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Impact Statement

Abstract

I delve into the promising possibilities of using quantum superposition in

macroscopic systems as detectors for weakly interacting relativistic par-

ticles. I take a closer look at the specific example of neutrinos with MeV-

scale energy scattering from a solid object via neutral-current neutrino-

nucleus scattering. Using parameters from a nuclear fission reactor as

an (anti-)neutrino source, I establish the optimal spatial separation be-

tween the quantum superposed components for maximum sensitivity in

detecting these particles. In addition, I study the temporal evolution

of the sensing system, taking into account the effects of cooling and

background suppression. Through my research, I demonstrate that a

single gram scale mass placed in a superposition of spatial components

separated by 10≠14 m can yield a potentially measurable relative phase

between quantum superposed components, opening up exciting possi-

bilities for future applications. Furthermore, I investigate the broader

implications of utilizing quantum superpositions in sensing. By analyz-

ing the effects of scattering interactions between directional environments

and systems in quantum superposition, I discovered that there exists an

optimal superposition size for measuring incoming particles via a rela-

tive phase. An interesting feature of my research is the observation of

a novel limiting behaviour in the properties of the system’s density ma-

trix, which is linked to the wavelength of the scatterer. This highlights

the anisotropy of the environment and its impact on quantum sensing.

As a platform for a practical realisation of macroscopic superpositions,

I investigate an atom-nanoparticle system and discuss the possibility of
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treating the nanoparticle as a spatial qubit. Overall, my thesis presents

a comprehensive examination of the potential of quantum superposition

in macroscopic systems as detectors for weakly interacting relativistic

particles. It demonstrates that exploiting quantum mechanics for direc-

tional sensing offers unprecedented possibilities and has the potential to

revolutionize the field of quantum sensing.
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Impact Statement

The concept of quantum superposition has revolutionized our under-

standing of the microscopic world, and its potential impact extends far

beyond theoretical physics. This impact statement highlights the trans-

formative effects of utilizing quantum superposition as a tool for sensing

and measurement across various fields. Harnessing the power of quan-

tum superpositions has unlocked new possibilities in metrology, quantum

computation, and recently particle physics. The work presented in this

thesis illustrates the significance of research focused on utilizing macro-

scopic systems in quantum superposition as detectors for weakly inter-

acting relativistic particles. By examining the explicit case of neutrinos

with MeV-scale energy scattering from solid objects, valuable insights

have been gained and only further promoted the vast applicability of

quantum sensors to the exploration of open fundamental physics ques-

tions. Notably, I demonstrate the potential for detecting neutrino sig-

natures via a measurable relative phase between quantum superposed

components. Achieving this outcome requires careful consideration of

factors such as spatial separation, cooling techniques, and background

suppression. These findings provide a foundation for the development

of innovative quantum sensing technologies that could revolutionize the

fields of low energy neutrino and non-standard particle physics.

The secondary focus of this work is placed on exploring the scattering

interactions of more general directional particulate environments with

a system in a quantum superposition. By investigating this scenario, I

have uncovered the existence of an ”optimal superposition” size, which
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Impact Statement

may facilitate the design of superposition based experiments aiming to

sense particles via coherent phases. The implications of the findings here

presented are significant, as they contribute to the development of opti-

mized quantum sensing strategies.

The study of an atom-nanoparticle system in ion-trap settings is par-

ticularly relevant in all of the above mentioned contexts, as it may lead

to the creation of large-mass superpositions which can be used for the

sensing of neutrinos, dark matter particles and gravitational effects.

5 of 152



Acknowledgements

I would like to express my deepest gratitude to my primary supervi-

sor, Prof. Sougato Bose, for his guidance and support throughout my

academic journey. His insightful feedback, unwavering passion for fun-

damental science, and patient encouragement, especially so of women in

science, have been invaluable in shaping my research and developing my

skills. Without his supervision, this achievement would not have been

possible. Equally, I would like to thank Prof. Peter Barker for includ-

ing me in regular meetings of his optomechanics group and providing

the valuable viewpoint of an experimentalist. I also want to express

my sincere appreciation for the supervision of Dr. Marko Toroš, whose

willingness to engage in debates about even the most seemingly trivial

formalistic subtleties, and whose commitment to jointly work out suit-

able solutions, even if these treacherous trivialities turn into figurative

elephants, I highly value.

I am particularly grateful to my partner, Markus Rademacher, who has

stood by my side throughout four years marked by a severe worsening of

my chronic condition and has cared for me in a way I would have thought

unthinkable, all while conducting his own doctoral studies. It is in part

owed to his encouragement that I have gained the confidence to apply

for prestigious conferences and career opportunities in physics. In this

sense, I also want to thank Dr. Sofia Qvarfort for her advice to aim high

and throw my hat in the ring for highly competitive academic positions.

Lastly, I would like to express my gratitude to my parents Karl and An-

drea Kilian, for accepting my desire to study a subject that is as foreign

6 of 152



Acknowledgements

to them as the nature of their professions is to me, my sister Romana

Kilian and my close friends Julia and Nikola Mandl, all of whom are a

constant source of strength and inspiration.

7 of 152



Contents

Contents

List of Figures 15

List of Tables 16

Research Paper Declaration Form 17

First Paper . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

Second Paper . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

1 Introduction 23

1.1 Preamble . . . . . . . . . . . . . . . . . . . . . . . . . . 23

1.2 Matter-Wave Interferometry for Fundamental Physics Re-

search . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

1.3 Physical Realisation of Atomic Two-State Systems . . . . 26

1.4 Atom Interferometry . . . . . . . . . . . . . . . . . . . . 34

1.5 Large-Mass Interferometry . . . . . . . . . . . . . . . . . 37

1.6 Neutrinos - A very brief History . . . . . . . . . . . . . . 39

1.7 Neutrinos in the Standard Model . . . . . . . . . . . . . 41

1.8 Neutrino Oscillations . . . . . . . . . . . . . . . . . . . . 47

1.9 Neutrinos and their Interactions with Matter . . . . . . . 48

1.10 Neutrino Sources . . . . . . . . . . . . . . . . . . . . . . 50

1.11 Modern Neutrino Experiments . . . . . . . . . . . . . . . 52

2 Neutrino Detection via Superpositions of Macroscopic

Objects 55

2.1 The Context . . . . . . . . . . . . . . . . . . . . . . . . . 57

8 of 152



Contents

2.2 Detecting Particulate Matter by Measuring a Phase . . . 60

2.3 Coherent Elastic Neutrino-Nucleus Scattering Cross Section 64

2.4 Quantum Open Systems and the Born-Markov Approxi-

mation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

2.4.1 Quantum Master Equation for Neutrino-Nucleus

Scattering . . . . . . . . . . . . . . . . . . . . . . 69

2.4.2 Calculation of the Relative Phase between Super-

posed Components of a Crystal and its Detection 76

2.5 Creation of Quantum Superpositions of Macroscopic Objects 81

2.6 Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . 86

2.6.1 Satisfying the Requirements of the Crystal Wavepacket 86

2.6.2 Coherence Length of the Neutrino . . . . . . . . 87

2.6.3 Lattice Defects . . . . . . . . . . . . . . . . . . . 87

2.6.4 Distribution of Momentum . . . . . . . . . . . . 88

2.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . 88

3 On the Optimality of the Superposition Size 91

3.1 The Context . . . . . . . . . . . . . . . . . . . . . . . . . 92

3.2 Sensing in Scattering Experiments . . . . . . . . . . . . 94

3.3 On the Emergence of an Optimal Superposition Size . . 97

3.4 Experimental Signature . . . . . . . . . . . . . . . . . . 100

3.4.1 Single Photon Detection . . . . . . . . . . . . . . 102

3.5 Implications for Quantum Sensing and Experiments . . . 103

3.6 Master Equation with Boosted Superposition . . . . . . 104

3.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . 106

4 Non-Gaussian Superpositions & Entanglement in Atom-

Nanoparticle Ion Trap Hybrids 107

4.1 Schematic Protocol . . . . . . . . . . . . . . . . . . . . . 108

4.2 Mathematical Model . . . . . . . . . . . . . . . . . . . . 110

4.3 Spatial Superposition Generation . . . . . . . . . . . . . 114

9 of 152



Contents

4.4 Estimates in Physical Realizations . . . . . . . . . . . . 118

4.5 Verification of Entanglement . . . . . . . . . . . . . . . . 119

4.5.1 Pauli Operators for the Spatial Qubit . . . . . . . 121

4.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . 126

5 Conclusion 128

Bibliography 131

10 of 152



List of Figures

List of Figures

1.1 Depiction of an atomic three-level system with optically

active transitions |g1Í ¡ |eÍ and |eÍ ¡ |g2Í. The fre-

quency difference of |g1Í and |eÍ is characterised by Ê.

The quantity � is a detuning from the frequency of the

excited state |eÍ. The frequencies Ê1 + � and Ê2 + �

are associated with the transitions between |g1Í ¡ |eÍ

and |eÍ ¡ |g2Í while �1 and �2 denote the corresponding

coupling strengths of the lasers. The frequency Ê12 corre-

sponds to the frequency difference between the levels |g1Í

and |g2Í. . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

11 of 152



List of Figures

1.2 Illustration of a light-pulse atom interferometer based on

a fi

2 ≠ fi ≠ fi

2 pulse sequence, using superpositions of in-

ternal and external degrees of freedom. The state |j, pjÍ

denotes the internal level j and the external momentum

pj. Displayed are the key steps of the interferometric ex-

periment, where the motional paths for the superposed

components are coloured in red and turquoise. (1) The

application of a fi

2 laser pulse creates an initial superposi-

tion state c1|1, pÍ+c2|2, p+2~kÍ. (2) The state evolves for

a duration T , causing both parts of the velocity-separated

superposition to propagate away from each other. (3) A

fi pulse is applied to swap the states |1, pÍ ¡ |2, p+2~kÍ.

(4) After another time interval T , a final fi

2 pulse acts as

a beamsplitter, mixing the wave-packets and completing

the interferometry. The accumulated phase difference be-

tween the two parts of the superposition is measured, e.g.,

via fluorescence detection, to reveal the effects of gravita-

tional and other forces on the atoms. . . . . . . . . . . . 35

1.3 Illustration of different neutrino sources, displayed against

neutrino energy. Black bars below the respective sources

serve as a rough indication of the corresponding expected

neutrino energy ranges. Cosmological neutrinos, known

as the cosmic neutrino background, are at the low end of

the energy spectrum, whereas galactic and extra-galactic

neutrinos span the high-energy end of the spectrum. . . 51

12 of 152



List of Figures

2.1 The working mechanism of a system detecting the mo-

mentum recoil of a crystal due to the scattering of a par-

ticle of initial momentum k from it through a relative

phase between two components of a superposition. In a

general Stern-Gerlach interferometer, the phase difference

between two spatially separated components ends up as

a phase difference between two spin states (indicated by

| øÍ and | ¿Í) and can be measured as a phase difference

between spin components. The separation �x is assumed

to be on the order of the incoming scatterer’s de Broglie

wavelength ⁄db. . . . . . . . . . . . . . . . . . . . . . . . 58

2.2 Elastic scattering illustration with the scattering angle de-

noted as ◊, the initial momenta pi, ki and the final mo-

menta pf , kf . . . . . . . . . . . . . . . . . . . . . . . . . 64

2.3 Feynman diagram for neutral current coherent elastic ‹-

nucleus scattering, where time runs vertically. The label

‹ refers to the neutrino whereas the symbol X represents

the nucleus. . . . . . . . . . . . . . . . . . . . . . . . . . 65

2.4 Phase accumulation due to coherent neutrino-nucleus scat-

tering from Bismuth. The figure depicts the normalised

matrix elements of the nucleus density matrix after per-

forming the operations of a phase gate and subsequent

Hadamard on the sensing system. Most notably, the blue

line shows the change resulting from the scattering in

terms of the sine of the accumulated phase. . . . . . . . 79

13 of 152



List of Figures

2.5 The diagram of the allowable region of pressure P and

temperature T so that a m ≥ 1 g crystal in a superposition

of two positions separated by �x ≥ 10≠14 m can remain

coherent for a time t ≥ 105 s. The allowable region is

unshaded. It can be seen that P ≥ 10≠16 Pa and T ≥ 1

K (the black dot) is an optimal point for the scheme. . . 82

3.1 Basic schematics of a particle scattering from a quantum

object (purple spheres) in a Stern-Gerlach type interfero-

metric experiment. . . . . . . . . . . . . . . . . . . . . . 92

3.2 Short- and long-wavelength regimes of imaginary and real

part quantum state evolution for Thompson scattering.

The quantity ⁄ is the incoming particle’s wavelength and

”x is the size of the superposition. The blue and the

orange line refer to the real and imaginary parts of the

localization rate’s contribution to the quantum system’s

off-diagonal respectively. The real part is typically used to

quantify decoherence. The imaginary part vanishes in an

isotropic situation. In case of a directed (non-isotropic)

source such as a wind however, the imaginary part can be

used for sensing, as it gives a phase evolution. . . . . . . 99

3.3 Accumulated phases (depth coloration) for varying ra-

tios of ”x/⁄ over a time interval t = [0, 5] s, assuming

Thompson scattering with m = 0 and constant pre-factors

n(q)v(q)g = 1. The orange colored region in the plot in-

dicates the maximization of the phase signature, which in

turn is determined by the non-vanishing first order con-

tribution in Eq. 3.3.2. . . . . . . . . . . . . . . . . . . . 102

3.4 Quantum efficiency ÷ for Rayleigh scattering of single pho-

tons with ⁄ = 1064 nm on a 0.1 micron-sized sphere, as-

suming different spatial photon profiles Ap. . . . . . . . 103

14 of 152



List of Figures

4.1 Schematic protocol for generating entanglement between

a single trapped (charged) atom and a nanoparticle con-

sisting of several tightly-bound atoms. In step (1), both

particles are trapped. Subsequently in step (2) a pulse ·p

is used to place the atom in superposition. (3) The par-

ticles are allowed to interact for a time ·1, at which point

the atom is measured as indicated by the detector sym-

bol D in red. (4) The nanoparticle is allowed to evolve

for a time ·2, then its fringes in position are measured

throughout multiple repetitions of the protocol. . . . . . 108

4.2 Three-dimensional depiction of the Wigner functions W(x,p)

for the states (a) |Â+(·2)Í and (b) |Â≠(·2)Í for displace-

ment values — =
Ô

2. The colour bars indicate the value of

W(x,p) for different values of position x and momentum

p. In the above, I have used adimensional x æ
Ô

2‡1x

and corresponding p. . . . . . . . . . . . . . . . . . . . . 116

15 of 152



List of Tables

List of Tables

1.1 Lepton content of the SM. Electrons e, muons µ, tauons ·

and three types of neutrinos ‹e,µ,· are grouped into three

generations and displayed from left to right in ascend-

ing order with respect to the electron, muon and tauon

masses. Left-handed leptons (indexed with the subscript

L) are arranged as doublets whereas right-handed leptons

(indexed with a subscript R) are represented as singlets. 42

2.1 Constants and definitions. GF denotes the Fermi con-

stant, u the atomic mass unit, mnucl the mass of a nucleus.

The flux listed is the projected neutrino flux at a distance

of 20 m from the source and �x refers the superposition

size. The function S(E) is a spectral distribution function

over the energies E, with standard deviation ‡E and mean

energy E0. . . . . . . . . . . . . . . . . . . . . . . . . . . 76

16 of 152



List of Tables

Research Paper Declaration

Form

Referencing the doctoral candidate’s own pub-

lished work

First Paper

1. 1. For a research manuscript that has already been pub-

lished (if not yet published, please skip to section 2):

(a) What is the title of the manuscript?

Requirements on quantum superpositions of macro-objects for

sensing neutrinos

(b) Please include a link to or doi for the work:

https://doi.org/10.1103/PhysRevResearch.5.023012

(c) Where was the work published?

Physical Review Research

(d) Who published the work?

The American Physical Society

(e) When was the work published?

7 April 2023

(f) List the manuscript’s authors in the order they appear

on the publication:

Eva Kilian, Marko Toroš, Frank F. Deppisch, Ruben Saakyan,

17 of 152

https://doi.org/10.1103/PhysRevResearch.5.023012


Research Paper Declaration

and Sougato Bose

(g) Was the work peer reviewed?

Yes

(h) Have you retained the copyright?

Attribution 4.0 International (CC BY 4.0). This license per-

mits unrestricted use, distribution, and reproduction in any

medium, provided attribution to the author(s) and the pub-

lished article’s title, journal citation, and DOI are maintained.

(i) Was an earlier form of the manuscript uploaded to a

preprint server (e.g. medRxiv)? If ’Yes’, please give

a link or doi

https://doi.org/10.48550/arXiv.2204.13095

If ’No’, please seek permission from the relevant publisher and

check the box next to the below statement:

⇥ I acknowledge permission of the publisher named under 1d

to include in this thesis portions of the publication named

as included in 1c.

2. For a research manuscript prepared for publication but

that has not yet been published (if already published, please

skip to section 3):

(a) What is the current title of the manuscript?

(b) Has the manuscript been uploaded to a preprint server

’e.g. medRxiv’?

If ’Yes’, please please give a link or doi:

(c) Where is the work intended to be published?

(d) List the manuscript’s authors in the intended author-

ship order:

(e) Stage of publication:

3. For multi-authored work, please give a statement of con-

18 of 152

https://doi.org/10.48550/arXiv.2204.13095


Research Paper Declaration

tribution covering all authors (if single-author, please skip to

section 4):

Eva Kilian designed the theoretical framework and performed the

calculations and wrote the initial draft. Marko Toroš assisted

with the computations. All authors edited and co-wrote the fi-

nal manuscript. Marko Toroš, Frank F. Deppisch, Ruben Saakyan,

and Sougato Bose gave supervision and advice during this work.

4. In which chapter(s) of your thesis can this material be

found?

Chapter 2

e-Signatures confirming that the information above is ac-

curate (this form should be co-signed by the supervisor/ senior author

unless this is not appropriate, e.g. if the paper was a single-author work):

Candidate:

Eva Kilian

Date: 13th May 2023

Supervisor/Senior Author signature (where appropriate):

Sougato Bose

Date: 13th May 2023

19 of 152



Research Paper Declaration

Second Paper

1. 1. For a research manuscript that has already been pub-

lished (if not yet published, please skip to section 2):

(a) What is the title of the manuscript?

(b) Please include a link to or doi for the work:

(c) Where was the work published?

(d) Who published the work?

(e) When was the work published?

(f) List the manuscript’s authors in the order they appear

on the publication:

(g) Was the work peer reviewd?

(h) Have you retained the copyright?

(i) Was an earlier form of the manuscript uploaded to a

preprint server (e.g. medRxiv)? If ’Yes’, please give

a link or doi

If ’No’, please seek permission from the relevant publisher and

check the box next to the below statement:

⇤ I acknowledge permission of the publisher named under 1d

to include in this thesis portions of the publication named

as included in 1c.

2. For a research manuscript prepared for publication but

that has not yet been published (if already published, please

skip to section 3):

(a) What is the current title of the manuscript?

Optimal Superpositions for Particle Detection via Quantum

Phase

(b) Has the manuscript been uploaded to a preprint server

’e.g. medRxiv’?

20 of 152



Research Paper Declaration

If ’Yes’, please please give a link or doi:

https://doi.org/10.48550/arXiv.2307.15186

(c) Where is the work intended to be published?

Physical Review Letters

(d) List the manuscript’s authors in the intended author-

ship order:

Eva Kilian, Marko Toroš, P.F. Barker, and Sougato Bose

(e) Stage of publication:

In preparation for submission.

3. For multi-authored work, please give a statement of con-

tribution covering all authors (if single-author, please skip to

section 4):

Eva Kilian designed the theoretical framework and performed the

calculations and wrote the initial draft. Marko Toroš assisted

with the computations. All authors edited and co-wrote the fi-

nal manuscript. Marko Toroš, P.F. Barker, and Sougato Bose gave

supervision and advice during this work.

4. In which chapter(s) of your thesis can this material be

found?

