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SUMMARY

Immune evasion is a hallmark of cancer, enabling tumors to survive contact with the host immune system and
evade the cycle of immune recognition and destruction. Here, we review the current understanding of the
cancer cell-intrinsic factors driving immune evasion. We focus on T cells as key effectors of anti-cancer im-
munity and argue that cancer cells evade immune destruction by gaining control over pathways that usually
serve to maintain physiological tolerance to self. Using this framework, we place recent mechanistic ad-
vances in the understanding of cancer immune evasion into broad categories of control over T cell localiza-
tion, antigen recognition, and acquisition of optimal effector function.We discuss the redundancy in the path-
ways involved and identify knowledge gaps that must be overcome to better target immune evasion,
including the need for better, routinely available tools that incorporate the growing understanding of evasion
mechanisms to stratify patients for therapy and trials.
INTRODUCTION

Cancer cells have an altered-self pattern of antigen expression

and are subject to recognition and control by T cells as key im-

mune effectors. The cancer immunity cycle describes an optimal

scenario of immune recognition, immune activation, and anti-tu-

mor response leading to cancer elimination.1 However, the lethal

growth of tumors in immune-competent patients demonstrates

that cancer cells employ effective strategies to avoid immune

destruction.

How is this achieved? One way to approach the problem is

through consideration of physiological mechanisms that main-

tain immune tolerance to self.2 To ensure recognition of a broad

range of potentially pathogenic antigens by abT cells, random

diversification of T cell receptor (TCR) encoding genes takes

place during thymocyte development.3 This gives rise to both

pathogen-reactive and self-reactive T cells. Central and periph-

eral tolerancemechanisms have evolved to limit the autoimmune

consequences of self-reactive clones generated in this process.

Peripheral tolerance mechanisms to regulate T cell activity are

most clearly observed at immune-privileged sites4,5 such as

the brain, testis, eye, and pregnant uterus, where transplanted

non-self-tissues are capable of avoiding immune rejection.

Tolerance can also be acquired at non-privileged sites, as

demonstrated by the seminal experiments of Medawar and col-

leagues published 70 years ago.6 Given their potential immuno-

genicity, cancer cells must similarly induce a state of tolerance to

survive immune predation. The cancer immunity cycle describes

a state within which tolerance has broken down or failed. A
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consideration of how cancer cells solve the challenge of surviv-

ing contact with the host immune system, through the perspec-

tive of peripheral tolerance and immune privilege, may help bet-

ter understand and tackle immune evasion.

Immune surveillance is hypothesized to exert an evolutionary

pressure on cancer development.7 During an equilibrium phase

of cancer-immune interaction, the survival of cancer cell clones

capable of resisting rejection is favored, leading to natural selec-

tion of clones capable of escaping immune control. This evolu-

tionary perspective implies the necessity of immune evasion

for cancer development8 and generation of tolerance as a key

feature of the malignant phenotype.

Mechanisms to control T cell activity are crucial for the main-

tenance of tolerance. Therapeutic advances that act to enhance

T cell anti-cancer function illustrate this point. Ground-breaking

work into T cell regulatory mechanisms has revealed the role of

inhibitory receptors (checkpoints) including PD-1,9 CTLA-4,10

and LAG-311 in limiting autoreactivity and T cell over-activa-

tion.12–14 Antagonistic antibodies against these receptors—

checkpoint immunotherapies—that reduce the negative control

of T cell activity improve patient outcomes across multiple can-

cer types,15–19 although at the cost of autoimmune side effects.

The clinical success of checkpoint immunotherapies reveals the

centrality of T cell regulatory mechanisms in determining tumor

growth vs. rejection.

There are three interrelated, broad control mechanisms to

impose immune tolerance; these are conceptually relevant to

each stage of the cancer immunity cycle. Control over T cell local-

ization is a mechanism employed at immune-privileged sites such
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as the eye andbrain to limit or exclude effector T cell entry to guard

against thepotentially catastrophicconsequencesof inflammation

at these sensitive sites.20,21 T cell target recognition requires TCR

signaling upon peptide-major histocompatibility complex (MHC)

binding.DecreasedexpressionofMHCclass I isemployedbycells

at immune-privilegedsites including thebrain andbyplacental tro-

phoblasts to limit Tcell reactivity.22–24Tcell activationanddifferen-

tiation to acquire full effector capability is closely controlled by an-

tigen availability, interaction with antigen-presenting cells (APCs),

and the extracellular inflammatory environment. These require-

ments collectively provide tolerogenic control mechanisms. For

example, contributors to ocular immune privilege include mainte-

nance of self-reactive T cells in an ignorant state with limited ac-

cess to antigenic stimulation,25 diversion of effector T cells to hy-

pofunctional26 or suppressive states,27 and promotion of

apoptotic T cell death28 with similar mechanisms operating at

other sites. Immune pressure favors selection of cancer cells that

exploit these physiologically essential immune homeostatic pro-

cesses to acquire a state of tolerance and thus gain a survival

advantage.

How might cancer cells exploit tolerogenic strategies? In gen-

eral, cancers accumulate a range of genetic and molecular alter-

ations affecting their functional properties. Mutations in driver

genes, chromosomal instability, and epigenetic alterations

impact pathways related to cell signaling, metabolism, and

apoptosis. Cancer genomic instability also results in the genera-

tion of subclonal variants and tumor heterogeneity.29 These ab-

errations contribute to essential features of themalignant pheno-

type including properties necessary for cancer cells to achieve

immune evasion30 through exploitation of tolerance pathways.

In contrast, cancers that arise from tissues that are physiologi-

cally more tolerogenic may achieve immune evasion without

requiring additional genomic alterations. The immunotherapy

resistance of germ cell tumors and glioblastomas could be

related to the intrinsic properties of the cell of origin, although

the profound immunotherapy sensitivity of cancers arising from

placental trophoblast suggests deeper complexity.31

Here, we discuss how cancer cell-intrinsic mechanisms pro-

mote immune evasion. We frame this discussion around the

three pillars of tolerance: control over T cell localization, antigen

recognition, and acquisition of effector function, providing paral-

lels to the setting of physiological (as opposed to pathological)

tolerance. We focus primarily on T cells and their interactions

with innate immune populations, examining how cancer cells

interfere with immune recognition and activation pathways to

achieve immune evasion. Considering cancer immune evasion

as a state resulting from the exploitation of physiological toler-

ance pathways offers novel routes into resolving how evasion

is achieved. In general, molecular understanding of the multiple

pathways of immune evasion and their evolution strongly sup-

ports early therapeutic intervention. The redundant nature of

the mechanisms involved in cancer immune evasion mirrors

physiological tolerance and supports multi-targeted approaches

including vaccination and strategies that are more robust to can-

cer cell evolution, for instance by targeting clonal antigens and

mobilization of CD4 T cells in the setting of MHC class I loss.

Taken together, the insights derived from this analysis may

inform new therapeutic strategies and approaches to stratify pa-

tients for therapy.
Cancer cell control over T cell localization: Endothelial
dysfunction
Surveillance and effector activity of T cells is proximity depen-

dent and thus control over T cell localization is an essential

mechanism of peripheral tolerance. Broadly, this is achieved

through control over chemokine signaling and the maintenance

of barriers to T cell trafficking. For instance, in the central nervous

system, T cell tissue entry into brain parenchymal tissues is

limited through microendothelial cell expression of the chemo-

kine CXCL12 that delivers chemorepellent signals to T cells

through CXCR4,32 an immunomodulatory mechanism that is

also employed by cancer cells. Reduced expression of endothe-

lial adhesion molecules such as intercellular adhesion molecule

(ICAM)-1 required for themigration of circulating T cells into brain

tissue is a further control mechanism.33 Physical barriers are also

utilized physiologically. For instance, the blood-testis barrier

generated by tight junctions between Sertoli cells serves to

exclude T cells from contact with developing germ cells that ex-

press novel antigens following meiosis.34

Across cancers, CD8+ and effector CD4+ T cell infiltration is a

predictor of patient outcomes35,36 and response to checkpoint

immunotherapy.37–39 Tumor types with poor immune infiltration

(immune cold) such as pancreatic cancer and microsatellite sta-

ble colorectal cancer respond poorly to checkpoint immuno-

therapy. Cancer cell evolution under immune pressure con-

verges on multiple mechanisms to inhibit the trafficking of

effector T cells into the tumor microenvironment (TME) and regu-

late T cell localization oncewithin the tumor. Mirroring physiolog-

ical processes, this is achieved by interfering with effector T cell

localization through disrupting endothelial function, generation

of stromal barriers, and modulating chemokine availability

(Figure 1).

Lymphocyte adhesion to endothelial cells is an essential step

in T cell trafficking into tumors. Work from the 1990s revealed

that tumor-associated endothelial cells have reduced expres-

sion of adhesion molecules including ICAM-1, ICAM-2,

E-selectin, and vascular cell adhesion molecule (VCAM-1).40

This is mediated by the activity of pro-angiogenic agents pro-

duced by cancer cells such as vascular endothelial growth factor

(VEGF),41 which acts through various mechanisms including in-

hibition of endothelial nuclear factor (NF)-kB signaling.42 Such

‘‘endothelial anergy’’ results in an impaired ability to mediate

T cell extravasation and entry into the TME.43 Cancer cell

VEGF expression is increased by intratumoral hypoxia44 and

lies downstreamofmultiple signaling pathways that are dysregu-

lated in cancer cells including PI3K-AKT,45 which is negatively

regulated by the tumor suppressor PTEN. Indeed, PTEN loss

or PI3K activation are associated with limited T cell infiltration46

and immunotherapy resistance.47 Among patients with mela-

noma, PTEN loss is associated with reduced CD8+ T cell infiltra-

tion and reduced response to anti-PD-1 therapy.48 In a trans-

plantable melanoma model, Pten silencing associated with

increased expression of CCL2 and VEGF. Anti-VEGF therapy en-

hances T cell infiltration, in keeping with previous studies that

found anti-angiogenic factors could enhance tumor immune infil-

tration.49 VEGF expression can increase tumor endothelial cell

Fas ligand (FasL) expression, contributing to T cell exclusion

through elimination of T cells by apoptosis mediated by signaling

through the death receptor Fas.50
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Figure 1. Mechanisms of T cell exclusion
Exclusion of T cells may be driven by endothelial
dysfunction, cancer-associated fibroblast (CAF)
activity, or altered chemokine signaling. PTEN loss
results in enhanced PI3K/AKT signaling and
increased cancer cell production of vascular
endothelial growth factor (VEGF) that inhibits
endothelial cell expression of adhesion molecules
including intercellular adhesion molecule
(ICAM)-1, ICAM-2, E-selectin, and vascular cell
adhesion molecule (VCAM-1), limiting T cell
extravasation. Cancer cell production of endothelin
1 and reduced 20 30-cGAMP export due to loss of
LKB1 also results in reduced endothelial cell
adhesion molecule expression. VEGF addi
tionally upregulates endothelial cell expression of
FasL, promoting T cell death. Galectin-1 acts to
increase endothelial cell expression of PD-L1
contributing to reduced T cell extravasation.
Increased transforming growth factor b (TGF-b)
signaling, which can be driven by cancer cell
KRAS overactivity, activates CAFs to produce
extracellular matrix components that limit T cell
contact with cancer cell nests. CAFs can express
FasL and PD-L2 contributing to T cell deletion.
CAF CXCL12 contributes to T cell exclusion
through chemorepulsion, acting on CXCR4.
Cancer cell expression of CXCL9 and CXCL10
that support recruitment of T cells through
CXCR3 signaling is limited by (1) PRC2
overactivity resulting in histone trimethylation at
lysine 27 (H3K27me3), which may occur due to
ARID1A mutation, (2) DNA methyltransferase
activity resulting in promoter hypermethylation,
(3) IDH1/IDH2 mutation resulting in global
hypermethylation and reduced CXCL9 and
CXCL10 expression through reduced STAT1
activity. EGFR mutation results in reduced IRF1
activity and suppressed CXCL10 and CCL5 that
supports T cell recruitment through CCR5. CCL5
expression can additionally be reduced due to
promoter methylation.
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Loss-of-function mutations of STK11 (encoding serine/threo-

