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Abstract

To improve the prediction of weather and climate models there is a need for the accurate computation of the single-
scattering properties of randomly oriented complex atmospheric ice crystals. Here, we apply BEM to calculate these
properties in the microwave and sub-millimetre region of the electromagnetic spectrum for the purposes of all-sky data
assimilation. The properties are calculated at the frequencies of 50, 183, 243 and 664 GHz for the temperatures of -83◦C,
-43◦C, and -3◦C. The particles are assumed to be complex aggregates of bullet rosettes with maximum dimensions that
vary between 10 and 10, 000µm. Moreover, the rosette-aggregates are constructed to follow an observed mass-dimension
power law that is consistent with an ice microphysics scheme in a weather model. To solve efficiently the BEM linear
matrix equation, random orientation is simulated by fixing the particle with respect to the incident plane wave with
the latter rotated about the particle. This representation is shown to replicate T-matrix solutions found for hexagonal
columns to within a few percent for size parameters between 0.05 and 10. We further show that we can simulate the
single-scattering properties with errors less than a few percent, using only 14 and up to 302 incident waves for the
smallest and largest size parameters respectively. The errors grow larger only for some of the largest size parameters
considered. We find that BEM can be applied to compute accurately the scattering properties of complex ice aggregates
of importance to weather and climate models.

Keywords: Electromagnetic scattering; Absorption; Microwave; Remote sensing; Weather; Climate; Boundary Element
Method

1. Introduction

To improve Numerical Weather Prediction (NWP) mod-
els it is generally considered necessary to assimilate all-sky
microwave radiances into those models to ameliorate their
predictive quality of weather events [1, 2]. There is par-
ticular interest in all-sky microwave data assimilation at
the moment owing to the launch in about 2025 of the Ice
Cloud Imager (ICI), as part of the next generation of Eu-
ropean polar orbiting weather satellites, which will pro-
vide daily observations of cloud ice [3]. The novelty of
the ICI instrument is that it will consist of cloud ice sens-
ing frequencies between 183 and 664 GHz, and will be the
first operational weather instrument to have cloud sens-
ing frequencies beyond 200 GHz, inclusive of full polari-
sation measurements at 243 and 664 GHz. However, the
process of using cloudy radiance observations provided by
space-based instruments such as ICI requires knowledge
about the macrophysics and microphysics properties of ice
clouds, as well as the scattering and absorption proper-
ties of the cloud ice hydrometeors [4, 5, 6, 1, 7, 8]. This
knowledge requirement is problematic as it is well-known

that cloud ice hydrometeors consist of non-spherical par-
ticles that can vary significantly in terms of their shapes
and sizes [9, 10, 11, 12]. Therefore, to take advantage of
the observations provided by ICI it is necessary to develop
electromagnetic methods that can be applied to the vari-
ety of hydrometeor shapes and sizes that occur in cirrus
and ice cloud so their single-scattering properties can be
efficiently solved for.

To this end, a number of different approaches are used
by the atmospheric physics community for the simulation
of electromagnetic dielectric scattering, depending on the
size parameter of the problem. For particles of small
to moderate size parameter there are “numerically ex-
act” methods [13] such as the Discrete Dipole Approxima-
tion (DDA) [14, 15], the Finite-Difference Time-Domain
(FDTD) [16, 17, 18] and Pseudo-Spectral Time-Domain
(PSTD) [19] methods, and the Extended Boundary Condi-
tion [20, 21, 22] and Invariant Imbedded [23, 24] T-matrix
methods. For particles of large size parameter one can use
“approximate” high-frequency methods such as Geometric
Optics/ray tracing and the Kirchhoff approximation (see
e.g. [25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36]).
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Given the range of the sensing frequencies of the ICI, a
numerical method that can handle both low and high fre-
quencies (or small and large size parameter problems re-
spectively) is of interest and the boundary element method
(BEM) is appealing in this case as it poses no restrictions
on the shape of the scatterer, apart from Lipschitz continu-
ity. BEM is a “numerically exact” method that allows us to
solve certain types of partial differential equations (PDEs)
in homogeneous bounded/unbounded media. It involves
reformulating the PDE in terms of integral equations on
the boundary of the object of interest, the scatterer. The
boundary of the scatterer is subsequently discretised and
the boundary integral equation (BIE) is transformed into
a system of linear equations which can be solved using
some direct or iterative method. Depending on the prob-
lem of interest, the solution can then be extended from
the boundary to the interior, exterior or far field of the
scatterer via representation formulae.

There are a number of advantages to using BEM com-
pared to other numerical methods. By reformulating the
PDE as a system of boundary integral equations one re-
duces the dimensionality of the problem from a 3D scat-
terer to a 2D manifold (generally speaking of an arbitrary
domain - the scatterers studied here are piecewise differ-
entiable). The discretisation of the 2D manifold is faster
and easier to achieve compared to that of a 3D domain
and leads to a smaller system of equations that needs to
be solved. At the same time, BEM automatically incor-
porates the radiation condition at infinity. On the other
hand, the discretisation of BEM leads to matrices that
are usually dense, requiring fast approximation methods
such as H-matrices [37], H2-matrices [38, 39, 40] or Fast
Multipole Methods (FMM) [41, 42, 43]. However, BEM
can handle complicated geometries making it appealing
for scattering problems by complex domains, such as those
that occur in cirrus and ice cloud.

The PMCHWT formulation (due to Poggio, Miller,
Chang, Harrington, Wu and Tsai [44, 45, 46, 47]), is one
of the most commonly used BIE formulations for the sim-
ulation of electromagnetic scattering by dielectric objects
[48, 49, 50, 51, 52, 53, 54, 55] and is the formulation used
here. However, it leads to ill-conditioned linear systems
under Galerkin discretisation, and Calderón precondition-
ing [48, 49, 50, 51, 54, 55], an operator-based approach [56],
can be used to remedy this. To obtain a stable discretisa-
tion of the operator products that arise in this approach,
the use of a dual mesh defined on a barycentrically refined
grid needs to be considered [57], increasing memory con-
sumption. Furthermore, to capture the oscillatory solution
of the electromagnetic waves, the mesh needs to be re-
fined with respect to frequency [52], making the simulation
of high-frequency problems very expensive until recently.
New developments accelerating Calderón preconditioning
[54, 55], that reduced computational time and memory,
have alleviated the otherwise prohibitive cost allowing us
to consider high frequency scattering by realistic complex
shaped domains.

The boundary element method has already started get-
ting attention in the atmospheric physics community, but
without the use of preconditioning and accelerating tech-
niques, applications of BEM were restricted to simple do-
mains (e.g. [58, 59, 60]) or small size parameters (e.g.
[52, 53]). With the use of the accelerating techniques
[54, 55] that minimise memory consumption, assembly
time and solve time, applications of BEM on oriented
complex-shaped ice-crystals of higher size parameters (up
to 70) were considered in [54, 55]. Complex aggregates
consisting of several monomers with little or zero separa-
tion touching at single points (for example bullet rosettes
and aggregates of those) were treated as a multi-particle
scattering problem taking advantage of reduced versions of
Calderón preconditioners that were better suited for multi-
particle configurations instead of treating the aggregate as
a single scatterer [54]. The accelerating methods of [55]
have demonstrated a 99% reduction in memory cost and at
least 80% in computation time, for the highest frequency
considered (664 GHz). Using the accelerating techniques
of [54, 55] we are now able to apply BEM to compute the
single-scattering properties (SSPs) of randomly-oriented
budding rosettes and rosette aggregates, at a range of max-
imum dimensions and frequencies.

A number of microwave-based SSPs of randomly ori-
ented ice crystals available for utilisation in NWP models
and in remote-sensing exist. For instance, the SSPs pro-
vided by Liu [61] and Hong et al. [62] used the DDA
method, which at the time limited either the range in fre-
quency or temperature that those studies could consider.
In the case of [61], frequencies beyond 340 GHz were not
considered, and in the case of [62] a single temperature of -
30◦C was assumed. In contrast to this, [61] considered four
temperatures between -40 and 0◦C. However, both stud-
ies consider a broad range of ice particle shapes ranging
from solid hexagonal columns and plates, hollow hexag-
onal columns, three-dimensional bullet rosettes, sector
snowflake models, and aggregates of hexagonal columns,
among others.

More recent microwave SSPs of randomly oriented non-
spherical ice crystals have been provided by Ding et al.
[63] who applied the invariant imbedding T-matrix and
Improved Geometric Optics methods at the smaller and
larger size parameters to calculate the SSPs, respectively.
These methods were applied to solid and hollow hexagonal
columns, solid plates, solid and hollow bullet rosettes, and
aggregates of plates and columns, among others, to solve
for their SSPs. The frequencies and maximum dimensions
of ice crystals considered in this study range from 1 to 874
GHz, and between 2 and 10000µm, respectively, where the
maximum dimensions of the ice crystals are distributed in
twenty four size bins. The SSPs were calculated assuming
four temperature values between -113 and -3◦C.

