss (Pinaya et al., 2021), we also performed
an ablation study to understand how the additional components of the
VQ-GAN contributed to performance. Models were trained using the
Adam optimiser (Kingma and Ba, 2014) with a learning rate = 1.65𝑒−4
and a batch size of 96 on an Nvidia DGX A100.

After training the VQ-GAN, we estimate the probability density of
the training data’s latent space using a transformer. Each 3D discrete
4

representation obtained from the trained VQ-GAN is flattened into a 1D
sequence. The data-likelihood is represented as the product of condi-
tional probabilities, 𝑝(𝑠) =

∏𝑛
𝑖 𝑝(𝑠𝑖|𝐬<𝑖), with the transformer learning

the distribution of 𝑝(𝑠𝑖|𝐬<𝑖) by being trained to maximise the log-
likelihood of the training data, where we use 𝑠 rather than 𝑥 to make
clear we are computing the likelihood of the latent space sequence. In
addition to estimating the likelihood 𝑝(𝑠), we produced spatial likeli-
hood maps by reshaping each 𝑝(𝑠𝑖|𝐬<𝑖) from the 1D sequence back into
the 3D shape of the latent representation and upsampling using nearest-
neighbours (by a factor of 16 along each of the three image dimensions)
to produce a spatial likelihood map of the same dimension as the input
image. The transformer’s attention mechanism has a quadratic memory
dependence on sequence length that makes it difficult to train on large
sequences, even after significant compression with a VQ-GAN, so we
made use of the more efficient Performer architecture (Choromanski
et al., 2020), which uses a linearised approximation of the attention
matrices to allow for training on longer sequences. We used a 22-
layer Performer with 8 attention heads and a latent representation of
size 256. The model was trained using the cross-entropy loss using a
learning rate of 5𝑒−4 and a batch size of 240 on an Nvidia DGX A100.

Both models were trained on the full CROMIS dataset. It should
be noted that this dataset contains pathological images containing
haemorrhages; the definition of in-distribution here is scans that are
similar to the segmentation network’s training set, not scans that do
not contain pathology, and the aim is to estimate whether a new input
is similar enough to the segmentation network’s training set that the
segmentation network will be able to perform suitably on it. This is
distinct from anomaly segmentation works (Pinaya et al., 2021) where
in-distribution is typically used to refer to data free of pathology.

3. Results

3.1. Segmentation uncertainty

First, we examine the performance of segmentation algorithms in
the far-OOD case, where images are of a different organ and/or modal-
ity than the intended target for segmentation. Any detection in this
scenario is a false-positive (FP), and an ideal algorithm would either not
predict the presence of lesions or would predict lesions with very low
confidence. We calculated per-lesion confidence scores for each detec-
tion and compared them to the per-lesion scores of every true-positive
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Fig. 4. The distribution of per-lesion confidence scores for far-OOD non-head CT data and all true positive detections in the head CT dataset. Lines also show confidence thresholds
for operating in three regimes: high-sensitivity (>90%), high-specificity (>90%) and balanced, with thresholds determined using the head CT dataset.
Fig. 5. LTM log-likelihoods for far-OOD, near-OOD and in-distribution volumes. The top row shows coarse in-distribution vs. OOD plots, and the bottom rows show a finer
breakdown by sub-class.
(TP) detection from the normal head CT dataset. Fig. 4 shows that the
distribution of lesion confidence scores for these two datasets overlap
regardless of the segmentation uncertainty method used, meaning it is
not possible to separate FP detections made on far-OOD data from TP
detections on in-distribution data using any of these lesion confidence
scores alone. The inability for these algorithms to perform sensibly in
the far-OOD case motivates the need for explicit OOD detection models.