nine kinase 11; LKB1) mediate endothelial dysfunction that re-

duces T cell infiltration into the TME.51 These mutations often

co-occur with KRAS mutations in lung adenocarcinoma52 and

limit T cell infiltration through modulation of the cyclic GMP-

AMP synthase-stimulator of interferon genes (cGAS-STING)

pathway. Activation of the cytosolic single-strand DNA sensor

cGAS produces 2030-cGAMP that promotes STING activity,

mediating downstream anti-pathogen effects such as interferon

(IFN) production53 through transcription factors including IRF3.

LKB1 inactivation reduces STING expression, with emerging ev-

idence that intracellular accumulation of cGAS and 2030-cGAMP

is also limited.53 Utilizing a microfluidic endothelial cell-cancer

cell co-culture system, Campisi et al. found that LKB1 reconsti-

tution restored 2030-cGAMP export and STING activation within
2272 Immunity 56, October 10, 2023
endothelial cells, resulting in increased

expression of adhesion molecules and

T cell adhesion.54 In addition to potential

effects on tumor endothelial function as

a mechanism of limiting T cell infiltration,

loss of STING signaling in KRAS/STK11-

mutated lung cancer reduces expression
of CXCL10 and CCL5,55 chemoattractants that enhance T cell

tumor infiltration56 and immunotherapy response.57

Cancer cell production of the vasoactive protein endothelin 1

is a further mediator of endothelial dysfunction. In ovarian can-

cer, increased expression of endothelin receptor B by endothe-

lial cells associates with immune exclusion and worse survival.58

Mechanistically, endothelin receptor B signaling suppresses

ICAM-1 function required for T cell adhesion to endothelial cells.

Finally, T cell exclusion is attributed to the carbohydrate-bind-

ing protein galectin-1. Galectin-1 expression is increased in mul-

tiple cancer types in association with hypoxic signaling59 and

has immunomodulatory properties.60 In a pan-cancer analysis

of transcriptional data, Nambiar et al. found an inverse correla-

tion between galectin-1 expression and predicted T cell infiltra-

tion, which was seen also in a mouse model of head and neck
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cancer.61 This was attributed to enhanced endothelial expres-

sion of PD-L1 mediated by STAT1 signaling, and antibody tar-

geting of galectin-1 resulted in enhanced anti-PD-1 efficacy

among tumor-bearing mice.

Collectively, these findings have formed the basis for clinical

studies combining inhibitors of VEGF or VEGFR with checkpoint

immunotherapies. For instance, combined therapy with the

monoclonal antibodies atezolizumab and bevacizumab (target-

ing PD-L1 and VEGF, respectively) is approved for patients

with hepatocellular cancer (the IMbrave150 study62) and non-

squamous lung cancer in combination with chemotherapy (the

IMpower150 study63). However, the contribution of bevacizu-

mab is uncertain. Although in IMbrave150, there was no atezoli-

zumabmonotherapy arm, IMpower150 included a cohort treated

with atezolizumab plus chemotherapy without bevacizumab. A

direct comparison was not performed, but an updated analysis

found that the addition of bevacizumab to chemoimmunother-

apy did not appreciably enhance survival outcomes.64 In a phase

II study of atezolizumab with or without bevacizumab for renal

cancer, patients with a low baseline T cell infiltrate (measured

by gene expression) had a reduced response rate and poorer

survival, not enhanced by the addition of bevacizumab.65 These

data indicate that anti-VEGF and anti-PD-L1 therapy may not be

synergistic as expected, and any additional benefit of bevacizu-

mab is not mediated by enhancing T cell recruitment in immune

cold tumors. Thus, alternative approaches to act on endothelial

dysfunction are required. Thus far, inhibitors of endothelin-A

have been unsuccessful in trials,66 and galectin-1-targeted

agents are at an early phase of development.67

Stromal inhibition of T cell recruitment
T cell exclusion from the tumor or their limitation to stromal areas

surrounding cancer cell nests serves as a second mechanism to

achieve immune evasion through control over immune locali-

zation.

Transforming growth factor b (TGF-b) expression is increased

in tumors and has an important role to play in this process

through inhibition of T cell infiltration,68,69 partly through induc-

tion of cancer-associated fibroblasts (CAFs).70–72 CAFs are

also induced by platelet-derived growth factor and Hedgehog li-

gands, Shh and Ihh, which are increased in KRAS-G12D-

mutated murine pancreatic cancer models.73

TGF-b exists predominantly in a latent form associated with la-

tency-associated peptide (LAP) and bound to the extracellular

matrix (ECM) protein fibrillin or docked to the surface of cell types

including regulatory T cells (Tregs),74 platelets, and cancer cells

through the transmembrane protein glycoprotein A repetitions

predominant (GARP).75 TGF-b signaling is increased in tumors

through multiple processes, including the following: (1) LAP

binding to the cell surface integrins avb6 and avb8, forcing

TGF-b liberation upon cell contraction76; (2) TGF-b liberation

through the activity of proteases such as matrix metallopro-

teases that are present within the TME77; and (3) increased

TGF-b1 generation by cancer cells downstream of MEK-ERK-

AP1 signaling in KRAS-G12V-mutated cancer models.78 In addi-

tion to playing a role in mediating T cell exclusion, TGF-b also im-

pacts T cell differentiation and dendritic cell (DC) function.

T cell restriction to stromal areas preventing their contact with

cancer cells is seen in multiple tumor types79,80 and associated
with worse patient outcomes35 and lack of response to immuno-

therapy.81,82 CAFs are implicated in this process through depo-

sition and organization of dense extracellular matrix components

such as collagen I, collagen IV, and hyaluronan83 to generate a

barrier limiting T cell migration.84,85

CAFs also have an active role in mediating T cell exclusion.

Noting phenotypic similarities between CAFs and lymphatic fibro-

blastic reticular cells (FRCs) thatplayaphysiological role indeletio-

nal tolerance, Lakins et al. showed in a mouse lung cancer model

that CAFs are capable of antigen cross-presentation and FasL-

mediated CD8+ T cell killing in a manner that could be blocked

by anti-FasL treatment.86 CAFs may also determine T cell exclu-

sion through expression of CXCL12, which mediated a chemore-

pulsive effect on CXCR4-bearing T cells in a mouse pancreatic

cancer model.87 Finally, CAF expression of CXCL13 recruits tu-

mor-promoting B cells in a mouse model of prostate cancer,88

with evidence that interleukin (IL)-35 production by immunosup-

pressive B cells further contributes to T cell exclusion.89

Several areas of uncertainty are yet to be resolved. Single-cell

RNA sequencing reveals high heterogeneity of CAFs; the relative

contributions of distinct CAF subsets to immune evasion are un-

known.90–92 Related to this, although CAF depletion associates

with enhanced immune responses in some settings,93 depletion

is associated with worse outcomes in others,94 suggesting sub-

set or context dependencies that are undefined. Finally, clinical

trials targeting CAFs with various modalities failed to show ben-

efits including with Hedgehog pathway inhibitors,95 the TGF-b

receptor kinase inhibitor galunisertib96 and PEGylated-recombi-

nant human hyaluronidase targeting the ECM.97 A better under-

standing of CAF subset diversity may make this population more

amenable as a therapeutic target.

Beyond the activity of CAFs, emerging evidence suggests that

additional mechanisms may exist to limit tumor-infiltrating T cell

contact with cancer cells. For instance, tumor-infiltrating macro-

phages recruited by chemokines produced by cancer cells may

reduce T cell motility through long-lasting interactions, resulting

in impaired migration to cancer cell nests.98

Reduced production of chemokines involved in T cell

recruitment

Chemokine signaling plays an important role in T cell trafficking

to inflammatory sites through receptors including CXCR3.99 Dif-

ferences in chemokine availability are well described between

T cell inflamed vs. non-inflamed tumors, including for the

CXCR3 ligands CXCL9, CXCL10, and CXCL11, which are pro-

duced downstream of IFN-g signaling.100–103 These chemokines

may also be involved in establishing lymphocyte niches within

tumors with potential relevance for immunotherapy

response.104–106 In a pan-cancer analysis of patients treated

with checkpoint immunotherapy, CXCL9 expression emerged

as a predictor of patient response.107 By decreasing expression

of pro-inflammatory chemokines, cancer cells can limit T cell

recruitment into the TME. Broader effects of altered patterns of

chemokine expression additionally shape the myeloid compart-

ment, altering the abundance and activity of populations

including DCs, macrophages, and myeloid-derived suppressor

cells (MDSCs) with roles in T cell recruitment, as discussed in

later sections.

Epigenetic alterations are common in cancer cells, affecting

gene transcription patterns relevant to multiple processes
Immunity 56, October 10, 2023 2273
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related to cell growth and survival. Epigenetic alterations also

modulate the immune environment through altered expression

of T cell chemoattractants. One mechanism is through the activ-

ity of polycomb repressive complex 2 (PRC2)108 that plays a role

in inhibiting gene expression through histone H3 lysine 27

(H3K27) trimethylation. In primary colon109 and ovarian cancer

cells,110 PRC2 activity reduced CXCL9 and CXCL10 expression

through promoter H3K27 trimethylation. In ovarian cancer cells,

reduced CXCL9 and CXCL10 expression associates with DNA

methylation by the DNA methyltransferase (DNMT)1. In general,

these effects are reversed by inhibitors including 5-AZA-2-

deoxycytidine (5-AZA dC)110 that suppresses DNMT1, and

GSK126 that interferes with the PRC2 catalytic component

enhancer of zeste homolog 2 (EZH2) methyltransferase activity.

In both ovarian and colon cancer, patients with elevated tumor

expression of the PRC2 catalytic component EZH2 and

DNMT1 had reduced CD8+ T cell infiltration and worse survival.