Another set of non-spherical ice SSPs for application in
NWP and remote-sensing has been put forward by Eriks-
son et al. [64], which includes the full Stokes vector be-
tween the frequencies of 1 and 886 GHz for three temper-
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ature values of -83◦C, -43◦C, and -3◦C. In [64], it was con-
cluded that three temperature values were sufficient for in-
terpolation between the coldest and warmest temperature
values to obtain SSPs at all other possible temperatures.
This set of SSPs consist of thirty four types of particle as-
suming random orientation using the DDA alone to com-
pute the SSPs of all the particle models between the sizes
of 10 and up to 20000µm for some of the ice crystal mod-
els but not all, comprising of about 30 sizes per ice crystal
shape. The ice crystal shapes considered are both single
and aggregated ice crystals. The single ice crystal shapes
consist of seven types of hexagonal columns and plates
and six varieties of bullet rosettes, among others. The ag-
gregated ice crystals consist of nine different variations of
ice crystal aggregations, including the dendrite model of
[65]. The database of [64] has already been implemented
by Moradi et al. [66] into an all-sky radiative transfer for-
ward operator for data assimilation in numerical weather
prediction, building on earlier work by Stegmann et al.
[67] and Tang et al. [68].

The distinguishing feature of this set ([64]) of SSPs to
that proposed by [62] is that the ice crystal aggregates
follow differing mass-dimension power laws and possess
fractal-like behaviour so that the mass of the ice crystal
is proportional to its maximum dimension raised to the
power of approximately two. It is now well-known that
the mass of ice crystal aggregations ought to follow such a
power law as found in the studies by [69, 70, 71, 72, 73, 12].
However, in the observational aircraft-based closure study
by Fox et al. [8] it was shown that no one ice crys-
tal model proposed by [64] could replicate the simulta-
neous microwave and sub-millimetre observations between
183 and 664 GHz obtained from over a few cases of mid-
latitude cirrus. This closure study demonstrates that even
if the masses of the ice crystal models were constrained
by in-situ measurements of the bulk ice mass, the particle
size distributions, and habits as a function of distance from
the cloud top it is still very difficult to replicate the mea-
surements from across the microwave and sub-millimetre
spectrum using current microwave SSPs.

In an attempt to circumvent the need for SSPs of many
differing ice crystal types, which for each size of such a
variety of habits is onerous to compute, the work of [7]
proposed an alternative approach. In that study, it was
shown that a three-component model of ice cloud bounded
the SSPs of the aggregate ice crystals and hollow bullet
rosettes from the Ding et al. [63] database between the
frequencies of 89 and 874 GHz. As the three-component
model bounded the SSPs of a diverse range of ice crys-
tal masses, it was argued that this simpler approach could
be sufficient to replicate microwave observations such as
those provided by Fox et al. [8]. More recently, Sun et al.
[74] have proposed to represent the ensemble of shapes by
superspheroids to act as surrogates for the real ice crys-
tals that occur in the Earth’s atmosphere. This is done
by specifying a shape index for the superspheroid, which
is defined as the ratio of the volume-to-projected area of

the real ice crystal. The study shows that at thirty three
microwave bands between 3 and 640 GHz, and at three
important bands in the visible and infrared, the super-
spheroid approximation can mimic the SSPs of realistic
ice crystals to within reasonable accuracy as long as the
ice aggregates are compact rather than sparse. It is yet
to be seen if approximations such as those proposed by
the two previous studies can simulate microwave and sub-
millimetre observations to within reasonable accuracy rel-
ative to alternative more complex models.

As found by [8], using present microwave SSPs it has
not been possible to replicate all the current microwave
and sub-millimetre observations from across the microwave
spectrum used in that study, even if the macrophysics and
microphysics of several clouds are well characterised. This
is why alternative microwave SSPs to those that are cur-
rently available are sought so that observations from ICI
and other microwave and sub-millimetre instruments can
be used to their full potential to improve NWP, and by
implication, climate models.

In this paper, we apply accelerated BEM [54, 55] to
complex aggregates of rosettes to compute their SSPs be-
tween the size parameters of 0.005 and 71. The methods
are implemented using the boundary element software Be-
mpp (www.bemppp.com) [75]. We consider 65 different
model aggregates, of maximum dimension between 10 and
10000µm, at frequencies of 50, 183, 243 and 664 GHz,
and at temperatures of -83◦C, -43◦C, and -3◦C. We note
that the size parameter of 71 is not a limitation of the
method. To compute the SSPs of non-spherical particles
in the microwave and sub-millimetre regions it is necessary
to assume differing temperatures because it is well-known
that in those spectral regions, the complex refractive index
of solid ice is temperature dependent [76, 6, 63]. Here, we
choose to use the complex refractive index compilation of
[76] for our single-scattering computations because it was
the one recommended by [64].

The distinguishing feature between the compilation of
SSPs presented here, and others is that we construct the
rosette aggregates to follow mostly an observed mass-
dimension relationship that is currently utilised in the
cloud microphysics scheme of the Met Office’s global Uni-
fied Model (UM). This ensures consistency between the
UM cloud microphysics assumptions, and the SSPs used
to simulate the microwave and sub-millimetre radiances
that will be compared to the ICI measurements as part of
the process of assimilating those observations. This consis-
tency is also important for the retrieval of cloud ice prop-
erties from ICI measurements, as the amount of ice mass
used in the radiative transfer simulations to mimic those
radiance measurements will correspond to a commonly ob-
served mass-dimension relation. This lack of consistency
between an NWP model and SSPs used in simulations
of microwave and sub-millimetre observations needs to be
corrected for as found in the study by Fox [2] because the
sub-millimetre region is particularly sensitive to the col-
umn integrated ice mass and the characteristic size of the
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particle size distribution [4, 5].
The structure of the paper is as follows. In Section

2, the microphysical model is fully described, and com-
parisons are presented between the model’s prediction of
mass and orientation-averaged projected area to the mass-
and area-dimension power laws that commonly occur in
cirrus. In Section 3, we briefly discuss the scattering prob-
lem to be solved for, the BIE formulation used, and the
far-field definitions of the SSPs that are derived in this
paper are given. In Section 4, the treatment of three-
dimensional random orientation is described, and this in-
terpretation is tested against the T-matrix method devel-
oped for non-axisymmetric cylinders. Section 5 details the
optimal mesh size, and the number of waves and polarisa-
tion directions required to ensure accurate BEM solutions
found for the SSPs. Throughout this section, the optimal
settings are tested against the corresponding T-matrix so-
lutions obtained for a number of size parameters. Com-
parisons against alternative electromagnetic methods such
as DDA are also discussed. A discussion of our findings
and concluding remarks are provided in Section 6.

2. The microphysical model

The microphysics model is based on an in-situ analy-
sis of Cloud Particle Imager (CPI) data from twenty-two
campaigns distributed throughout the mid-latitudes, trop-
ics, and southern latitudes analysed by Lawson et al [12].
The number of CPI images of ice crystal shapes numbered
more than ten million. From the CPI images, the authors
of [12] obtained representative distributions of ice crys-
tal shapes within four differing ice cloud regimes. These
regimes were in-situ generated cirrus, tropical maritime,
tropical continental, and mid-latitude continental, where
the latter three comprised anvils, and outflows from those
anvils. From the CPI images, Lawson et al [12] were able
to derive, for each of the regimes, representative mass– and
area–dimension power laws. Here, we examine the shape
distributions obtained from in-situ generated cirrus in par-
ticular, this is because this cloud type is common in the
mid-latitudes, and we note the shape distribution for max-
imum dimensions greater than 100µm. These larger sizes
are more relevant to the microwave and sub-millimetre re-
gion of the electromagnetic spectrum.

From the analysis of [12], the most representative ice
crystal shapes of relevance to modelling millimetre wave
and sub-millimetre wave scattering found within in-situ
generated cirrus are budding rosettes and aggregates of
rosettes. We note further that the study also found that
the rosettes contributed most to the observed mass and
area distributions compiled from the in-situ generated cir-
rus. These are the two habits that are used here to com-
pute the SSPs. However, the rosette aggregates are mod-
elled to follow the Cotton et al [72] mass–dimension re-
lationship, which is currently utilised in the cirrus micro-
physics scheme within the operational global UM used at

the Met Office. The Cotton et al [72] mass-dimension re-
lationship is quite general as it agrees with independent
determinations of the mass-dimension relationship found
by Heymsfield et al [70] and Erfani and Mitchell [73].

To model the rosettes, we utilise the ice aggregation
model of Westbrook et al [69], whereby the aggregation
process is simulated explicitly using a Monte Carlo model
to sample collisions between particles falling at differ-
ent speeds. The simulation begins with a population of
monomer crystals, the shape of which can be chosen to
match the observed monomer crystals in the cloud of inter-
est. These particles collide and stick together to produce
an ensemble of complex aggregates. These aggregates are
formed by a collection kernel that considers the geomet-
ric cross sections for the collisions and the difference in fall
speed between the realised ice crystals. Here, to form these
ice crystals and aggregates, we consider budding rosettes
and aggregates of rosettes. The monomer rosettes are con-
structed of three-branched rosettes, which are aggregated
together to follow the Cotton et al [72] mass–dimension
relationship given by

mass = 0.0257D2
max. (1)

Each of the monomers that makes up the ensemble of
rosette aggregates is assumed to have the density of solid
ice, which has a value of 917 kg/m3, and Dmax is the max-
imum dimension of the ice crystal, where here it is defined
as the maximum span of the two-dimensional projection
of each ice crystal onto a plane. It is defined in this way
as this is typically how the maximum dimension is deter-
mined using in-situ microphysics probes.