We also examined the performance of segmentation network un-
certainty for near-OOD data, corrupted head CT scans. As these scans
contain haemorrhages, the networks can make both TP and FP pre-
dictions. We defined a TP as a predicted lesion with at least 50%
overlap with an overlapping GT lesion, and computed the AUC obtained
when using the per-lesion certainty scores to classify lesions. Results are
shown in Table 1. The networks are able to rule out FP lesions relatively
well for certain types of corruption, including noise, image flipping, and
the removal of ‘chunks’ from the data. However, the networks perform
poorly for images with modified background values, or those that have
been skull-stripped. For images with intensity scaling, all three methods
5

Table 1
AUC for distinguishing TP and FP lesion detections using per-lesion confidence scores
from several segmentation uncertainty methods, for near-OOD corrupted head CT
data.

Network Perturbation

None Noise Background Flipping Chunks Skullstrip Scaling

Baseline 0.84 0.82 0.38 0.86 0.87 0.45 0.33
Deep ensemble 0.75 0.85 0.42 0.77 0.82 0.54 0.36
Dropout 0.83 0.87 0.52 0.86 0.86 0.58 0.35

report AUC ≤ 0.36, showing they tended to assign higher confidence
scores to FP detections than they did to TP detections, a catastrophic
failure for an uncertainty algorithm.

It is notable in Table 1 that the Baseline network reports higher
AUC scores than the Deep Ensemble for data with no corruptions
applied. This occurs because the baseline network makes numerous
wrong predictions that it assigns high uncertainty to, which helps to
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Table 2
AUC for distinguishing between normal head CT and far- and near-OOD classes.
Reported log-likelihood values are mean (std).

Dataset Log-likelihood AUC

Non Head CT

Head MR −7288 (134) 1.00
Colon CT −10 809 (789) 1.00
Hepatic CT −10 712 (763) 1.00
Hippocampal MR −7465 (20) 1.00
Liver CT −11 116 (658) 1.00
Lung CT −9957 (289) 1.00
Pancreas CT −10 798 (791) 1.00
Prostate MR −9140 (134) 1.00
Spleen CT −10 895 (382) 1.00
Cardiac MR −9661 (318) 1.00

Corrupted Head CT

Noise 𝜎 = 0.01 −5796 (253) 0.49
Noise 𝜎 = 0.1 −5793 (237) 0.49
Noise 𝜎 = 0.2 −6637 (324) 0.98
BG value = 0.3 −9022 (89) 1.00
BG value = 0.6 −8803 (100) 1.00
BG value = 1.0 −9979 (127) 1.00
Flip L-R −5850 (253) 0.55
Flip A-P −7435 (205) 1.00
Flip I-S −9036 (165) 1.00
Chunk top −6382 (214) 0.96
Chunk middle −7784 (179) 1.00
Skull stripped −7226 (125) 1.00
Scaling 10% −7436 (119) 1.00
Scaling 1% −7205 (25) 1.00

Normal Head CT −5803 (256) –

inflate the AUC. This illustrates that AUC scores alone are not sufficient
for assessing the effectiveness of segmentation networks. However, they
suffice for making the key point here: none of the networks assessed are
able to provide accurate measures of uncertainty when operating OOD.

3.2. LTMs for OOD detection

We examined the ability of LTMs to filter out OOD inputs based
on the image log-likelihood. Fig. 5 shows the distribution of log-
likelihood values for far-OOD, near-OOD, and in-distribution classes,
and AUC scores are reported in Table 2. The method provides perfect
performance in the far-OOD case, with AUC = 1 for every sub-class. In
the case of near-OOD data, classes on which the segmentation uncer-
tainty performed poorly are distinguished well: images with adapted
backgrounds, skull-stripping, and global intensity scaling are all distin-
guished with an AUC = 1. The method shows lower AUC for the two
lower levels of noise applied (𝜎 = 0.1 and 𝜎 = 0.01), though, as can
be seen in Fig. 1, these noise levels are subtle. The method’s limited
ability to distinguish L-R flipped data as OOD is not surprising, as these
images exhibit L-R symmetry — in reality, OOD is not a binary label
but a continuum.