Chapter 3

e-Signatures confirming that the information above is ac-

curate (this form should be co-signed by the supervisor/ senior author

unless this is not appropriate, e.g. if the paper was a single-author work):

Candidate:

Eva Kilian

21 of 152

https://doi.org/10.48550/arXiv.2307.15186


Research Paper Declaration

Date: 13th May 2023

Supervisor/Senior Author signature (where appropriate):

Sougato Bose

Date: 13th May 2023

22 of 152



1. Introduction

Chapter 1

Introduction

Contents
1.1 Preamble . . . . . . . . . . . . . . . . . . . . . . . 23

1.2 Matter-Wave Interferometry for Fundamental

Physics Research . . . . . . . . . . . . . . . . . . 25

1.3 Physical Realisation of Atomic Two-State Sys-

tems . . . . . . . . . . . . . . . . . . . . . . . . . . 26

1.4 Atom Interferometry . . . . . . . . . . . . . . . . 34

1.5 Large-Mass Interferometry . . . . . . . . . . . . 37

1.6 Neutrinos - A very brief History . . . . . . . . . 39

1.7 Neutrinos in the Standard Model . . . . . . . . 41

1.8 Neutrino Oscillations . . . . . . . . . . . . . . . . 47

1.9 Neutrinos and their Interactions with Matter . 48

1.10 Neutrino Sources . . . . . . . . . . . . . . . . . . 50

1.11 Modern Neutrino Experiments . . . . . . . . . . 52

1.1 Preamble

Cutting-edge quantum technologies offer immense potential for discov-

ering long-predicted and yet unobserved features of fundamental theory.
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1.1. Preamble 1. Introduction

Quantum sensors may capture information that classical sensors cannot

capture, and their ability to detect extremely weak signatures makes

them ideally suited for high-precision measurements. They offer unique

advantages in answering questions on the limits of quantum theory, the

nature of gravity, dark matter and dark energy, and the validity of nu-

merous extensions to the standard model of particle physics.

This thesis is centred on the ambitious objective of addressing a specific

of these fundamental and unanswered questions: Is it possible to sense

elusive particles, particularly neutrinos, through large masses placed in

quantum superposition? Suppose current technological limitations, es-

pecially with respect to the rapid decoherence of large mass quantum

sensors, can be overcome in the near future. What minimum require-

ments would such detectors have to meet?

In this thesis, I address the above broad objectives through three pieces

of original work. Firstly (as reported in Chapter 2), I develop a formalism

to describe the time evolution of a sensing particle under the influence

of neutrinos scattering from it. I find the parameter regimes required.

Secondly (as reported in Chapter 3), I describe a general relationship

between the directionality and wavelength of an environmental particle

source and the emergence of an optimal window for the quantum sen-

sor’s superposition size. I find the tradeoff between coherent phase and

decoherence as a function of the superposition size. Third (as reported

in Chapter 4), I consider a specific protocol for the creation of large mass

superpositions of nanoparticles through their interaction with atoms. I

find that an atom and a nanoparticle in adjacent ion traps is a good

setting for generating such superpositions.

Since the majority of the aspects discussed in this work require a metaphor-

ical walk on a bridge between matter-wave interferometry and neutrino

physics, with both of these fields equally vast in their depth and complex-

ity, I aim to provide the reader with two reasonably distinct introductory
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1.1. Matter-Wave Interferometry 1. Introduction

themes: one which is focused on matter-wave interferometry with atoms

and large-mass objects and another which discusses neutrinos in the con-

text of particle physics. Sections 1.2-1.5 will provide an overview of the

former, and Sections 1.6-1.9 will delve into the latter topic.

1.2 Matter-Wave Interferometry for Fun-

damental Physics Research

The field of matter-wave interferometry was born in 1924 [1] when Louis

de Broglie wrote about the then hypothetical wave-particle duality of

massive particles of matter in his doctoral thesis. He proposed that,

in a similar fashion to photons in Einstein’s famous theory of light, a

massive particle of a given momentum p = mv may exhibit wave-like

behaviour with a wavelength ⁄dB = h

mv
. As a consequence of this be-

haviour, massive matter particles shot onto double slits or other types of

diffraction structures should result in the appearance of an interference

pattern. Three short years thereafter, Davisson and Germer [2] confirmed

de Broglie’s notion by directing a beam of electrons at a crystalline tar-

get, resulting in the observation of a diffraction pattern in accordance

with theoretical expectations. The first exploration of a matter-wave in-

terferometry setup that incorporated the splitting and recombination an

electron beam followed much later, in 1953 [3], involving an arrangement

of three crystals which were used as amplitude beam-splitters. Interfer-

ence of de Broglie waves of electrons in a double-slit experiment was first

demonstrated in [4].

All matter-wave experiments share a commonality: they harness the

wave-like nature of atoms [5, 6], molecules [7, 8], nanoparticles [9] and, at

least conceptually, macroscopic composite objects of even larger masses

and stimulate the development of quantum sensors capable of detecting
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1.3. Physical Realisation of Atomic Two-State Systems 1. Introduction

exceptionally weak signatures, for instance very low transfers of momen-

tum. In general, interferometric experiments are based on the creation,

coherent manipulation and subsequent measurement of quantum super-

positions. Interference of the superposed wavepackets can be used to

extract information from the system, such as fluctuations in the gravita-

tional field which may appear in the form of a variation in the relative

phases between the components of a spatial superposition [10, 11]. A rela-

tively novel direction of fundamental physics research is the application of

matter-wave interferometry to the sensing of particulate matter [12, 13].

While scattering interactions involving high momentum transfers to the

sensor will lead to fast decoherence of the system, optomechanical sensors

based on quantum superpositions may be ideal candidates for measuring

rare events through small momentum transfers [14]. Important concep-

tual details for fundamental physics research and the sensing of neutrinos

using matter-wave interferometers are presented in Sections 1.3-1.9.

1.3 Physical Realisation of Atomic Two-State

Systems

Practical implementations of matter-wave interferometers necessitate the

realisation of robust physical qubits1 which are constructed from two or-

thogonal states of a quantum system. A simple and natural realisation

of a well-defined qubit is a spin 1/2 system, such as an electron in a mag-

netic field [15], for which the spin projections along the field direction

|mS = ≠1
2Í = |0Í and |mS = +1

2Í = |1Í are associated with the qubit

basis states |0Í and |1Í.

Continuous variable systems may equally be engineered as effective

qubits. One possible way to design an atom as a two-state quantum sys-
1Physical qudits will not be discussed in this thesis.
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|g1Í

�1, Ê1

|eÍ

�

Ê
�2, Ê2

|g2Í

Ê12

Figure 1.1: Depiction of an atomic three-level system with optically active
transitions |g1Í ¡ |eÍ and |eÍ ¡ |g2Í. The frequency difference of
|g1Í and |eÍ is characterised by Ê. The quantity � is a detuning
from the frequency of the excited state |eÍ. The frequencies Ê1 +
� and Ê2 +� are associated with the transitions between |g1Í ¡
|eÍ and |eÍ ¡ |g2Í while �1 and �2 denote the corresponding
coupling strengths of the lasers. The frequency Ê12 corresponds
to the frequency difference between the levels |g1Í and |g2Í.

tem is to utilize its internal degrees of freedom, specifically its hyperfine

ground and excited states. To illustrate how an internal superposition

state of this kind can be induced in an atomic system, I will discuss a

particular, classic example of the coherent interaction of an atom with

laser light, where the atom is assumed to exhibit an energy level config-

uration which is termed a three-level � structure [16]. This structure is

visualised schematically in Figure 1.1. It features two optically individu-

ally addressable hyperfine ground states |g1Í and |g2Í of similar energies

Eg1 and Eg2 = Eg1 + ~Ê12, which will be identified as the qubit, and an

excited state |eÍ to which both hyperfine ground states couple through

dipole transitions. Direct transitions between |g1Í and |g2Í are dipole-

forbidden and the hyperfine ground states can not decay to other lower

energy states via single-photon transitions. The quantities �1 and �2 are

frequency measures of the dipolar interaction between the atom and the

electromagnetic field of the laser light Vdip = ≠E · d̂, where d̂ = er̂ is the

dipole operator and r̂ is the position operator of the electron. �1 and �2

are also known as Rabi frequencies. They define the coupling strengths

of the two lasers prompting the transitions |g1Í ¡ |eÍ and |eÍ ¡ |g2Í

and are given by �j = Èe|d̂|gjÍ·E
~ . In this concrete example, both lasers
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are detuned by an equal amount � from the transitions between the ex-

cited and ground states, a practice which is generally used in order to

avoid resonant excitations to |eÍ. Given a sufficiently large detuning �,

two-photon transitions between the two hyperfine ground states are stim-

ulated without populating the excited level, thus enabling the physical

realisation of an ideal qubit. The ensuing oscillations occuring between

|g1Í and |g2Í via the higher level |eÍ are also known as Raman transitions.

Suppose for now that the atom in the � configuration is interacting

with classical light. The electromagnetic field is of the form

Ej = E0,j

1
‘je

iÊjt≠ikjr + ‘
ú
j
e

≠iÊjt+ikjr
2

(1.3.1)

where r is the distance vector, kj is the wave vector, ‘j are the field

polarizations and E0,j the real field amplitudes of two different light fields,

neglecting additional phases. For an atomic system located at r = 0, the

expression simplifies to Ej = E0,j

1
‘je

iÊjt + ‘
ú
j
e

≠iÊjt

2
. Using the definition

of the Rabi frequency and associating g1 with the zero energy, the total

Hamiltonian can be expressed in the basis |g1Í, |g2Í, |eÍ as

H�(t) = ~

Q

cccccca

0 0 �1 cos Ê1t

0 Ê12 �2 cos Ê2t

�1 cos Ê1t �2 cos Ê2t Ê.

R

ddddddb
(1.3.2)

In order to eliminate the explicit time dependence, a transformation to

the rotating frame can be used. This transformation of the Hamiltonian

is of the form2
H

Õ = UHU
† + i~U

dU
†

dt
. Switching to the rotating frame

2A result which can be recovered when looking at a transformation of the quantum
state |ÂÕ(t)Í = U(t)|Â(t)Í and inserting it into the Schrödinger equation.
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by employing the unitary transformation

U(t) =

Q

cccccca

1 0 0

0 e
≠i(Ê1≠Ê2)t 0

0 0 e
≠iÊ2t

R

ddddddb
(1.3.3)

one recovers the Hamiltonian

H
Õ
�(t) = ~

2

Q

cccccca

0 0 �1(1 + e
2iÊ1t)

0 2(Ê12 + Ê2 ≠ Ê1) �2(1 + e
2iÊ2t)

�1(1 + e
≠2iÊ1t) �2(1 + e

≠2iÊ2t) 2(Ê ≠ Ê1).

R

ddddddb

(1.3.4)

The rotating wave approximation is then utilized to justify the elimina-

tion of fast rotating terms in the Hamiltonian.

H
Õ
� = ~

2

Q

cccccca

0 0 �1

0 2(Ê12 + Ê2 ≠ Ê1) �2

�1 �2 2(Ê ≠ Ê1).

R

ddddddb
(1.3.5)

When the two light beams are equally detuned as depicted in Figure

1.1, where �1 = Ê ≠ Ê1 is equal to �2 = Ê ≠ Ê2 ≠ Ê12 and hence

�1 = �2 = �, and the detuning is regarded in the limit where � ∫

�j, this Hamiltonian can be treated in the context of time-independent

degenerate perturbation theory. Following the perturbative treatment,

the atom can then be described as an effective two-level system with the

Hamiltonian becoming

Heff,�∫�j
= ≠ ~

4�
1
�2

1|g1ÍÈg1| + �2
2|g2ÍÈg2|

2
(1.3.6)

≠ ~�eff
1
|g1ÍÈg2| + |g2ÍÈg1|

2

where �eff = �1�2
4� is an effective Rabi frequency. As is evident from

the off-diagonal terms, the population oscillates between the two ground
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states. Formulated in terms of Pauli operators Z and X, the Hamiltonian

of Eq. (1.3.6) can also be written as

Heff,�∫�j
= ≠ ~

4�
1�2

1
2 (I + Z) + �2

2
2 (I ≠ Z)

2
(1.3.7)

≠ ~�effX

where Z = |g1ÍÈg1|≠ |g2ÍÈg2| and X = |g1ÍÈg2|+ |g2ÍÈg1| and I is the iden-

tity matrix. In approximate versions of the effective Hamiltonian, the

term ≠ ~
4�

1�2
1+�2

2
2

2
I is often neglected and Heff,�∫�j

ƒ ≠ ~
4�

1�2
1≠�2

2
2

2
Z ≠

~�effX. If �1 = �2, which is also the situation depicted in Figure 1.1, a

perfect fi/2 pulse for an atom initially in a state |g1Í can be realized by

evolving the quantum state for a time · = fi

2�eff
.

The fully quantum treatment of atom-motional mode interactions re-

quires a more subtle mathematical description [17]. For illustrative pur-

poses, I will consider an ion in a linear Paul trap, whose center-of-mass

motion is quantized due to the action of electric potentials and static

electric fields. In such a scenario, the motion of the ion in the direc-

tions i = x, y, z behaves to good approximation like a simple quantum

harmonic oscillator with the Hamiltonian

H = ~Êi(N̂i + 1/2) (1.3.8)

ƒ ~ÊiN̂i (1.3.9)

where N̂i = a
†
i
ai is the number operator and a

†
i

=
Ò

mÊ

2~ (x̂i ≠ i

mÊ
p̂i),

ai =
Ò

mÊ

2~ (x̂i + i

mÊ
p̂i) are the common raising and lowering operators,

with m being the mass of the ion. Identifying the z-axis as that running

in parallel to the rods of the Paul trap, the position of the ion in the z-

direction ẑ = ”z(a†
z

+ az) and ”z =
Ò

~
2mÊz

is the spread or uncertainty of

the ground state. Importantly, the quantization of the motion introduces

discrete vibrational states |nÍ, which are eigenstates of the harmonic os-
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cillator also termed Fock states or phonon number states.

The electromagnetic field is not quantized in this treatment and, for

the sake of simplicity, will be treated here as a single mode radiation field

propagating in the z-direction, polarized in x. It is written as

Ej = E0,j ęx

1
e

i(Êjt≠kj ẑ+„j) + e
≠i(Êjt+kj ẑ≠„j)

2
(1.3.10)

where the position of the ion has been quantized, ęx is the unit vector in

x and „j are the phases of the two lasers. The dipole operator component

in the x-direction can be expressed as d̂ = ‡
(j)
+ Èe|d|gjÍ + ‡

(j)
≠ Ègj|d|eÍ with

‡
(j)
+ = |eÍÈgj|, ‡

(j)
≠ = |gjÍÈe|. The interaction Hamiltonian

HI = ≠ d̂ · E (1.3.11)

≠
ÿ

j=1,2

5
E0,j

1
e

i(Êjt≠kj ẑ+„j) + e
≠i(Êjt+kj ẑ≠„j)

2

1
Èe|d̂|gjÍú

‡
(j)
+ + Ègj|d̂|eÍ‡(j)

≠

26

is accompanied by the Hamiltonian H0 for the atom and motion

H0 = ~Êza
†
a + ~Ê

2
1
|eÍÈe| ≠ |g1ÍÈg1|

2
(1.3.12)

+ ~(Ê ≠ Ê12)
2

1
|eÍÈe| ≠ |g2ÍÈg2|

2

where Ê and Ê12 are the transition frequencies shown in Figure 1.1. Now

I am introducing an important distinction to the previous case. Instead

of the lasers being equally detuned from the transitions to the excited

level, the frequency difference Ê1 ≠Ê2 of the lasers is detuned by a further

amount ” from the ground state difference Ê12. In the rotating frame,
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the interaction Hamiltonian of Eq. (1.3.11) becomes

HI = ≠ E0,1

51
e

i(Ê1t≠k1ẑ+„1) + e
≠i(Ê1t+k1ẑ≠„1)

2
(1.3.13)

1
d

ú
1‡

(1)
+ e

iÊt + d1‡
(1)
≠ e

≠iÊt
26

≠ E0,2

51
e

i(Ê2t≠k2ẑ+„2) + e
≠i(Ê2t+k2ẑ≠„2)

2

1
d

ú
2‡

(2)
+ e

i(Ê≠Ê12)t + d2‡
(2)
≠ e

≠i(Ê≠Ê12)t
26

where dj = Èe|d̂|gjÍ has been used for notational convenience. The rotat-

ing wave approximation can then be used to drop fast-rotating terms in

the Hamiltonian.

HI = ≠ E0,1
1
e

i((Ê1≠Ê)t≠k1ẑ+„1)
d1‡

(1)
≠ + e

≠i((Ê1≠Ê)t+k1ẑ≠„1)
d

ú
1‡

(1)
+

2
(1.3.14)

≠ E0,2
1
e

i((Ê2≠Ê+Ê12)t≠k2ẑ+„2)
d2‡

(2)
≠ + e

≠i((Ê2≠Ê+Ê12)t+k2ẑ≠„2)
d

ú
2‡

(2)
+

2

The phases „j can be used to compensate the complex parts of dj, into

which the sign can also be absorbed, allowing for the Hamiltonian to

be rewritten in terms of the Rabi frequencies �j. Due to the additional

detuning ”, one obtains

HI =~�1
1
e

≠i(�t+k1ẑ)
‡

(1)
≠ + e

i(�t+k1ẑ)
‡

(1)
+

2
(1.3.15)

+ ~�2
1
e

≠i((�≠”)t+k2ẑ)
‡

(2)
≠ + e

i((�≠”)t+k2ẑ)
‡

(2)
+

2

An effective 2-level Hamiltonian can again be obtained through pertur-

bative methods, yielding

HI,2D =~�1�2
4�

1
e

≠i(k̃ẑ≠”t)
‡≠ + e

i(k̃ẑ≠”t)
‡+

2
(1.3.16)

with k̃ now a difference vector and ‡+ = |g2ÍÈg1|, ‡≠ = |g1ÍÈg2|. At this

stage, the quantization of the motion will play a more prominent role.

In the interaction picture, ẑ = ”z

1
ae

≠iÊzt + a
†
e

iÊzt

2
, with ”z again de-

noting the zero-point motion of the ion. The Lamb-Dicke approximation
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assumes that the light-induced coupling between the ion’s motion and

internal effective qubit levels is sufficiently small such that k̃”z = ÷ π 1.

In this limit, one can hence expand the exponential functions, which, up

to and including first order, results in the Hamiltonian

HI,LDA =~�1�2
4�

1
e

i”t
1
I ≠ i÷

1
ae

≠iÊzt + a
†
e

iÊzt
22

‡≠ (1.3.17)

+ e
≠i”t

1
I + i÷

1
ae

≠iÊzt + a
†
e

iÊzt
22

‡+
2
.

For a blue-detuned laser, Êz = ” (the sign depends on the definition of

”) and

HI,LDAb =i~÷
�1�2
4�

1
a

†
‡+ ≠ a‡≠

2
. (1.3.18)

For a red-detuned laser Êz = ≠” and

HI,LDAr =i~÷
�1�2
4�

1
a‡+ ≠ a

†
‡≠

2
. (1.3.19)

In this thesis, I will use the standard technique of combination (simul-

taneous driving) of the blue and red detuned transitions to generate

Schrödinger Cat states of the atom. Combining the above terms together

gives

=~÷�eff
1
a + a

†
2
‡y (1.3.20)

=~÷
�eff
”z

ẑ‡y. (1.3.21)

By choosing the laser phases appropriately, for example „red = 0 and

„blue = ≠fi, it is possible to change the ion operator to p̂z and/or the

atomic operator to ‡x. The above Hamiltonian acting on ionic states

|‡y = +1Í and |‡y = ≠1Í for a time ”t, will lead to opposite momentum
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kicks in the z direction given by

=~÷
�eff
”z

”t (1.3.22)

=~k̃�eff”t (1.3.23)

Thus in a time of the order of one oscillation with the effective Rabi

frequency �eff of oscillation between |g1Í and |g2Í, a momentum ≥ ~k̃ is

transferred to the ion. Slightly different ideas have also been proposed

to generate the Schrödinger Cat states faster, as has been used in [18],

where sequences of ultra-fast laser pulses applying spin-state dependent

kicks (SDKs) to the ions have been used to achieve larger separations.

1.4 Atom Interferometry

Atoms are attractive platforms for matter-wave interferometry exper-

iments [19], allowing for precision measurements of fundamental con-

stants, including the fine structure constant –[20] and the gravitational

constant G [21, 22], measurements of gravity gradients [23], gravitational

field curvature [24] and local gravitational acceleration [25]. They can

be manipulated by electrostatic, magnetic and electromagnetic fields and

modern techniques such as laser-cooling and trapping offer excellent con-

trol over their internal degrees of freedom [7]. Importantly, both internal

and external degrees of freedom can be utilized to construct interfer-

ence experiments. While interference arises exclusively due to internal

states in Ramsey interferometers, it may also develop as a consequence of

relative phases accumulating between distinct physical paths or a com-

bination of internal and external degrees of freedom [26].