Multiple models were generated from the Monte Carlo
realisations, and those that were within ±50% of the Cot-
ton et al [72] relationship were selected. The total number
of model realisations selected was 65. The mass against
Dmax of the model selections are shown in Figure 1. The
Monte Carlo generated ice aggregate model is shown to
follow the Cotton et al [72] relationship correctly for sizes
greater than approximately 500µm. In fact, most of the
rosette aggregates are well within ±30% of the Cotton et
al [72] relationship for maximum dimensions greater than
492µm. At maximum dimensions less than this, the model
aggregate at 492µm is scaled down to all other maximum
dimensions. Therefore, at approximately 500µm, there is a
transition between the mass of the rosette aggregate vary-
ing as D3

max and D2
max for sizes less than or greater than

approximately 500µm, respectively. Also plotted in Fig-
ure 1 are the in-situ regime mass–dimension results de-
rived by Lawson et al [12], and rather interestingly, the
Cotton et al [72] relationship has a gradient that differs
to this. Nonetheless, because the rosette aggregate model
used here is based on the in-situ generated cirrus observa-
tions, this model is generally fairly close to the in-situ gen-
erated cirrus predicted masses for maximum dimensions
that are less than approximately 2000µm. For maximum
dimensions greater than this, the Cotton et al [72] relation-
ship predicts ice masses that are somewhat lower than the
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Figure 1: Mass of ice crystals plotted against the maximum dimension, showing the in-situ (dashed green line) regime mass-dimension
relationship as derived by Lawson et al [12]. Compared against this relationship are the rosette aggregate model (filled blue circles), and the
Cotton et al [72] relationship (red line).

predicted in-situ generated ice masses. This note exempli-
fies the importance of millimetre wave and sub-millimetre
wave observations in providing data that can be used to
potentially discriminate between differing mass–dimension
relationships. Moreover, it should be further stated that
the Lawson et al [12] analysis is limited to a maximum
dimension of approximately 1000µm or less. Further mass
and area data are required for maximum dimensions much
greater than this to test model predictions over a much
greater range of maximum dimensions than is presently
provided.

Given that Figure 1 shows how well the rosette aggre-
gate models follow the Cotton et al [72] mass–dimension
relationship, in Figure 2 we investigate how well they
follow the Lawson et al [12] in-situ generated cirrus
area–dimension relationship. The projected areas of the
rosette aggregates are calculated from the area ratios that
are provided from within the Westbrook et al [69] ice ag-
gregation model. In that model, the rosette aggregates
are randomly re-oriented, the calculation of the area ra-
tio is repeated in the x − y plane N times the random
re-orientation for each repeat. To compute the area ra-
tio, the projected area is computed in the x − y plane of
the rosette aggregate divided by (π ∗ D2

max/4). To com-
pute the area ratio we divide the projected area of the
non-spherical particle by the maximum possible projected
area of a sphere of the same Dmax as the non-spherical
particle. From the area ratio, the orientation-projected

area of the rosette aggregates can be readily computed.
As the aggregate model is oriented over a number of re-
alisations, here it is ten orientations to obtain the mean
and standard deviation at each maximum dimension. Ten
realisations are sufficient to obtain the projected areas to
within an accuracy of approximately 2%.

The means and standard deviations of all the rosette
aggregate orientation-averaged area values are presented
in Figure 2, along with the Lawson et al [12] in-situ gen-
erated cirrus area–dimension relationship and the Vouk
[77] relationship. The use of the Vouk [77] relationship
is to verify the computation of the orientation-averaged
projected area from the ice aggregation model by com-
puting the surface areas of the rosette aggregates, which
are convex particles. The orientation-averaged projected
area, denoted by 〈P 〉, can be calculated from the surface
area S of a convex particle using the equation 〈P 〉 = S/4.
The surface area S is computed using standard formulae
for the hexagonal prism and hexagonal pyramid, with the
area of the top base of the hexagonal prism meeting the
bottom base of the hexagonal pyramid subtracted because
this area will be ”hidden” in projection.

Figure 2 shows that the rosette aggregate model follows
the Lawson et al [12] area–dimension relationship deter-
mined from the in-situ generated cirrus data rather well,
where the in-situ determination of averaged area is within
the standard deviations of the model up to approximately
5000µm. However, there should also be an uncertainty
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Figure 2: The orientation-averaged area, 〈P 〉, plotted against the maximum dimension showing the Lawson et al [12] area determination
obtained from in-situ generated cirrus (dashed green line), and the rosette aggregate model (blue standard deviations). The red cross symbols
are the 〈P 〉 values of the rosette aggregate model using the Vouk [77] relationship.

associated with the in-situ data. This is not presently
known, but an uncertainty value of ±50% is normal for
the in-situ estimation of the projected area of ice crystals
[78]. Moreover, the Vouk relationship at maximum dimen-
sions greater than approximately 492µm is also generally
well within the standard deviation of the model, thus ver-
ifying the computation of orientation-averaged projected
areas from the ice aggregation model.

Figure 3 shows the rosette aggregate geometrical prop-
erties expressed as power laws in terms of relationships be-
tween the ice crystal maximum dimension and the surface
area, and volume, respectively. As expected, the fractal di-
mension of the rosette aggregate surface area has a value
of 2 for maximum dimensions less than 492µm, and 1.64,
as the particles become elongated at maximum dimension
values greater than 492µm. In the case of the volume
property, the rosette aggregate has a fractal dimension of
3.0 at sizes less than 492µm, which decreases down to 1.94
at maximum dimensions greater than 492µm, as shown in
Figure 3.

Figures 4 - 7 show images of the ice aggregate mod-
els from Figure 1 that are used to generate the single-
scattering properties. The meshing software Gmsh [79]
was used to generate the meshes of the aggregate mod-
els. The figures shows the variation in the differing Monte
Carlo realisations of the budding and rosette aggregate
models, and no two adjacent models are exactly the same,
except for Dmax = 10−492µm. As such, we should not ex-

pect the SSPs to necessarily vary smoothly from one model
to another. The aggregates consist of 6 to 168 monomers
of different complexity.

For the simulations that follow, we use the Mätzler [76]
compilation of ice refractive index. The choice of refrac-
tive indices to use in the microwave region was studied in
detail by Eriksson et al. [6]. In the paper the authors
concluded that Mätzler [76] was a good choice of refrac-
tive index to use in the microwave region, up to 1 THz
for the range of atmospheric temperatures encountered in
the Earth’s atmosphere. More recently, Eriksson et al.
[64] also commented upon this choice. They too came
to the same conclusion as their earlier paper. Moreover,
the latter paper states that newer refractive index models,
such as Iwabuchi and Yang [80] and Warren and Brandt
[81], are essentially identical to the compilation of Mätzler
[76]. The database of Eriksson et al. [64] is based on the
Mätzler [76] compilation. For these reasons, we too chose
the Mätzler [76] compilation for our computations to be
consistent with the Eriksson et al. [64] database.

3. The scattering problem and BEM

We treat each budding rosette/rosette aggregate as a
multi-particle configuration with each individual monomer
representing an individual scatterer. This is to take advan-
tage of accelerating methods from [54, 82, 55] suitable for
multi-particle scattering set ups. To ensure Lipschitz con-
tinuity of the boundary, Groth et al [52] have introduced
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(a)

(b)

Figure 3: Rosette aggregate’s surface area (a) and Volume (b) as a function of the maximum dimension. The power law fits are also shown
for particles of Dmax < 492µm and ≥ 492µm.

7



Dmax = 10− 492µm Dmax = 547µm Dmax = 584µm Dmax = 621µm

Dmax = 647µm Dmax = 697µm Dmax = 748µm Dmax = 805µm

Dmax = 875µm Dmax = 958µm Dmax = 1008µm Dmax = 1045µm

Dmax = 1111µm Dmax = 1160µm Dmax = 1190µm Dmax = 1221µm

Figure 4: Images of the budding rosettes and ice aggregate models used to generate the scattering database. The models are shown as a
function of increasing maximum dimension, Dmax, from 10 to 1221 µm.
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Dmax = 1261µm Dmax = 1340µm Dmax = 1422µm Dmax = 1461µm

Dmax = 1510µm Dmax = 1630µm Dmax = 1700µm Dmax = 1759µm

Dmax = 1860µm Dmax = 1988µm Dmax = 2121µm Dmax = 2258µm

Dmax = 2387µm Dmax = 2527µm Dmax = 2678µm Dmax = 2891µm

Figure 5: Same as in Figure 4 but for Dmax from 1261 to 2891 µm.
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Dmax = 3004µm Dmax = 3170µm Dmax = 3443µm

Dmax = 3711µm Dmax = 4115µm Dmax = 4346µm

Dmax = 4539µm Dmax = 5009µm Dmax = 5203µm

Dmax = 5508µm Dmax = 5791µm Dmax = 6188µm

Figure 6: Same as in Figure 4 but for Dmax from 3004 to 6188 µm.
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Dmax = 6456µm Dmax = 6688µm Dmax = 6881µm

Dmax = 7884µm Dmax = 8582µm Dmax = 9200µm

Dmax = 9594µm Dmax = 10235µm

Figure 7: Same as in Figure 4 but for Dmax from 6456 to 10235 µm.
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Temp 50 GHz 183 GHz 243 GHz 664 GHz
−83 1.7643 + 0.00042i 1.7643 + 0.00154i 1.7643 + 0.00207i 1.7643 + 0.00649i
−43 1.7746 + 0.00064i 1.7746 + 0.00235i 1.7746 + 0.00314i 1.7746 + 0.00940i
−3 1.7848 + 0.00120i 1.7849 + 0.00442i 1.7849 + 0.00589i 1.7849 + 0.01690i

Table 1: Complex refractive index for the three temperatures (◦C), at the four different frequencies from [76].

small cubes (negligible compared to the size of the aggre-
gate) where branches of bullet rosettes meet and treated
the resulting aggregate as a single scatterer. Numerical ex-
periments comparing the scattering properties confirmed
that the introduction of the cube made a negligible dif-
ference. Theoretical results from [83, 84] show that one
can also treat each monomer as an individual scatterer by
studying the validity of the formulation as the separation
between scatterers approaches 0. Numerical experiments
from [54, 82, 55] have confirmed that these theoretical re-
sults also hold true using our implementation.