Similarly, in humanmelanoma, EZH2 expression inversely corre-

lates with T cell infiltration, and EZH2 silencing in a mouse mel-

anoma model increased expression of CXCL9 and CXCL10.111

Finally, the SWI/SNF chromatin remodeling complex component

ARID1A represses EZH2 activity, andmutations inARID1A asso-

ciates with reduced immune infiltration and expression ofCXCL9

and CXCL10 in human ovarian cancer specimens.112

Gain-of-function mutations in the isocitrate dehydrogenase

genes IDH1and IDH2are implicated in reducedCXCR3 ligandpro-

duction due to epigenetic reprogramming. These mutations are

commonly seen in gliomaand enhance conversionofa-ketogluta-

rate to 2-hydroxyglutarate,113 resulting in genome-wide DNA hy-

permethylation.114 IDH-mutated gliomas in human studies115

and mouse models116 have reduced cancer cell expression of

CXCL9 and CXCL10 related to suppressed STAT1 signaling,117

contributing to generation of an immune cold TME.

Loss of cancer cell expression of the chemokine ligand CCL5

associates with low immune infiltration across human cancer

types. Analysis of pan-cancer microarray data revealed a corre-

lation between expression of CCL5 and CXCL9 with CD8A as a

marker of T cell infiltration.118 Low CCL5 expression associated

with promoter methylation, and this could be reversed with

5-AZA dC in ovarian cancer cell lines. In a mouse ovarian cancer

model, CCL5 produced by cancer cells promoted CXCL9

expression by tumor macrophages to enhance T cell recruit-

ment. DNA hypomethylation in association with low T cell infiltra-

tion is also seen in human lung and head and neck squamous

cancers bearing mutations of the methyltransferase encoding

gene NSD1.119 In mouse head and neck cancer cell lines,

NSD1 inactivation altered chemokine profiles including reduced

expression of CCL5. Increased b-catenin signaling is linked to

suppressed CCL5 expression as well, as discussed later.

Non-epigenetic mechanisms also regulate cancer cell chemo-

kine signaling. The ErbB family epidermal growth factor receptor

(EGFR) is frequentlymutated across cancer types including a sub-

set of non-small cell lung cancers (NSCLCs) and predicts low

response to anti-PD-1 therapy.120,121 Although EGFR mutations

associate with low tumor mutational burden and thus potentially

reduce cancer immunogenicity, there is also an effect of reduced

T cell recruitment. In a pan-cancer analysis of RNA sequencing

data, EGFR mutations were enriched in T cell non-inflamed tu-

mors.122 Mechanistically, EGFR signaling reduced expression of
2274 Immunity 56, October 10, 2023
CCL5 and CXCL10 in NSCLC cell lines via reduced activity of the

IFN regulatory transcription factor IRF1.123 Finally, low T cell infil-

tration associates with overactivity of the peroxisome prolifera-

tor-activated/retinoid X receptor (PPARg/RXRa) transcription fac-

tor complex, secondary to chromosomal amplification or

mutations commonly seen in urothelial bladder cancer.124 In a

mouse model of bladder cancer, PPARg/RXRa overactivity

reduced expression of CCL5 and CXCL10, reduced T cell infiltra-

tion, and promoted partial resistance to anti-CTLA-4 or anti-PD-1

immunotherapy.

T cell recruiting chemokines are therapeutically attractive and

may bemodulated through a number ofmeans. Early phase trials

are exploring the use of a tumor-selective virotherapy platform

modified to express CXCL9 and CXCL10.125 A combination of

the TLR3 agonist rintatolimod, IFN-a, and the cyclooxygenase

(COX)-2 inhibitor celecoxib demonstrated activity in a phase I

breast cancer study.126 In mouse breast cancer models, inhibi-

tors of cyclin-dependent kinases 4 and 6 (CDK4/6) such as pal-

bociclib enhance cancer cell expression of CCL5, CXCL9, and

CXCL10 and response to checkpoint immunotherapy, with a

similar increase in chemokine expression by treated human

breast cancer cells.127 An early phase trial of palbociclib, the aro-

matase inhibitor letrozole, and pembrolizumab in breast cancer

has shown activity,128 and biomarker analysis revealed effects

on circulating myeloid populations, suggesting a complex and

currently insufficiently well-understood mode of action beyond

stimulation of chemokine expression.129

Inhibition of target recognition: Suppression of MHC
class I expression
T cells recognize cognate antigens through the TCR, following

binding to peptide-MHC complexes upon APCs and target cells.

Physiologically, several normal cell populations areof heightened

immunogenicity by virtue of their genomic differences to self.

These include germ cells that accumulate genetic differences

through meiosis and placental trophoblasts that are derived

frommaternal and paternal genomic contributions and are hence

semi-allogeneic. These populations are protected from immune

destruction partly through suppression of MHC class I expres-

sion,22,24 which is a tolerogenic mechanism additionally em-

ployed by brain neuronal populations130 and ocular cells.23

Initial priming of T cell responses is mediated within lymphoid

organs by APCs—mainly DCs that transport antigens to these

sites and present peptides with additional signals that pattern

subsequent T cell activation. T cell priming is dependent on an-

tigen density, and sufficient quantities of antigen must reach

draining lymphoid organs to elicit optimal T cell activation.131,132

T cell ‘‘ignorance’’ results from lack of antigen availability.133–135

Given these constraints, regulation of APC function,136 tissue

localization, and trafficking (for instance, at privileged sites137)

are additional key physiological mechanisms to induce and

maintain peripheral tolerance. For instance, DCs are limited

from key ocular structures such as the retina, and lymphatic

drainage is impaired.138

Cancer cells bear distinct patterns of antigen expression

recognized as non-self by T cells. Cancer antigenicity is deter-

mined by the expression of neoantigens that may result from

DNA mutations,139–143 aberrant splicing or translation,144,145 or

expression of viral proteins. Additionally, tumor-associated



Figure 2. Mechanisms of reduced T cell
antigen engagement
Reduced antigen engagement can be due to loss of
cancer cell MHC class I expression, loss of neo-
antigen expression, and loss of conventional type 1
dendritic cell (cDC1) recruitment required for priming
of T cells. MHCclass I loss can occur due to reduced
NLRC5 activity caused by mutations, promoter hy-
permethylation, and PRC2 mediated generation of
repressive H3K27me3 histone marks. NLRC5 loss
results in reduced expression of MHC class
I-related genes, which can also be inhibited by
JAK1/JAK2 mutations resulting in reduced STAT1
mediated IRF1 activity, HER2/EGFR mutations,
reduced NF-kB signaling, copy-number losses,
and mutations within the MHC class I genes
themselves. Neoantigen downregulation can occur
due to mutations and promoter hypermethylation.
Reduced recruitment of cDC1s can occur due to
mutational loss of APC or KRAS/BRAF mutations
resulting in increased Wnt/b-catenin signaling and
suppression of the chemoattractants CCL4 and
CCL5. Enhanced cyclooxygenase (COX) activity
results in upregulated PGE2 production that impairs
natural killer (NK) cell release of CCL5.
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antigens may arise from increased expression of proteins that

are usually tissue restricted, expressed during embryonic devel-

opment,146 or limited to reproductive tissues.147,148 Neoantigen

load and predictors of immunogenicity such as self-dissimilarity

are predictors of patient outcome and immunotherapy

response.142,149–155

In general, cancer genomic and clonal diversification resulting

in tumor heterogeneity156 occurs through mechanisms157

including defective DNA damage repair,158 replication stress,159

APOBEC3 enzyme expression,160,161 and epigenetic dysregula-

tion.162 Under immune pressure, these processes can alter the

cancer cell antigenic landscape resulting in the loss of immuno-

genic targets for immune control and conversely result in

diversification and T cell activation-induced hypofunction or

death. The potential clinical relevance of genomic instability is,

for instance, illustrated by the finding that the abundance of

clonal neoantigens shared by all cancer cells is an

important predictor of immunotherapy response.107,143 In con-

trast, excess stimulation through TCR signaling can also have

detrimental effects on T cell function.
Cancer cell evolution converges on

mechanisms to limit T cell antigen engage

ment including suppression ofMHC class

I expression, neoantigen loss, and control

over DC recruitment (Figure 2). Loss or

reduced expression of MHC class I is

seen in various cancer types163–165 and

correlates with worse patient outcomes

and acquired resistance to various immu-

notherapeutic modalities including check

point blockade, vaccination,166,167 and

adoptive cell therapy.168,169 Decreased

MHC class I expression in cancer is asso-

ciated with loss of key components of the

antigen processing and presentation ma-
chinery due to mutations and epigenetic alterations affecting

genes encoding MHC class I heavy chains,170,171 b2-microglo-

bulin,172 tapasin,173 and transporter associatedwith antigen pro-

cessing (TAP),174 which plays a role in peptide loading. TheMHC

class I transactivator NLRC5, a transcription factor that activates

expression of multiple MHC class I-related genes, is also subject

to genetic and epigenetic loss in cancer cells,175 such as via

EZH2-generated repressive H3K27me3 histone marks at the

NLRC5 promoter.176,177

Transcriptional inhibition of MHC class I expressionmay occur

due to altered IFN signaling. Both type I and type II IFN signaling

pathways promote expression of MHC class I through receptor

activation of Janus kinases (JAKs) and downstream STAT1-

and IRF1-mediated transcription of genes involved in antigen

presentation.178 Resistance to anti-PD-1 therapy in melanoma

associates with JAK1 and JAK2 loss through copy-number alter-

ations and mutations, resulting in insensitivity to IFN-gmediated

increase in MHC class I expession.179,180 Cancer cells can har-

bor defects in IFN-g signaling pathway components,181,182

particularly associated with immunotherapy resistance183,184—
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although in some settings, loss of IFN-g signaling can sensitize

cancer cells to immune control.185,186 Increased expression of

the ErbB family receptor tyrosine kinases human epidermal

growth factor receptor 2 (HER2)187–189 and EGFR190 along with

decreased NF-kB activity191 can also decrease MHC class I

expression in cancer cells.

A common mechanism underlying decreased MHC expression

is loss of heterozygosity at the HLA locus, secondary to focal or

arm-level losses at chromosome 6p21, which occurs in 17% of

casesacrosscancer typesand40%ofpatientswithNSCLC.164,192

Patientswith lungcancer exhibit frequent lossofHLAheterozygos-

ity, more frequently as a subclonal event shared by a fraction of

cancer cells. HLA loss of heterozygosity associates with neoanti-

genburdenandmaybeenriched inmetastases.LossofMHCclass

I expression over the course of cancer evolution is also seen in

melanoma.193

Of note, melanoma,194 lung,195 colorectal,196 and gestational

cancers31 with MHC class I suppression can remain sensitive

to anti-PD-1 therapy. Along with data suggesting that HLA loss

of heterozygosity is a late event in cancer evolution, these find-

ingspoint to the importanceof other immunemechanisms in con-

trolling cancers with low MHC expression. These mechanisms

are not well understood but may include the activity of effector

populations including CD4+ T cells,197 natural killer (NK) cells,198

and gdT cells199 that act independently of MHC class I.