The development and subsequent demonstration of the first atom in-

terferometers dates back to the year of 1991, when Carnal and Mlynek [27]

and Keith and others [28] built quantum mechanical analogues of Young-
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Height

Time

T T

|1, pÍ
|2, p + 2~kÍ

|1, pÍ

|2, p + 2~kÍ

|1, pÍ

|2, p + 2~kÍ

|1, pÍ
fi
2 fi fi

2

Figure 1.2: Illustration of a light-pulse atom interferometer based on a
fi

2 ≠ fi ≠ fi

2 pulse sequence, using superpositions of internal and
external degrees of freedom. The state |j, pjÍ denotes the in-
ternal level j and the external momentum pj . Displayed are
the key steps of the interferometric experiment, where the mo-
tional paths for the superposed components are coloured in red
and turquoise. (1) The application of a fi

2 laser pulse creates
an initial superposition state c1|1, pÍ + c2|2, p + 2~kÍ. (2) The
state evolves for a duration T , causing both parts of the velocity-
separated superposition to propagate away from each other. (3)
A fi pulse is applied to swap the states |1, pÍ ¡ |2, p + 2~kÍ. (4)
After another time interval T , a final fi

2 pulse acts as a beamsplit-
ter, mixing the wave-packets and completing the interferometry.
The accumulated phase difference between the two parts of the
superposition is measured, e.g., via fluorescence detection, to re-
veal the effects of gravitational and other forces on the atoms.

type optical double slit interferometers from micro-fabricated slits and

transmission gratings, confirming the presumed wave-like behaviour of

meta-stable Helium and Sodium atoms. Following their discoveries, a

different category of atom interferometers [29, 30] using sequences of

optical light pulses in order to coherently spatially separate the atoms

were realised mere months thereafter. In the latter, the separation of the

motional wave-packet of the quantum state is created due to the recoil

following the interaction with an electromagnetic field. Together, these

pioneering works laid the foundation for the development of a wide range

of atom interferometry-based sensors, such as accelerometers [31], gyro-

scopes [32], and gravimeters [33]. The majority of present-day atom in-

terferometers are reliant on atom-light interactions in some capacity [34,

35 of 152



1.4. Atom Interferometry 1. Introduction

35] and Raman transitions are used in order to place an atom initially

prepared in a ground state in an equal superposition of internal states,

but also external momentum states. As outlined in Section 1.3, two laser

beams can be used to drive coherent transitions between two hyperfine

states |1Í and |2Í when the frequency difference of the lasers matches

~(ÊL1 ≠ ÊL2) = E2 ≠ E1 and the intermediate state remains scarcely

populated. In the scenario where the two Raman beams are propagat-

ing in opposite directions, the absorption of a photon with momentum

~k1 and stimulated emission of one with momentum k2 ƒ ≠k1 causes

the atom to recoil with twice the momentum kick in the same direction.

By applying a suitable laser pulse for a duration ·in = fi

2�eff
, turning it

off after a quarter oscillation, an initial superposition state of the form

c1|1, pÍ + c2|2, p + 2~kÍ is created. Many atom interferometers then use

a basic pulse sequence fi

2 ≠ fi ≠ fi

2 like the one depicted in Figure 1.2 or a

modified version thereof. In schemes using the aforementioned pulse se-

quence, following the preparation of the superposition, the state evolves

for a duration T , causing both parts of the velocity-separated superposi-

tion to propagate away from each other. A fi pulse is applied thereafter

to swap the states |1, pÍ ¡ |2, p + 2~kÍ. Following the passage of a fur-

ther time interval T , a last fi

2 pulse takes on the role of a beamsplitter,

mixing the wave-packets and completing the interferometry. The phase

difference accumulated between the two parts of the superposition can be

inferred by measuring the internal states of multiple atoms in the output

ports, for example via fluorescence detection. Gravitational and other

force effects may be reflected in the deviations in the measured relative

phases.

In recent years, Stern-Gerlach type interferometers for freely propa-

gating single atoms [36–38], in which instead of light, magnetic gradient

fields are employed to control the atoms during their flight through the
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interferometer, have gained attention. After the initial application of a

fi/2 radio frequency pulse, which is used to create an internal spin-state

superposition of the atoms, four magnetic field gradient pulses are used

to split, stop, reverse and stop to recombine the spin-coupled external

position and momentum states. A popular candidate for the practical

realisation of such interferometers is Rubidium. Most modern Stern-

Gerlach type atom interferometers are using a Bose-Einstein condensate

of 87Rb atoms, initialized in equal superpositions of the two spin states

|F = 2, mf = 2Í and |F = 2, mf = 1Í and magnetic field gradients

produced by currents through gold wires on an atom chip. The Rubid-

ium atoms are initially confined in a magnetic trap below the atom chip

and subsequently released, while a homogeneous magnetic bias field in

the y-direction is applied to create the effective two-level system (cou-

pling to the y-direction of the spin). Following the preparation of the

equal superposition state via RF pulses, a first magnetic field gradient

pulse creates a state-dependent force Fj = µjˆBy/ˆzez on the atoms,

with µj being the mean magnetic dipole moment of state |jÍ. After a

delay time Td, two further magentic gradient pulses of equal duration

but opposite polarity are applied, such that the momentum difference is

compensated and the direction of motion is effectively reversed. After a

second delay time Td, a fourth gradient pulse matching the polarity of

the first one is used to close the interferometer in both momentum and

position. The experimentally achieved visibilities of current-state of the

art Stern-Gerlach interferometers for weak momentum-splitting are high

(>95%) [39], but the recombination accuracy of the wave packets still

presents a challenge.

1.5 Large-Mass Interferometry

In addition to measurements of fundamental constants and studies of

gravitational and collapse models, a further key objective for tests of
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fundamental theory is the generation of macroscopic quantum superposi-

tions. As a natural extension of early interference experiments with elec-

trons [4, 40], neutrons [41] and atoms [27], the field of matter-wave inter-

ferometry has expanded and prompted the development of experiments

based on the delocalisation and interference of matter-waves of macro-

molecules and composite macroscopic objects of much larger masses.

An important experimental milestone was reached when the first

diffraction of hot C60 and C70 fullerenes at mechanical [42] and opti-

cal [43] gratings demonstrated the emergence of an interference pattern.

Subsequently, Talbot-Lau interferometers for fullerenes, which did not re-

quire the collimation of the inital molecular beam to achieve separation

of the diffraction orders, were developed. These types of interferome-

ters are based on the Talbot-Lau effect3, which arises due to Fresnel-

diffraction. Using such interferometers, the heaviest objects shown to

exhibit matter-wave interference to date are molecules consisting of up

to 2000 atoms [44]. Whether there exists a fundamental limit of the

macroscopic scales at which quantum effects can at most be observed, a

limit to the size or the mass of an object in superposition, is presently

an open question.

One emerging platform to access unprecedented scales of large-mass

superpositions are levitated optomechanical systems [45]. These sen-

sors consist of mechanical objects confined by intense optical, electric

quadrupole or magnetic fields. They offer a high degree of control over the

sensing particle’s translational and rotational degrees of freedom and con-
3The Talbot effect occurs when a coherent source of particles pass through a pe-

riodic structure. It leads to a self-imaging pattern of the original grating due to
constructive interference at specific distances LT = d2/⁄ of the Talbot length with
d being the grating constant and ⁄ the wavelength or de Broglie wavelength. The
repetition happens at both even and odd multiples, but for a plane wave travelling
along z and a grating structure in the x, y plane is shifted in x at odd multiples by
an amount d/2. The Talbot-Lau effect is a similar self-imaging effect for incoherent
sources.
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stitute a powerful quantum technology for precise measurements of ac-

celerations and forces. The scheme presented in [46] extends Talbot-Lau

interferometry to mass regimes of m > 106 amu. In [47], a Stern-Gerlach

Ramsey interferometer for large mass objects of up to m ≥ 109 amu

featuring an embedded single spin, with the exemplary candidate being

a nanodiamond crystal with a spin-1 nitrogen-vacancy center, is intro-

duced.

Based on the possibility to create meso- and macroscopic superpo-

sitions, schemes relying on a combination of two adjacent matter-wave

interferometers have been proposed for tests of quantum gravity theories

only recently [48, 49]. The underlying assumption of these proposals is

that if the two masses in spatial superposition of both interferometers

become entangled due to an interaction with the gravitational field, this

mediating field must necessarily be quantized, since local operations and

classical communication (LOCC) can only account for local operations on

each mass and classical communication between them, but LOCC alone

cannot entangle the test masses. Large-mass superpositions of levitated

objects [46, 50] have also become highly topical in particle physics and

dark matter searches, mainly since other classical physics-based experi-

ments such as CDMS or CRESST are insensitive to low-mass dark matter

candidates. The use of massive quantum superpositions for directional

dark matter searches is discussed in [13, 14, 51]. The sensing of neutrinos

through quantum superpositions is presented and discussed extensively

in Section 2.

1.6 Neutrinos - A very brief History

In 1930, Wolfgang Pauli postulated the existence of a particle he origi-

nally termed the neutron[52] in order to explain a most curious exper-

imental observation – an apparent violation of the principle of energy
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conservation. It was known at the time that when a nuclear isotope such

as Tritium undergoes beta-decay,

3
1H æ3

2 He + e
≠ (1.6.1)

one of its neutrons transforms to a proton under the emission of an elec-

tron. The law of energy conservation would then require the emitted

electron to have a specific kinetic energy, which should have been pre-

cisely defined through the difference between the Tritium and Helium

rest masses and kinetic energies. In addition, the conservation of mo-

mentum should have resulted in the electron and Helium having equal

and opposite momenta [53]. Upon measuring the kinetic energies of emit-

ted electrons however, instead of the predicted monochromatic spectrum

for the electron energy, a continuous spectrum was recorded. There was

also a discrepancy in the conservation of angular momentum, since ex-

perimental evidence implied that a mother nucleus of integer spin would

decay to a daughter nucleus of integer spin, which could not be consis-

tently explained given the electron’s spin 1
2 .

Circumventing the notion of a violation of several conservation laws,

Pauli proposed the existence of an undetected third particle of low mass

and neutral electric charge. When Enrico Fermi further developed the

theory of beta decay, he included this elusive particle in his description,

renaming it neutrino [54]. Following this new formulation, the beta decay

process of a neutron could be described as

n æ p + e
≠ + ‹̄e. (1.6.2)

It would take until 1956 for the existence of the neutrino to be finally con-

firmed experimentally by Cowan and Reines [55] through the detection
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reaction

‹̄e + p æ e
+ + n, (1.6.3)

which represents what is known as inverse beta decay. Subsequent exper-

iments on the nature of neutrinos demonstrated the difference between

the flavour states ‹e, ‹µ and ‹· , parity violation in weak interactions, the

neutrino’s helicity of H(‹) = ‡̨·p̨
|‡̨||p̨| = ≠1, the existence of weak neutral

currents and the weak gauge bosons W
±, Z.

While Fermi was first to provide a theoretical description of the weak

interaction in the form of a contact interaction through his work on beta

decay, Glashow, Weinberg and Salam developed a model for the electro-

weak interaction, mediated by particles, that became an integral part

of what is now commonly referred to as the Standard Model (SM) of

particle physics [56–58].

1.7 Neutrinos in the Standard Model

The SM is a renormalisable4 quantum field theory living in Minkowski

space [53, 59] that satisfies special relativity and has its own internal

symmetries. It is invariant under transformations of the group

GSM = SU(3) ◊ SU(2) ◊ U(1), (1.7.1)

where SU(3) is associated with the colour group of quantum chromody-

namics, SU(2) with the weak isospin and U(1) with hypercharge. The

symmetry group for the electro-weak section is

GEW = SU(2) ◊ U(1). (1.7.2)

4a field theory is renormalisable if divergences (infinities) can be removed from
physical observables
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A
‹e

e

B

L

A
‹µ

µ

B

L

A
‹·

·

B

L

eR µR ·R

Table 1.1: Lepton content of the SM. Electrons e, muons µ, tauons · and
three types of neutrinos ‹e,µ,· are grouped into three generations
and displayed from left to right in ascending order with respect
to the electron, muon and tauon masses. Left-handed leptons
(indexed with the subscript L) are arranged as doublets whereas
right-handed leptons (indexed with a subscript R) are represented
as singlets.

Each particle in the SM is labelled by how it transforms under a specific

representation of the group GSM . These representations are typically la-

belled in the order (SU(3), SU(2), U(1)). Fermionic particles of spin 1/2

that transform trivially under the colour group, meaning that they do not

interact with the strong force, are termed leptons. Left-handed leptons

of the representation (1, 2, ≠1
2), where the first two indices indicate the

dimension of a quantum field’s representation under SU(3) and SU(2)

and the last index represents the charge under U(1), are distinct from

right-handed leptons with (1, 1, +1) in the SM. Notably, the left-handed

leptons transform as 2-component vectors (doublets), whereas the right-

handed leptons are arranged as singlets as is illustrated in Table 1.1. In

the earliest versions of the SM, there are no right-handed neutrino sin-

glets, since, in accordance with the first experimental observations, long

before the resolution of the solar neutrino problem, the left-handed neu-

trinos were assumed to be massless.

The mathematical concept through which most particles in the SM

gain mass is spontaneous symmetry breaking of a gauge symmetry via

the Higgs mechanism5. To illustrate how the gauge bosons for the electro-

weak interaction acquire mass [59] through the breaking of SU(2)◊U(1)

to U(1), let Ï denote the complex scalar Higgs-field and (DµÏ)i = ˆµÏi ≠

i[g2A
a

µ
T

a + g1BµY ]j
i
Ïj its covariant derivative, with T

a = 1
2‡

a and ‡
a as

5Gauge-independent formulations of the Higgs mechanism were later developed by
Higgs and Kibble.
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the Pauli matrices and the hypercharge generator Y = ≠1
2I. The field

Ï is further assumed to have a potential V (Ï) = 1
4⁄(Ï†

Ï ≠ 1
2v

2)2, where

v
2 = 4|m2|/⁄. Formally, up to a scaling factor, this is equivalent to

an often used rewritten version of the ”Mexican hat-shaped” potential

as Ṽ (Ï) = ≠µ
2
Ï

†
Ï + ⁄(Ï†

Ï)2, where ≠µ
2 is interpreted as a negative

mass. Disregarding, for the sake of the argument, the fact that the

Higgs field is a two-component quantity and looking only at one field

component, it becomes evident that the minimum of the potential Ṽ (Ï)

results in a ground state, and thus a vacuuum expectation value for

the field component, that is not zero. Instead, the minimum lies on a

circle where È0|Ï(x)|0Í = ≠µ/
Ô

⁄ = v/
Ô

2. As a consequence of this

observation, a particular configuration for the Higgs doublet is chosen

and defined as the vacuum state

Ï0 = 1Ô
2

Q

cca
0

v

R

ddb . (1.7.3)

In addition to the potential term, the kinetic term for the field Ï is

recovered via ≠(Dµ
Ï)†

DµÏ. Noting that

g2A
a

µ
T

a + g1BµY = 1
2

Q

cca
g2A

3
µ

≠ g1Bµ g2(A1
µ

≠ iA
2
µ
)

g2(A1
µ

+ iA
2
µ
) ≠g2A

3
µ

≠ g1Bµ

R

ddb (1.7.4)

inserting the covariant derivate into the kinetic part of the Lagrangian

for the Higgs field taken at the vacuum expectation value results, after

rigorous computation, in the emergence of a mass term

Lmass = ≠(g2v)2

4 W
+µ

W
≠
µ

≠ (g2v)2

8 cos2 ◊w

Z
µ
Zµ (1.7.5)

where the fields Zµ and W
±
µ

come from a redefinition of the terms in

Eq. (1.7.4) as Zµ = cos ◊wA
3
µ

≠ sin ◊wBµ, W
± = 1Ô

2(A1
µ

û iA
2
µ
) and

Aµ = sin ◊wA
3
µ
+cos ◊wBµ with ◊w = tan≠1(g1/g2) defining what is known
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as the weak mixing angle. Missing in this mass Lagrangian is the field Aµ,

which remains massless and implies that one of the symmetry subgroups

is unbroken, specifically the U(1) charge conservation symmetry (implies

photon and gluons remain massless). The remaining terms in this part

of the Lagrangian are condensed into

Lmass = ≠M
2
W

W
+µ

W
≠
µ

≠ M
2
Z

2 Z
µ
Zµ (1.7.6)

and describe the observed masses M
2
W

= g2v

2 and M
2
Z

= MW

cos ◊w

of the Z
0

and W
± exchange particles. From experiment, these are estimated to be

MW ≥ 80.4GeV and MZ ≥ 91.2GeV.

Since all fermions, including neutrinos, would still be massless at this

point in the theory, it is desirable to find an extension term that can be

added to the electroweak sector Lagrangian and similarly result in the

appearance of mass terms while being (initially) invariant under SU(2)

and U(1) transformations. Excluding neutrinos, this is achieved for all

other fermions through the introduction of Yukawa coupling terms. For

the case of electrons [60], the coupling term looks like

LYukawa = ≠ce

1
ēRÏ

†

Q

cca
‹eL

eL

R

ddb + (‹̄e, ēLÏeR)
2

(1.7.7)

and with Ï again being replaced by its vacuum expectation value, the

symmetry will be broken and the Lagrangian reads

LYukawa = ≠ ceÔ
2

1
ēRveL + ēLveR)

2
(1.7.8)

= ≠ce

vÔ
2

ēe (1.7.9)

with ce an arbitrary coupling constant and the mass of the electron fol-

lowing me = ce
vÔ
2 . Equivalently, the doublets and singlets of the other

fermions are combined with the Higgs doublet to obtain mass terms.

Neutrinos again remain without mass due to the absence of righthanded
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‹R singlets. In principle, the masses could be generated by including

three generations of ‹R in the particle content, but until the observation

of neutrino oscillations, it was not a necessity to account for the possi-

bility of massive neutrinos.

In the SM description, the equation of motion for a spin-1
2 particle is

the (Lorentz-invariant) Dirac equation

(i“µ
ˆµ ≠ m)Â(x) = 0 (1.7.10)

in natural units, where “
µ are Dirac spin matrices denoted as

“
0 =

Q

cca
0 1

1 0

R

ddb , “
i =

Q

cca
0 ‡

i

≠‡
i 0

R

ddb (1.7.11)

in the chiral representation and ‡
i are the Pauli matrices. The fields Â

transforming under boosts and rotations constructed from these Dirac

matrices are sometimes termed Dirac spinors. Free particle solutions

satisfying the Dirac equation can be found by writing the Dirac fields in

terms of plane waves Â(x) = u(p)e≠ip·x for p
0

> 0 and Â(x) = v(p)e+ip·x

for p
0

< 0 and inserting them into the equation, noting that p
0 is the first

component of the four-momentum p
µ = (E/c, p

x
, p

y
, p

z
). Two linearly

independent solutions for u(p) and v(p) are found for both the positive

and negative frequency case

u
s(p) =

Q

cca

Ô
p · ‡›

s

Ô
p · ‡̄›

s

R

ddb , v
s(p) =

Q

cca

Ô
p · ‡÷

s

≠
Ô

p · ‡̄÷
s

R

ddb (1.7.12)

where ‡̄ = (I, ≠‡
i) and ›

s and ÷
s are two-component spinors. The label

s = 1, 2 indicates the two spin-orientations spin ”up” and spin ”down” of

the physical states. To give an example for ›
s, the spinor basis is often

chosen as eigenstates of the Pauli matrix ‡
3, ›

1 = (0, 1)T , ›
2 = (1, 0)T but
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other basis choices are equally possible. Regardless of the actual choice,

the solutions fulfil the normalization conditions u(p)r†
u(p)s = 2Ep”

rs and

v(p)r†
v(p)s = 2Ep”

rs. Another observation that can be made and under-

stood in light of the form of the solutions is that the spinors can be

reduced to two separate blocks of two-component objects, hence

Â =

Q

cca
ÂL

ÂR

R

ddb (1.7.13)

which are left-handed and right-handed chiral spinor components. These

components can also be projected out from Â by applying the projection

operators PR,L = 1±“5
2

ÂL = 1 ≠ “5
2 Â (1.7.14)

ÂR = 1 + “5
2 Â. (1.7.15)

with “5 = i“0“1“2“3. In the case of massless neutrinos, m = 0 and the

Dirac equation for ÂL and ÂR decouples into two Weyl equations

i
ˆ

ˆx0 ÂR = i‡i

ˆ

ˆxi
ÂR (1.7.16)

i
ˆ

ˆx0 ÂL = ≠i‡i

ˆ

ˆxi
ÂL. (1.7.17)

It shall be noted that for the case m = 0, chirality, which is defined

through the eigenvalues of the eigenequations “5ÂR,L = ±ÂR,L, and he-

licity are the same. The projection operators PR,L are then intimately

tied to the notion of helicity, since PL projects out left-handed (spin

and direction of motion are anti-parallel and H = ≠1) particles and

PR right-handed anti-particles (spin and direction of motion are par-

allel and H = +1). For massive fermions, there would be no decou-

pling and chirality and helicity are not identical. Charge conjugation

Â
c = CÂC

≠1 = ÷cC(Â̄T ), where the transpose of the conjugate field is

Â̄
T = (Â†

“
0)T and ÷c is a phase factor, of Dirac spinors interchanges
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particles with antiparticles. For the special case of electrically neutral

fermions, it is also possible to define a field that is its own charge conju-

gate Â
C = Â and still obeys the Dirac equation by introducing a redefini-

tion of the “ matrices where each of the matrices is complex, effectively

rendering all solutions to be real. Fermions with this property are termed

Majorana fermions and particles of this type are their own antiparticles.