The scattering problem can then be described as a 3D
time-harmonic electromagnetic scattering problem (with
e−iωt) by M disjoint isotropic homogeneous (but not nec-
essarily identical) dielectric scatterers occupying bounded
domains Ωim ⊂ R3, m = 1, . . . ,M , with boundaries
Γm = ∂Ωim, in a homogeneous exterior medium Ωe =
R3\∪Mm=1Ωim. The electric permittivity and magnetic per-
meability of scatterer Ωim is denoted by εm and µm re-
spectively, with the resulting wavenumber ke = ω

√
µmεm.

The corresponding parameters for Ωe are εe, µe and ke =
ω
√
µeεe. The refractive index of Ωim is denoted by nm. For

the purposes considered here, the magnetic permeabilities
have the associated values for ice, i.e. µe = µm = 1, for
m = 1, . . . ,M , and the refractive indices at different tem-
peratures are taken from [76] and shown in Table 1.

An incident field (Einc, Hinc) in Ωe gives rise to interior
fields (Ei

m, Hinc) in Ωim, for m = 1, . . . ,M , and a scat-
tered field (Es, Hs) in Ωe, which is assumed to satisfy the
Silver-Müller radiation condition. The total exterior field
(Ee, He) is the sum of the incident and scattered field

Ee = Einc + Es, (2)
He = Hinc + Hs, in Ωe. (3)

The interior and exterior fields are assumed to satisfy the
time-harmonic Maxwell equations

∇×Ei
m = iωµmHi

m, (4)
∇×Hi

m = −iωεmEi
m, in Ωim, (5)

and

∇×Ee = iωµeHe, (6)
∇×He = −iωεeEe, in Ωe, (7)

with the transmission boundary conditions

Ei
m(r)× nm = Ee(r)× nm, (8)

Hi
m(r)× nm = He(r)× nm, (9)

for r ∈ Γm, m = 1, . . . ,M . Here nm is the outgoing unit
normal vector on Γm. It is sufficient to solve for the electric
fields alone (as we do for the purposes of this paper), and
recover the magnetic fields. The electric fields satisfy

∇× (∇×Ei
m)− k2

mEi
m = 0, in Ωim, (10)

∇× (∇×Ee)− k2
eEe = 0, in Ωe. (11)

3.1. The PMCHWT formulation

The PMCHWT formulation (due to Poggio, Miller,
Chang, Harrington, Wu and Tsai [44, 45, 46, 47]) is used
to transform the electromagnetic scattering problem from
PDEs to boundary integral equations here. We refer the
reader to [54, 55] for details on the PMCHWT formulation
in the multi-particle setting and for further details, includ-
ing a discussion of the function space setting, we refer to
[85].

3.2. Galerkin discretisation and accelerated Calderón pre-
conditioning

Galerkin discretisation of the PMCHWT formulation is
used to transform the BIEs into a matrix system but this
leads to an ill-conditioned linear system requiring large
number of iterations to be solved by GMRES [86] (and
other iterative solvers in general). Calderón precondition-
ing [48, 49, 50, 51], an operator-based approach [56], is
used to remedy this but this comes with additional costs.
To obtain a stable discretisation of the operator products
that arise in this approach, the use of a dual mesh defined
on a barycentrically refined grid (hence increasing memory
costs) needs to be considered [57]. In addition, to capture
the oscillatory solution of the electromagnetic waves, the
mesh needs to be refined with respect to frequency [52],
making the simulation of high-frequency problems, such
as the ones considered here, very expensive.

To alleviate the additional costs the accelerating tech-
niques of [54, 55] have been employed here, as they have
demonstrated a reduction by 99% in memory costs and
80% in total computation time for the high frequency prob-
lems considered (at frequency 664 GHz and size parameter
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Figure 8: Scattering set up for the incident wave. The angles
(θinc,φinc) are the polar (zenith) and azimuth angles respectively
and satisfy θinc ∈ [0,π] and φinc ∈ [0, 2π). A similar coordinate
system (n̂sca, θ̂sca, φ̂sca) can be defined to describe the scattered
wave.

70). The accelerating techniques were based on a combi-
nation of modifying the preconditioning operators, a bi-
parametric implementation and treatment of the result-
ing aggregate as a multi-particle problem rather than a
single-particle one. For a full description of the precon-
ditioners, discretisation of the operator product and the
bi-parametric assembly we direct the reader to [54, 55].

3.3. Scattering in the far-field zone
To simulate the optical properties and phase matrix ele-

ments of the scattering problem knowledge of the far-field
is required, with the far-field zone being the area where
ker � 1 [87]. Before we proceed to define the scattered
far-field and its properties we fix some notation.

A spherical coordinate system can be employed to de-
scribe the scattering setup as seen in Figure 8, with the
direction of propagation of the incident plane electromag-
netic wave defined by n̂inc and corresponding unit vectors
θ̂inc and φ̂inc such that n̂inc = θ̂inc × φ̂inc and defined as

n̂inc =

sin θinc cosφinc
sin θinc sinφinc

cos θinc

 ,

θ̂inc =

cos θinc cosφinc
cos θinc sinφinc
− sin θinc

 ,

φ̂inc =

− sinφinc
cosφinc

0

 . (12)

Since the medium of propagation is assumed to be non-
absorbing, the component of the electric field vector along

the direction of propagation n̂inc is zero and the incident
field can then be decomposed into components in the θ̂inc
and φ̂inc directions as follows

Einc = (Eincθ θ̂inc + Eincφ φ̂inc) exp(iken̂inc · r), (13)

where Eincθ θ̂inc and Eincφ φ̂inc define the polarisation vec-
tors. In the same manner, a coordinate system defined by
n̂sca, θ̂sca, φ̂sca is used to describe the scattered wave.

The scattered far-field, Es,f , decays inversely with dis-
tance r from the scattering object

Es,f (n̂sca) ∼ eiker

r
F(n̂sca), r →∞. (14)

The vector F is independent of r and describes the angular
distribution of the scattered field radiation in the far-field
zone. It can be computed via the asymptotic form of the
Stratton Chu representation formulae

F(x) = −
M∑
m

He,fm
(
γ+
D,mEs

m

)
−

M∑
m

Ee,fm
(
γ+
N ,mEs

m

)
,

(15)

where He,f and Ee,f are the far-field versions of the mag-
netic and electric potential operators given as [52]

He,fv(x) := ike
4π

∫
Γ

exp
(
−ikex · y
|x|

)(
x
|x| × v(y)

)
dΓ(y),

(16)

Ee,fv(x) := ike
4π

∫
Γ

exp
(
−ikex · y
|x|

)
v(y)dΓ(y)

− ike
4π

∫
Γ

exp
(
−ikex · y
|x|

)
v(y) · x

|x|dΓ(y),

(17)

and γ+
D,m and γ+

N ,m are the exterior Dirichlet and Neu-
mann traces for which we refer the reader to [85].

3.4. Amplitude Scattering Matrix

The elements of the amplitude matrix S are expressed
as follows [87]

S11 = θ̂sca · Fs,f (n̂sca, n̂inc, θ̂inc), (18)
S12 = θ̂sca · Fs,f (n̂sca, n̂inc, φ̂inc), (19)
S21 = φ̂sca · Fs,f (n̂sca, n̂inc, θ̂inc), (20)
S22 = φ̂sca · Fs,f (n̂sca, n̂inc, φ̂inc). (21)

By Fs,f (n̂sca, n̂inc, θ̂inc) we mean the scattered far-field
created by the θ̂inc component of the incident plane wave,
i.e. Eincθ θ̂inc exp(iken̂inc · r) and evaluated in the scatter-
ing direction n̂sca. Analogous definitions can be made for
Fs,f (n̂sca, n̂inc, φ̂inc).
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3.5. Phase matrix

The elements of the phase matrix, Z, that are relevant
for this article are as follows [87]

Z11 = 1
2
(
|S11|2 + |S12|2 + |S21|2 + |S22|2

)
, (22)

Z12 = 1
2
(
|S11|2 − |S12|2 + |S21|2 − |S22|2

)
, (23)

Z21 = 1
2
(
|S11|2 + |S12|2 − |S21|2 − |S22|2

)
, (24)

Z22 = 1
2
(
|S11|2 − |S12|2 − |S21|2 + |S22|2

)
, (25)

Z33 = < (S11S
∗
22 + S12S

∗
21) , (26)

Z34 = = (S11S
∗
22 + S21S

∗
12) , (27)

Z43 = = (S22S
∗
11 − S12S

∗
21) , (28)

Z44 = < (S22S
∗
11 − S12S

∗
21) , (29)

where < and = denote the real and imaginary parts re-
spectively.