Loss of MHC class I expression poses an important challenge

for current CD8+ T cell therapy and vaccination approaches.

Although adoptive transfer of TCR-modified T cells (TCR-T cells)

is an area of active research,200 a major limitation of this ap-

proach is that the transferred cells are HLA restricted. Even in

the context of non-TCR-modified T cell therapy, immune escape

may result from decreasedHLA expression.169 Because immune

pressure is high during TCR-T cell therapy, loss of either the

target antigen or target HLA could result in immune escape.

Although HLA loss is usually a subclonal event, immune editing

of the remaining population could drive the emergence of domi-

nant subclones that escape immune control. Targeting a broad

range of antigens recognized by multiple MHC class I molecules

and focusing on clonally expressed variants is consequently an

attractive approach to mitigate this.

Immune escape via suppression of neoantigen
expression
In addition to the loss of MHC class I expression, early work in

mouse models suggested that cancer cells can reduce expres-

sion of T cell epitopes under selection pressure as a mechanism

of immune escape.201 Identification of T cell-recognized anti-

gens expressed by human cancers202,203 allowed this concept

to be evaluated in this setting. For instance, expression of the

immunogenic cancer differentiation antigen Melan-A in a mela-

noma sample was subsequently lost at the RNA and protein level

from recurrent disease resected years later.204 Decreased

expression of tumor-associated antigens associated with gene

methylation205–207 related to DNMT activity,208 in addition tomu-

tations as shown for MAGE family and other cancer-testis anti-

gens.209 Antigen loss due to mutations is commonly seen

following chimeric antigen receptor (CAR) T cell therapy of he-

matological malignancies—for instance, CD19-directed CAR-T

therapy of B cell acute lymphoblastic leukemia.210
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Neoantigens can also be eliminated during the course of can-

cer evolution. Patients with NSCLCwho fail checkpoint immuno-

therapy with anti-PD-1 or combined anti-PD-1 with anti-CTLA-4

therapy exhibit deletion of predicted neoantigens, mostly

through single-base substitutions.211 Based on predicted MHC

class I binding affinity, eliminated neoantigens appear more

immunogenic than those that are gained or retained. Single-

base substitutions in this setting focus on MHC-binding anchor

residues critical for peptide-MHC class I interaction. Eliminated

neoantigens elicited a T cell response among autologous circu-

lating T cells in vitro, supporting their immunogenicity and loss

secondary to immune pressure rather than as random events.

Additionally, inactivating mutations of STK11 associate with

impaired cancer cell antigen processing and presentation.212

In the TRACERx study,213 patients with early-stage, surgically

resected NSCLC are followed longitudinally to shed light on

mechanismsof tumor evolution.Work from this study further high-

lights how loss of neoantigen expression may occur through mul-

tiple mechanisms. Neoantigen editing can follow copy-number

loss and reduced transcription partly due to promoter hyperme-

thylation, both occurring as subclonal events.214 Patients with

genomic evidence of immune evasion mechanisms have worse

survival outcomes. Finally, RNA editing and epigenomic dysfunc-

tion resulting in copy-number-independent allele-specific gene

expression may additionally result in reduced neoantigen expres-

sion, although further work is required to characterize this.215

In general, cancerswith high intratumoral heterogeneitymarked

by a predominance of subclonal mutations have worse out-

comes.143,216 High intratumoral heterogeneity generated by mix-

tures of clones in a mouse melanoma model associates with im-

mune evasion.216 Because by definition subclonal neoantigens

are expressedbya subset of cancer cells, onemechanism relating

increased intratumoral heterogeneity and immune evasion is

through low availability of individual neoantigens resulting in im-

mune ignorance. This concept is supported by pre-clinicalmodels

showing that immunogenic antigens must be expressed by a suf-

ficiently high fraction of cancer cells to elicit subclone rejection,217

emphasizing the relationship between genomic tumor heteroge-

neity and the anti-cancer immune response.

A second mechanism may be through expansion of dominant

T cell clones that subsequently lose their target antigen. This

concept is supported by the observation across studies that the

fraction of infiltrating lymphocytes identified as cancer specific

is low, even among T cells that have phenotypic characteristics

of persistent antigen exposure, including high expression of

PD-1,218 the transcription factor TOX,219–221 and CD39.222–224

Following antigen loss, expanded clones with a tissue-resident

phenotype may remain locked within limited tumor niches225

and pose a barrier to entry of new, potentially antigen-reactive

populations. Indeed, the replacement of pre-existing tumor-infil-

trating clones is implicated in successful anti-PD-1 therapy.226

Pre-existing clones may inhibit entry or activity of new clones,

for instance, by acting as a sink for cytokines critical for cell pro-

liferation and survival.227

The concept that pre-existing immunitymay inhibit the develop-

ment of new responses isdescribed in the context of viral infection.

Aging in association with cytomegalovirus (CMV) infection is asso-

ciated with systemic immune dysfunction termed ‘‘immunosenes-

cence,’’ which includes reduced responsiveness to vaccination,
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increased infection risk, and infection severity.228 This is partly

attributed to massive inflation of CMV-specific memory T clones,

resulting in repertoire shrinkage as the T cell compartment is

skewed toward CMV reactivity.229,230 Immune imprinting or ‘‘orig-

inal antigenic sin’’ is a related mechanism described in viral infec-

tions, whereby optimal T cell responses to a viral escape variant

or different serotype are limited by pre-existing responses to the

original variant.231,232 This effect is related to preferential activation

of pre-existing, lower affinity T cell responses over priming of new

clones, butwhether this is relevant in thecontext ofneoantigen loss

during cancer evolution is unknown. Recent data suggesting that

clones reactive to subdominant neoantigens are maintained in a

hypofunctional, early differentiated state, additionally suggesting

the potential for competition between clones that shape their func-

tional capability.233

Overall, cancer genomic instability may thus result in generation

of an immune microenvironment with limited capability to support

ongoing surveillance.Several therapeuticmodalities are relevant in

this context. Progress toward the development of effective,

personalized neoantigen vaccines234–236 has been driven by ad-

vances inhigh-throughputgenomics,MHCclass I ligand identifica-

tion, predictive modeling of peptide-MHC interactions, and vac-

cine technology, particularly around delivery strategies and

adjuvants, to elicit optimal immune responses. This approach

couldbeparticularlyvaluable for tumorscharacterizedbya low-an-

tigen dose due to suppressed expression or diversification. How-

ever, tumor heterogeneity couldagainpresent a barrier to success,

because the targeting of subclones may be ineffective. Ap-

proaches targetedtoclonally expressedneoantigensshould there-

fore beprioritized, because these are less likely tobe eliminated.237

Impaired target recognition through suppression of DC
recruitment
Across studies, very few neoantigens are recognized by infil-

trating lymphocytes, even in cancers with high predicted neoan-

tigen load.238,239 This may partly be related to technological lim-

itations in neoantigen prediction and identification of reactivity.

However, studies of vaccination with neoantigen-loaded DCs in

patients with melanoma show that this modality can elicit T cell

responses that are otherwise undetectable,240 in support of im-

mune ignorance241 as a contributor to the low fraction of targeted

neoantigens, suggesting that T cell ignorance is reversible.

Cross-presenting conventional type 1 DCs (cDC1s) are central

to priming T cell responses and have emerged as a key positive

regulator of anti-cancer immunity in this regard.242

One mechanism by which cancer cells can exert control over

DC activity is through inappropriate activation of Wnt/b-catenin

signaling. This pathway is involved in multiple oncogenic pro-

cesses including proliferation,243 migration,244 and apoptosis245

and is commonly dysregulated in melanoma and other cancer

types through inactivating mutations of APC or gain-of-function

mutations of drivers including KRAS and BRAF.246 Studying

transcriptional data from T cell inflamed vs. non-inflamed mela-

noma samples, Spranger et al. found Wnt/b-catenin signaling to

be upregulated in the latter,247 a finding subsequently confirmed

across cancer types.248 Mechanistically, this is supported by

work in a genetically engineered mouse model of melanoma

with locally inducible expression of stabilized b-catenin, the

downstream mediator of canonical Wnt signaling. Elevated
b-catenin activity is associated with the near absence of T cell

infiltration, which is related to reduced CCL4 expression and

lower cDC1 recruitment.249

Subsequent work in a mouse hepatocellular cancer model

confirmed a link between b-catenin upregulation and immune

escape through defective DC recruitment,250 mediated by

reduced CCL5 expression. In keeping with this, pharmacological

Wnt inhibition is capable of enhancing T cell infiltration in mouse

tumor models.251,252

The link between CCL5 expression and cDC1 recruitment has

independently been shown, revealing a further mechanism of

cancer control over the immune TME.253 Multiple cancer types

upregulate COX enzymes, resulting in upregulation of the prosta-

noid prostaglandin E2, which is associated with immune

evasion.254 In a mouse model of melanoma, cDC1s accumulate

in COX-deficient tumors, related to loss of prostaglandin E2-

mediated inhibition of NK cell produced CCL5 and the chemoat-

tractant XCL1, that mediate cDC1 recruitment to the TME. In

addition to reduced priming and immunological ignorance, loss

of cDC1 production of chemokines including CXCL9 and

CXCL10249 may impair immune responses by reducing T cell

recruitment. The relative contributions of these mechanisms

are not well understood. Finally, although control over DC traf-

ficking may play a role in maintenance of CNS tolerance,255

whether tumors act to limit DC migration to lymph nodes is not

well characterized.

Limiting the attainment of optimal T cell effector
function
T cell fate and effector function is patterned by the integration of

multiple positive and negative environmental signals. In contrast

to the acquisition of optimal effector function, for instance in the

setting of acute viral infection, signaling conditions may alterna-

tively promote T cell differentiation into hypofunctional or sup-

pressive states.

In addition to antigen dose, the kinetics of TCR stimulation are

an important regulator of T cell functional capability, with chronic

stimulation resulting in a loss of effector function termed

‘‘exhaustion.’’256 Physiologically, exhaustion may be considered

a mechanism to sustain tolerance by limiting T cell overactivity

under certain conditions. For instance, persistent exposure to

immunogenic fetal antigens during pregnancy results in maternal

T cell exhaustion, characterized by upregulation of co-inhibitory

receptors such as PD-1.257 Blockade of PD-L1 signaling results

in fetal resorption in allogeneic mouse pregnancies,258 indicating

the importance of T cell exhaustion in maintaining gestational

tolerance in addition to cancer immune evasion.

AlongwithTCRsignaling,Tcell functionalcapability isshapedby

factors includingsignaling throughco-inhibitoryandco-stimulatory

receptors, cytokine availability, and metabolic conditions. Myeloid

populations including DCs and macrophages in addition to CD4

Tregs are key determinants of the balance between these cues.