The distinction between the two types of Dirac and Majorana fermions

became relevant when the observation of neutrino oscillations implied a

non-zero restmass. To date, none of the two possibilities of the neutrino

being either Majorana or Dirac particle have been excluded.

1.8 Neutrino Oscillations

Oscillation experiments regarding the nature of quarks and neutrinos

suggest that while the flavour eigenstate of a particle may be observed,

these eigenstates should not be considered identical to mass eigenstates,

which are eigenstates of the free Hamiltonian. Instead, the flavour eigen-

state may arise as a result of a mixing in the mass eigenstates. For

neutrinos, this mixing is formally described by the unitary Pontecorvo–

Maki–Nakagawa–Sakata (PMNS) matrix

Q

cccccca

‹e

‹µ

‹·

R

ddddddb
=

Q

cccccca

Ue1 Ue2 Ue3

Uµ1 Uµ2 Uµ3

U·1 U·2 U·3

R

ddddddb
·

Q

cccccca

‹1

‹2

‹3

R

ddddddb
(1.8.1)

and its elements Ua,i where a = {e, µ, ·} labelling the flavours and

i = {1, 2, 3} labelling the masses can be interpreted as the probabili-

ties of measuring a neutrino in a mass eigenstate ‹i=1,2,3 in a flavour

eigenstate ‹a=e,µ,· . The theory of neutrinos changing their flavour after

travelling long distances is widely accepted. It solves the solar neutrino

problem, which is a discrepancy between actual and predicted neutrino

fluxes from the sun. When measured on Earth, detectors sensitive to
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interactions with electron neutrinos detect less than the expected fluxes

calculated from solar models. The influence of neutrino oscillations has

been disregarded in Chapter 2, since the quantum sensor is assumed to

be placed at very short distances d ≥ 20m away from a neutrino reactor

source, where the effects of neutrino oscillations are considered negligible,

since > 0.5 km length baselines are typically required to detect significant

flavour oscillations [61].

1.9 Neutrinos and their Interactions with

Matter

As is briefly discussed in Chapter 1.7, the existence of gauge bosons Z
0

and W
± was already postulated in early formulations of the SM. These

bosons are mediators of electroweak interactions, through which neutri-

nos can interact with matter. Standard neutrino interactions through

the weak force can be grouped loosely into two main categories: inter-

actions involving charged (CC) and neutral currents (NC). Couplings to

the Z boson are neutral current interactions that do not involve a trans-

fer of electric charge. Interactions mediated by W
± do involve a transfer

of charge and are hence termed charged current interactions. The full

derivation of the Lagrangian describing weak leptonic sector interactions

is extensive and will therefore not be discussed in this introduction, it

can however be found in reference [59]. The respective Lagrangians for

neutrino charged and neutral interactions are of the form

LNC = ≠ g

2 cos ◊W

J
µ

Z
Zµ (1.9.1)

LCC = ≠ g

2
Ô

2
1
J

µ

W
Wµ + J

µ†
W

W
†
W

2
(1.9.2)
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where g is a dimensionless coupling constant and

J
µ

Z
= 2

ÿ

a=e,µ,·

g
‹

L
‹̄aL“

µ
‹aL + g

f

L
la,L“

µ
laL + g

f

R
l̄aR“

µ
laR (1.9.3)

J
µ

W
= 2

ÿ

a=e,µ,·

‹̄aL“
µ
laL (1.9.4)

are neutral and charged leptonic currents with left-handed and right-

handed leptonic fields ‹aL(R) and laL(R) for the neutrino and other lep-

tons. The constants g
‹

L
, g

f

L
and g

f

R
similarly are couplings for processes

involving interactions with the respective fields. The structure of neu-

trino interactions with charged leptons already contains an intrinsic fea-

ture of the weak interaction. Only left-handed neutrinos interact and

they do so exclusively with left-handed components of the other lep-

tons, since terms involving the right-handed projections of lepton spinors

‹̄L“
µ 1

2(1 + “5)Âa = 0. The general structure Â̄“
µ(1 ≠ “5)Â as a combina-

tion of an object transforming as a vector (Â̄“
µ
Â) and an object trans-

forming as an axial vector (Â̄“
µ
“5Â) under Lorentz transformations is

the characteristic V ≠ A structure of weak interactions, originating from

V ≠ A theory, which accurately described experimental observations.

Instead of a grouping into CC and NC interactions, neutrino scat-

tering processes can also be classified into coherent and incoherent pro-

cesses [62]. In the low energy regime, where the neutrino’s energy E‹

is on the order of a few MeV, neutrinos may coherently scatter from an

entire nucleus

‹ + A
Z

N
æ ‹ + A

Z

N
(1.9.5)

via a neutral current process. The condition of coherence is satisfied so

long as the transferred momentum q is sufficiently small compared to the

nucleus’ radius r and q ·r π 1. Since this type of interaction is the domi-

nant neutrino-matter interaction process in the low-energy regime, which
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is owed to a coherent enhancement factor in the cross section that scales

as the square of the number of neutrons in the target nucleus, it is the

process guiding the analysis in Chapter 2, where the scenario of reactor

neutrinos scattering from a quantum superposition has been treated us-

ing an open quantum systems approach. Accordingly, the corresponding

cross-section and computational details are described in Chapter 2.

Neutrinos can also elastically scatter from electrons via charged and

neutral currents and such signatures are useful for the detection of solar

neutrinos through Cherenkov detectors. Another possible interaction

in the low-energy regime is neutrino capture on radioactive nuclei, an

exothermic reaction ‹ + A
Z

N
æ e

≠ + A
Z+1
N≠1 similar to beta decay. Inverse

beta decay ‹̄ + p æ e
+ + n is of particular historical relevance and a

further likely interaction to be observed in the low energy regime. While

there are numerous other possible interactions of neutrinos with matter,

those that have been mentioned are among the most prevailing, with

the shared commonality that all of them have exceptionally small cross-

sections of typically much less than 10≠38 cm2 in the sector E‹ <10 MeV

since for most processes ‡ Ã E
2
‹
.

1.10 Neutrino Sources

The universe offers a rich variety of neutrino sources, each emitting par-

ticles of vastly different energies and providing equally variable fluxes.

Since a key objective of this thesis is to determine the ability of interfer-

ometry setups based on meso- and macroscale levitated objects to detect

neutrinos, only a few of these sources, visually represented in Fig. 1.3, will

suitably match the aim. Relic neutrinos originating from the decoupling

early universe, also known as the cosmic neutrino background (C‹B),

may be abundant but are estimated to exhibit extremely low average

energies of ÈE‹Í ≥ 5.28 · 10≠4 eV [60] and their interactions with mat-
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Figure 1.3: Illustration of different neutrino sources, displayed against neu-
trino energy. Black bars below the respective sources serve as a
rough indication of the corresponding expected neutrino energy
ranges. Cosmological neutrinos, known as the cosmic neutrino
background, are at the low end of the energy spectrum, whereas
galactic and extra-galactic neutrinos span the high-energy end
of the spectrum.

ter are further characterised by exceptionally small cross-sections. On

the other end of the energy scale, galactic and extra-galactic neutrino

sources are able to produce neutrinos with energies exceeding 1018 eV,

but offer only low fluxes, which are typically difficult to calculate, diffuse

and uncertain. Further to this, the detection of ultra-high energy events

usually requires large detector volumes to capture an event and operate

with sensible expected event rates.

The detection method analysed in Chapter 2 is in its essence a mo-

mentum recoil detector. As mentioned, coherent interactions of neu-

trinos, such as the coherent neutral-current interaction of a neutrino

with a nucleus, can loosely be observed when the absolute momentum

q · r < 1 of the mediator (Z0) is smaller than the inverse radius of

the scatterer [63]. This, in turn, restricts the energy of the scatter-

ing neutrinos to the low MeV sector since the transferred momentum

needs to be appropriately small. Candidates like supernova, solar, reac-

tor neutrinos or geological neutrinos with typical energies ranging from

10 keV ≠ 20 MeV are therefore favourable for further consideration. Cru-

cially, a detector’s ability to sense neutrinos from either of these sources

is the magnitude of the flux at the detector site. A comparison of the

particle fluxes narrows the field of ideal neutrino sources for the pur-

pose at hand. The expected fluxes at earth’s surface for solar neutri-
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nos [64] �solar ≥ 6.5 · 1010 cm≠2s≠1, geoneutrinos [65] �geo ≥ 106 cm≠2s≠1

and supernova neutrinos [66, 67] �supernova ≥ 10 cm≠2s≠1 (for diffuse

supernovae) are comparably small with respect to the expected reactor

neutrino fluxes �reactor ≥ 1.7 · 1013 cm≠2s≠1 derived in Chapter 2 for a

detector placed at a distance of 20 m to the source. Reactor neutrinos

have therefore been selected as the most suitable candidate for an ini-

tial estimation of the phase accumulation due to neutrino scattering off

massive matter-wave interferometers.

1.11 Modern Neutrino Experiments

The large variety of neutrino energies necessitates the development of a

multitude of highly specialised detector designs, of which a select few will

be discussed in this section.

A popular large-scale detector facility is known as the IceCube Neu-

trino Observatory. It is a cubic-kilometer neutrino telescope featuring a

surface layer and an in-ice detector consisting, among other components,

of photo-multiplier-type detection modules. It functions like a Cherenkov

detector, observing the Cherenkov radiation produced by charged parti-

cles resulting from neutrino interactions, and is well suited for the ob-

servation of neutrino events in the E‹ ≥ GeV ≠ PeV energy regime such

as those associated with blazar flares and particle emissions of active

galactic nuclei. Its DeepCore detection module has a neutrino energy

threshold of 10 GeV [68], meaning that it is insensitive to neutrino events

far below this energy threshold. Aside from its use in atmospheric neu-

trino oscillation studies, the IceCube detector measures high-energy event

cross-sections and is used for the investigation of non-standard neutrino

interactions.

Another long-standing Cherenkov detector of particular relevance to
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neutrino physics is Super-Kamiokande, an ultra-pure water tank lined

with photo-multiplier-tube detection modules located in the Kamikoa

mine. Atmospheric neutrino data published in 1998 [69] describing a

deficit of measured muon neutrinos contributed to the discovery of so-

lar neutrino oscillations and resulted in the award of a Nobel prize in

1995, shared between physicists from Super-Kamiokande and the Sud-

bury Neutrino Observatory. The early Kamiokande detector also suc-

cessfully observed neutrinos from the SN 1987A supernova explosion,

which constitutes the only direct observation of such an event to date.

At present, the lowest achieved neutrino energy threshold is on the order

of 3.5 MeV for solar neutrino events. It is anticipated that a modification

in the form of a gadolinium-doped variant of the ultra-pure water detec-

tor may capture signatures of reactor neutrinos originating from reactor

facilities in its vicinity, with an expectation of around 400 events possibly

being observed annually [70].

Likely closest in its comparably reduced total detector mass to the

experiment proposed in Chapter 2 is the Nucleus experiment, an arrange-

ment of gram-scale Sapphire and Calcium Tungstate cryogenic calorime-

ters totalling a detector mass of 10 g. In contrast to measuring relative

phases between components of a superposition, this detector captures

phonons created due to nuclear recoil-induced lattice vibrations. It is

expected to reach a recoil threshold on the order of 20 eV, which would,

in principle, allow for the high-precision measurements of low-energy co-

herent neutrino-nucleus interactions. It has recently demonstrated its

sensitivity to nuclear recoils induced by neutron capture. The observed

recoil peak at 112 eV appearing due to the capture interaction may in

itself provide a useful method of calibration for future coherent-elastic

neutrino-nucleus scattering (CE‹NS) experiments [71].
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A different recently proposed experiment in the realm of levitated op-

tomechanical systems aims to detect heavy sterile neutrinos via the recoil

of an optically levitated sensor [12] following nuclear — decay. According

to theoretical estimates, radioisotopes embedded in a trapped nanosphere

of 100 nm size, for which the momentum can be measured continuously,

should be a viable platform for capturing momentum kicks resulting from

decays to sterile neutrinos with masses greater than 100 keV. Interest-

ingly, the setup may be used to determine the absolute neutrino mass

through full energy and momentum reconstruction of the recoiling sphere

and emitted secondary particles, provided the necessary sensitivity can

be reached. Similarly to the work presented in Chapter 2, the sensitiv-

ity could be lowered by events in which the recoiling nucleus leaves the

nanosphere. In addition, the reconstruction of the energy of secondary

emitted particles, such as electrons, may propagate and result in an er-

roneous estimate of the neutrino’s momentum and mass. Nevertheless,

the advantage of such an approach would be its comparably low sen-

sor mass, enabling its realisation with existing experimental techniques.

However, it should be stressed that the quantumness of the sensing ob-

ject is not (yet) harnessed and that the method does not constitute a

direct measurement of the neutrino.
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This chapter is based on the article E. Kilian et al., “Requirements

on quantum superpositions of macro-objects for sensing neutrinos”, Phys.

Rev. Res. 5, 023012 (2023).

We examine a macroscopic system in a quantum superposi-

tion of two spatially separated localized states as a detector

for a stream of weakly interacting relativistic particles. We

do this using the explicit example of neutrinos with MeV-

scale energy scattering from a solid object via neutral-current

neutrino-nucleus scattering. Presuming the (anti-)neutrino

source to be a nuclear fission reactor, we utilize the estimated

flux and coherent elastic neutrino-nucleus cross section to

constrain the spatial separation �x and describe the temporal

evolution of the sensing system. Particularly, we find that

a potentially measurable relative phase between quantum su-

perposed components is obtained for a single gram scale mass

placed in a superposition of spatial components separated by

10≠14 m under sufficient cooling and background suppression.

In this chapter I elucidate the application of matter-wave interfer-

ometric sensors for the detection of low energy neutrinos, emitted by

a nuclear reactor source. Through their scattering off a massive sensing

particle in superposition, the momentum imparted due to the interaction

results in the acquisition of a relative phase between the components of
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the superposition. I discuss the requirements on the sensor and the con-

ditions, i.e. the necessary suppression of the environment, under which

such a phase can potentially be measured in an experiment.

2.1 The Context

Despite extensive scientific efforts, neutrinos still pose a puzzling enigma,

decades after they were first observed experimentally [73]. While it may

be known that neutrinos interact only through the weak and the gravita-

tional forces, many of the questions on the very nature of these particles

remain unanswered to this day. As all other fermions in the Standard

Model, neutrinos were formerly assumed to be representable by Dirac

spinors and additionally thought to be massless. However, oscillation

experiments have shown that particles produced in a particular, well-

defined flavour eigenstate can, after having travelled a sufficiently long

distance, with a certain probability be detected in a different flavour

state [69]. A consequence of these findings is that neutrinos do have mass

and that their flavor eigenstates are different from their mass eigenstates,

as stated in Chapter 1.7. As a result of being massive, neutrinos could

be either Dirac or Majorana particles and it is currently unknown which

of the two they are. Present day oscillation experiments enable measure-

ments of mass squared differences of the three neutrino mass eigenstates,

but they are not capable of measuring absolute neutrino masses, on which

limits however do exist [74]. In addition, oscillation experiments have also

seen hints for the existence of so-called sterile neutrinos. These neutri-

nos are not explicitly treated here, since they are hypothetical additional

species of neutrinos that do not experience any of the Standard Model

forces but would mix with the three standard neutrinos.

The vast multitude of unknowns provides a motivation to seek novel

methods to detect neutrinos, especially to examine if the detector size
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Figure 2.1: The working mechanism of a system detecting the momentum
recoil of a crystal due to the scattering of a particle of initial
momentum k from it through a relative phase between two com-
ponents of a superposition. In a general Stern-Gerlach inter-
ferometer, the phase difference between two spatially separated
components ends up as a phase difference between two spin states
(indicated by | øÍ and | ¿Í) and can be measured as a phase dif-
ference between spin components. The separation �x is assumed
to be on the order of the incoming scatterer’s de Broglie wave-
length ⁄db.

can be reduced. In this work, I will introduce one such approach aiming

to study reactor anti-neutrinos with energies of a few MeV through their

momentum transfer in scattering from a macroscopic system placed in a

quantum superposition of distinct centre of mass positions, with the mo-

mentum transfer appearing as a relative phase between the components

of the superposition.

The field of matter-wave interferometry in which a large mass, such

as a solid object or crystal of several atoms, goes to a quantum superposi-

tion of being “here” and “there” is an emerging area still in development,

with several nascent ideas. For an inexhaustive list see [38, 46, 47, 75–84].

These developments have so far been primarily steered by the aim to ex-

tend the boundaries of quantum mechanics empirically to larger objects,

as the quantum behaviour of the centre of mass (COM) of sufficiently
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macroscopic masses remains untested. Unlike in the case of interference

experiments with several atoms from a cold source, for example a Bose-

Einstein condensate, where each atom goes one way or another, here all

atoms of the crystal go one way together or all atoms of the crystal go

the other way together. On the experimental side these developments

are stimulated, on the one hand, by the demonstration of quantum su-

perpositions of the COM of large molecules consisting of up to ≥ 2000

atoms [44] and on the other hand, by the achievement of cooling of the

COM of much larger masses such as 10≠17 kg silica nanoparticles [85–88]

and 10 kg masses [89] close to their quantum mechanical ground states.

While this may still indicate a significant gap between what has been

demonstrated, and what needs to be achieved in order to realise exper-

iments with the COM of large masses in a superposition, there are the

above well formulated schemes and conditions which could be adapted.

Quantum superpositions of the COM of large masses can have a great

potential as a sensor [90]. It has already been theoretically demonstrated

that they can measure tiny gravitational effects including the detection

of low frequency gravitational waves [10], and, ultimately, even evidence

the quantum nature of gravity [48, 49, 91, 92] or be able to test new forces

[93] and the weak Equivalence principle in a quantum regime [94]. The

decoherence of quantum superpositions may also be a sensitive detector

for dark matter [13, 14, 51]. Once a quantum superposition of a large

mass being in two positions is produced, external forces cause a relative

phase shift between the two components of this superposition. Hence, I

propose that it might also be possible to detect tiny momentum transfers

due to the scattering of weakly interacting particles from such superposi-

tions. In particular, recently the approach of detecting particles beyond

the SM via the momentum recoil of levitated nano-objects in localized

(classical) states has become topical [95–97]. It is natural thus to ask
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whether quantum superpositions can aid further. I study this herewith

using neutrinos as an example, importantly in a regime in which they

scatter coherently from entire nuclei as that significantly enhances the

cross section.

Predicted more than 40 years ago in 1974 [98] and recently observed

experimentally [99], coherent elastic scattering of neutrinos from nuclei

(CE‹NS) is the dominant scattering channel for incoming neutrino en-

ergies E‹ π 100 MeV. The scattering coherence manifests in an en-

hancement of the cross-section, which scales with N
2, with N being the

number of neutrons in the nucleus. Up until recently, it has however

been of great difficulty to detect such neutral current events, in part due

to the large detector volumes (enough nuclei) and low energy thresholds

required to detect the keV to sub-keV recoils of the nuclei.

In light of the advent of proposals for small-scale neutrino detec-

tors [100, 101] that aim to exploit the small recoil energies and rela-

tively large CE‹NS cross section associated with scattering events in the

(sub-)MeV neutrino energy regime, I consider the suitability of matter-

wave interferometric schemes for detecting such processes. I emphasise

that in contrast to classical methods, this approach is based on the detec-

tion of neutrinos via massive quantum devices and hence exploits features

which are inherently quantum.

2.2 Detecting Particulate Matter by Mea-

suring a Phase

The essence of the type of detector that I am considering here is given

in Fig.2.1. A mass is prepared in a quantum superposition of spatially
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distinct states and, in line with most particle physics literature, natural

units have been assumed in detoting the phase contribution. An ideal

way to generate such a spatial superposition is by employing a Stern-

Gerlach type interferometric scheme with a single spin embedded in a

mass. An archetypal example is the Nitrogen-Vacancy (NV) point defect

in a diamond crystal, which carries a spin-1 (made of two electrons)

[102]. However, any other point defect with an electronic spin in any

other crystal [103] or a single dopant atom with an unpaired electronic

spin implanted in a solid, as for example, used in certain designs of solid

state quantum computers [104] will serve the purpose. It is understood

that the atom carrying this spin is tightly bound to the rest of the crystal.