These subtler corruptions (noise and L-R flipping) are classes for
which the segmentation network uncertainty measures perform well,
suggesting these corruptions are more in-distribution and explaining
why they have been assigned likelihoods more similar to the normal
head CT data. This result also suggests transformers and segmentation
networks with uncertainty may be used in tandem, with highly OOD
images being filtered out by the transformer and the segmentation
network providing meaningful uncertainty estimates on images that are
only slightly OOD.

We evaluated the LTM on the CROMIS dataset in order to obtain
some qualitative results on real data. While the CROMIS dataset is
relatively clean, there are some low-quality scans. Fig. 6 shows the
CROMIS volumes assigned the lowest and highest log-likelihood values.
These results suggest the method is not only able to detect synthe-
sised corruptions but is able to flag real-world data corruptions. The
three lowest-likelihood scans showed a misregistration artefact, an FoV
artefact causing the superior portion of the brain to be missing, and a
6

Fig. 6. For the CROMIS dataset, this shows the three volumes assigned the lowest log-
likelihood values (top three rows) and the highest values (bottom three rows), with
three planes shown for each volume in columns 1-3: sagittal, axial, and coronal.

motion artefact. It is worth noting the LTM was trained on CROMIS,
and its ability to flag OOD scans in this dataset suggests the LTM is
robust to having a small amount of anomalous data in the training set.
This is encouraging as obtaining perfectly clean datasets for training is
challenging in practice.

We also investigated whether the VQ-VAE’s reconstruction error
alone was sufficient to detect OOD data. We measured the mean-
squared error (MSE) between the input and reconstruction, see Fig. 7.
The results show substantial overlap between in-distribution and OOD
MSE values, with the MSE for some classes much smaller than the MSE
for in-distribution data. We also checked to see if this effect was driven
by certain classes having overall darker intensity/more background
than the CT images, by normalising each image’s MSE by its mean
intensity. We found this improved class separation for the far-OOD case
but not the near-OOD case, see Supplementary Fig 12. indicating the
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Fig. 7. VQ-GAN reconstruction mean-squared error for the far-OOD case (left column) and the near-OOD case (right column), for coarse class labels (top row) and fine-grained
labels (bottom row). These results show that reconstruction MSE alone is unable to identify OOD data.
transformer component is essential for OOD detection. These results are
in line with previous work finding that autoencoder-based reconstruc-
tion approaches tend to perform poorly at OOD detection (Yang et al.,
2021; Salehi et al., 2021; Graham et al., 2023).

3.3. Ablation studies

We examined the effect of using a 3-layer rather than 4-layer VQ-
VAE (which increases the size of the latent space by a factor of 23),
changing the loss function used during training to just the MSE or
Perceptual loss, and removing the adversarial discriminator on the
VQ-VAE reconstructions. Table 3 reports how these changes affected
performance. A 3-layer model performed substantially worse than a 4-
layer model; likely because the transformer found it harder to learn
normality on the larger latent space. For 4-layer models, our results
show that both adding the adversarial component and using a Percep-
tual loss help performance, but only when they are used in tandem.
Adding a spectral component to the loss provides a modest performance
increase over the perceptual loss used in the VQ-GAN.