The particular importance of Tregs to peripheral tolerance is high-

lighted by the occurrence of severe autoimmunity among patients

withmutations in the Treg transcription factor FOXP3,aspart of the

immunodysregulation polyendocrinopathy enteropathy X-linked

(IPEX) syndrome.259 Treg recruitment and activation are likewise

keymediators of cancer immuneevasion,discussedbelow.Mech-

anistically, Tregs inhibit effector T cell activity by altering local
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cytokine conditions through production of suppressive mediators

such as IL-10, TGF-b, and IL-35, which have roles in both physio-

logical tolerance and cancer immune evasion.260,261 Tregs can

additionally outcompete effectors for access to IL-2.262 Tregs

can furthermore alter local metabolic conditions through produc-

tion of the immunosuppressive metabolite adenosine via dephos-

phorylation of ATP by the ectonucleases CD38,263 CD39, and

CD73,264 with similar mechanisms described in cancer.265 Treg-

mediated immune suppression can also be achieved through

CTLA-4-mediated sequestration of DC expressed co-stimulatory

ligands CD80/CD86,266 although the significance of this specific

mechanism is less well known in the context of cancer.

Suppressive myeloid populations may similarly exert modula-

tory effects through control over the cytokine milieu and adeno-

sine production,267 in addition to tryptophan depletion and gen-

eration of nitric oxide through iNOS expression.268 Notably, the

physiological immunomodulatory role of the enzyme indole-

amine 2,3-dioxygenase (IDO) in tryptophan deletion was first

described in the context of placental trophoblast-mediated

gestational tolerance269 and later described as a suppressive

factor in cancer.270 Effector suppression can additionally be

achieved by inducing T cell death, for example, through Fas

signaling, which plays a role in maintenance of immune privilege

in the testis271 and eye28 and is also employed by suppressive

myeloid populations as a mechanism to deplete T cells in the tu-

mor microenvironment.272

Downregulationof co-stimulatory ligandsby immatureor tolero-

genic DCs can result in incomplete T cell activation and an ‘‘aner-

gic’’ hypofunctional state273 or deletion as a further contributor to

maintenance of self-tolerance at diverse sites. At the extreme, ef-

fectorsmay bediverted toward a Treg fate. This is an antigen-spe-

cific mechanism of ocular tolerance27 and may additionally be

mediated by tolerogenic plasmacytoid DCs (pDCs) physiologi-

cally274,275 and in cancer.

Finally, target cells may escape immune destruction through

expression of inhibitory factors including PD-L1, FasL, IDO,

and non-classical MHC class I molecules such as HLA-G that

have immunomodulatory properties. Physiologically, these

mechanisms are employed by placental trophoblasts tomaintain

gestational tolerance.269,276–278

Cancer mechanisms to suppress T cell effector function are

shown in Figure 3.

Antigen diversity as a driver of T cell dysfunction

Multiple studies now suggest that early differentiated T cells that

retain expression of the transcription factor TCF7 and have inter-

mediate/low expression of inhibitory receptors such as PD-1

retain fitness to sustain immune responses in chronic viral infec-

tion, autoimmunity, and cancer279–283 and mediate immuno-

therapy response in cancer.284,285 In the context of persistent

antigen encounter across disease states, these cells become

functionally exhausted with characteristic epigenetic, transcrip-

tional, and metabolic features.

In addition to aiding in the development of hallmark features of

the malignant phenotype, cancer genomic instability leads to

increaseddiversityof antigenexpression. Although simultaneously

providing targets for T cell anti-cancer function, if cancer cells are

not eliminated, antigen diversification can ultimately result in im-

mune system failure as functional, early differentiated T cells are

depletedand transition towardanexhaustedstate.Similarly, anan-
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tigen-driven process of skewing from early to later differentiated,

dysfunctional states occurs in chronic viral infection, including

HIV, and is attributed to systemicdecline in immune function.286,287

The notion that the magnitude of antigen stimulation may

correlate with immune failure was recently explored in NSCLC

within the TRACERx study. An inverse correlation was demon-

stratedbetween theabundanceof early vs. dysfunctionally differ-

entiated T cell populations and the degree of skewing in favor of

dysfunctional populations is associated with worse survival out-

comes.288 Notably, skewing occurs in association with tumor

mutational burden as a proxy for neoantigen load but only

when considering the abundance of clonal but not subclonal mu-

tations. This suggests that high-dose, persistent antigen en-

counter may not only provide fuel for both immune activation

but also eventual exhaustion and immune failure. As with antigen

lossdiscussedabove, accumulationof dysfunctional cells adapt-

ed to tissue residency may inhibit entry of new clones required to

sustain ongoing immune responses. Although it is clear that neo-

antigen-derived epitopes can contribute to tumor control, the

dual role of cancer antigens as both targets for a response and

drivers of dysfunction is an area that warrants further exploration.

Effector diversion and recruitment of suppressive

populations

Tumor-infiltrating suppressive populations are important con-

tributors to immune evasion. Tregs play multiple roles in immune

suppression, and their abundance correlates with worse cancer

outcomes.289 Depletion of this population with anti-CTLA-4 or

anti-CD25 directed antibodies is of therapeutic benefit in mouse

models.290–292 Additionally, tumor-associated inflammation pro-

motes the activation and recruitment of suppressive myeloid

populations including subsets of tumor-associated macro-

phages and heterogeneous immature myeloid cells with immune

inhibitory properties termed MDSCs.293

Cancer cells can enhance the abundance of Tregs and sup-

pressive myeloid populations through their conversion from

other cell types, in addition to cytokine-mediated expansion

and chemokine-mediated recruitment that exploits their charac-

teristic chemokine receptor profiles.

KRAS overactivity in mouse and human cancer has been

implicated in enhanced TGF-b/IL-10 production through MEK-

ERK-AP1 signaling, resulting in conversion of CD4+ T cell effec-

tors to Tregs.78,294 In general, this is subject to the activity of

other cytokines such as IL-21.295 Human cancer studies have re-

ported TCR sharing between effector and Treg populations,

although the degree of overlap is low,296 and the contribution

of Treg conversion to immune evasion is unknown.

Kras mutation may additionally enhance recruitment and

expansion of Tregs and suppressive myeloid populations.

For example, orthotopic implantation of Kras-G12D mutant

pancreatic ductal epithelial cells resulted in expansion of immu-

nosuppressive MDSCs, mediated by cancer cell production of

granulocyte-macrophage colony-stimulating factor (GM-

CSF),297 suggesting a mechanism of immune evasion early in

cancer development. Other labs have similarly reported MDSC

recruitment in KRAS-driven mouse models of pancreatic

cancer.298 In a lung cancer model, Kras-G12D mutation was

associated with recruitment of Tregs, MDSCs, and suppressive

tumor-associated macrophages.299 This was attributed to

STAT3-mediated cancer cell IL-6 expression, with antibody



Figure 3. Suppressed attainment of T cell
effector function
T cell inhibition can be caused by chronic antigen
exposure and exhaustion, plasmacytoid-mediated
regulatory T cell (Treg) expansion, recruitment and
expansion of suppressive populations by cancer
cell cytokine and chemokine production, contact-
mediated T cell inhibition, and dendritic cell hypo-
function. Genomic instability drives antigenic
diversification, high antigen load, and T cell ex-
haustion. Exhausted T cells accumulate in the TME
and may limit entry of stem-like cells required to
sustain immune responses. Plasmacytoid DCs are
recruited by CXCL12 expressed by CAFs and
cancer cells, enhanced by BRCA1 mutation. Treg
expansion is driven by pDCs through ICOSL:
ICOS interaction. Cancer cell chemokine and
cytokine signaling recruits suppressive populations
through FAK overactivity resulting in CCL1, CCL5,
and CCL7 expression resulting in Treg recruitment;
EGFR mutation resulting in CCL22 expression
and Treg recruitment; recruitment of both
myeloid-derived suppressor cells (MDSCs) and
Tregs through PTEN/TP53 mutation resulting in
CXCL17 overexpression; EGFR/TP53 or KRAS/
TP53 mutation resulting in overexpression of
CCL3, CXCL5, CCL11, and M-CSF; KRAS/PTEN
mutation resulting in CCL1 and CCL20 over-
expression; and KRAS mutation driving IL-6.
MDSC recruitment and expansion can be driven
by mutations of KRAS resulting in increased GM-
CSF production, mutation of KRAS/APC/P53
resulting in CXCL3 overproduction, PTENmutation,
and IL-1b/M-CSF production and KRAS/MYC
mutation resulting in IL-1b production. KRAS/MYC
mutation can upregulate CCL9 that promotes
tumor-associated macrophage (TAM) production
of IL-1b, and TAM recruitment can also be
increased by Wnt ligand production in TP53-
mutated cancers. Treg expansion can also occur
due to conversion from effectors through TGF-b
and IL-10 signaling downstream of KRAS
mutation. EGFR mutation additionally promotes

CD73 expression and adenosine generation that can recruit Tregs among other immune suppressive actions. Contact mediated T cell inhibition can be through
PD-L1 expression upregulated byMYC and PTENmutation with or without KRASmutation and copy-number gains. Expression of FasL can also promote contact
inhibition. Dendritic cell hypofunction can be mediated by TAMs and TGF-b/IL-10.
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blockade of this cytokine resulting in a reduced abundance of