It also has to be ensured that there is this single spin which can couple

to external magnetic fields strongly (i.e. with the strength of a Bohr

magneton) while there may be unpaired nuclear spins on various atoms

in the crystal which couple with the much lower strength of a nuclear

magneton. While detailed studies can be found in Refs.[38, 39, 47, 80–84],

here I present only a schematic description. The spin is initially prepared

in a quantum superposition 1Ô
2(| øÍs + | ¿Ís) and the mass bearing the

spin is subjected to an inhomogeneous magnetic field. This couples its

spin and motional degrees of freedom: for | øÍs spin state, the mass

accelerates to the left, and for the | ¿Ís spin state, the mass accelerates

to the right. They can be brought to a halt at a given superposition size

�x by flipping the spins at appropriate times. The resulting entangled

state between spin and centre of mass degree of freedom of the mass

generated is

|�0ÍS = 1Ô
2

1
| øÍs|x̄0ÍC + | ¿Ís|x̄1ÍC

2
, (2.2.1)

where |x̄0ÍC and |x̄1ÍC respectively refer to both parts of the superpo-

sition, each one describing the center-of-mass motion of the test mass

(crystal), while the subscript S denotes the combined system of spin and
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crystal. The states |x̄jÍ are to be understood as Gaussian wavepack-

ets localized around the position (x̄j, 0, 0), and momentum p ¥ 0. The

superposition size is �x = x̄1 ≠ x̄0. For simple notation, I treat the

macroscopic mass as a single particle and write the COM state of the

macroscopic mass as

|x̄jÍC =
3 1

‡c

Ô
2fi

4 1
2

⁄ Œ

≠Œ
dx e

≠
(x≠x̄j )2

2‡
2
c �†

C
(x)|0Í, (2.2.2)

where �†
C

(x) creates the whole crystal at position (x, 0, 0) and |0Í is

the vacuum state. Fundamentally, |x̄jÍ is a many-particle state. Hence

�†(x)C is equal to a product of proton, neutron and electron creation

operators at positions locked to, and distributed around, the COM posi-

tion (x, 0, 0).

I will now illustrate what happens to the above Gaussian state |x̄jÍ

when a momentum q is transferred to it. To model this, I assume mo-

mentum creation and annihilation operators of the mass to be b
†
k and bk

respectively, and study the action on the state

(
⁄

d
3k b

†
k+qbk)

⁄ Œ

≠Œ
dx e

≠
(x≠x̄j )2

2‡
2
c �†(x)|0Í

Ã
⁄ Œ

≠Œ
dx e

≠
(x≠x̄j )2

2‡
2
c

⁄
d

3k b
†
k+qbk

⁄
d

3k
Õ
e

ik
Õ
xx

b
†
kÕ |0Í

=
⁄ Œ

≠Œ
dx e

≠
(x≠x̄j )2

2‡
2
c e

≠iqxx

⁄
d

3(k + q) e
i(kx+qx)x

b
†
k+q|0Í

=
⁄ Œ

≠Œ
dx e

≠
(x≠x̄j )2

2‡
2
c e

≠iqxx�†(x)|0Í

= e
≠iqxx̄j e

≠ qx
2

‡
2
c

2

⁄ Œ

≠Œ
dx e

≠
(x≠x̄j +iqx‡

2
c )2

2‡
2
c �†(x)|0Í. (2.2.3)

Considering the special case when the width of the Gaussian wavepacket

is much smaller than the length scale of the transferred momentum ‡c .
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1/qx, the state of the Gaussian after the momentum transfer is

e
≠iqxx̄j

⁄ Œ

≠Œ
dx e

≠
(x≠x̄j )2

2‡
2
c �†(x)|0Í = e

≠iqxx̄j |x̄jÍ, (2.2.4)

implying that the initial state of a superposed mass and a scattering

particle evolves as

|�0ÍS|pÍB æ |�qx
ÍS|p ≠ qÍB, (2.2.5)

where I have introduced the label B to denote the bath environment

comprised of the scattering particle(s) and the subscript S to refer to the

superposed target mass. The state |�qx
ÍS is given by

|�qx
ÍS = 1Ô

2
1
| øÍ|x̄0Í + e

≠iqx�x| ¿Í|x̄1Í
2
, (2.2.6)

where the difference in center-of-mass position is �x = x̄1 ≠ x̄0. A par-

ticle scattering from the above state and transferring a momentum q to

it, could be detected as a phase difference of qx�x

~ (restoring the ~) be-

tween the components of the superposition, where qx is the x-component

of the momentum transfer. While a transfer of momentum with negli-

gible transverse contributions represents an idealised scenario, it should

be implicitly clear that in a more general scenario, I would have to con-

sider the three-dimensional nature of the problem. In a typical Stern-

Gerlach interferometry experiment, the two components |x̄0Í and |x̄1Í

are brought back to completely overlap with each other by reversing the

process which created them, as shown in Fig. 2.1 so that the spin state

becomes |Âqx
Ís = 1Ô

2

1
| øÍs + e

≠iqx�x| ¿Ís

2
. Thus the phase is measurable

purely from the off-diagonal component Èø |fls| ¿Í of the density matrix

fls = |Âqx
ÍÈÂqx

|s of the spin. In general, the scattering neutrinos will

scatter with a distribution of momenta, so that there will be a mixed

state density matrix, while the process itself will lead to a decoherence

as well. I will therefore treat the evolution in terms of open quantum
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systems techniques, deriving a master equation to be followed by the

density matrix.

2.3 Coherent Elastic Neutrino-Nucleus Scat-

tering Cross Section

In this section, I discuss the CE‹NS cross section in the regime of reactor

anti-neutrinos, since the calculation of the matrix element is directly

related to the interaction Hamiltonian. For this purpose, I outline the

description of coherent elastic scattering of a neutrino with incident four

momentum pi = (E‹ , pi) by a nucleus of mass mnucl and incident four

momentum ki = (mnucl, 0), restricting ourselves to the dominant neutral

current CE‹NS processes for the reason of simplicity. An illustration of

the process is depicted in Fig. 2.2, where I have assumed the comparably

heavy nucleus to be at rest and the final momenta to be of the form

pf = (E‹,f , pf ) and kf = (En,f , kf ).

(E‹ , pi)

(E‹,f , pf )

(En,f , kf )
(mnucl, 0)

◊

Figure 2.2: Elastic scattering illustration with the scattering angle denoted
as ◊, the initial momenta pi, ki and the final momenta pf , kf .

The incoming and outgoing four momenta can be reformulated in

terms of the incoming neutrino energy E‹ , the kinetic energy transferred

due to scattering T and the nucleus mass mnucl

pi = (E‹ , pi), (2.3.1)

ki = (mnucl, 0), (2.3.2)

pf = (E‹ ≠ T, pf ), (2.3.3)

kf = (mnucl + T, kf ). (2.3.4)
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The tree-level Feynman diagram representing such a process is shown in

Fig. 2.3. In order to recover the cross section, the standard approach

‹ X

‹ X

Z0

Figure 2.3: Feynman diagram for neutral current coherent elastic ‹-nucleus
scattering, where time runs vertically. The label ‹ refers to the
neutrino whereas the symbol X represents the nucleus.

is to determine the scattering amplitude MssÕ using the neutral current

interaction Lagrangian

L = GFÔ
2

J
µ

‹
Jµ,nucl, (2.3.5)

where the Fermi constant GF is given in Table 2.1, and the relevant

Feynman rules [105]. The quantities described by J
µ

‹
and Jµ,nucl denote

the neutral currents of neutrino and nucleus. Neutral fermionic currents

are given by

J
µ

f
=

ÿ

i

Â
fi

“
µ(gfi

V
≠ g

fi

A
“

5)Âfi
(2.3.6)

where Âf denote the respective fermionic fields. Omitting the sum and

inserting its couplings g
‹

V
= 1/2 and g

‹

A
= 1/2, the neutrino neutral

current is

J
µ

‹
= Â

‹
“

µ
1
2(1 ≠ “

5)Â‹ . (2.3.7)

It is a general feature of the weak interaction that its exchange bosons

couple only to left-handed neutrinos or right-handed anti-neutrinos. For

the nucleus neutral current, I choose a description in terms of its weak
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coupling constant and the four-momenta ki, kf ,

Jµ,nucl = QW

2 F (q2)(ki + kf )µ, (2.3.8)

where QW refers to the weak charge and F (q) to the form factor de-

pendent on the exchanged momentum q. Equation (2.3.5) can now be

used to recover the Feynman amplitude M, which is then formulated as

follows

iMssÕ = ≠i
GF QW F (q2)g‹

LÔ
2

◊ u
s

Õ(pf )“µ(1 ≠ “
5)us(pi)(ki + kf )µ. (2.3.9)

In the laboratory frame, the differential cross section with respect to the

transferred kinetic energy is related to the absolute square of the matrix

element as d‡

dT
=

q
ssÕ |iM

ssÕ |2

32fimnuclE‹

and hence given by [106]

d‡

dT
= G

2
F

Q
2
W

|F (q2)|2mnucl
4fi

A

1 ≠ T

E‹

≠ mnuclT

2E2
‹

B

. (2.3.10)

The differential cross section for the scattering of anti-neutrinos is derived

analogously. Following the expression of the differential cross-section

with respect to the solid angle � as given in [107], d‡

d� = G
2
F

Q
2
W

E‹(1+cos ◊)|F (q2)|2
16fi2 ,

it becomes evident that the emitted neutrinos scatter mostly in the for-

ward direction. Assuming a scattering angle ◊ between the initial neu-

trino and final nucleus momenta, the amount of kinetic energy T trans-

ferred to the nucleus can be expressed as follows

T = 2mnuclE
2
‹

cos2
◊

(mnucl + E‹)2 ≠ E2
‹

cos2 ◊
. (2.3.11)

The maximum kinetic energy transfer is then obtained for ◊=0. The

coherent elastic neutrino-nucleus cross section can be recovered from

Eq. (2.3.10), following integration over kinetic energy. In all further

calculations, I have approximated the form factor as F (q) ≥ 1. This
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is appropriate solely for the energy range considered, since interactions

involving higher neutrino-energies and therefore higher momentum trans-

fers may be able to resolve the nucleus and eventually result in a sup-

pression and flattening of the coherent cross-section. It should be noted

that the cross section increases not only with neutrino energy, but also

with increasing number of neutrons N in the target nucleus, which will

impact the choice of detector material best suited for neutrino sensing.

The latter dependency becomes evident through a closer inspection of

the weak charge

QW = ((1 ≠ 4 sin2
◊W )Z ≠ N). (2.3.12)

For the purpose of a real-world experiment, this means that the target

material does play an important role in the ability to detect any scatter-

ing phase effect from neutrino scattering on nuclei.

2.4 Quantum Open Systems and the Born-

Markov Approximation

I consider the scenario of a heavy nucleus in the presence of a (fermionic)

bath of neutrinos scattering from it. Since in an experiment, one typically

has no control over a specific scattered neutrino, but I nonetheless wish

to describe the evolution of a comparably heavy nucleus, I resort to an

open quantum systems approach. Following the description in [108], the

total Hamiltonian of a weakly interacting system and bath is

H = HS + HB + HSB (2.4.1)

where HSB refers to the interaction between S and B. In order to de-

rive the master equation of the system, it is of convenience to write the
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interaction Hamiltonian as

HSB =
ÿ

–

S–B– (2.4.2)

with S– and B– denoting the system and bath operators. I will hence

have to map the respective parts of the non-standard interaction Hamil-

tonian for coherent elastic neutrino-nucleus scattering onto system and

bath operators. The summation will become an integral over all relevant

external three momenta. It shall also be noted that I impose hermiticity

on HSB. Taking the bath correlation time to be much shorter than the

timescale over which the system evolves, I resort to a description in the

Born-Markov approximation. Born-Markov master equations are based

on two assumptions, namely

1. the Born approximation, which assumes weak coupling between the

system and the environment, such that the change in the density

matrix of the environment is negligibly small and the combined

quantum state remains an approximate product state during time

evolution

fltot(t) ≥ flS(t) ¢ flB (2.4.3)

2. the Markov approximation, which assumes memory effects of the

environment to be negligible, meaning that the quantum evolution

of the environment state depends only on its present, but not on

its past. Compared to the characteristic timescale over which the

system evolves, the bath correlation function decays fast.
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The master equation for the system in this approximation is governed by

dflS

dt
= ≠ i

~ [HS, flS] ≠
;⁄ Œ

0
d·

ÿ

–—

C–—(≠·)

◊ [S–S—(≠·)flS ≠ S—(≠·)flSS–] + H.c.
<

,

(2.4.4)

where

C–— = 1
~2 Tr[flBB–B—(≠·)] (2.4.5)

is the bath correlation function, which contains all the relevant properties

of the environment, and the time dependence of the operators S— and B—

is determined by

S—(≠·) = e
≠ iHS·

~ S—e
iHS·

~ , (2.4.6)

B—(≠·) = e
≠ iHB·

~ B—e
iHB·

~ . (2.4.7)

As I work in natural units, I set ~ = c = 1 for now.

2.4.1 Quantum Master Equation for Neutrino-Nucleus

Scattering

The Lagrangian density [109] for the interaction of neutrino ‹ and nucleus

n is is given by Eq. (2.3.5). Hence, the interaction Hamiltonian Hn,‹

corresponds to

Hn,‹ = ≠
⁄

d
3
xL(x)

= ≠GFÔ
2

⁄
d

3
xJ

µ

‹
(x)Jµ,nucl(x) = HSB.

(2.4.8)
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Choosing to rewrite the neutrino current in second quantised form, I

observe that

J
µ

‹
(x) = Â

‹
(x)1

2“
µ(1 ≠ “

5)Â‹(x)

=
⁄

d
3
pid

3
pf

(2fi)6
Ò

4Epi
Epf

a
†
pf

api
e

≠i(pi≠pf )x

◊ u
s

Õ(pf )1
2“

µ(1 ≠ “
5)us(pi),

(2.4.9)

so that the Hamiltonian is

Hn,‹ = ≠GF QW F (q)
2
Ô

2

⁄
d

3
x ◊ d

3
pid

3
pfd

3
kid

3
kf

(2fi)12
Ò

16Epi
Epf

Eki
Ekf

◊ e
≠i(ki+pi≠kf ≠pf )x

a
†
pf

api

◊ u
s

Õ(pf )“µ(1 ≠ “
5)us(pi)c†

kf
cki

(kf + ki)µ.

(2.4.10)

Note that although here I have generically used ki, kf to label 3-momenta,

(kf + ki)µ stand for 4-momenta. Noting that the only x-dependence is

now in the exponential, I can perform the spatial integration. Further to

this, the factor F (q) ≥ 1 in this scenario and can therefore be neglected,

Hn,‹ = ≠(2fi)3
GF QW

2
Ô

2

⁄
d

3
pid

3
pfd

3
kid

3
kf

(2fi)12
Ò

16Epi
Epf

Eki
Ekf

◊ ”
3(ki + pi ≠ kf ≠ pf )a†

pf
api

◊ u
s

Õ(pf )“µ(1 ≠ “
5)us(pi)c†

kf
cki

(kf + ki)µ

= ≠(2fi)3
GF QW

2
Ô

2

⁄
d

3
pid

3
pfd

3
kid

3
kf

(2fi)1216Epi
Epf

Eki
Ekf

◊ u
s

Õ(pf )“µ(1 ≠ “
5)us(pi)(kf + ki)µ

◊ ”
3(ki + pi ≠ kf ≠ pf )|pfÍÈpi| ¢ |kfÍÈki|,

(2.4.11)

with one-particle states |p, sÍ =
Ò

2Epa
s†
p

|0Í. In Eq. (2.4.11), I have

treated the nucleus and neutrino as single particles and applied a map-

ping to suitable momentum-basis states. Using the matrix element for the

neutrino-nucleus scattering Mpi,ki,pf ,kf
= ≠GF QW

2
Ô

2 u
s

Õ(pf )“µ(1≠“
5)us(pi)(kf+

ki)µ and by computing the integral over the final nucleus momentum kf
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I obtain

Ĥn,‹ =
⁄

d
3
pid

3
pfd

3
kid

3
kf

(2fi)92Epi
2Epf

2Eki
2Ekf

Mpi,ki,pf ,kf

”
3(ki + pi ≠ kf ≠ pf )|pfÍÈpi| ¢ |kfÍÈki|

=
⁄

d
3
pid

3
pfd

3
kiMpi,ki,pf ,ki+pi≠pf

(2fi)92Epi
2Epf

2Eki
2Eki+pi≠pf

|pfÍÈpi| ¢ |ki + pi ≠ pfÍÈki|

=
⁄

d
3
pid

3
pfd

3
kiMpi,ki,pf ,ki+pi≠pf

(2fi)92Epi
2Epf

2Eki
2Eki+pi≠pf

|pfÍÈpi| ¢ e
i(pi≠pf )x̂|kiÍÈki|

(2.4.12)

where I have used the fact that the momentum state |ki +pi ≠pfÍ can be

rewritten in a suitable manner. Now I make a crucial simplifying approx-

imation: I assume the nucleus mass to be sufficiently large compared to

its momenta mnucl ∫ |k|. Being inside the crystal which is stationary, I

treat the nucleus as being effectively at rest so that the expression of the

matrix element implies Mpi,ki,pf ,kf
≥ Mpi,0,pf ,0. It is useful to write the

nucleus integrals explicitly, so that dµ‹ now only comprises the neutrino

momentum integrals.

Ĥn,‹ =
⁄

dµ‹

⁄
d

3
ki

Mpi,0,pf ,0

(2fi)3(2Eki
2Eki+pi≠pf

)

◊ |pfÍÈpi| ¢ e
i(pi≠pf )x̂|kiÍÈki|

(2.4.13)

For a very heavy nucleus, I further assume that I can approximate the

quantity 2Eki
2Eki+pi≠pf

≥ 4mnuclEki
. Seeing as the difference in the

neutrino momenta is small and the energy of the nucleus is predominantly

dependent on its heavy mass, I take this to be a reasonable justification

for the model at hand. As a consequence, I observe that the Hamiltonian

reduces further, for I am now able to use the definition for the one-particle

state identity resolution.

Ĥn,‹ =
⁄

dµ‹

Mpi,pf

2mnucl
|pfÍÈpi| ¢ e

i(pi≠pf )x̂I (2.4.14)
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Next, I associate the operators of the bath with the integrals over the

amplitudes, whereas the rest of the above Hamiltonian is kept in the

system operators. In the case at hand, I identify

S– = 1
2mnucl

e
i(pi≠pf )x̂I, B– = Mpi,pf

|pfÍÈpi|, (2.4.15)

and I pack all dependencies on the Feynman amplitudes into the bath

operators. Further, I argue that the COM of the crystal (to which the

nucleus belongs) is trapped in a very low frequency trap, so that the time

evolution of the operator S— can be neglected. In order to time evolve

the neutrino state, I assume the neutrino rest mass to be negligible with

respect to its total energy. I further neglect flavor oscillations, which is

a reasonable assumption over the short distances of d ≥ 20 m I consider,

so that the neutrino bath has the free Hamiltonian

HB =
⁄

d
3
p

(2fi)3 Epa
†
p
ap. (2.4.16)

At first I will consider a single neutrino scattering from the nucleus, thus

I need to find the bath correlation function for a single neutrino bath.

In order to do that, I need to use an incoming neutrino in a sufficiently

momentum localized state |ÂÍ normalised to ÈÂ|ÂÍ = 1. This is achieved

by starting with a generic Gaussian initial momentum state

|ÂÍ =
⁄

d
3
p

(2fi)3
Ò

2Ep

Â(p)|pÍ

=
⁄

d
3
p

(2fi)3
Ò

2Ep

(2fi)3/2

(2fi‡2)3/4 e
≠ (p≠p0)2

4‡2 |pÍ.
(2.4.17)
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I substitute ‡̃ =
Ô

2‡, such that the state is properly normalised to

ÈÂ|ÂÍ = 1 and regard it in the limit of a very narrow wavefunction.

lim
‡̃æ0

|ÂÍ = lim
‡̃æ0

⁄
d

3
p (4fi‡̃

2)3/4
e

≠ (p≠p0)2
2‡̃2

(2fi)3/2
Ò

2Ep(2fi‡̃2)3/2
|pÍ

= ‘

⁄
d

3
p

Ò
2Ep

(‡̃)3/2
”

3(p ≠ p0)|pÍ

= ‘‡̃
3/2

Ò
2Ep0

|p0Í

(2.4.18)

Here, ‘ represents the collected numerical factors. I will use this simplified

form in the last step above for subsequent computations. Thus,

C–,— = Tr[fl‹B–B—(≠·)]

= Tr[|ÂÍÈÂ|Mpi,pf
Mú

p
Õ
f

,p
Õ
i

e
≠i(E

p
Õ
i

≠E
p

Õ
f

)·
|pfÍÈpi|pÕ

f
ÍÈpÕ

i
|]

= (2fi)3Mpi,pf
Mú

p
Õ
f

,p
Õ
i

2Epi
”

3(pi ≠ p
Õ
f
)

◊ ÈÂ|ÂÍÈÂ|e
≠i(E

p
Õ
i

≠E
p

Õ
f

)·
|pfÍÈpÕ

i
|ÂÍ

= (2fi)3Mpi,pf
Mú

p
Õ
f

,p
Õ
i

2Epi
”

3(pi ≠ p
Õ
f
)

◊ ÈÂ|e
≠i(E

p
Õ
i

≠E
p

Õ
f

)·
|pfÍÈpÕ

i
|ÂÍ

= (2fi)9
‘

2
‡̃

3Mpi,pf
Mú

p
Õ
f

,p
Õ
i

2Epi
”

3(pi ≠ p
Õ
f
)

◊ e
≠i(E

p
Õ
i

≠E
p

Õ
f

)· 2Ep
Õ
i
”

3(p0 ≠ pf )”3(pÕ
i
≠ p0).