We also sought to investigate the impact of the VQ-VAE encoding
on OOD performance by comparing likelihoods from a transformer on
VQ-encoded data and on raw pixel data. It is not feasible to train
transformers on raw pixel data of 3D data, so used 2D computer
vision benchmarks. We selected FashionMNIST (Xiao et al., 2017) vs.
MNIST (LeCun et al., 1998) as the in-distribution vs. OOD problem
here. It has been widely reported that OOD detection is challenging
on this dataset (Nalisnick et al., 2018; Choi et al., 2018; Hendrycks
et al., 2018), and that models trained on FashionMNIST assign higher
likelihoods to samples from MNIST. This result has been shown to
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hold true for VAEs, flow-based models, and PixelCNNs (Nalisnick et al.,
2018). We trained two models on FashionMNIST: an LTM with a two-
layer VQ-VAE (latent dimension 7 × 7), and a transformer directly on
the pixel data (dimension 28 × 28). Fig. 8 shows the log-likelihoods
evaluated on the test splits. The transformer model predicts higher log-
likelihoods for MNIST, in keeping with findings for VAEs, flow-based
models, and PixelCNNs. However, the LTM correctly assigned Fash-
ionMNIST samples higher likelihood than MNIST samples. This result
suggests that the VQ-VAE’s role is not just providing a compressed
representation of the data that makes transformer training tractable;
it also provides a new representation of the data that can facilitate
OOD detection. It has been suggested that failures of generative model-
based methods can be due to the likelihood being dominated by image
texture details rather than semantic content (Dieleman, 2020). These
findings support this idea and suggest that working in a more abstract
representation of the input can benefit OOD detection.

3.4. Anomaly maps

We investigate the ability of an LTM to localise image anomalies.
These are calculated by taking the conditional probabilities for each
code in the sequence, 𝑝(𝑠𝑖|𝐬<𝑖) and reshaping back from 1D back to
3D. These conditional probabilities are then upsampled by a factor of
16 along each axis using nearest-neighbour interpolation to match the
size of the latent representation to the size of the input image, allowing
them to be directly overlayed. The results are shown in Fig. 9. The maps
provide sensible localisation of artefacts, particularly in images with
clear spatial anomalies: those with missing chunks or skull-stripped.
The maps also highlight the neck and upper part of the skull in the
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Table 3
Study of changes to the VQ architecture and their influence on model performance. We report AUC scores for differentiating between each
sub-class and normal CT data using the image log-likelihood values provided by each model (1.0 is perfect performance). Model elements
changed are: layers: 3 or 4 layers in the encoder and decoder of the auto-encoder, losses: MSE − mean squared error, Perceptual − perceptual
loss + MSE, Spectral − spectral + perceptual loss + MSE, GAN: whether or not there was an adversarial component to the training. Highlighted
in red are any AUC scores <1.0 for the far-OOD non-head CT data, or ≤0.95 for the near-OOD corrupted head CT data.

Dataset Model

3-layer
MSE
no-GAN

4-layer
MSE
no-GAN

4-layer
MSE
GAN

4-layer
Perceptual
no-GAN

4-layer
Perceptual
GAN

4-layer
Spectral
GAN (ours)

N
on

H
ea

d
CT

Head MR 0.00 1.00* 0.85* 0.84* 1.00* 1.00*
Colon CT 1.00 1.00 1.00 1.00 1.00 1.00
Hepatic CT 1.00 1.00 1.00 1.00 1.00 1.00
Hippocampal MR 0.00 1.00* 0.00 0.01 1.00* 1.00*
Liver CT 1.00 1.00 1.00 1.00 1.00 1.00
Lung CT 1.00 1.00 1.00 1.00 1.00 1.00
Pancreas CT 1.00 1.00 1.00 1.00 1.00 1.00
Prostate MR 0.11 1.00* 1.00* 1.00* 1.00* 1.00*
Spleen CT 1.00 1.00 1.00 1.00 1.00 1.00
Cardiac MR 1.00 1.00 1.00 1.00 1.00 1.00