Tregs and suppressive myeloid populations. IL-6 may enhance

proliferation of Tregs and MDSC recruitment in this context.300

CombinedKrasmutation andPten loss is additionally associated

with Treg and MDSC recruitment through NF-kB-mediated pro-

duction of chemokines including CXCL1 and CCL20.301 Kras

mutation in a mouse colon cancer model of Apc and Trp53

loss also resulted in MDSC recruitment through cancer cell

loss of IRF2 and consequent upregulation of CXCL3 that binds

MDSC expressed CXCR2.302 Finally, the kinase FAK is upregu-

lated in multiple cancer types and additionally enhanced Treg

recruitment in a squamous cell carcinoma model associated

with upregulation of chemokine-encoding genes such as Ccl1,

Ccl5, and Ccl7.303

Other cancer-driver gene mutations are implicated in expan-

sion and recruitment of suppressive populations. In addition to

an association with reduced tumor mutational burden and

limited effector T cell infiltration secondary to reduced produc-

tion of chemoattractants, EGFR mutation in human lung adeno-

carcinoma is associated with Treg enrichment via upregulation

of CCL22,123 which acts through the Treg receptor CCR4.304

EGFR mutation is also associated with a dampened immune
environment in NSCLC and cancer cell expression of NT5E (en-

coding CD73),305 driving adenosine production that enhances

Treg function among other suppressive effects. In mouse pros-

tate cancer models, enhanced recruitment of Tregs, MDSCs,

and suppressive macrophages is described in the context

of Pten/Tp53 deficiency,306 in keeping with a previous report

that Pten deficiency enhances MDSC intratumoral expansion

mediated by IL-1b and macrophage colony-stimulating factor

(M-CSF) production.307 Immune suppression due to enhanced

IL-1b expression by intratumor macrophages is also described

secondary to Trp53 loss in a breast cancer model, associated

with upregulated Wnt ligand secretion.308 Deficiency of Trp53

in the context of Kras-G12D-driven pancreatic or EGFR-mutated

lung cancermodels additionally is shown to promote recruitment

of suppressive myeloid cells associated with production of

CXCL1, CCL3, CXCL5, CCL11, and M-CSF.309

A variety of immune regulatory functions have beenattributed to

the Myc oncogene,310 including recruitment of suppressive cell

populations. Inamousemodel ofKras-G12D-mutated lungcancer

with inducible Myc expression, CCL9 upregulation resulted in

recruitment of PD-L1 expressing, suppressive macrophages

linked to T cell exclusion.311 Upregulation of IL-1b expression
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with potential effects on MDSC recruitment was additionally

observed inaMyc-mutatedmodel ofmousepancreatic cancer.312

In addition to potential effects on endothelial function and anti-

gen presentation, STK11 mutations are associated with recruit-

ment of immunosuppressive neutrophils in mouse and human

studies.313,314

Another mechanism by which cancer cells may promote Treg

expansion and activation is through effects on pDCs. These are a

heterogeneous population associated with production of type I

IFNs (IFN-a and IFN-b) with roles in both anti-tumor and anti-viral

immunity. However, pDCs also have a physiological role in main-

taining peripheral tolerance associated with Treg induction.315 In

tumors, pDC accumulation is associated with cancer cell

CXCL12 production,316 described to be upregulated in Brca

deficiency in a mouse breast cancer model and additionally

associated with MDSC recruitment.317 Abundance of pDCs is

linked with worse outcomes, 318,319 which may partly be related

to their role in driving Treg expansion, for instance through

enhanced ICOSL signaling.320–322 TGF-b- and PGE2-mediated

downregulation of pDC type I IFN production is further associ-

ated with Treg expansion in mouse323 and human studies.324

Downregulation of co-stimulatory ligands by immature or tol-

erogenic DCs can result in incomplete T cell activation and an

anergic hypofunctional state273 or deletion. In addition to effects

on pDCs resulting in Treg expansion, cancer cells can directly

and indirectly impair DC immunostimulatory function. In amouse

ovarian cancer model bearing Kras-G12D/Trp53 mutations, the

stimulatory potential of infiltrating DCs declined over time, asso-

ciated with their increased arginase activity. Loss of DC stimula-

tory function was related to cancer cell-derived TGF-b and

PGE2,325 with similar findings in a lung cancer model.326 In a

study of the role of macrophages in a chemotherapy-resistant

mouse breast cancer model, this population was a major source

of IL-10, found to inhibit DC function through reduced IL-12 pro-

duction required for optimal CD8 T cell activation.327 Tumor pro-

duced factors other than cytokines also interfere with DC func-

tion. For instance, in murine tumor models, cancer cell

production of the extracellular actin-binding protein gelsolin

was found to inhibit cDC1 cross-presentation by blocking the

DNGR-1 receptor, although the mechanisms regulating gelsolin

production are not well known.328

Direct induction of T cell death and co-inhibitory
signaling
In addition to production of soluble factors such as TGF-b, IL-10,

and adenosine that have broad immune suppressive properties,

cancer cells can directly block T cell acquisition of effector func-

tion through expression of co-inhibitory ligands and induction of

cell death. PD-L1 is expressed downstream of IFN signaling329

and is upregulated in association with tumor T cell infiltration,330

as a mechanism of acquired immune resistance. Cancer cells

can additionally upregulate PD-L1 signaling as a result of genetic

defects. Upregulation of PD-L1 is attributed toMYC overactivity

in various human cancers,331 HER2 signaling through MEK in

breast cancer,332 and KRAS activation among patients with

NSCLC333 attributed to PD-L1 mRNA stabilization.334 PD-L1 up-

regulation is observed in multiple human cancers lacking

PTEN335,336 and may additionally be upregulated due to copy-

number gains at 9p24.1337 and promoter demethylation.338
2280 Immunity 56, October 10, 2023
Cancer cells additionally upregulate FasL,339–341which canbind

to the death receptor Fas expressed by activated T cells resulting

in apoptosis through caspase 8 activation.342 The molecular

mechanisms regulating FasL overexpression are understudied.

In general, although T cell death is important inmultiple physiolog-

ical mechanisms of tolerance, the contribution of T cell death re-

ceptor signaling to cancer immune evasion is unclear. Although

studies have focused on agonizing death receptor signaling to

drive cancer cell death, antagonistic antibodies to block T cell

death have not been investigated in clinical trials. Other than Fas,

T cell death may be mediated by other tumor necrosis factor

(TNF) family receptors such as TNFR2, although this receptor

can mediate both activation and death signaling.343 Early phase

clinical trials of both antagonistic (NCT05569057) and agonistic

(NCT05238883) anti-TNFR2 antibodies are underway.

CONCLUDING REMARKS

Progress in single-cell techniques, genomics, and spatial ap-

proaches such as transcriptomics and imaging along with

computational tools to analyze and integrate these high-dimen-

sional datasets has enabled a rapid advance in our understand-

ing of the tumor microenvironment. Analysis of human samples

particularly in longitudinal and treatment studies has shed new

light on the problem of cancer immune evasion. Ongoing au-

topsy studies are in addition gaining prominence.344 The picture

that emerges is of heterogeneity at multiple levels of organization

(cell phenotypic, genomic, and spatial) and the complexity of

cellular interactions through which cancers redirect physiolog-

ical mechanisms to impose a state of immune tolerance neces-

sary for their survival. These mechanisms broadly center around

impairments of T cell tissue localization, antigen encounter, and

acquisition of effector function (Figure 4).

By analogy with peripheral tolerance, three themes emerge.

First, immune evasion results from layered, overlapping mecha-

nisms that act in concert within an individual tumor, rather than

single critical points of control, and these show tissue specificity.

Second, the final common pathways of tolerance can be ac-

quired through diverse mechanisms that are hierarchically orga-

nized and can often be traced back to key cancer cell-intrinsic

properties. Third, cancer cell evolution convergences on immune

evasion strategies that either replicate or mimic pathways of pe-

ripheral tolerance. This suggests the study of physiological toler-

ance mechanisms, and their breakdown in autoimmunity may

provide further insights into cancer immune evasion pathways.

In cancer, the notion of redundancy and tissue specificity in im-

mune evasion mechanisms is supported by the observation that

although targeting individual nodes (e.g., the inhibitory PD-1/PD-

L1 interaction) can be effective, only a subset of patients achieve

a durable remission. This suggests anunderlyingutilization ofmul-

tiple immune evasion mechanisms. Defining evasion signatures

will enable better patient classification into biologically relevant

subgroups toaid rational therapy selection. This notion is strikingly

illustrated among patientswith colorectal cancer treatedwith anti-

PD-1 immunotherapy. Although responses are rare among pa-

tients with DNA mismatch repair (MMR)-proficient tumors,19 the

relatively small subgroup of patients with defective MMR, associ-

ated with high mutational burden and neoantigen load, obtain a

high rate of response and a significant survival benefit.345



Figure 4. Pillars of physiological tolerance
and cancer immune evasion
Selected mechanisms are represented in each
category, denoting whether they relate to physio-
logical immune tolerance, cancer immune
evasion, or both. FasL, Fas ligand; CAF, cancer-
associated fibroblast; ECM, extracellular matrix;
FRC, fibroblastic reticular cell; cDC1, conventional
dendritic cell 1; Treg, regulatory T cell.
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Even in clinical trials considered to be negative, the minority of

patients who benefit may belong to subgroups that are currently

unidentified. This suggests a need for more sophisticated means

to stratify patients into therapeutically relevant groups character-

ized by immune evasion signatures.

Several studies have suggested the outlines of how evasion

signatures may be defined. For instance, by categorizing tu-

mors according to the pattern of T cell infiltration,35 a combina-

tion of PD-L1 expression and T cell infiltration,346 tumor muta-

tional burden and T cell infiltration,347 or the evaluation of

parameters including immunogenicity, metabolic state, and

inhibitory features among others.348 A framework considering

T cell localization, antigen recognition, and acquisition of

effector function along with subprocesses within these cate-

gories may be helpful.
A major barrier to translation is that

in contrast to the capabilities of

modern high-dimensional and single-cell

approaches to interrogating sample

biology, routine diagnostics are limited

by tissue sample availability and the rela-

tively low-resolution analysis techniques

currently employed. For example, im-

mune evasion mechanisms evolve over

time as demonstrated by the acquisition

of treatment resistance, but same site

repeat biopsies are challenging in the

routine setting. Furthermore, analysis of

fresh tissue at a single-cell level is

impractically time-consuming and

resource intensive. Finally, routine anal-

ysis of more readily available histopathol-

ogy and radiology data generally involves

visual assessment with limited quantifi-

cation.

These factors limit the resolution with

which immune escape patterns and

their underlying mechanisms can be

identified and tracked over time. Ad-

vances in artificial intelligence applied

to routinely collected data, for instance

in the fields of digital pathology349 and

radiomics, along with the development

of infrastructure to support genomic

medicine, will offer new tools to

enhance the capability of routine diag-

nostics. A key area of future research

is how to leverage and integrate these

advances to enable higher-resolution
characterization of cancer immune evasion mechanisms to

enhance routine care.

This will require clinical trials to deeply characterize known

mechanisms using existing high-dimensional approaches, along

with integrated analysis of paired routinely gathered data to

generate multi-modal signatures of actionable immune evasion

phenotypes. The importance of intratumoral heterogeneity is

increasingly well recognized and should be addressed as part of

these efforts. Patient subclassification in this manner will guide

rational therapy selection and provide an expandable framework

for futureclinical trials, for instanceaspart ofmulti-armmulti-stage

designs capable of testing a number of interventions in different

subgroups in an efficient manner.350

Despite huge progress in our understanding of immune

evasion mechanisms within the complex ecosystem of the
Immunity 56, October 10, 2023 2281
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TME, it is striking that further translational progress remains rela-

tively limited in the era of checkpoint immunotherapy. Although a

deeper mechanistic understanding has led to the development

of agents with a high degree of target specificity, arguably the

greatest therapeutic advance has come from combining broadly

acting cytotoxic chemotherapy and checkpoint immunotherapy

for patients with lung,351 breast,18 and upper gastrointestinal

tract malignancies.352 The mechanisms underlying why this

combination is effective are incompletely understood, and

chemotherapy hasmultiple potential impacts on cancer-immune

interactions. One possible explanation is that chemotherapy has

a lymphodepleting effect on intratumor immune cell populations,

allowing entry and expansion of new clones226 driven by check-

point immunotherapy. Alternatively, chemotherapy may enc-

ourage immunogenic cell death,353 resulting in enhanced prim-

ing or increase or alter neoantigen expression on MHC

class I.354 Finally, chemotherapy may have immunomodulatory

effects by acting on Tregs,355 MDSCs,356 and DCs.357 Ch-

emotherapy-induced perturbation of multiple pathways may be

relevant to the enhanced efficacy of chemoimmunotherapy

combinations, in the context of overlapping and redundant im-

mune evasion mechanisms.