(2.4.19)

In tracing over the neutrino’s degrees of freedom, I have obtained the bath

correlation function C–,— as a function of the relevant neutrino momenta,

with – and — respectively labelling the dashed and undashed momenta.

I then proceed to insert the expression into the general formula for the

master equation. For dflS/dt this results in the second term of Eq. (2.4.4)
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given by

dflS

dt
= ≠ ‘

2
‡̃

3

4m
2
nucl

⁄
d·

⁄
d

3
pid

3
pfd

3
p

Õ
i
d

3
p

Õ
f

(2fi)316Epi
Epf

Ep
Õ
i
Ep

Õ
f

◊ 4Epi
Ep

Õ
i
Mpi,pf

Mú
p

Õ
f

,p
Õ
i

”
3(pi ≠ p

Õ
f
)

◊ e
≠i(E

p
Õ
i

≠E
p

Õ
f

)·
”

3(p0 ≠ pf )”3(pÕ
i
≠ p0)

◊ {≠e
i(pÕ

i
≠p

Õ
f

)x̂
flSe

i(pi≠pf )x̂ + e
i(pi≠pf )x̂

e
i(pÕ

i
≠p

Õ
f

)x̂
flS + H.c.}

= ≠ ‘
2
‡̃

3

4m
2
nucl

⁄
d·

⁄
d

3
pfd

3
p

Õ
i
d

3
p

Õ
f

(2fi)34Epf
Ep

Õ
f

◊ Mp
Õ
f

,pf
Mú

p
Õ
f

,p
Õ
i

◊ e
≠i(E

p
Õ
i

≠E
p

Õ
f

)·
”

3(p0 ≠ pf )”3(pÕ
i
≠ p0)

◊ {≠e
i(pÕ

i
≠p

Õ
f

)x̂
flSe

i(pÕ
f

≠pf )x̂ + e
i(pÕ

f
≠pf )x̂

e
i(pÕ

i
≠p

Õ
f

)x̂
flS + H.c.}

= ≠ ‘
2
‡̃

3

8m
2
nuclEp0

⁄
d·

d
3
p

Õ
f

(2fi)32Ep
Õ
f

|Mp0,p
Õ
f
|2e

≠i(Ep0 ≠E
p

Õ
f

)·

◊ {≠e
i(p0≠p

Õ
f

)x̂
flSe

i(pÕ
f

≠p0)x̂ + e
i(pÕ

f
≠p0)x̂

e
i(p0≠p

Õ
f

)x̂
flS + H.c.}.

(2.4.20)

Lastly, I obtain

dflS

dt
= ≠ ‘

2
‡̃

3

64fi2m2
nuclEp0

⁄
d

3
p

Õ
f

Ep
Õ
f

|Mp0,p
Õ
f
|2

◊ ”(Ep0 ≠ Ep
Õ
f
){≠e

i(p0≠p
Õ
f

)x̂
flSe

i(pÕ
f

≠p0)x̂

+ e
i(pÕ

f
≠p0)x̂

e
i(p0≠p

Õ
f

)x̂
flS + c.c.}.

(2.4.21)

It is always possible to find a suitable parameterisation of the momenta p0

and p
Õ
f

in terms of an energy and appropriate angles. Therefore Mp0,p
Õ
f

=

M(Ep
Õ
f
, �) © M(�). Setting – = ‘

2
‡̃

3

64fi2m
2
nucl

for brevity, I am able to write

the factor before the curly brackets as

� = ≠–

⁄ E
2
p

Õ
f

dE
Õ
pf

d�
Ep0Ep

Õ
f

|M(Ep
Õ
f
, �)|2”(Ep0 ≠ Ep

Õ
f
)

= ≠ ‘
2
‡̃

3

64fi2m2
nucl

⁄
d�|M(�)|2.

(2.4.22)

It shall be noted that the factor ‘
2
‡̃

3
p

= 2≠ 3
2 (2fi‡̃

2
x
)≠ 3

2 = (2fi‡
2
x
)≠ 3

2 = V
≠1

x

is essentially the volume of a Gaussian times a factor. Seeing as the

spread ‡x = (s
x

2|Â(x)|2dx)1/2 for a conventionally normalised Â(x), the
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normalised Gaussian in position space yields the recovered prefactor. The

prefactor can be interpreted as the expectation value of finding a particle

within the volume element Vx, which implies that the number of particles

per unit volume n = 1/Vx. The neutrino’s velocity |p‹ |/E‹ ≥ c = 1.

Hence, its flux is given by

F = nc = n, (2.4.23)

where n is the number of particles per unit volume. I have normalized

the single neutrino wavefunction to 1 particle per unit volume. Thus I

have, in terms of the flux of 1 particle, F1, the evolution of the reduced

density matrix of the nucleus as given by

dflS

dt
= ≠ F1

64fi2m2
nucl

⁄
d�|M(�)|2

◊ {≠e
i(�(E0,�))x̂

flSe
≠i(�(E0,�))x̂ + flS + c.c.},

(2.4.24)

and hence
Èx| ·

fl
S
|yÍ = ≠ 2F1

64fi2m2
nucl

⁄
d�|M(�)|2

◊ {≠e
i(�(E0,�))(x≠y) + 1}Èx|flS|yÍ.

(2.4.25)

In writing the above, I have implicitly assumed that the system, i.e. the

nucleus, has a negligible evolution due to its own Hamiltonian HS during

the time scale of the experiment. In addition, I have labelled Ep0 © E0.

I am now in a position to compute the change in the density matrix

of the centre of mass of the whole crystal which is comprised of multiple

nuclei subject to a large flux of neutrinos from a reactor. It shall be noted

that the approximations yield a result which is qualitatively very close to

the form of Gallis-Fleming [110] for non-relativistic particles scattering

from a mass. Moreover, Eq. (2.4.25) has a very intuitive interpretation,

with F1
64fi2m

2
nucl

d�|M(�)|2 being the incident flux multiplied by the scat-

tering cross section for a solid angle d�. It is thus the rate of scattering in
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GF 1.1664·10≠11[MeV≠2]
u 931.5[MeV · c≠2]

mnucl [111] (Z + N)u ≠ 0.00054858Z · u+
(14.4381Z

2.39 + 1.55468 · 10≠6
Z

5.35)10≠6

Flux 1.7 · 1013[s · cm≠2]
�x 10≠14[m]

S(E) 1
‡E

Ô
2fi

e
≠(E≠E0)2

/(2‡
2
E

)

‡E 0.75[MeV]
E0 2.6[MeV]

Table 2.1: Constants and definitions. GF denotes the Fermi constant, u the
atomic mass unit, mnucl the mass of a nucleus. The flux listed is
the projected neutrino flux at a distance of 20 m from the source
and �x refers the superposition size. The function S(E) is a
spectral distribution function over the energies E, with standard
deviation ‡E and mean energy E0.

a given solid angle d�. Each scattering direction d� imparts a different

momentum to the nucleus, which is given by the operator e
i(�(E0,�))x̂.

2.4.2 Calculation of the Relative Phase between Su-

perposed Components of a Crystal and its De-

tection

In order for the formalism to apply to a whole crystal in the form of

a bulk material consisting of multiple nuclei scaling as NAtoms and a

flux of incoming neutrinos with a spectral distribution of energies S(E),

Eq. (2.4.25) will have to be modified to

dflS

dt
= ≠2F1 · NAtoms

64fi2m2
nucl

⁄
dES(E)

⁄
d�|M(�)|2

{≠e
i(�(E,�))x̂

flSe
≠i(�(E,�))x̂ + flS + c.c.}.

(2.4.26)

Anti-neutrino production rates for nuclear reactor sources are typically

on the order of r ≥ 2 · 1020
s

≠1
/GWth [112, 113], with anti-neutrino en-

ergies ranging from 1 ≠ 10MeV. Seeing as I assume the detectors to be

placed at a distance d=20 m to a nuclear fission reactor source of 4.5

76 of 152



2.4. Open Systems Approx. 2. Neutrino Detection via Superpositions

GWth gigawatt of thermal power, I obtain an estimated flux of

F1 = r4.5 GWth

4fid2 ≥ 1.7 · 1013cm≠2s≠1
. (2.4.27)

As described earlier, the centre of mass C of the crystal will be initialized

in a joint state with with its spin s, in the motional superposition state

|�0ÍS = 1Ô
2

1
| øÍs|x̄0ÍC + | ¿Ís|x̄1ÍC

2
.

Labelling the orthonormal states | øÍs|x̄0ÍC and | ¿Ís|x̄1ÍC with |0Í

and |1Í, respectively, for simplicity, I get the initial density matrix in the

{|0Í, |1Í} basis as

fl0 = 1
2

Q

cca
1 1

1 1

R

ddb . (2.4.28)

As I have discussed, for low momentum transfer with respect to the

inverse of the width of the Gaussians x̄0 and x̄1, they can be treated

effectively as position eigenstates |x̄0Í and |x̄1Í in the phase expression.

Thus, the evolution of the density matrix in a time �t, which I call the

final density matrix flf is given by

È0|flf |1Í = È0|flS(�t)|1Í

= È0|flS(0)|1Í

≠ 2F1 · NAtoms
64fi2m2

nucl

⁄
dES(E)

⁄
d�|M(�)|2

{≠e
i(�(E,�))(x̄0≠x̄1) + 1}È0|flS(0)|1Í�t.

(2.4.29)

I then split the solid angle integration into polar and azimuthal integrals

over Ï̃ and ◊ and choose the parameterization of the problem such that

�(E, �) = E(1 ≠ cos ◊). As a result of the above evolution, I will obtain

a final density matrix of the general form

flf =

Q

cca
a Ae

≠iÏ

Ae
iÏ

b

R

ddb , (2.4.30)

77 of 152



2.4. Open Systems Approx. 2. Neutrino Detection via Superpositions

in terms of a phase Ï and an amplitude A. Unlike in the case of a simple

phase acquisition, the amplitude accompanying the off diagonal term of

the density matrix, where the phase is encoded, has also decayed be-

cause of the open systems treatment. In other words, I am averaging

over all angles of scattering, which amounts to averaging over all mo-

menta and incident energies. To extract the effect of the scattering, the

centre of mass C will be decoupled using the interferometry methods

described in [10, 48]. The relative phase acquired between | øÍs|x̄0ÍC

and | ¿Ís|x̄1ÍC will appear between spin states | øÍs and | ¿Ís and be

measured after suitable transformations between them. At the end of

interferometry, | øÍs|x̄0ÍC and | ¿Ís|x̄1ÍC are mapped to spin states | øÍs

and | ¿Ís, respectively and I can continue to use |0Í and |1Í as the basis

with the understanding that these now refer to the spin states | øÍs and

| ¿Ís which are measured. Unitary operations on spin states typically

comprise sending microwave pulses of appropriate frequencies to spin

states [102] differing in energies due to the Zeeman effect in an external

magnetic field, hyperfine interactions or crystal field anisotropies. The

entire toolbox of quantum computation is available and I will use two

quantum operations, the Hadamard gate H and the phase gate S [114],

on the spins before measuring the populations of | øÍs and | ¿Ís.

After computing flf (x1, x2, t), upon applying a Hadamard transfor-

mation, I effectively rotate the bases from |0Í æ 1Ô
2(|0Í + |1Í) and

|1Í æ 1Ô
2(|0Í ≠ |1Í). The extraction of the phase then becomes a matter

of calculating the probabilities of measuring |0ÍÈ0| or |1ÍÈ1|. For the final

density matrix a Hadamard transformation to the rotated basis yields

HflfH = 1
2

Q

cca
a + b + 2A cos Ï a ≠ b + 2iA sin Ï

a ≠ b ≠ 2iA sin Ï a + b ≠ 2A cos Ï

R

ddb (2.4.31)
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Figure 2.4: Phase accumulation due to coherent neutrino-nucleus scattering
from Bismuth. The figure depicts the normalised matrix ele-
ments of the nucleus density matrix after performing the opera-
tions of a phase gate and subsequent Hadamard on the sensing
system. Most notably, the blue line shows the change result-
ing from the scattering in terms of the sine of the accumulated
phase.

and therefore, subtraction of the probabilities p(0) ≠ p(1) results in

p(0) ≠ p(1) = 2A cos Ï. (2.4.32)

As it is sometimes more practical to express the phase for small argu-

ments via the sine, a phase gate of the form

S =

Q

cca
1 0

0 e
ifi/2

R

ddb (2.4.33)

is used before the Hadamard transformation to recover

pS,H(1) ≠ pS,H(0) = 2A sin Ï. (2.4.34)

For a crystal consisting of NAtoms = 5 · 1021 of the element 209Bi (crystal

mass m ≥ 1 g) and the parameters as given in Tab. 2.1, I observe phase

accumulation and its amplitude decay in Fig. 2.4. From the figure it is
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clear that at time ≥ 105 s, a very significant phase difference between the

components of the superposition with a significant amplitude is obtained

for a superposition of size �x = |x̄0 ≠ x̄1| ≥ 10≠14 m. Reductions in the

mass of the detector would linearly suppress the associated phase and

hence one would require a large number of detectors (see section 2.5 for

more details). The separation was optimized and this order of magni-

tude, which is about an order smaller than the average reactor neutrino’s

de Broglie wavelength, was found to give a detectable phase with min-

imal damping at ≥ 105 s. This time-scale corresponds to a ≥ fi/3 ≥ 1

phase shift. About thrice this time corresponds to a fi phase shift as the

phase growth is linear in time. For a fi phase shift, if it can be ensured

that there has been no other momenta imparting particle/effect, then

this corresponds to the detection of one neutrino by the detector with

100% certainty (a ”click” in the detector) as such a phase is measured in

a single shot by measuring the spin state in the {|+Ís, |≠Ís} basis with

the outcome |+Ís corresponding to no neutrinos, and the outcome |≠Ís

corresponding to one neutrino. The chance of more than one neutrino

scattering in the given time-scale is exceptionally small. Smaller non-zero

phases ascertained at earlier times using Eq.(2.4.34) and multiple mea-

surements to determine probabilities (i.e. repeating the procedure with

the same detector or conducting measurements on an array of detectors)

will detect the neutrino stream coming from the reactor, but will not be

a single shot ”click” detector.
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2.5 Creation of Quantum Superpositions of

Macroscopic Objects

There are three requirements for the setup. Firstly, the crystal should

stay suspended against gravity for the duration of ≥ 105 s of the experi-

ment, although I will outline methods of reducing this time by resorting

to a detector array rather than a single detector. Using whatever means,

the object has to be trapped in the vertical z direction. This could be

achieved via the well demonstrated mechanism of diamagnetic levita-

tion which will balance the crystal against gravity. Once created, the

quantum superposition of m ≥ 1 g, �x ≥ 10≠14 m has to be kept co-

herent for 105 s. This is a very long time, but the principal mechanisms

of decoherence are known [78], namely the collisions with background

gas (controlled by decreasing pressure), black-body radiation emission

from the crystal (controlled by cooling the crystal internally) and ab-

sorption from the environment. Fig. 2.5 shows the requirements, with

the unshaded region (outside the red bounded box) an allowed domain

for coherence. It shows that pressures of P ≥ 10≠16 Pa, already achieved

in Penning traps, and temperatures of T ≥ 1K should suffice to retain

the extremely long coherence for 105 s. The effect of electromagnetic

noise from the apparatus to create and probe the superposition is also of

importance (analysed to some extent in [10]) and depends on the precise

protocol, but essentially the exceptional stability of these sources, along

with other proximal electromagnetic sensors will have to be used. For

intertial noise, again, other sensors will have to be used to measure and

take account of the noise. Alternatively, the detection can be done with

two different materials in parallel, with the inertial noise being common.

An in-depth noise analysis including vibrational noise will be discussed

in future works. The explicit development of the above are beyond the

scope of the current work, where I merely want to highlight the possibility
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Figure 2.5: The diagram of the allowable region of pressure P and temper-
ature T so that a m ≥ 1 g crystal in a superposition of two
positions separated by �x ≥ 10≠14 m can remain coherent for a
time t ≥ 105 s. The allowable region is unshaded. It can be seen
that P ≥ 10≠16 Pa and T ≥ 1 K (the black dot) is an optimal
point for the scheme.

of neutrino detection. Methods for creating superpositions of the form

|�0Í = 1Ô
2

1
| øÍs|x̄0ÍC + | ¿Ís|x̄1ÍC

2
are still in development. Of course,

the method discussed in this work will be applicable to superpositions

created by any means, even to superpositions without an ancillary spin

system, such as 1Ô
2

1
|x̄0ÍC + |x̄1ÍC

2
, as long as there is a mechanism to

measure the relative phase between the components by bringing them

together to interfere. It is just simpler for a superposition of the form

|�0Í = 1Ô
2

1
| øÍs|x̄0ÍC + | ¿Ís|x̄1ÍC

2
, as the spin can be measured after

the completion of interferometry to measure the phase. Here, I only out-

line schematics rather than fully detailed schemes. One can use a mass

with a single quantum spin≠1/2 system embedded in it and subject it

to magnetic field gradients. The m ≥ 1 g crystal with an embedded spin
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is subjected to a ˆB

ˆx
≥ 106 Tm≠1 (produced, for example, at a ≥ cm

distance from the surface of a ≥ cm radius wire [10] carrying 1013 A m≠2

current densities). When exposed to this magnetic field gradient for a

time tacc ≥ 10≠5 s, the centre of mass of the crystal acquires opposite fi-

nal velocities of magnitude v ≥ µB
ˆB

ˆx

m
· ≥ 10≠19 ms≠1 for the | øÍ and | ¿Í

components respectively. It is not worth exposing the crystal to the high

magnetic field gradient much longer as this gradient, in addition to the

Stern-Gerlach splitting, also creates a diamagnetic trap of a frequency

Ê ≥
Ò

‰m

µ0
ˆB

ˆx
≥ 105 Hz in the x direction, which reverses the directions

of the opposite accelerations after a quarter period. After this, the x

gradient is switched off, and the mass is allowed to freely evolve for the

exceptionally long time · ≥ 105 s of the experiment in the diamagnetic

trap in the vertical z direction. Since there is no trapping/potential in

the x direction, the velocity difference is translated to a position differ-

ence �x ≥ 2v· ≥ 10≠14 m. Note that during the stages in which the

Stern-Gerlach effect is not used to actively accelerate the crystal, the

electronic spin states used in the Stern-Gerlach splitting can be mapped

on to nuclear spin states which maintain their quantum coherence for

exceptionally long times [115].

Another method to create a quantum superposition will be through

using an optomechanical interaction with a quantized microwave field in

a cavity, with the cavity field subsequently mapped to spin qubits. In

this case, the optomechanical force is sufficient to create the required

superposition of a single m ≥ 1 g mass directly. An electromagnetic field

in a number state |nÍ in a cavity interacts with a crystal passing through

it with the coupling strength g ≥ 3V

4Vc

‘≠1
‘+1ÊL, where ÊL is the frequency of

the electromagnetic field, V is the volume of the crystal, Vc is the cavity

waist volume and ‘ the dielectric constant [116]. The optomechanical

coupling Hamiltonian is ~gkn̂x̂, where n̂ and x̂ are the number and the
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position operators of the field and the centre of mass of the crystal respec-

tively, and k is the wavevector of the electromagnetic field. If interacting

for a time tkick, a crystal can receive a velocity kick vkick ≥ ~gkntkick
m

. As-

suming a tkick ≥ 1µs during which the 1 g mass traverses through the

cavity waist, assuming both V ≥ Vc ≥ 1 cm3 and ÊL ≥ 10 GHz, I get

a velocity kick of vkick ≥ 10≠19 ms≠1. Thus, one can prepare the cavity

in a quantum superposition 1Ô
2(|0Íc + |1Íc) and apply a kick to the crys-

tal by letting it fall through the cavity for tkick. After waiting for a time

· ≥ 105 s, one obtains a superposition 1Ô
2(|0Íc|x̄0ÍC + |1Íc|x̄1ÍC) [75]. The

microwave cavity state can also be mapped to a long-lived nuclear spin

states of trapped atoms after the state dependent velocity kicks are over.