3.6. The total optical properties

Knowledge of the scattered far-field allows us to com-
pute the total optical properties of the scatterer. These are
the extinction, scattering and back-scattering cross sec-
tions, the asymmetry parameter and the single-scattering
albedo, denoted by Cext, Csca, Cbsca, g and $0 respec-
tively. The extinction, scattering and back-scattering cross
sections can be computed as follows:

Cext = 1
2 (Cext,θ + Cext,φ) , (30)

Csca = 1
2 (Csca,θ + Csca,φ) , (31)

Cbsca = 4πZ11(θsca = π), (32)

where the individual θ̂ and φ̂ components can be com-
puted by

Cext,x = 4π
ke|Eincx x̂inc|2

=
(

Fs,f (n̂sca, n̂inc, x̂inc) ·
(
Eincx x̂inc

)∗
)

,

(33)

Csca,x = 1
|Eincx x̂inc|2

∫
4π
|Fs,f (r̂, n̂inc, x̂inc)|2dr̂. (34)

The single-scattering albedo is defined as the ratio of the
scattering and extinction cross sections

$0 = Csca
Cext

≤ 1. (35)

The asymmetry parameter, g, is defined as the average
cosine of the scattering angle Θ = arccos(r̂ · n̂inc), i.e. the
angle between the incidence and the scattering directions

g = 〈cos Θ〉 = 1
2 (gθ + gφ) , (36)

where the individual components can be computed by

gx = 1
Csca,x

∫
4π
|Fs,f (r̂, n̂inc, x̂inc)|2r̂ · n̂incdr̂. (37)

For the evaluation of any integrals over the sphere (i.e.
for Csca and g) we use Lebedev quadrature [88, 89, 90,
91, 92, 93]. This is to take advantage of the discrete grid
points (θi,φi) being available as a pair and hence reducing
the number of loops representing the integrals to one. Con-
struction of the Lebedev grid points and weights can be
tedius but we take advantage of pre-computed numerical
values for the nodes and weights from [94]. We note that
for the evaluation of Csca and g we use Lebedev quadra-
ture of order 59 resulting in 1202 grid points.

We note that there are alternative ways of computing
Csca and g through the phase matrix element Z11 and the
relative difference between the two definitions is used to
check the accuracy of our implementation

4. Treatment of random orientation

Averaging some quantity f over random particle orien-
tations is represented by [95]

〈f〉 = 1
8π2

∫ 2π

0

∫ π

0

∫ 2π

0
f(α,β, γ) sin β dα dβ dγ. (38)

The traditional approach to evaluate the SSPs and phase
matrix of randomly oriented particles is to fix the direction
of the incident wave, and then rotate the scatterer using
three Euler angles α,β, γ (as described for example in [96]
and seen in Figure 9). The rotation matrix representing
the three rotations is given by

Rαβγ = Rz(γ)Ry(β)Rz(α), (39)

where

Rz(u) =

 cosu sin u 0
− sin u cosu 0

0 0 1

 , (40)

Ry(u) =

cosu 0 − sin u
0 1 0

sin u 0 cosu

 . (41)

The SSPs and phase matrix are then evaluated for some
scattering angles (θsca,φsca). Once many orientations
have been considered one can use (38) to compute the
orientationally averaged quantity.

A naive approach to this would be to re-assemble the
PMCHWT operator and Calderón preconditioner (see ear-
lier Section 3 and [54, 55] for more details) for each ori-
entation considered, however this would be very expensive
using BEM. Instead, two reference frames are often used
when considering multiple orientations; a ‘laboratory’ ref-
erence frame and a particle one [87]. The laboratory frame
is often chosen so that it corresponds to the geometry of
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Figure 9: Euler angles α, β and γ transforming the original (blue)
coordinate system xyz into a new one (red) x′y′z′.

the scattering situation, i.e., the Cartesian coordinate sys-
tem. The particle reference frame is used to describe the
orientation of the scatterer with respect to the laboratory
frame. In order to solve the scattering problem with re-
spect to the laboratory reference frame, one must first
solve in the particle reference frame and then through suit-
able rotation matrices transition to the laboratory frame.
Full details of this process and explicit formulas for the
necessary rotation matrices are given in [87]. Fixing the
direction of the incident wave and rotating the scatterer by
Rαβγ is equivalent to fixing the orientation of the scatterer
and instead rotating the direction of the incident wave by
R−1
αβγ ; and this methodology has also been considered in

[97]. This enables us to assemble the operator matrix and
preconditioner once and re-use for all incident wave solu-
tions. We note that for each incident wave, two GMRES
solves need to be performed; one for each polarisation vec-
tor as described in (12), but different GMRES solves can
be distributed over different CPUs to reduce the total com-
putational time.

Assuming a fixed incident wave direction with fixed
θinc = φinc = 0 in (12), gives

n̂inc =

0
0
1

 , θ̂inc =

1
0
0

 , φ̂inc =

0
1
0

 . (42)

These can then be rotated by R−1
α,β,γ given by

R−1
α,β,γ = R−1

z (α)R−1
y (β)R−1

z (γ), (43)

giving the rotated incident directions and polarisation vec-

tors

n̂inc =

cosα sin β
sinα sin β

cosβ

 , (44)

θ̂inc =

cosα cosβ cos γ − sinα sin γ
sinα cosβ cos γ + cosα sin γ

− sin β cos γ

 , (45)

φ̂inc =

− cosα cosβ sin γ − sinα cos γ
− sinα cosβ sin γ + cosα cos γ

sin β sin γ

 , (46)

that can be varied for different α,β, γ. Comparing with the
definitions of (12), we can see that both n̂inc are equivalent
with α = φinc and β = θinc, i.e. the direction of the
incident wave does not depend on the angle γ and can be
defined using a pair of grid points (θinc,φinc). It is only the
polarisation vectors θ̂inc and φ̂inc that need to be altered
by an additional angle. This allows us to make use of
Lebedev quadrature to obtain the grid points (θinci ,φinci )
that define the direction of the incident wave, reducing the
two integrals over θinc and φinc (or α and β as defined in
(38)) to just one. The third integral over γ can then be
evaluated by a simple Gaussian integration. We therefore
use the terms ‘number of incident waves’ to refer to the
number of points obtained for (θinci ,φinci ) by the Lebedev
scheme and ‘number of polarisation vectors’ to refer to the
number of points γi obtained by the Gaussian quadrature
scheme.

We also note that alternative ways to handle this ex-
ist in the literature. For example, in DDA simulations it
is often used, that a rotation of polarisation (i.e. multi-
ple γi values) is equivalent to the rotation of the scattering
plane, i.e., it is sufficient to simulate two incident polarisa-
tions (one γi value). Once the matrix has been inverted, it
may be applied to incident waves from different directions
(equivalent to varying the orientation of the target, while
keeping the incident direction constant)[98]. For further
discussions on this we refer to [99] and references within.
Regarding BEM, any information related to the incident
wave (i.e. θinci , φinci or γi) will directly affect the right
hand side of the discrete matrix system that needs to be
solved. While a new right-hand side would in turn require
a new GMRES solve, there are subspace recycling tech-
niques that allow us to quickly iterate to the solution with
another right-hand side if it does not deviate too much
from the previous one. This option is not explored in this
paper, but can be considered in the future. to accelerate
convergence to the next solution.

4.1. Testing our implementation of random orientation

To test the accuracy of our implementation of random
orientation as well as to find the number of incident waves
and polarisation rotations that are needed to approximate
random orientation, we compare with results obtained
from a T-matrix method [20]. We consider scattering by
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X Dimensions Frequency Refractive Index
0.05 L = D = 96µm 50 GHz 1.7746 + 0.00064i
0.1 L = D = 191µm
1 L = D = 1.91mm
5 L = D = 9.55mm

10 L = D = 1.4mm 664 GHz 1.7746 + 0.00940i

Table 2: Information on the geometry, frequency, refractive index for some of the test cases. The height of the hexagonal column is denoted
by L, with the diameter of the hexagonal face by D.

hexagonal columns of different size parameters, X, as de-
tailed in Table 2. The size parameter, X, is defined as

X = keDmax

2 . (47)

In Figure 10, we present the relative errors of SSPs com-
puted for the problems of Table 2, for a number of incom-
ing waves and for different mesh resolutions. We find that
the prescribed mesh size of 10 elements per wavelength
suggested in [52] is not a useful measure for all the hexago-
nal columns considered, as some are very small and require
a refined mesh size to achieve a sufficient discretisation of
the surfaces. In particular, this is the case for X = 0.05
and X = 0.1, as the maximum mesh size occurring from a
rule of 10 elements per wavelength is larger than the length
L of the columns, resulting in the minimum amount of el-
ements per surface produced by Gmsh. A mesh size of
100 elements per wavelength was sufficient to reduce the
relative errors to a few percent. We also observe that 14
incident waves in combination with the refined mesh are
sufficient to provide accurate SSPs at a relative error of
1% or below, for size parameters X = 0.05 and 0.1. For
size parameter X = 1, 14 waves and the usual 10 elements
per wavelength are sufficient. A discretisation of 20 ele-
ments per wavelength increases accuracy but this is at the
expense of computational time and memory consumption.
For the hexagonal column of size parameter X = 5, we
see that a mesh size of 10 elements per wavelength pro-
duces relative errors between 1-2%. A mesh size of 20
elements per wavelength reduces those relative errors be-
low 1%. There is no obvious change in assuming 110 or
194 incident waves, except for a small increase in the rela-
tive error of 〈Cbsca〉 when 20 elements per wavelength are
used. For the hexagonal column of size parameter X = 10,
a mesh size of 10 elements per wavelength results in rel-
ative errors between 1-4%. These fall below 1% when a
mesh of 20 elements per wavelength is used, except for
〈g〉 at 2% and 〈Cbsca〉 at 3%. Our numerical experiments
show that the accuracy of the SSPs is not affected by vary-
ing γ; these can be computed accurately just by varying
(θinc,φinc).