Although current treatment protocols have combined pre-ex-

isting chemotherapy regimens with checkpoint immunotherapy,

future work should focus on determining the optimal cytotoxic

agents for combination based on their modulatory effects, along

with work to optimize their dosage,357 frequency, and duration of

therapy to enhance potential synergistic effects and minimize

toxicities of combination therapy. Recent advances in clinical

trial design to determine optimal treatment parameters should

aid these efforts.358,359

In general, immune evasion mechanisms are hierarchically

organized: for example, oncogene activation can drive expres-

sion of chemokines that recruit suppressive cell populations re-

sulting in inhibition of T cell activity through the activity of key

effector molecules. Which level is most sensitive to therapeutic

intervention with targeted agents and how many nodes need

to be targeted? Driver mutations are appealing targets in this re-

gard, as top-level central nodes are implicated in multiple im-

mune evasion mechanisms. However, progress toward

improving therapeutic outcomes by combining small molecule

inhibitors with checkpoint immunotherapy has been limited.

For instance, multiple early phase studies of EGFR inhibitors

plus checkpoint immunotherapy agents including anti-PD-L1

and anti-PD-1-directed agents have shown response rates and

progression-free survival broadly similar to what is observed

with EGFR inhibitors alone,360 suggesting redundant evasion

mechanisms as one explanation. Alternatively, once the TME is

programmed, the suppressive state is likely maintained by other

factors, and targeting oncogenic signaling may no longer be

effective to reverse this. Trials exploring combinations of PI3Kb

inhibitors with anti-PD-1 agents for PTEN-mutated can-

cers361,362 and KRAS-G12C inhibitors such as adagrasib or so-

torasib plus anti-PD-1 or anti-PD-L1363 are ongoing and will

hopefully shed light on this.

Future progress may come from combinations that target key

adverse features of the suppressive TME, for instance, the abun-

dance and activity of immune inhibitory cell populations. Tregs

are one particularly attractive target in this regard. This popula-
2282 Immunity 56, October 10, 2023
tion may be targeted with agents that interfere with their chemo-

kine receptor-mediated recruitment,364 the conversion from ef-

fectors for instance through TGF-b signaling,365 and functional

activity for instance by blocking adenosine production or

signaling.265 The effects of anti-CTLA-4 may partly be mediated

through intratumor Treg depletion,291 and a depleting anti-CD25

antibody that exploits the potential for this approach290,292 is

currently in clinical trials. The strategy of Treg depletion is partic-

ularly attractive in combination with modalities that enhance

T cell infiltration because these approaches may equally recruit

this population. However, it is likely that combinations of several

agents may eventually be required.

Overall, translation of key findings to clinical practice will likely

require an approach that accounts for the particular pattern of

evasion mechanisms employed by each tumor, considering

microenvironmental heterogeneity and its evolution over time

and with therapy. Although targeting individual nodes may be

effective in selected subgroups, negative immune regulatory

networks are likely sustained with a high degree of redundancy,

and targeting more broadly acting processes or use of multiple

drug combinations may be required. Such approaches will

require careful consideration of toxicities. Better patient stratifi-

cation tools are required, leveraging routinely collected data in

the context of modern trial designs that can efficiently test mul-

tiple hypotheses in platform studies.
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Mimoun, C., Bercovici, N., Guérin, M., Biton, J., Ouakrim, H., et al.
(2018). Macrophages impede CD8 T cells from reaching tumor cells
and limit the efficacy of anti–PD-1 treatment. Proc. Natl. Acad. Sci.
USA 115, E4041–E4050. https://doi.org/10.1073/pnas.1720948115.

99. Karin, N. (2020). CXCR3 ligands in cancer and autoimmunity, chemoat-
traction of effector T cells, and beyond. Front. Immunol. 11, 976.
https://doi.org/10.3389/fimmu.2020.00976.

100. Harlin, H., Meng, Y., Peterson, A.C., Zha, Y., Tretiakova, M., Slingluff, C.,
McKee, M., and Gajewski, T.F. (2009). Chemokine expression in mela-
2286 Immunity 56, October 10, 2023
noma metastases associated with CD8+ T-cell recruitment. Cancer
Res. 69, 3077–3085. https://doi.org/10.1158/0008-5472.CAN-08-2281.

101. Zumwalt, T.J., Arnold, M., Goel, A., and Boland, C.R. (2015). Active
secretion of CXCL10 and CCL5 from colorectal cancer microenviron-
ments associates with granzymeB+ CD8+ T-cell infiltration. Oncotarget
6, 2981–2991. https://doi.org/10.18632/oncotarget.3205.

102. Chow, M.T., Ozga, A.J., Servis, R.L., Frederick, D.T., Lo, J.A., Fisher,
D.E., Freeman, G.J., Boland, G.M., and Luster, A.D. (2019). Intratumoral
activity of the CXCR3 chemokine system is required for the efficacy of
anti-PD-1 therapy. Immunity 50, 1498–1512.e5. https://doi.org/10.
1016/j.immuni.2019.04.010.

103. Mikucki, M.E., Fisher, D.T., Matsuzaki, J., Skitzki, J.J., Gaulin, N.B., Mu-
hitch, J.B., Ku, A.W., Frelinger, J.G., Odunsi, K., Gajewski, T.F., et al.
(2015). Non-redundant requirement for CXCR3 signalling during tumori-
cidal T-cell trafficking across tumour vascular checkpoints. Nat. Com-
mun. 6, 7458.

104. Pelka, K., Hofree, M., Chen, J.H., Sarkizova, S., Pirl, J.D., Jorgji, V., Bej-
nood, A., Dionne, D., Ge, W.H., Xu, K.H., et al. (2021). Spatially organized
multicellular immune hubs in human colorectal cancer. Cell 184, 4734–
4752.e20. https://doi.org/10.1016/J.CELL.2021.08.003.

105. Gaglia, G., Burger, M.L., Ritch, C.C., Rammos, D., Dai, Y., Crossland,
G.E., Tavana, S.Z., Warchol, S., Jaeger, A.M., Naranjo, S., et al. (2023).
Lymphocyte networks are dynamic cellular communities in the immuno-
regulatory landscape of lung adenocarcinoma. Cancer Cell 41, 871–
886.e10. https://doi.org/10.1016/j.ccell.2023.03.015.

106. Chen, J.H., Nieman, L.T., Spurrell, M., Jorgji, V., Richieri, P., Xu, K.H.,
Madhu, R., Parikh,M., Zamora, I., Mehta, A., et al. (2023). Spatial analysis
of human lung cancer reveals organized immune hubs enriched for stem-
like CD8 T cells and associated with immunotherapy response. https://
doi.org/10.1101/2023.04.04.535379.

107. Litchfield, K., Reading, J.L., Puttick, C., Thakkar, K., Abbosh, C., Ben-
tham, R., Watkins, T.B.K., Rosenthal, R., Biswas, D., Rowan, A., et al.
(2021). Meta-analysis of tumor- and T cell-intrinsic mechanisms of sensi-
tization to checkpoint inhibition. Cell 184, 596–614.e14. https://doi.org/
10.1016/j.cell.2021.01.002.

108. Abou El Hassan, M., Huang, K., Eswara, M.B.K., Zhao, M., Song, L., Yu,
T., Liu, Y., Liu, J.C., McCurdy, S., Ma, A., et al. (2015). Cancer cells hijack
PRC2 to modify multiple cytokine pathways. PLoS One 10, e0126466.
https://doi.org/10.1371/journal.pone.0126466.

109. Nagarsheth, N., Peng, D., Kryczek, I., Wu, K., Li, W., Zhao, E., Zhao, L.,
Wei, S., Frankel, T., Vatan, L., et al. (2016). PRC2 epigenetically silences
Th1-type chemokines to suppress effector T-cell trafficking in colon can-
cer. Cancer Res. 76, 275–282. https://doi.org/10.1158/0008-5472.CAN-
15-1938.

110. Peng, D., Kryczek, I., Nagarsheth, N., Zhao, L., Wei, S., Wang, W., Sun,
Y., Zhao, E., Vatan, L., Szeliga, W., et al. (2015). Epigenetic silencing of
TH1-type chemokines shapes tumour immunity and immunotherapy.
Nature 527, 249–253. https://doi.org/10.1038/nature15520.

111. Zingg, D., Arenas-Ramirez, N., Sahin, D., Rosalia, R.A., Antunes, A.T.,
Haeusel, J., Sommer, L., and Boyman, O. (2017). The histone methyl-
transferase Ezh2 controls mechanisms of adaptive resistance to tumor
immunotherapy. Cell Rep. 20, 854–867. https://doi.org/10.1016/j.cel-
rep.2017.07.007.

112. Li, J., Wang, W., Zhang, Y., Cie�slik, M., Guo, J., Tan, M., Green, M.D.,
Wang, W., Lin, H., Li, W., et al. (2020). Epigenetic driver mutations in
ARID1A shape cancer immune phenotype and immunotherapy. J. Clin.
Invest. 130, 2712–2726. https://doi.org/10.1172/JCI134402.

113. Dang, L., White, D.W., Gross, S., Bennett, B.D., Bittinger, M.A., Driggers,
E.M., Fantin, V.R., Jang, H.G., Jin, S., Keenan, M.C., et al. (2009). Can-
cer-associated IDH1 mutations produce 2-hydroxyglutarate. Nature
462, 739–744. https://doi.org/10.1038/nature08617.

114. Xu, W., Yang, H., Liu, Y., Yang, Y., Wang, P., Kim, S.H., Ito, S., Yang, C.,
Wang, P., Xiao, M.-T., et al. (2011). Oncometabolite 2-hydroxyglutarate is
a competitive inhibitor of a-ketoglutarate-dependent dioxygenases.
Cancer Cell 19, 17–30. https://doi.org/10.1016/J.CCR.2010.12.014.