Co
rr

up
te

d
H

ea
d

CT

Noise 𝜎 = 0.01 0.48 0.49 0.48 0.49 0.49 0.49
Noise 𝜎 = 0.1 0.61 0.47 0.44 0.48 0.49 0.49
Noise 𝜎 = 0.2 0.82 0.70 0.71 0.58 0.80 0.98*
BG value=0.3 1.00 1.00 1.00 1.00 1.00 1.00
BG value=0.6 1.00 1.00 1.00 1.00 1.00 1.00
BG value=1.0 1.00 1.00 1.00 1.00 1.00 1.00
Flip L-R 0.53 0.55 0.58* 0.55 0.57 0.55
Flip A-P 1.00 1.00 1.00 1.00 1.00 1.00
Flip I-S 1.00 1.00 1.00 1.00 1.00 1.00
Chunk top 0.62 0.95* 0.92* 0.94* 0.95* 0.96*
Chunk middle 0.99 1.00 1.00 1.00 1.00* 1.00
Skull stripped 0.00 1.00* 1.00* 0.98* 1.00* 1.00*
Scaling 10% 0.44 1.00* 0.62* 0.85* 1.00* 1.00*
Scaling 1% 0.00 0.96* 0.00 0.00 1.00* 1.00*

* Indicates the AUC score is significantly greater than that of the baseline model (3-layer MSE, no-GAN) at a level of 𝑝 < 0.05 as determined
by bootstrapping with 1000 repetitions.
Fig. 8. Log-likelihood on the FashionMNIST and MNIST test sets for models trained
on FashionMNIST.

image with interior-posterior flipping, and highlight everywhere the
head should be in the images with intensity scaling. The maps also
make clear that the model considers images with Gaussian noise at
𝜎 = 0.2 to be OOD, clearly highlighting the brain tissue, but does not
consider lower levels of noise to be OOD.
8

3.5. LTMs as a filter before segmentation

To understand how an LTM might be used as a filter for OOD
data before running downstream analysis tasks, we explored the re-
lationship between an image’s likelihood and the performance of the
segmentation network. We measured poor segmentation performance
as the number of FP lesions predicted on a volume. Fig. 10 shows
results for the best-performing dropout network and includes results
for other networks, which are similar, in Supplementary Fig 11. The
results indicate a strong relationship between the likelihood and the
segmentation model’s ability to process images. The majority of high-
FP segmentations could be filtered out by not running the segmentation
network on images with a log-likelihood lower than −7000.

The results also show that corrupted CT-scans that were assigned
similar likelihoods to the in-distribution data – images with low levels
of noise or L-R flipped – tended to have a lower number of FP. This
supports our claim that these are the subtlest of all the corruptions
applied, and suggest it is not necessarily a problem that the LTM was
not able to separate them from in-distribution data.

4. Discussion

In this work, we propose applying Latent Transformer Models to
perform out-of-distribution detection on 3D medical data. These models
use a VQ-VAE to encode an input into a semantically rich latent space
of small enough dimension to allow for transformers to be trained on
them. The trained transformer can be used to quantify the likelihood
of a new sample, with samples being rejected as OOD using a one-
sided threshold on this likelihood. This architecture has been used to
enable high-resolution images synthesis in 2D (Esser et al., 2021) and
3D (Tudosiu et al., 2020, 2022), and to perform unsupervised pathology
detection (Pinaya et al., 2021, 2022), but, to our knowledge, this work
is the first time they have been demonstrated for whole-image OOD.
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Fig. 9. Spatial likelihood maps obtained from the transformer. The network accurately
assigns low likelihood values to regions of corruptions, such as the brain in the noise
𝜎 = 0.2 case, missing chunks, and the absent skull. The same images without likelihood
values overlaid are shown in Fig. 1.

Robustness to OOD data is crucial if we are to deploy deep-learning
algorithms in the clinic, and such methods must be robust to both far-
OOD and near-OOD data. The need to filter out far-OOD data may
seem surprising, as it may be supposed to be straightforward to filter
out images of a different modality using their DICOM tags in a clinical
setting. However, our experience working with large clinical datasets
reveals such datasets are messy enough that even DICOM tags can
sometimes mislead.

It is commonly suggested that predictive methods that report their
uncertainty can be used to create pipelines that are robust to OOD
data. We tested three segmentation uncertainty methods and found
that they catastrophically failed in the far-OOD domain; often making
incorrect predictions with very high confidence. To our knowledge,
such methods have only been tested on near-OOD data before (Haas
and Rabus, 2021; McClure et al., 2019), and this work represents the
first time that segmentation uncertainty methods have been tested in
the far-OOD domain. Our results show these methods cannot be replied
upon to provide robustness to far-OOD data.
9

Fig. 10. Image log-likelihood and the number of FP detections made by the dropout
network.