In Figures 11 - 12, we compare the phase matrix el-
ements computed using our BEM against the T-matrix
method of [20]. We note that the only elements of the

phase matrix that remain non-zero when considering ran-
dom orientation are 〈Z11〉, 〈Z22〉, 〈Z33〉, 〈Z44〉, 〈Z12〉 (=
〈Z21〉) and 〈Z34〉 (= −〈Z43〉) and hence we only present
comparisons for those. For the small size parameters
X = 0.05 and X = 1 considered in Figure 11 we see a com-
plete agreement between the methods with just 14 incident
waves, in agreement with earlier findings on the accuracy
of the integral optical properties. We note though that a
different number of polarisation rotations had to be con-
sidered to achieve this accuracy; 5 for X = 0.05 and 10 for
X = 1. For the larger size parameters X = 5 and X = 10
of Figure 12, 194 incident waves were considered for both
cases, but 10 polarisation rotations for X = 5 and 15 for
X = 10. A good agreement is observed between the BEM
and T-matrix methods although not a complete match for
some parts of 〈Z11〉 and 〈Z12〉. This could be remedied
by using a finer mesh or by assuming a larger number of
incident waves/polarisation rotations.

5. Accuracy of the SSPs

The question now arises as to how many incident waves
and polarisation directions are needed and what level of
mesh refinement is required to obtain the SSPs and phase
matrix elements of the aggregate model in random orien-
tation. In particular, we need to test if our findings from
the comparisons between T-matrix methods for hexago-
nal columns carry over to more complex shapes such as
the budding rosettes and rosette aggregates of our model.
For the purposes of the database that will result from this
paper, accuracy of a few percent is desired and ideally
around 1%. This is to minimise costs from memory con-
sumption, and total computational time, since the final
simulations were carried out on AWS machines. Since no
other (numerical or analytical) solutions exist for the ag-
gregate model to compare with, we compare results be-
tween different mesh discretisations, number of incident
waves and polarisation rotations.

We note that the goal here is not to provide a quan-
titative estimate of the accuracy of the boundary ele-
ment method (accelerated or not), the preconditioned PM-
CHWT formulation or the implementation in Bempp [75],
but rather identify which parameter values to use for the
database by balancing accuracy and computational cost.

16



Figure 10: Relative errors of the SSPs as a function of increasing number of incoming waves for hexagonal columns of size parameter X = 0.05
(top left), X = 0.1 (top right), X = 1 (centre left), X = 5 (centre right) and X = 10 (bottom). A mesh size of 10 elements per wavelength
was prescribed for the dashed lines resulting in a total of 36, 36, 180, 2968 and 6408 elements respectively. The solid lines represent refined
meshes with 100 elements per wavelength for X = 0.05 and X = 0.1, and 20 elements per wavelength for X = 1, 5 and 10 resulting in a total
of 60, 180, 612, 11652 and 14252 elements respectively.
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(a)

(b)

Figure 11: Phase matrix elements for hexagonal columns of size parameter (a) X = 0.05 and (b) X = 1. For (a) 14 incident waves and 5
polarisation rotations have been considered, while for (b) 14 incident waves and 10 polarisation rotations. We note that the remaining phase
matrix elements are 0 when random orientation is assumed.
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(a)

(b)

Figure 12: As in Figure 11 but for (a) X = 5 and (b) X = 10. In (a) 194 incident waves and 10 polarisations are considered and in (b) 194
incident waves and 15 polarisation rotations.

19



For further details regarding the method accuracy we refer
to works such as [52] for earlier applications of BEM to ice
crystals, [100] for discussions regarding the software frame-
work for Bempp, [49] for initial work done on Calderón
preconditioners, and [54, 82, 55] for accelerated BEM and
its applications to scattering by complex aggregates. In
what follows we compare results between different mesh
discretisations, number of incident waves and polarisation
rotations, by fixing all other parameters and only varying
one at a time. Given that the real error depends on all
three, it is likely that it is larger than what is shown here
in each case. We also note that the real error and the
difference between two mesh sizes (as considered in what
follows) can be different and we refer the reader to sources
cited earlier in this paragraph for more detailed discussions
about mesh accuracy.

5.1. Mesh size
With regards to mesh refinement, we find that the usual

rule of 10 elements per wavelength [52] is not a use-
ful scheme as each aggregate consists of multiple smaller
monomers, for which we need to achieve a sufficient dis-
cretisation for each surface. Taking a look at the aggregate
model in Figures 4 - 7, we see our aggregates fall into 4
main categories, on which we also base our discretisation
rules:

• Dmax = 10 − 492µm: These are all re-scaled ver-
sions of Dmax = 492µm implying that the surfaces
of each monomer shrink as Dmax decreases. A min-
imum number of elements is imposed on such aggre-
gates. After testing, these are: roughly 800 for 50
GHz, 4000 for 183 GHz, 8000 for 243 GHz and 13 000
for 664 GHz.

• Dmax = 547−875µm, 1111−1190µm, 1510−1630µm:
These are budding rosettes with very short branches.
Each individual branch has a fixed size for all aggre-
gates, so a constant number of elements per wave-
length can be used. This is 100 elements per wave-
length for 50 GHz, 80 for 183, 70 for 243 and 40 for
664 GHz.

• Dmax = 958 − 1045µm, 1221 − 1461µm, 1700 −
1759µm, 2258µm, 4115µm, 4539µm and 5791µm:
These are budding rosettes with longer branches com-
pared to the above category. As such a slightly relaxed
mesh rule can be applied. Again, each monomer has
a fixed size for all aggregates, so a constant number
of elements per wavelength is used: 100 elements for
50 GHz, 50 for 183, 40 for 243 and 20 for 664 GHz.

• Remaining Dmax: These are rosette aggregates, each
rosette consists of 3 branches which are longer com-
pared to the earlier categories. A relaxed mesh rule
can be applied to those. We use 50 elements per wave-
length at 50 GHz, 20 at 183, 20 at 243 and 10 or 20
at 664 GHz (we explain below).

Comparison between different mesh resolutions is per-
formed for some test cases at all frequencies. In Tables
3 - 6 and Figure 13, we present some of those test cases
at 664 GHz and -83◦C, each table representing one of the
above four categories. The results presented here are also
found to be true at the other frequencies of 50, 183, and
243 GHz, and at the other temperatures, but are not pre-
sented for reasons of brevity.

We note that in Table 6, a relative difference of 1-2%
is observed for some of the scattering cross-sections and
a maximum relative difference of 5.1% for 〈Z11〉 in Figure
13. The relative differences for the other phase matrix el-
ements are not shown for reasons of brevity but they were
as accurate. For aggregates Dmax > 4000µm, at 664 GHz,
the choice was made to run the simulations with a mesh
size of 10 elements per wavelength despite the relative dif-
ference being more than 1%. This is because as Dmax

increases, so does the size parameter X and as seen in the
following subsections, the number of incident waves and
polarisation rotations need to increase with increasing X.
Since the relative difference between the two mesh reso-
lutions were below 5% (not shown for reasons of brevity)
it was deemed acceptable to proceed with the mesh size
of 10 elements per wavelength to reduce computational
cost. The probability of occurrence of ice crystals with
such large dimensions is also low, so a greater inaccuracy
in the computation of SSPs is not going have as big an
impact as the intermediate ones.

In addition, the SSPs and phase matrix elements of ag-
gregates of size parameter X = 0.2 or smaller were com-
puted using the Rayleigh approximation [101] for equiv-
alent mass ice spheres, with the asymmetry parameter g
computed from the T-matrix method of [102], otherwise
the asymmetry parameter under the Rayleigh approxima-
tion would be zero. Contributions of such small size pa-
rameter ice crystals are very small to the volume integral
SSPs over some ice crystal size spectrum so the choice was
made to reduce computational time and cost and focus on
the remaining size parameters that have a larger contribu-
tion in numerical weather and climate models.

5.2. Number of incident waves ((θinci ,φinci ) angles)

With regards to the number of incident waves required
to achieve accuracy of a few percent for the SSPs, we find
that these are dependent on the size parameter. For our
aggregate model these are as follows:

X # of incident waves Order of
Lebedev Scheme

X < 1 14 3
1 ≤ X < 3 50 11
3 ≤ X < 5 110 17
5 ≤ X < 8 194 23
8 ≤ X < 10 230 25
X ≥ 10 302 29

20



Dmax 60µm 200µm 350µm 450µm 492µm
〈Cext〉 0.02% 0.38% 0.05% 0.31% 0.37%
〈Csca〉 0.06% 0.08% 0.10% 0.11% 0.12%
〈Cbsca〉 0.05% 0.06% 0.03% 0.13% 0.27%
〈g〉 0.17% 0.05% 0.04% 0.01% 0.03%
〈$0〉 0.10% 0.32% 0.07% 0.18% 0.46%

# of elements 8552 8562 8550 8568 8416
13664 13588 13636 13600 13448

Table 3: Relative difference between two different discretisation schemes for the smaller aggregates sizes Dmax ≤ 492µm at 664 GHz, -83◦C,
with 14 incident waves. The bold font indicates the discretisation chosen for the SSPs, the non-bold refers to the alternative discretisation
scheme considered. The relative differences are computed between the number of elements represented by the non-bold and bold fonts.