115. Weenink, B., Draaisma, K., Ooi, H.Z., Kros, J.M., Sillevis Smitt, P.A.E.,
Debets, R., and French, P.J. (2019). Low-grade glioma harbors few

https://doi.org/10.1073/pnas.1320318110
https://doi.org/10.1073/pnas.1320318110
https://doi.org/10.1073/pnas.1416498111
https://doi.org/10.1073/pnas.1416498111
https://doi.org/10.1158/2326-6066.CIR-19-0349
https://doi.org/10.1158/2326-6066.CIR-19-0349
https://doi.org/10.1158/2159-8290.CD-19-0094
https://doi.org/10.1038/ng.3818
https://doi.org/10.1038/ng.3818
https://doi.org/10.1038/s41591-018-0096-5
https://doi.org/10.1038/s41591-018-0096-5
https://doi.org/10.1126/science.1195300
https://doi.org/10.1126/science.1195300
https://doi.org/10.1016/j.ccr.2014.04.005
https://doi.org/10.1016/j.ccr.2014.04.005
https://doi.org/10.1097/MPA.0000000000000458
https://doi.org/10.1136/jitc-2020-002068
https://doi.org/10.1200/JCO.2020.38.4_suppl.638
https://doi.org/10.1073/pnas.1720948115
https://doi.org/10.3389/fimmu.2020.00976
https://doi.org/10.1158/0008-5472.CAN-08-2281
https://doi.org/10.18632/oncotarget.3205
https://doi.org/10.1016/j.immuni.2019.04.010
https://doi.org/10.1016/j.immuni.2019.04.010
http://refhub.elsevier.com/S1074-7613(23)00409-0/sref103
http://refhub.elsevier.com/S1074-7613(23)00409-0/sref103
http://refhub.elsevier.com/S1074-7613(23)00409-0/sref103
http://refhub.elsevier.com/S1074-7613(23)00409-0/sref103
http://refhub.elsevier.com/S1074-7613(23)00409-0/sref103
https://doi.org/10.1016/J.CELL.2021.08.003
https://doi.org/10.1016/j.ccell.2023.03.015
https://doi.org/10.1101/2023.04.04.535379
https://doi.org/10.1101/2023.04.04.535379
https://doi.org/10.1016/j.cell.2021.01.002
https://doi.org/10.1016/j.cell.2021.01.002
https://doi.org/10.1371/journal.pone.0126466
https://doi.org/10.1158/0008-5472.CAN-15-1938
https://doi.org/10.1158/0008-5472.CAN-15-1938
https://doi.org/10.1038/nature15520
https://doi.org/10.1016/j.celrep.2017.07.007
https://doi.org/10.1016/j.celrep.2017.07.007
https://doi.org/10.1172/JCI134402
https://doi.org/10.1038/nature08617
https://doi.org/10.1016/J.CCR.2010.12.014


ll
OPEN ACCESSReview
CD8 T cells, which is accompanied by decreased expression of chemo-
attractants, not immunogenic antigens. Sci. Rep. 9. https://doi.org/10.
1038/s41598-019-51063-6.

116. Richardson, L.G., Choi, B.D., and Curry, W.T. (2019). (R)-2-Hydroxy-
glutarate drives immune quiescence in the tumor microenvironment of
IDH-mutant gliomas. Transl. Cancer Res. 8, S167–S170. https://doi.
org/10.21037/tcr.2019.01.08.

117. Kohanbash, G., Carrera, D.A., Shrivastav, S., Ahn, B.J., Jahan, N., Ma-
zor, T., Chheda, Z.S., Downey, K.M., Watchmaker, P.B., Beppler, C.,
et al. (2017). Isocitrate dehydrogenase mutations suppress STAT1 and
CD8+ T cell accumulation in gliomas. J. Clin. Invest. 127, 1425–1437.
https://doi.org/10.1172/JCI90644.

118. Dangaj, D., Bruand, M., Grimm, A.J., Ronet, C., Barras, D., Duttagupta,
P.A., Lanitis, E., Duraiswamy, J., Tanyi, J.L., Benencia, F., et al. (2019).
Cooperation between constitutive and inducible chemokines enables
T cell engraftment and immune attack in solid tumors. Cancer Cell 35,
885–900.e10. https://doi.org/10.1016/j.ccell.2019.05.004.

119. Brennan, K., Shin, J.H., Tay, J.K., Prunello, M., Gentles, A.J., Sunwoo,
J.B., and Gevaert, O. (2017). NSD1 inactivation defines an immune
cold, DNA hypomethylated subtype in squamous cell carcinoma. Sci.
Rep. 7, 17064. https://doi.org/10.1038/s41598-017-17298-x.

120. Gainor, J.F., Shaw, A.T., Sequist, L.V., Fu, X., Azzoli, C.G., Piotrowska,
Z., Huynh, T.G., Zhao, L., Fulton, L., Schultz, K.R., et al. (2016). EGFRmu-
tations and ALK rearrangements are associated with low response rates
to PD-1 pathway blockade in non-small cell lung cancer: A retrospective
analysis. Clin. Cancer Res. 22, 4585–4593. https://doi.org/10.1158/
1078-0432.CCR-15-3101.

121. Lee, C.K., Man, J., Lord, S., Links, M., Gebski, V., Mok, T., and Yang,
J.C.-H. (2017). Checkpoint inhibitors in metastatic EGFR-mutated non-
small cell lung cancer-A meta-analysis. J. Thorac. Oncol. 12, 403–407.
https://doi.org/10.1016/j.jtho.2016.10.007.

122. Thorsson, V., Gibbs, D.L., Brown, S.D., Wolf, D., Bortone, D.S., Ou Yang,
T.-H., Porta-Pardo, E., Gao, G.F., Plaisier, C.L., Eddy, J.A., et al. (2018).
The immune landscape of cancer. Immunity 48, 812–830.e14. https://
doi.org/10.1016/j.immuni.2018.03.023.

123. Sugiyama, E., Togashi, Y., Takeuchi, Y., Shinya, S., Tada, Y., Kataoka, K.,
Tane, K., Sato, E., Ishii, G., Goto, K., et al. (2020). Blockade of EGFR im-
proves responsiveness to PD-1 blockade in EGFR-mutated non-small
cell lung cancer. Sci. Immunol. 5, eaav3937. https://doi.org/10.1126/
sciimmunol.aav3937.

124. Korpal, M., Puyang, X., Jeremy Wu, Z., Seiler, R., Furman, C., Oo, H.Z.,
Seiler, M., Irwin, S., Subramanian, V., Julie Joshi, J., et al. (2017). Evasion
of immunosurveillance by genomic alterations of PPARg/RXRa in
bladder cancer. Nat. Commun. 8, 103. https://doi.org/10.1038/s41467-
017-00147-w.

125. Simon, G., Subbiah, V., Rosen, L., Lenz, H.-J., Park, H., Patel, M., Miles,
D., Wallis, S., Evilevitch, V., Krige, D., et al. (2022). 762 First-in-human
phase 1a study of NG-641, a tumour-selective vector expressing a
FAP-TAc bispecific antibody and immune enhancer module, in patients
with metastatic/advanced epithelial tumours (STAR). https://doi.org/10.
1136/jitc-2022-sitc2022.0762.

126. Gandhi, S., Opyrchal, M., Ford, C., Slomba, R., Quinn, M., O’Connor, T.,
Levine, E., and Kalinski, P. (2022). 547 Safety and efficacy of de-esca-
lated neoadjuvant chemoimmunotherapy of triple negative breast cancer
(TNBC) using chemokine-modulating regimen (rintatolimod, IFN-a2b,
celecoxib). In Regular and Young Investigator Award Abstracts (BMJ
Publishing Group Ltd), p. A572. https://doi.org/10.1136/jitc-2022-
SITC2022.0547.

127. Uzhachenko, R.V., Bharti, V., Ouyang, Z., Blevins, A., Mont, S., Saleh, N.,
Lawrence, H.A., Shen, C., Chen, S.-C., Ayers, G.D., et al. (2021). Meta-
bolic modulation by CDK4/6 inhibitor promotes chemokine-mediated
recruitment of T cells into mammary tumors. Cell Rep. 35, 108944.
https://doi.org/10.1016/j.celrep.2021.108944.

128. Yuan, Y., Lee, J.S., Yost, S.E., Frankel, P.H., Ruel, C., Egelston, C.A.,
Guo, W., Padam, S., Tang, A., Martinez, N., et al. (2021). Phase I/II trial
of palbociclib, pembrolizumab and letrozole in patients with hormone re-
ceptor-positive metastatic breast cancer. Eur. J. Cancer 154, 11–20.
https://doi.org/10.1016/J.EJCA.2021.05.035.
129. Egelston, C., Guo, W., Yost, S., Lee, J.S., Rose, D., Avalos, C., Ye, J.,
Frankel, P., Schmolze, D., Waisman, J., et al. (2021). Pre-existing effector
T-cell levels and augmented myeloid cell composition denote response
to CDK4/6 inhibitor palbociclib and pembrolizumab in hormone recep-
tor-positive metastatic breast cancer. J. Immunother. Cancer 9,
e002084. https://doi.org/10.1136/jitc-2020-002084.

130. Cebrián, C., Zucca, F.A., Mauri, P., Steinbeck, J.A., Studer, L., Scherzer,
C.R., Kanter, E., Budhu, S., Mandelbaum, J., Vonsattel, J.P., et al. (2014).
MHC-I expression renders catecholaminergic neurons susceptible to
T-cell-mediated degeneration. Nat. Commun. 5, 3633. https://doi.org/
10.1038/ncomms4633.

131. Wherry, E.J., Puorro, K.A., Porgador, A., and Eisenlohr, L.C. (1999). The
induction of virus-specific CTL as a function of increasing epitope
expression: responses rise steadily until excessively high levels of
epitope are attained. J. Immunol. 163, 3735–3745. https://doi.org/10.
4049/jimmunol.163.7.3735.

132. Kurts, C., Sutherland, R.M., Davey, G., Li, M., Lew, A.M., Blanas, E., Car-
bone, F.R., Miller, J.F.A.P., and Heath, W.R. (1999). CD8 T cell ignorance
or tolerance to islet antigens depends on antigen dose. Proc. Natl. Acad.
Sci. USA 96, 12703–12707. https://doi.org/10.1073/pnas.96.22.12703.

133. Zinkernagel, R.M. (2000). Localization dose and time of antigens deter-
mine immune reactivity. discussion 257–344. Semin. Immunol. 12,
163–171. https://doi.org/10.1006/smim.2000.0253.

134. Spiotto, M.T., Yu, P., Rowley, D.A., Nishimura, M.I., Meredith, S.C., Ga-
jewski, T.F., Fu, Y.-X., and Schreiber, H. (2002). Increasing tumor antigen
expression overcomes ‘‘ignorance’’ to solid tumors via crosspresenta-
tion by bone marrow-derived stromal cells. Immunity 17, 737–747.
https://doi.org/10.1016/S1074-7613(02)00480-6.

135. Spiotto, M.T., Rowley, D.A., and Schreiber, H. (2004). Bystander elimina-
tion of antigen loss variants in established tumors. Nat. Med. 10,
294–298. https://doi.org/10.1038/nm999.

136. Hawiger, D., Inaba, K., Dorsett, Y., Guo, M., Mahnke, K., Rivera, M., Rav-
etch, J.V., Steinman, R.M., and Nussenzweig,M.C. (2001). Dendritic cells
induce peripheral T cell unresponsiveness under steady state conditions
in vivo. J. Exp. Med. 194, 769–779. https://doi.org/10.1084/jem.194.
6.769.

137. Forrester, J.V., Xu, H., Kuffová, L., Dick, A.D., and McMenamin, P.G.
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