Whatever the mechanism of trapping the masses and creating the

spatial superpositions, randomness of the forces and pulses will also result

in a decoherence at a rate of

� ≥ SF F (�)(�x)2

~2 , (2.5.1)

where SF F (�) = s
”F (0)”F (t)ei�t

dt is the force noise spectrum at the

frequency � ≥ 1/· of the experiment. Keeping � < 10≠5Hz gives

the constraint that random force noise should be kept below
Ô

SF F ≥

10≠23 N/
Ô

Hz. Note that in all the above discussions, it is implicit that

the interferometry has to be completed. So further spin or cavity field

dependent impulses will be required at certain points to stop the growth

of �x and reverse it, as it is accomplished in various interferometric

schemes [10, 48].

Note that the phase growth between the components of the superpo-

sition when subject to a neutrino flux is linear with time at a constant

rate of ≥ 10≠5 Hz, which reflects in population differences as seen form

Fig.2.4. At ≥ 105 s, the phase difference of the order fi is obtained so
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that the final state of the superposition is orthogonal and therefore fully

distinguishable from the initial state. If I can further ensure that, by

resorting to means such as those described in the context of temperature

and pressure, variations of the phase with the location and direction rel-

ative to the neutrino source as well as the use of different materials, only

neutrinos have been scattered during this duration, then an orthogonal

spin state detection at ≥ 105 s corresponds to a single neutrino detec-

tion (a click), as I am ensuring that nothing else causes a change in the

phase and the chance of more than one neutrino having interacted with

the gram scale detector is vanishingly small. Using an array of 104 such

gram scale detectors, I should be able to ensure that one neutrino is de-

tected every 10 s.

Note also that one can shorten both the duration of the experiment to

·/n and the mass required to m/n while keeping the detectability of the

phase effect at the same level by using n
4 crystals. Each such crystal will

get n times the velocity kick of a single crystal of mass m for the same tacc

or tkick (I assume ·/n >> tacc, tkick). Thus the time-scale of generation

of a superposition of given size �x will become shortened to ·/n. Note

that the phase accrued by each crystal in this shorter time will decrease

by a factor of n
2, i.e., „ becomes „/n

2 as both the time and the mass to

which the phase is directly proportional, decrease by n. Because of shot

noise scaling n
4 interferometers can measure a phase of „/n

2 with the

same accuracy by measuring the spins of each interferometer. However,

if one only reduced either the mass or the time of the interferometer by

a factor of n, I would need n
2 detectors to achieve the same scaling. For

example, if I were to split the system to milligram detectors, each with

superposition size of 10≠14m, (note that this superposition size is much

smaller than that required for all other suggested applications, and much

smaller than those achieved for atoms and macromolecules), I would need
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a million such detectors. Also note that recently large masses have been

prepared in nearly the ground quantum state by feedback cooling [89] –

so, by similar technology, one should also be able to prepare gram scale

masses in pure quantum states, which can be a starting point of creating

superpositions.

2.6 Challenges

I have discussed the conditions needed to meet one of the principal chal-

lenges, namely environment induced decoherence, in the previous section

while discussing the generation of the superposition. However, I discuss

below how some of the other requirements may be met.

2.6.1 Satisfying the Requirements of the Crystal Wavepacket

Note that the initial spread ‡c of each of the superposed Gaussian wavepack-

ets of the crystal are required to satisfy a couple of conditions in order to

meet some of the simplifying approximations of the calculations. Note

that the position degree of freedom of all the nuclei (being part of a

solid) are, to a good approximation (at least at the temperatures I con-

sider) rigidly tied to the centre of mass of the crystal and thereby has

the same position spread ‡c as that of the whole crystal. As stated in

section 2.2, I require ‡c . 1/qx, relating to the momentum transferred,

which in this case corresponds to ensuring ‡c . �x ≥ 10≠14 m. On the

other hand, I also require the initial maximum momenta of the crystal

ki ≥ 1/‡c . mnucl ≥ 10≠17 m, which stems from the assumption of the

heavy nucleus being effectively at rest. Thus there is a window. An ini-

tial diamagnetic trap of 105 Hz in the x direction will therefore suit the

objective of this work, with the ground state spread of the centre of mass

of the crystal in such a trap being ≥ 10≠16 m.
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2.6.2 Coherence Length of the Neutrino

The consideration of processes involving neutrinos brings about several

unknowns, one of which is the particle’s coherence length. In ref [117] the

authors opted for a wave-packet treatment of the neutrino and estimated

that an energy uncertainty of ‡wp = ‡‹

E(p‹) ≥ 0.01 or larger would influ-

ence decoherence and dispersion effects and thereby reduce the detector

efficiency of reactor anti-neutrino oscillation experiments. I take this

value as a reference to estimate whether a scattering event could resolve

the position of the nucleus and hence spoil the superposition. Consider-

ing ‡x‡‹ ≥ ~
2 , I obtain an uncertainty ‡x ≥ 3 ·10≠12 m for a neutrino with

energy E‹ ≥ 10 MeV. This means that a neutrino with ‡wp ≥ 0.01 would

indeed be able to resolve the position of any quantum object in a super-

position larger than ‡x. Seeing as the matter of the actual wave packet

shape and coherence length of the neutrino is not solved, the proposed

experiment may also be able to serve as a means of testing the validity

of plane wave approximations of the neutrino wave packet. Depending

on the true wave packet shape of the neutrino, I expect to observe either

a coherent phase gain or a decoherence effect.

2.6.3 Lattice Defects

The authors of [118] considered the structural damage effects of dark

matter and neutrino scattering on dense materials with defect centers,

such as nitrogen vacancy centers in diamond. In general, the deposited

kinetic energies will exceed typical lattice binding energies of O(10)eV.

Hence, I anticipate the scattering of a neutrino to lead to the formation

of such damage clusters, though they can be expected to be significantly

smaller in size. Based on the analysis in [118], I estimate that a nucleus

recoiling with an average kinetic energy of 3keV could generate O(10)

lattice defects or interstitial sites. I require that these sites are created in

such a manner that I cannot tell from which part of the superposition the
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neutrino has scattered. Here this requirement is naturally fulfilled as the

size of the superposition is much smaller than the interatomic spacing in

the lattice.

2.6.4 Distribution of Momentum

It is the centre of mass of the whole crystal which is coupled to the

embedded spin used for the superposition creation/recombination and

the phase read-out. However, the neutrino is initially going to impart its

energy to one of the nuclei in the whole crystal. At this stage, the energy

imparted is localized to this nucleus, but the centre of mass already has

the imparted momentum; however, the crystal cannot be considered as

all rigidly connected nuclei moving together, which is required for the

embedded spin to sense the transferred momentum. A local phonon is

excited in the crystal at the site of the scattering neutrino. However,

phonon relaxation times in crystals are generally ≥ 1 ≠ 100 ns [119],

after which the energy would have been transferred to the centre of mass

of the whole crystal.

2.7 Summary

I have described the detection of neutrinos from the relative phase they

impart between the components of a quantum superposition of two spa-

tially localized states of the centre of mass of a crystal. As naturally

there is a distribution of momentum after the scattering, this process

also causes a decoherence in addition to imparting a change in the rela-

tive phase. I thus formulated a master equation technique to evolve the

full density matrix of the COM of a crystal under the scenario of the

scattering of a relativistic particle from it. Solving that, I found that the

optimal detection requires a ≥ 1 g mass placed in a quantum superposi-

tion of states separated by a distance �x ≥ 10≠14 m. For completeness,

I have also suggested a schematic and parameter domain by adopting
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which such superpositions could be achieved and maintained for the long

duration of the experiment, although much more analysis will be required

for realistic scenarios.

It is worth clarifying the role of the various ingredients of the method

proposed herewith. The superposition serves as a means to detect the

momentum recoil k of the crystal in terms of the relative phase k�x. Of

course, that will happen for a crystal of any mass, including individual

atoms in a superposition of states separated by �x. However, in that

case the cross section is very small. For a crystal of NAtoms, the cross

section is amplified NAtoms times. While an uncorrelated collection of

NAtoms in the same superposition state will have the same cross section,

the neutrino will only scatter from one of those atoms, and one has to

measure each atom after appropriate basis rotations in order to measure

whether one of them obtained a phase. In the case of a crystal with

a single embedded spin, the phase gained by the neutrino hitting any

one of the nuclei is mapped on to the relative phase between the COM

states of the whole crystal. This is because of the very strong correla-

tions between the positions of the atoms the NAtoms, since they are all

either clustered around the state |x̄0Í or the state |x̄1Í. The positions

of all the atoms are entangled when the centre of mass is placed in the

superposition |x̄0Í + |x̄1Í. Moreover, due to the very mechanism of the

interferometry, the embedded spin or other ancillary system is also en-

tangled with the centre of mass during the interferometry, so that at

the end, the phase can be estimated exclusively by measuring this single

spin. The reason that I have used a regime in which the scattering from

each nulceus is coherent is because it enhances the cross section by N
2

times (N being the number of neutrons in a nucleus), which makes the

times-scales about 104 times less than what it would have been otherwise.
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It is important to clarify that going to either higher or lower energy

neutrinos is not a trivial problem. For higher energies, it is true that

the cross section increases as Ã E
2, where E is the energy of the inci-

dent neutrinos. However, the momentum transferred may be too high

and knock a nucleus completely out of the crystal so that the momen-

tum is not imparted to the rest of the crystal. Moreover, k�x ≥ 1

implies that much smaller superpositions �x will have to be used, which

implies a great difficulty in satisfying the simplification assumptions

1/mnucl << ‡c << �x ≥ 1/k and the calculations will be needed to

be performed in much more generality. For lower energies, cross section

can both decrease due to the Ã E
2 effect or increase due to scope of

scattering coherently from all atoms of the crystal. However, producing

a larger �x ≥ 1/k superposition becomes much more difficult, especially

for the masses as large as the ones that are needed here.

The technique presented in this work should be adaptable to any

relativistic particles scattering off a quantum superposition with appro-

priate modifications. Moreover, neutrinos will form a background to any

other signals one may want to detect. The calculations here show that

even a substantially large mass in a quantum superposition of distinct

spatial states can remain coherent for a very long time close to a source

of neutrinos so that there is an ample window for the detection of other

signals.
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Chapter 3

On the Optimality of the

Superposition Size
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Exploiting quantum mechanics for sensing offers unprecedented pos-

sibilities. State of the art proposals for novel quantum sensors often rely

on the creation of large superpositions and generally detect a field. How-

ever, what is the optimal superposition size for detecting an incident par-

ticle (or an incident stream of particles) from a specific direction? This
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Figure 3.1: Basic schematics of a particle scattering from a quantum object
(purple spheres) in a Stern-Gerlach type interferometric experi-
ment.

question is nontrivial as, in general, this incident particle will scatter off

with varied momenta, imparting varied recoils to the sensor, resulting in

decoherence rather than a well defined measurable phase. By consider-

ing scattering interactions of directional particulate environments with

a system in a quantum superposition, I find that there is an “optimal

superposition” size for measuring incoming particles via a relative phase.

As a consequence of the anisotropy of the environment, I observe a novel

feature in the limiting behaviour of the real and imaginary parts of the

system’s density matrix, linking the optimality of the superposition size

to the wavelength of the scatterer.

This chapter is based on the pre-print E. Kilian et al., “Optimal

Superpositions for Particle Detection via Quantum Phase”, Publisher:

arXiv Version Number: 1, 10.48550/ARXIV.2307.15186 (2023).

3.1 The Context

Quantum sensing with matter-wave interferometers has prompted the

development of a variety of commercial technologies and experiments,
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offering some of the most precise sensors. State of the art experiments

encompass research in the areas of metrology [121], gravimetry [47, 122],

geophysics [123, 124] and quantum foundational principles [10, 13, 48,

72]. The quantum object as a sensor, whether atom or nanoparticle, is

typically prepared in a near-classical or Gaussian (which can be some-

what quantum in the sense of being squeezed) initial state [96, 125], but

the full potential of quantum mechanics becomes apparent when non-

Gaussian quantum states are utilized. Optimization of the experimental

setup and parameters in order to extract exquisitely weak signals is of

utmost importance.

The sensing of potentials, such as a linear potential generated by

electrostatic fields, or the gravitational potential near earth, often neces-

sitates the realisation of quantum superposition states with large spa-

tial separation ”x between the superposed components, since the ac-

cumulated phase �„ increases with increasing separation. For exam-

ple, an object of mass m held in a quantum superposition of localized

states separated vertically by ”x for a time interval · near earth’s sur-

face acquires the celebrated Collela Overhauser Werner (COW) phase of

�„ ≥ mg”x·/~, while the phase due to the curvature of a proximal mass

is Ã (”x)2. For a dynamical monochromatic classical field of wavenum-

ber magnitude k, again, while phase k”x is defined modulo 2fi, it surely

does not harm the coherence of the superposition to have ”x > 1/k. At

the other extreme is the detection of particulate matter interacting with

the sensing system via a coupling term. This is, however, phenomeno-

logically different as it cannot be correctly approximated by a classical

field, unless in the macroscopic limit of a very large number of particles

in a coherent state. In this limit, the focus has been on detection of

the particulate source via the decoherence of a quantum superposition

as the particles scatter off the sensor mass, typically imparting random
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momenta [13]. Thus, the measurement of a coherent phase is typically

not associated with the detection of particles. Thus, as far as current

understanding goes, the intuition is that if fields are concerned, a larger

”x is typically better, and surely not harmful, while for particles, deco-

herence would be the prime signature.

In this work, I show that neither of the above intuitions are correct

for particulate matter incident from a given direction: I find that there

exists an optimal superposition size for quantum sensing in scattering ex-

periments, depending on the characteristics of the environmental source.

This arises due to a competition between a coherent phase contribution

and a decoherence contribution. To illustrate this effect, I consider the

basic blueprint consisting of an incoming particle (the signal) that scat-

ters from a massive quantum system placed in a spatial superposition

(the sensor). Working within the framework of open quantum systems,

I compute the effects arising from the interaction of the system with a

directional particulate matter environment and discuss in how far the

superposition size impacts the accumulation of the phase. Contrary to

expectations, reading the phase imparted due to scattering in the pres-

ence of decoherence induced by the same scattering may not be optimized

at a trivial point. Aside the above fundamental point, I also present an

application in single photon detection. I conclude by discussing the impli-

cations of the findings for present-day sensing experiments aimed toward

capturing signatures of other/general scattering particles.

3.2 Sensing in Scattering Experiments

The appearance of the classical from the quantum is the cause of long-

standing debate and a key element of all interpretations of quantum

mechanics. The process of environmental decoherence offers one mech-

anism for this quantum-to-classical transition, through which the sup-

94 of 152



3.2. Sensing in Scattering Experiments 3. Optimal Superposition Size

pression of certain superpositions of quantum states following measure-

ments performed on a sensing system initially in superposition of several

eigenstates may be described. In this context, the interaction of a super-

posed quantum object with gaseous particles and photons will constitute

a measurement, since it involves the transfer of positional information

into the environment. Following the work of Joos and Zeh [126], the

authors of [110] have extended and generalised the mathematical model

reflecting the localizing mechanism under the critical assumption that

the scattering of the (weakly coupled) environment does not significantly

disturb the sensor.

Concretely, in a non-relativistic theory, the reduced density matrix

of a system interacting with a particulate environment through scatter-

ing [110] is governed by the following master equation

dflS(x, xÕ)
dt

= 1
i~Èx|[H, flS]|xÕÍ ≠ F (x ≠ xÕ)flS(x, xÕ) (3.2.1)

where

F (x ≠ xÕ) =
⁄

dqn(q)v(q)
⁄

d�d�Õ

4fi
p(�, �Õ)

◊ (1 ≠ e
i(q≠qÕ)·(x≠xÕ))|f(q, qÕ)|2. (3.2.2)

This result is derived through a careful perturbative treatment of the

scattering interaction. The function p(�, �Õ) is a probabilistic function

with incoming (outgoing) scattering angle ◊ (◊Õ), and where p(�, �Õ) = 1

is the typical scenario where scatterers impart momentum from all di-

rections. The quantities n(q) and v(q) refer to the number density and

speed of particles with wavenumber q, the latter of which is closely re-

lated to their wavelength ⁄ and momentum q. The scattering amplitude

of the relevant interaction process is denoted as f(q, qÕ). F (x≠xÕ) is the

localization rate. If it is real-valued, the sensing system exhibits a loss
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of coherence over time, while an imaginary contribution manifests in the

appearance of a phase e
i(q≠qÕ)·(x≠xÕ). Differences in the phases arising at

x and xÕ can be measured and exploited in sensing with quantum systems.

For an incoming particle of wavelength ⁄, there are two regimes of

interest to investigate in order to describe the behaviour of the sensing

system. In the long-wavelength regime, where ⁄ ∫ ”x, with ”x = |x≠xÕ|,

the phase term in Eq (3.2.2) becomes small enough to warrant an ap-

proximate treatment of the exponential function by means of a Taylor-

expansion of the argument. Calculating the expansion up to second or-

der, a quadratic dependency of the localization rate on the superposition

size F (x ≠ xÕ) Ã 1
2q

2(n̂ ≠ n̂Õ) · (x ≠ xÕ)2 is revealed. Assuming isotropy of

the environmental source, the linear term in the expansion averages to

zero due to the integration over the product of an even and odd function

in directions (n̂, n̂Õ).

In the short-wavelength regime, the exponential function in Eq. (3.2.2)

oscillates rapidly and hence, quickly averages out when performing the

integrals. Master equations of the form Eq. (3.2.1) can be mapped to

equations of the Lindblad-type and for L̂k corresponding to a physical

observable, namely that of the position operator L̂k = x̂, the equation

that governs the evolution of the system can be expressed as

dfl̂S(t)
dt

= ≠i[ĤS, fl̂S(t)] ≠ Ÿ

2 [x̂[x̂, fl̂S(t)]]. (3.2.3)

The quantity Ÿ incorporates information contained in the localization

rate F (x ≠ xÕ) as written in Eq. (3.2.2). If a given environment is not

isotropic and the scattering particles are instead impinging from a specific

direction, the limiting behaviour reveals the emergence of an optimal su-

perposition size where the detection of the particle is also from the phase

imparted. In order to demonstrate this effect, I resort to a numerical
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analysis of the reduced system density matrix for two explicit examples

of the differential cross-section.

3.3 On the Emergence of an Optimal Su-

perposition Size

To illustrate the emergence of an optimal superposition size, I will focus

on two cases of a well-known example from the literature [110], where a

special form of the differential cross-section is taken to be

|f(q, qÕ)|2 = gq
m

1
2

3
1 +

-----
qqÕ

q2

-----

24
. (3.3.1)

For m = 0 and g = r
2
e

as the square of the classical electron radius,

one recovers a differential cross-section for Thompson scattering, while

values of m = 4 and g = a
6| ‘≠1

‘+1 |2 with a as the scatterer’s radius and

‘ being the dielectric constant lead to a description of Rayleigh scattering.

In the long wavelength-limit, I am again able to expand the small

exponent in Eq. (3.2.2) in orders of ”x. In what follows, I assume

the directional source of particles to travel along the z-Axis. This as-

sumption is reflected in the choice of p(�, �Õ) = ”(◊)”(„)/ sin ◊ for a

spherical coordinate system. Further, I select the coordinates of the

incoming and outgoing particle momenta to be q = q(0, 0, 1), qÕ =

q(cos Ï
Õ sin ◊

Õ
, sin Ï

Õ sin ◊
Õ
, cos ◊

Õ), where I notably keep the magnitude of

the particle’s momentum unchanged, which is a valid approximation for

negligible momentum transfers.

If m = 0 and the superposition is oriented along z, calculating the

Taylor expansion up to second order in ”x and performing the subsequent
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angular integration results in the following terms of the localization rate

F (x ≠ xÕ) =
⁄

dqn(q)v(q)g
3

≠2
3iq”x (3.3.2)

+ 7
15q

2
”x

2 + O(”x
3)

4
.

Similarly, I obtain a barely modified equation for m = 4

F (x ≠ xÕ) =
⁄

dqn(q)v(q)gq
4
3

≠2
3iq”x (3.3.3)

+ 7
15q

2
”x

2 + O(”x
3)

4
.

Concluding these findings, I observe the emergence of an imaginary lin-

ear (Hamiltonian) term in the master equation describing the evolution

of the reduced density matrix. Importantly, this behavior appears to be

independent of the exact form of the differential scattering cross section,

surfacing merely due to the directional momentum impartment of the

incoming scatterers. The limit of small wavelengths is more difficult to

treat analytically due to the rapid oscillatory behaviour of the integrand.