The failures of task-specific uncertainty methods motivate the use of
a filter to ensure that only in-distribution data reaches our predictive
networks. Our results demonstrate that the LTM effectively identifies
OOD scans, in both the far-OOD and near-OOD domains. Whilst iden-
tifying far-OOD data may appear to be a simple task for generative
models, results on 2D computer vision datasets have shown these mod-
els can fail catastrophically, assigning higher likelihoods to far-OOD
than in-distribution images (Nalisnick et al., 2018; Choi et al., 2018), so
it is reassuring to verify out method achieved perfect identification on
15 different far-OOD datasets. We showed that a transformer operating
on directly on pixel data also fails catastrophically on computer vision
datasets, but the LTM does not, suggesting that the VQ-VAE plays an
important role in the LTM’s OOD performance. It is possible that it
helps by abstracting away some of the low-level image details, allowing
the transformer to focus on the more relevant high-level content.

There are several advantages to an LTM-based filter for OOD de-
tection. Firstly, unlike task-based models with uncertainty, this class
of models can be trained in a fully unsupervised way. The only re-
quirement is that the training dataset represents non-anomalous data.
However, analysis of the training dataset itself, using the trained LTM,
revealed a small number of anomalous scans in the training data,
indicating the LTM is robust to such degree of contamination from
anomalous training data. Another benefit of using a generative OOD
model as a filter is that the model is not tied to the downstream task
that is being performed. One could imagine a multi-model pipeline
that performs several tasks, for example, one that aims to quantify
brain volume and segment lesions. The algorithms that perform each of
these tasks may have different tolerances for image quality, and using
a filter that provides a continuous likelihood score allows for different
thresholds to be set for the downstream task networks, depending on
their tolerance for anomalous data.

Our method was further able to provide spatial maps that highlight
the region of the image the transformer considers to be OOD. Such
maps can both facilitate understanding of why an image was rejected
as OOD and help to increase confidence that the model decisions
are being made for the right ‘reasons’. They could also be useful in
allowing downstream networks to be run on the images but having
results from certain parts of the image discounted — for exampling,
ruling out any lesions detected in a portion of the brain with severe
movement artefacts whilst still allowing for lesions to be detected in
other, artefact-free regions.

We performed an ablation analysis to understand which features
were critical to model performance. We found that the level of VQ-VAE



Medical Image Analysis 90 (2023) 102967M.S. Graham et al.

E

F

G

G

G

H

H

H

H

H

J

K

L

L

M

M

M

N

N

O

O

P

P

P

compression is crucial; at lower levels performance is much poorer.
We also found using perceptual and adversarial losses improved per-
formance, suggesting that losses designed to improve the quality of
reconstructions in turn improve the quality of the latent representation
in a way that is useful for OOD detection.

Our results show that uncertainty methods are better able to rule
out poor predictions when the data is near-OOD, suggesting that a
combination of OOD filters and predictive uncertainty can be used in
tandem to further robustify pipeline, with the filter used to remove
very OOD data and uncertainty methods giving a useful measure of
confidence for near-OOD cases.

5. Conclusion

In this work, we consider how to mitigate the effect of OOD data
on clinically deployable image-processing pipelines, considering both
near- and far-OOD data. We consider the specific task of segmenting
lesions in 3D head CT data. We show that segmentation methods that
provide uncertainty measures are not robust to OOD data, in particular
failing catastrophically for far-OOD data. We propose the use of an
LTM to filter OOD data and show the network can flag both near-
and far-OOD data. The LTM is further able to provide spatial maps to
highlight OOD regions. We believe this is one of the first applications
of generative models to perform fully 3D, unsupervised OOD detection.
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