Dmax 547µm 697µm 1111µm 1190µm 1510µm
〈Cext〉 0.60% 0.42% 0.22% 0.18% 0.25%
〈Csca〉 0.16% 0.10% 0.14% 0.18% 0.10%
〈Cbsca〉 0.52% 0.66% 0.12% 0.09% 0.19%
〈g〉 0.06% 0.06% 0.03% 0.09% 0.09%
〈$0〉 0.43% 0.33% 0.34% 0.36% 0.35%

# of elements 6402 9606 19166 25594 28906
12292 15860 31704 42038 47824

Table 4: As in Table 3, but for two different discretisation schemes (30 and 40 elements per wavelength) for some of the short budding rosettes
at 664 GHz, -83◦C, with 194 incident waves. We note that relative differences between 20 and 30 elements per wavelength were all above 1%
(and as high as 6% in some cases).

Dmax 958µm 1221µm 1700µm 2258µm
〈Cext〉 0.05% 0.09% 0.11% 0.11%
〈Csca〉 0.25% 0.36% 0.37% 0.39%
〈Cbsca〉 0.18% 0.40% 0.58% 0.16%
〈g〉 0.04% 0.04% 0.05% 0.05%
〈$0〉 0.20% 0.26% 0.26% 0.29%

# of elements 2064 2920 5814 9326
5464 8186 16248 26332

Table 5: As in Table 3, but for two different discretisation schemes (10 and 20 elements per wavelength) for some of the longer budding
rosettes at 664 GHz,-83◦C, with 194 incident waves.

Dmax 2121µm 3004µm 5508µm 6456µm 8582µm
〈Cext〉 0.59% 0.75% 0.77% 0.78% 0.81%
〈Csca〉 1.22% 1.29% 1.46% 1.50% 1.55%
〈Cbsca〉 0.70% 0.46% 0.65% 1.14% 1.68%
〈g〉 0.11% 0.28% 0.17% 0.19% 0.19%
〈$0〉 0.63% 0.54% 0.69% 0.72% 0.74%

# of elements 4404 7040 29418 39572 43754
16516 35368 110634 147066 162898

# of waves 194 230 230 230 230

Table 6: As in Table 3, but for two different discretisation schemes (10 and 20 elements per wavelength) for some of the aggregate rosettes
at 664 GHz, -83◦C. Red underlined values indicate that the relative difference is above 1% which is the desired accuracy.
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Figure 13: As in Table 6 but for 〈Z11〉. The maximum relative difference observed is 2.2%, 4.4% and 5.1% respectively (left to right).

Numerical tests for some of the aggregates at 664 GHz
can be seen in Tables 7 - 8 and Figures 14 - 17. We note
that it is likely that as X increases beyond 10, the number
of incident waves will also have to increase. However, for
the purposes of the SSPs we limit the number to 302 to
limit computational costs. Looking at the comparisons
for the larger aggregates in Figures 14, 15 and 17 though,
the relative difference still remains well under 10% when
comparing results between 302 and 194 incident waves for
Dmax = 5508µm, while it reaches a maximum of 14.9% for
Dmax = 8582µm. Still, for the majority of the scattering
angles the relative difference remains between 1 and 10%.

We also note that all SSPs except for Cbsca are approx-
imated well at about 50 incident waves and it is the back-
scattering cross-section that requires the additional inci-
dent waves. This is also evident in Figures 14 - 15 where
a small error is observed (even between 14 and 302 inci-
dent waves) for all SSPs except the back-scattering cross-
section. For future simulations, where the back-scattering
cross-section is not of interest, computational costs can be
reduced by reducing the number of incident waves.

In addition, we note that consistent with the com-
parisons of T-matrix results for hexagonal columns, no
polarisation rotations (i.e. integration over γ) are re-
quired for the accurate computation of the integral op-
tical properties, i.e., two incident polarisations are suffi-
cient. This observation is also consistent with results from
[61, 103, 104, 105, 98, 99].

5.3. Number of polarisation rotations (γi angles)

To evaluate the phase matrix elements of randomly ori-
ented aggregates, in addition to the number of incident
waves, we also need to consider the number of rotations
of the polarisation directions. After testing, we find that
those again depend on the size parameter as follows:

X # of polarisation vectors
X < 1 10
1 ≤ X < 24 15
X ≥ 24 20

A selection of numerical experiments validating the above
choice for some of the large model aggregates at 664 GHz
and -83◦C is shown in Figure 18. In Figure 18, we plot
the relative difference of 〈Z11〉 between 10 and 20 po-
larisation rotations (number of γi angles), for aggregates
Dmax = 5508µm and Dmax = 8582µm. We see that for
the majority of the scattering angles the relative percent-
age difference lies between 1-10%, with some scattering
angles reaching a relative percentage difference of roughly
30%.

Again, it is likely that more polarisation rotations will
be needed as X grows but in combination with the number
of incident waves the computational cost becomes increas-
ingly high. For the largest aggregate sizes, 302 × 20 inci-
dent waves will have to be considered. These correspond to
2× 302× 20 GMRES solves that need to be performed for
each aggregate of X ≥ 24, where the number of elements
also increases with Dmax. For the purposes of the SSPs
we therefore limit the number of polarisation rotations to
20.

5.4. Comparing with other SSPs

5.4.1. Comparing simulation parameters
In the database by Guosheng Liu [61], the discrete dipole

approximation (DDA) method [14, 106] was used to cal-
culate the SSPs and phase matrix elements of ice columns
and plates, rosettes and sector snowflakes of different max-
imum dimension and for different frequencies of incoming
radiation. Two different causes were considered for the
accuracy of the computed results: the interdipole spacing
(similar to the mesh size of our method) and the number of
orientations considered in simulating random orientation.
An interdipole spacing scheme based on the wavelength
(similar to a fixed number of elements per wavelength in
our case) was considered. Comparison between the scheme
used for the database and a scheme with half the spac-
ing showed less than 2% relative errors for 〈Csca〉 and 〈g〉
for all frequencies and particle sizes. The relative differ-
ence for 〈Cbsca〉 was higher but less than 5%. A total of
16× 17× 16 (= 4352) orientations were considered for the
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Dmax 60µm 200µm 350µm 492µm
〈Cext〉 0.001% 0.009% 0.012% 0.000% 0.000% 0.000%
〈Csca〉 0.035% 0.009% 0.016% 0.000% 0.000% 0.000%
〈Cbsca〉 0.039% 0.323% 9.448% 0.063% 2.442% 0.008%
〈g〉 0.048% 0.006% 0.274% 0.000% 0.004% 0.000%
〈$0〉 0.068% 0.001% 0.007% 0.000% 0.000% 0.000%

# of waves 14 14 14 50 50 110
50 50 50 110 110 194

X 0.41 1.31 2.43 3.42
# of elements 13664 13588 13636 13448

Table 7: Relative difference between different number of incident waves for the smaller aggregates sizes Dmax ≤ 492µm at 664 GHz, -83◦C.
Red underlined values indicate that the relative difference is above 1% which is the desired accuracy. A relative difference of 0.000% indicates
that the relative difference was below 0.001%. Bold font indicates the number of waves chosen for the database.

Dmax 547µm 697µm 805µm 1111µm 1190µm 1461µm
〈Cext〉 0.000% 0.000% 0.000% 0.000% 0.000% 0.000%
〈Csca〉 0.000% 0.000% 0.000% 0.000% 0.000% 0.000%
〈Cbsca〉 0.001% 0.249% 1.263% 0.198% 1.217% 2.618%
〈g〉 0.000% 0.000% 0.001% 0.000% 0.09% 0.001%
〈$0〉 0.000% 0.000% 0.000% 0.000% 0.36% 0.000%

# of waves 110 110 110 194 194 230
194 194 194 230 230 302

X 3.80 4.84 5.59 7.73 8.28 10.2
# of elements 12292 15860 16022 31704 42038 11280

Table 8: As in Table 7 but for some of the short budding rosettes at 664 GHz, -83◦C.
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Figure 14: SSPs as a function of increasing number of incoming waves (14, 50, 110, 194, 302) for the aggregate Dmax = 5508µm at 664 GHz,
-83◦C. Relative difference percentage is shown between the current and previous number of incident waves. The size parameter is X = 38.3
and the number of elements used for the discretisation is 29418. As a reference, the relative difference percentages between 302 (max) and 14
(min) incident waves are 1.99%, 1.93%, 12.80%, 0.89% and 0.06% for 〈Cext〉, 〈Csca〉, 〈Cbsca〉, 〈g〉 and 〈$0〉 respectively.
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Figure 15: As in Figure 14 but for Dmax = 8582µm. The size parameter is X = 59.7 and the number of elements used for the discretization
is 43754. The relative difference percentages between 302 (max) and 14 (min) incident waves are 0.03%, 0.59%, 10.48%, 0.24% and 0.49% for
〈Cext〉, 〈Csca〉, 〈Cbsca〉, 〈g〉 and 〈$0〉 respectively.

Figure 16: As in Table 8 but for 〈Z11〉. The maximum relative difference observed is 0.2% and 19.1% respectively (left to right). The dashed
line indicates a 1% relative difference.
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Figure 17: Relative difference for 〈Z11〉 between 194 and 302 incident incoming waves for Dmax = 5508µm and 8582 µm. Other parameters
are as in Figures 14 and 15. The maximum relative difference observed is 4.15% and 14.9% (left to right).

Figure 18: Relative difference for 〈Z11〉 between 10 and 20 polarisation rotations (γi angles) for Dmax = 5508µm and 8582 µm. Other
parameters are as in Figures 14 and 15. The maximum relative difference observed is 29.6% and 28.9% (left to right). The dashed lines
represent a 1%, 10% and 20% relative difference.
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simulations of the database. To test whether this num-
ber of orientations was ‘random’ enough tests were also
performed with 32× 33× 32 (= 33792) orientations. The
relative difference for 〈Csca〉 and 〈g〉 was less than 1%,
however the relative difference for 〈Cbsca〉 increased with
frequency and particle size. While for lower frequencies
the relative difference was less than 5% this increased to
more than 20% for higher frequencies and larger particles.

These observations are consistent with ours, i.e. the
number of incident waves required to accurately compute
〈Cbsca〉 increases with X, while the remaining scattering
properties are accurately computed with a smaller num-
ber of them, about 50 incident waves in our case. As
mentioned earlier, this is also consistent with results from
[103, 104, 105, 98, 99].

We note though that in DDA simulations, computations
for γ are cheap, and might not necessarily have been opti-
mised compared to the other two - meaning that more com-
putations have been performed than required [99]. Given
that no discussion is given in [61] regarding this optimisa-
tion, a fair comparison of the total number of orientations
might not be possible.

Finally, we note that Lebedev quadrature outperforms
the quadratures used in packages such as DDSCAT [106]
or ADDA [107], but could be easily employed with the
DDA methods. It is not specific to the boundary ele-
ment method, but rather specific to this implementation
presented here. In fact, it has already been employed by
others such as in the work by Fenni et al. [98]. In gen-
eral, fair comparisons between different software or dif-
ferent approximation methods are not always feasible as
implementations are usually optimized for the hardware
and architecture available to those developing and using
the methods. Still, relevant to this paper, Yurkin [99] has
formulated guidelines for a fair evaluation of orientation-
averaging methods for light-scattering simulations and we
refer the reader there for further details.

5.4.2. Comparing simulation results
In Figures 19 - 20 we compare the optical properties

of the rosette aggregates used here at 243 GHz, -83◦C
with those of the compact eight-branched hexagonal ice
aggregate [64], the six-branched bullet rosette [64] and the
ARTS large column aggregate models [64]. The reason
as to why these models were chosen is because the lat-
ter two are the better performing models in the study by
Fox [2], when compared with the observations, whereas
the compact eight-branched hexagonal aggregate model is
the worst performing model out of all other models. In
those figures, the rosette aggregate model simulations of
these integral optical properties follow the two best per-
forming models as a function of frequency rather nicely
in the D2

max regime. The cross sections of the compact
eight-branched hexagonal ice aggregate generally diverge
significantly from the others in the D2

max regime, because
it is too compact and has too much mass, which is why it
performs so poorly when compared with the observations.

5.5. Notes on implementation
For the simulation of the scattering properties for this

database the open source library Bempp [75] (Versions
3.3.4 and 3.3.5) has been used with the accelerating meth-
ods of [54, 55]. Amazon Web Services (AWS) EC2 in-
stances were used to perform our simulations with up to
96 CPUs available at a time and 384 GB of RAM. Smaller
size parameter problems were ran on a desktop machine
with 40 CPUs and 188 GB RAM. Given the large avail-
ability of CPUs, the Multiprocessing library in Python
was used to distribute the different incoming waves and
therefore run multiple GMRES solves in parallel aiming
to reduce total computation time.

6. Discussion

In this paper, it has been demonstrated for the first
time that BEM can be applied to solve for the light scat-
tering properties of very complex ice particles that occur
in the Earth’s atmosphere. To the best of our knowledge,
this level of particle complexity over such a size parameter
range has not been investigated or previously presented
using BEM applied to realistic atmospheric ice crystals.
Here, we have developed a model of budding rosettes and
rosette aggregates that is based on observations of the
most commonly occurring habits found within in-situ gen-
erated cirrus, and these habits contributed mostly to the
total mass, and the orientation-averaged projected area
frequency of occurrence statistics found within that cloud
type. The budding rosette and rosette aggregate mod-
els were generated using a Monte-Carlo model that in-
cludes realistic fall speeds of ice crystals, generating 65
models between the maximum dimensions of between 10
and 10, 000µm. However, the mass of the rosette ag-
gregates were constructed to follow an observed mass-
dimension relation that is assumed within the cloud micro-
physics scheme of the Met Office’s operational global Uni-
fied Model. This was done to ensure physical consistency
between the weather and climate model assumptions in
their microphysics schemes, and the single-scattering prop-
erties. This being important because the single-scattering
properties will be utilised to simulate forthcoming obser-
vations from space-based microwave and sub-millimetre
instruments using the weather model’s predictions of ice
mass. Of course, these same single-scattering properties
may also be applied to the inverse problem in retrieving
cloud ice macrophysical and microphysical properties from
those instruments. We have shown that the Monte Carlo
generated rosette aggregate models are generally within
±30% of the chosen mass-dimension relation. Moreover,
we have further demonstrated that the observed area-
dimension relation found for in-situ generated cirrus are
within the standard deviation of the orientation-averaged
projected areas of the rosette aggregate models. Therefore,
these models using BEM can also be applied to gener-
ate single-scattering properties across the electromagnetic
spectrum other than at microwave frequencies.
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Figure 19: Scattering properties 〈Cext〉 (top) and 〈Csca〉 (bottom) of the rosette aggregates of Figures 4 - 7, the compact eight-branched
hexagonal ice aggregate [64], the six-branched bullet rosette [64] and the ARTS large column aggregate models [64].

This paper concentrates on BEM optimal settings that
are applicable to microwave and sub-millimetre scattering
at the frequencies of 50, 183, 243, and 664 GHz for the
temperature values of -83◦C, -43◦C, and -3◦C. This is be-
cause there is a need to generate single-scattering proper-
ties of realistic ice crystals that are consistent with weather
model ice microphysics assumptions at those frequencies
to take advantage of forthcoming weather satellites for the
purposes of assimilation of all-sky radiance measurements
into the Met Office’s UM. However, the scattering prop-
erties developed here are not only applicable to the Met
Office’s UM but also to other weather and climate centres

as well, owing to the mass-dimension relation on which
they are based being generally applicable to cold ice cloud.
The size parameter range over which the BEM generated
single-scattering properties are calculated in this paper is
between 0.29 and approximately 72. However, the higher
size parameter at 664 GHz does not represent the upper
limit of BEM but rather the cost of utilising the AWS re-
sources at the time. In the near future there will be no
such limitations.

The computation of the single-scattering properties as-
sumes random orientation because this is a necessary con-
dition for efficiently solving the equation of radiative trans-
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Figure 20: As in Figure 19 but for 〈$0〉 (top) and 〈g〉 (bottom).

fer in weather and climate models. To represent random
orientation, we take advantage of the BEM generated lin-
ear matrix equation, which is more effectively solved for
by fixing the particle with respect to the incident plane
wave and allowing the incident wave to rotate about the
particle. This approach to random orientation is different
to the more traditional set ups which fix the incident di-
rection of the plane wave and rotate the particle instead
with respect to that incident wave. We have demonstrated
the accuracy of this interpretation by replicating T-matrix
single-scattering property solutions found for hexagonal
columns to within a few percent for size parameters be-
tween 0.05 and 10. In respect to the mesh size, we find

that the usual BEM rule of 10 elements per wavelength is
not a general condition because it is found to be dependent
on the size parameter. After careful analysis, the number
of elements per wavelength that should be applied to solve
for the single-scattering properties of the budding rosettes,
and rosette aggregates has been carefully tabulated in this
paper. Generally, it is found that if the appropriate num-
ber of elements per wavelength is applied, the errors in
calculating the integral optical properties can be reduced
to generally less than 2% without increasing the memory
or solution times to onerous values. Likewise, the num-
ber of incident waves required for accurate calculation of
the single-scattering properties also depends on the size
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parameter. Generally, we find that 14 and up to 302 inci-
dent waves for the smallest and largest size parameters of
up to about 70, respectively, can be assumed to minimise
the single-scattering property errors found for the total
optical properties to be generally less than a few percent,
with the errors growing larger (in the area of 15%) for some
of the largest size parameters considered here. Further, we
find that again, to minimise the single-scattering property
errors, the number of polarisation ”directions” is also size
parameter dependent. The number required between the
size parameters of less than one and greater than or equal
to 24 is between 10, and 20, respectively.

We conclude that the BEM is a method which can be ap-
plied to very complex realistic ice aggregates that occur in
the Earth’s atmosphere to compute their single-scattering
properties to within an accuracy of most generally less
than a few percent if the correct parameter settings are
applied. This is sufficiently accurate to apply to weather
and climate models, as well as to the remote-sensing of cir-
rus and ice cloud properties. The single-scattering proper-
ties are currently in production. The properties for 50, 183
and 243 GHz are currently available1, the database will be
updated with those for 664 GHz once they are available.
This is expected to be by the end of 2023.
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