I can however significantly reduce the complexity of the problem by fix-

ing the axes of the incoming particle to be aligned with the orientation

of the superposition along the z-direction. I then subsequently employ

the Jacobi-Anger expansion, noting the cosine appearing in the expo-

nent. Through this type of expansion, the trigonometric function in the

exponential is expressed in the basis of its cylindrical harmonics via the

relation e
iz cos ◊ = J0+2 qŒ

n=1 i
n
Jn(z) cos n◊. Figure 3.2 displays the trend

of the real and imaginary parts for multiple values of the ratio ”x

⁄
, where

the factor g = r
2
e
, effectively scaling the plot’s y-axis, has been neglected

and the momentum integration has not yet been performed (correspond-

ing to the case of a delta-function in incident momentum and hence a

specific q scattering). The visible decay of the imaginary phase contribu-

tion to zero and the saturation of the real part nonetheless confirm the

expected limiting behaviour for large values of ”x

⁄
. However, the way in
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Figure 3.2: Short- and long-wavelength regimes of imaginary and real part
quantum state evolution for Thompson scattering. The quantity
⁄ is the incoming particle’s wavelength and ”x is the size of the
superposition. The blue and the orange line refer to the real
and imaginary parts of the localization rate’s contribution to
the quantum system’s off-diagonal respectively. The real part
is typically used to quantify decoherence. The imaginary part
vanishes in an isotropic situation. In case of a directed (non-
isotropic) source such as a wind however, the imaginary part
can be used for sensing, as it gives a phase evolution.
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which these limits are reached differs significantly from the case of ran-

dom uniform scattering, where the exponential contribution habitually

averages out due to rapid oscillations.

The second example for m = 4 reveals a similar trend, though the

resulting localization function is again scaled by an additional factor of q
4

and the coupling g is dependent on the dielectric constant of the sensing

material. Employing previous calculation methods will therefore lead

to the same qualitative observation, namely the emergence of an optimal

”Goldilocks zone” in relation to the accumulation of phase as is indicated

in Fig. 3.2 and indirectly in Fig. 3.4.

3.4 Experimental Signature

The field of matter-wave interferometry offers a catalogue of schemes that

enable the extraction of the phase contribution arising due to a scattering

interaction. A popular approach is founded in the Stern-Gerlach interfer-

ometry of spin-mechanical systems [48, 84], where the magnetic manipu-

lation of a mesoscopic test-mass with an embedded spin, such as levitated

diamond with a nitrogen-vacancy-center, is used. After the initialization

of the sensing system in a center-of-mass (COM) motional state |cÍ and a

superposition of (its embedded) spin states 1Ô
2

1
|+1Í+ |≠1Í

2
, the system

is allowed to evolve. This evolution is spin-state dependent and leads to

a spatial splitting of the COM, resulting in a combined quantum state of

the form |Â(t)Í = 1Ô
2

1
|cs=+1(t)Í|+1Í+ |cs=≠1(t)Í|≠1Í

2
. The difference in

distinct phases arising between the components of the superposition due

to a scattering interaction can be measured upon completion of the in-

terferometer by means of orthogonal spin-state measurements, since the

motional wave-packet is recombined at the end of the experiment. For

an illustration of this scenario, see Fig. 3.1 on page 92.
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For a simple initial density matrix

fl = 1
2

Q

cca
a Ae

i„

Ae
≠i„

b

R

ddb , (3.4.1)

one method of extracting phase-differences arising between the off-diagonal

components is to apply fi/2-phase and Hadamard gate transformations

S and H to the quantum state, which effectively results in a projection

of the phases onto the diagonal.

flf = HSflS
†
H (3.4.2)

= 1
4

Q

cca
a + b + 2A sin „ a ≠ b + 2iA cos „

a ≠ b ≠ 2iA cos „ a + b ≠ 2A sin „

R

ddb

Subtracting the (diagonals) probabilities flf,11 ≠ flf,22 = A sin „, hence

relates to the sine of the accumulated phase „. This experimental sig-

nature is plotted in Fig. 3.3 for the normalized initial state where

fl11 = fl22 = fl12 = fl21 = 1/2 and evolved final states with varying

values „ = 2fi”x/⁄, at times t = [0, 5]s. For the sake of generality, I have

not chosen a specific distribution for the number density and speed of the

particles and set the quantity g = 1 while the momentum distribution

is taken to be a delta function (definite momentum), effectively plotting

the contributions from F (x ≠ x
Õ) resulting from the angular integrations.

Specific values for these quantities and subsequent integration over the

momentum will lead to a shifted optimal range for the relative superposi-

tion size ”x/⁄. Although I do not strictly define the notion of optimality,

it should be implicitly clear that values of the relative superposition size

leading to a phase contribution of O(1) are considered as such. Bench-

marking the range of suitable values for ”x/⁄ to, say, sin(„) = 0.95 is

one possible way of defining the window of optimality.
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Figure 3.3: Accumulated phases (depth coloration) for varying ratios of ”x/⁄
over a time interval t = [0, 5] s, assuming Thompson scattering
with m = 0 and constant pre-factors n(q)v(q)g = 1. The orange
colored region in the plot indicates the maximization of the phase
signature, which in turn is determined by the non-vanishing first
order contribution in Eq. 3.3.2.

3.4.1 Single Photon Detection

To give a concrete example of an experimental application, I analyse the

potential benefit of this novel effect for the detection of spatially shaped

single-photons, such as those which may be emitted from a quantum

dot source. With the aim of operating the sensing system as a ”click”

detector, I introduce what I term the detection efficiency as follows

÷ = È≠|flin|≠Í (3.4.3)

= 1
2(1 ≠ (fl12(t = 1s) + fl21(t = 1s))).

The efficiency ÷ plotted in Fig. 3.4 quantifies the distinguishability of

a system initially prepared in a superposition state flin = |+ÍÈ+| from
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Figure 3.4: Quantum efficiency ÷ for Rayleigh scattering of single photons
with ⁄ = 1064 nm on a 0.1 micron-sized sphere, assuming differ-
ent spatial photon profiles Ap.

its final state. If the scattering of a photon results in a fi phase shift,

projecting the initial quantum state into the orthogonal state |≠Í, the

efficiency approaches its maximum. Figure 3.4 shows the crucial depen-

dency of ÷ on the choice of ”x/⁄ for different magnitudes of areal photon

flux, corresponding to n(q)v(q) in the master equation. Here, I consider

a 0.1 micron sized particle. The contributions at a fixed time t = 1s have

been labeled as Ap and correspond to the spatial profile of a single pho-

ton, which in turn is related to n(q)v(q)· ≥ 106

Ap

. Whereas certain choices

of the superposition size will be suitable for operating the sensing system

as a single photon detector, others will result in phase shifts that render

the system insensitive to the signal.

3.5 Implications for Quantum Sensing and

Experiments

The above observations are of critical relevance to experiments where

a stream of imminent particles scattering from a superposition has a
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unique or preferred direction and the environment cannot be treated in

the fashion of an isotropic bath. Conversely, a similar observation can be

made for a superposed object that is not held in place, but instead prop-

agating with a given velocity with respect to the environment, such as a

crystal with horizontal velocity in a motional superposition state moving

through a gas of particles in the lab frame. A heuristic mathematical

treatment of this scenario is described in the next section.

Several emergent experiments and technologies, especially in the con-

text of quantum gravimetry, rely on the acceleration of the quantum

mechanical sensor. Any such setup will be influenced by non-isotropic

sources interacting with the sensing apparatus. I therefore want to em-

phasize the importance of the choice of the superposition size in relation

to phase contributions arising through these directional effects. In turn,

I also highlight the potential of these findings to be exploited for the

purpose of intentional enhancement of a particular anisotropic signal.

3.6 Master Equation with Boosted Super-

position

I now consider, without solving explicitly, the situation when a super-

position sensor is boosted and moves through a static environment (in a

loose sense a reverse of the situation considered in the previous chapters).

Consider this general class of master equations in the Lindblad form

dfl̂S(t)
dt

= ≠i[ĤS, fl̂S(t)]

≠
ÿ

k

G(k)
1
L̂kfl̂S(t)L̂†

k
≠ 1

2{L̂
†
k
L̂k, fl̂S(t)}

2
(3.6.1)

where the kernel G(k) is a function of the momentum k and L̂k = e
ikx̂.

This non-dissipative master equation is in itself an approximation of the

dissipative model, where L̂p̂,k = e
ikx̂

B̂(p̂, k). Let
Ò

G(k) be absorbed into
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L̂p̂,k and assume that the sensing system is not stationary, but instead

moves towards a given direction. I therefore apply a boost operation

to the superposed object, essentially computing flS ‘æ UflSU
†, where

U = e
i

~mvx̂ with v being the boost velocity and m denoting the mass of

the system.

U ˙̂flS(t)U † = ≠
ÿ

k

1
L̂p̂,kU fl̂S(t)U †

L̂
†
p̂,k

≠ 1
2{L̂

†
p̂,k

L̂p̂,k, U fl̂S(t)U †}
2
, (3.6.2)

˙̂flS(t) = ≠
ÿ

k

1
U

†
L̂p̂,kU fl̂S(t)U †

L̂
†
p̂,k

U

≠ U
† 1
2{L̂

†
p̂,k

L̂p̂,k, U fl̂S(t)U †}U

2
(3.6.3)

The operator B̂(p̂, k) transforms as U
†
B̂(p̂, k)U = B̂(p̂ + k̄, k), where

k̄ = mv. I then use the relation L̂(p̂ + k̄, k) = L̂(p̂, k ≠ k̄). It essentially

states that adding momentum to the system is taking momentum away

from the environment. This yields a master equation of the form

˙̂flS(t) = ≠
ÿ

k

G(k ≠ k̄)
1
e

i(k≠k̄)x̂
B̂(p̂, k ≠ k̄)fl̂S(t)

◊ B̂
†(p̂, k ≠ k̄)e≠i(k≠k̄)x̂

≠ 1
2{B̂

†(p̂, k ≠ k̄)B̂(p̂, k ≠ k̄), fl̂S(t)}
2
. (3.6.4)

The result illustrates a change in G(k) (and therefore the function p(�, �Õ))

under the influence of a boost operation performed on the system. Thus

the evolution of the density matrix should be able to capture this move-

ment of the interferometer. I leave concrete calculations following from

the reverse case discussed in this section as a matter of future investiga-

tion.
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3.7 Summary

Considering two limiting regimes for the wavelength of an incoming scat-

terer interacting with a quantum sensor, I have numerically shown that

the imaginary contribution arising due to the interaction is, in specific

scenarios, non-vanishing. This relative phase may be used for the detec-

tion of weak environmental signatures. Moreover, I have observed the

emergence of an optimal parameter-choice for the superposition size ”x

when it comes to measuring special types of particulate environments.

The findings presented will doubtlessly result in improvements of state-

of-the-art quantum sensors and may be utilized to enhance signals which

are typically difficult to capture.
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Chapter 4

Non-Gaussian Superpositions

& Entanglement in

Atom-Nanoparticle Ion Trap

Hybrids

Contents
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In this chapter I examine the creation of superpositions of mesoscopic

and macroscopic objects for levitated optomechanical systems through

their interaction with atoms. Although fundamentally distinct, this work

is in close relation to cold ion experiments, where Mølmer-Sørensen [127]

gates relying on optical manipulation and the Coulomb repulsion be-
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tween ions or techniques such as that proposed by Mintert and Wunder-

lich [128] utilising an inhomogenious magnetic field are used to generate

entanglement between the ions. In contrast, I discuss here the feasibil-

ity of creating and evidencing a spatial superposition of the nanoparticle

through the appearance of interference fringes and comment on a novel

method for the experimental verification of the entanglement between

the atom and nanoparticle.

4.1 Schematic Protocol

t = 0

·p

·1

·2

Nanoparticle trap Atomic ion trap

D

Initialize atom
in superposition

Atom-nanoparticle
interaction

Recombine atomic
motional state and measure

Measure nanoparticle’s
interference pattern

Nanoparticle Atom

Figure 4.1: Schematic protocol for generating entanglement between a single
trapped (charged) atom and a nanoparticle consisting of several
tightly-bound atoms. In step (1), both particles are trapped.
Subsequently in step (2) a pulse ·p is used to place the atom
in superposition. (3) The particles are allowed to interact for a
time ·1, at which point the atom is measured as indicated by
the detector symbol D in red. (4) The nanoparticle is allowed
to evolve for a time ·2, then its fringes in position are measured
throughout multiple repetitions of the protocol.

The implementation of sensing schemes relying on joint quantum sys-
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tems consisting of trapped atoms and mesoscopic particles may be ex-

perimentally challenging, yet it is a promising avenue for the practical

realisation of large-mass superpositions and the study of entanglement

between the two systems. Entanglement of an atom-nanoparticle system,

where the atom is trapped in the intensity maxima of a trapped nanopar-

ticle’s evanescent field has been studied in [129]. Here, I am considering a

different experimental configuration. I investigate the concrete scenario

of a single and separately trapped atom interacting with an object con-

sisting of several tightly-bound atoms, such as a nanosphere, which is

equally confined in a harmonic potential. Trapping both in an ion trap,

I essentially use the electrostatic interaction between them to generate

an entangled state and from that, a quantum superposition of states of

the nanoparticle. To quantify the superposition sizes in the nanoparti-

cle one can realistically expect to achieve and subsequently evidence the

entanglement generated due to the atom-nanoparticle interaction, I am

considering the following protocol:

• The nanoparticle and atom are held in two separate ion-traps of

frequencies Ên and Êa.

• Through the application of a light pulse, the atom is initialized

in a superposition of two spatially distinct states. This light-pulse

aided generation of the superposition of the atom is so fast that the

nanoparticle hardly evolves during this interval. The assumption is

justified if the pulse time for the generation ·p π 1/Ên, 1/g, where

g is the coupling of the atom and nanoparticle, to be calculated

later, in frequency units.

• The systems interact for a time ·1, during which the atom is held

in the superposition state. A motional superposition is induced in

the nanoparticle.

• Through the application of another pulse, the atomic motional
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state is recombined. The population states are measured in the

|+Í, |≠Í basis.

• Evolving the nanoparticle state for a time t = ·2 = fi

2Ên

effects a

rotation in phase space, resulting in the delocalized nanoparticle

wavepackets overlapping in position, leading to the appearance of

interference fringes in position.

• The interference pattern is measured by measuring the position

of the nanoparticle and obtaining the spatial distribution of its

position. On the other hand, this position detection will be accom-

plished by scattering light from the nano-object and detecting an

interference pattern between incident and scattered light, which is

a technique for very high resolution position detection [130, 131].

Methods for mapping the interference fringes to a spatial qubit can

in principle also be used to witness the atom-nanoparticle entan-

glement.

4.2 Mathematical Model

The dynamics of the center-of-mass motion of the harmonically trapped

nanoparticle correspond to that of a harmonic oscillator, whereas the

atom’s motion along with its internal levels will be treated as an effective

two-state system – this requires assumptions about the state of the atom,

as will be clarified below. A quantum superposition in the initial state

of the atom will naturally influence the evolution of the more massive

object due to their interaction. There are two main ways in which the

atomic interferometer for trapped motional states can be realised

• through the application of a magnetic field gradients in a Stern-

Gerlach type interferometer, or

• through the application of Raman pulses, for example in a Ramsey-

Bordé interferometer or in an ion trap
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which will result in slightly different Hamiltonians for the atomic sys-

tem, while the Hamiltonian for combined atom-nanoparticle system will

be characterized only through an effective coupling strength g which will

depend on the Coulomb interaction. For a Stern-Gerlach interferome-

ter with an external gradient ˆBz

ˆx
, and Bz = 0 at x = 0, the atomic

Hamiltonian is

Ha = ~Êab
†
b + µB”x

ˆBz

ˆx
‡̃z(b + b

†), (4.2.1)

where ”x =
Ò

~
2maÊa

and the creation operators b and b
† are for the quan-

tized centre of mass vibration in the x direction. The last term is the Zee-

man term, which gives the magnetic gradient Stern-Gerlach force Fmag

and ‡̃z = | øÍÈø | ≠ | ¿ÍÈ¿ |. In order to keep uniform notation and

to make the nano-particle superposition creation method independent of

how the atomic superposition is created, the symbols |eÍ and |gÍ will be

used for the spin state | øÍ and | ¿Í, even though they are degenerate

in the absence of a magnetic field. At a time t = 0, the magnetic field

gradient is switched on for an interval ·p = fi/Êa which results in the

state

|eÍ|LÍ + |gÍ|RÍ, (4.2.2)

where |LÍ and |RÍ are spatially localized states separated by a splitting

lmax ≥ Fmag

maÊ2
a

= µB
maÊ2

a

ˆBz

ˆx
. (4.2.3)

For a Raman-pulse method in an ion-trap, after conducting all the ap-

proximations relating to the internal level energy differences, detunings,

trap frequency and simultaneously setting the red and blue detuned tran-

sition, the effective Hamiltonian of the atom is recovered as described in
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Eq. (1.3.21), giving

Ha = ~÷�eff(b† + b)‡y, (4.2.4)

which generates a superposition of the same form as Eq. (4.2.2) up to

local unitary operations on the atomic state, with lmax being given as

lmax ≥ FRaman

maÊ2
a

= ~÷�eff
mÊ2

a
”z

= ~k�eff
maÊ2

a

, (4.2.5)

where the Raman pulse induced force is understood to be imparted as the

equivalent of one photon momentum kick ~k per Rabi oscillation period

1/�eff.

I discuss here the calculation after choosing the first scenario, al-

though it should hold similarly for the second scenario. To do so, I

consider the quantum motion of the nanoparticle in the x direction to

be coupled to the atom, the other directions of the nanoparticle trap are

so tightly confined that they are hardly affected. A simplistic model for

the interaction of a charged atom and nanoparticle can be made if one

assumes that the atom’s spatial superposition of size lmax, once gener-

ated, can be held still for the interaction time ·1. Since both particles

are electrically charged, they interact via the Coulomb potential

VCoulomb = e
2

4fi‘0|xn ≠ xa| (4.2.6)

where xn and xa are the respective positions of the nanoparticle and

atom. Normally, if none of the systems are placed in spatially delocal-

ized superpositions, and cooled to their ground states at the centres of

their traps, they are at positions ≠d/2 (nanoparticle) and d/2 (atom).

This implies that the centres of the traps are separated by d. For small

variations in the positions xn æ ≠d/2 + ”xn and xa æ d/2 + ”xa, the

112 of 152



4.2. Mathematical Model 4. Non-Gaussian Atom-Nanoparticle Hybrids

potential becomes

VCoulomb = e
2

4fi‘0d

1
1 + (”xa ≠ ”xn)/d

. (4.2.7)

Expanding the expression in terms of the redefined distance parameter

((”xa ≠ ”xn)/d) up to second order while requiring that ”xa, ”xn π d

results in the three terms

VCoulomb ≥ e
2

4fi‘0d

3
1 + ”xa ≠ ”xn

d
≠ (”xa ≠ ”xn)2

d2

4
. (4.2.8)

Quantization of the positions will promote the variations ”xn and ”xa

in the expression to operators, of which only combinations of the form

x̂nx̂a would generate entanglement between the two quantum systems.

Moreover, since the position of the atom is either d/2 ≠ lmax/2 for the

component |eÍ|LÍ or d/2 + lmax/2 for the component |gÍ|RÍ, its position

x̂a can be replaced by the discrete operator

x̂a = d/2 + lmax
2 ‡z, (4.2.9)

where

‡z = |eÍ|LÍÈe|ÈL| ≠ |gÍ|RÍÈg|ÈR|. (4.2.10)

This substitution has also been done in Ref. [132]. It leads to an effective

interaction Hamiltonian between the nano-particle and atom that is of

the form

H
int

n,a
= ~gC‡z(a + a

†), (4.2.11)

where a, a
† are the creation/annihilation operators for the harmonic oscil-

lator nanoparticle. There will be a nanoparticle Hamiltonian Hn = ~Êna
†
a

added to the above interaction Hamiltonian. In writing the above, the
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term proportional to a + a
† has been omitted, as it is simply a position

shift of the centre of the nanoparticle’s harmonic well. The coupling gC

in frequency units is given by

gC = e
2
”xnlmax

~ 4fi‘0d3 , (4.2.12)

where ”xn =
Ò

~
2mÊn

is the initial position of the nanoparticle and lmax

the maximal spatial separation of the atomic superposition state. The

full Hamiltonian is then

Hn,a = ~Êna
†
a + ~gC‡z(a + a

†), (4.2.13)

where the first term corresponds to the evolution of the nanoparticle and

the last contribution encompasses interactions of the nanoparticle with

the ion, for which the strength of the interaction is determined by the

coupling gC . The individual evolution of the atom is negligible, because

I have assumed that the superposition of the atom is generated and held

still while Hn,a acts.

4.3 Spatial Superposition Generation

At the beginning of the protocol, the atom is initialized in a superposition

of motional states. Since the motion is coupled to the intrinsic energy

levels, the combined initial state of the nanoparticle and atom is

|–Í(|eÍ|LÍ + |gÍ|RÍ) (4.3.1)

where it is assumed that the nanoparticle is prepared in a coherent state

|–Í. Until further comment, I shall henceforth implicitly carry forward

the ground and excited states in the full expression and denote the atom’s

superposition state merely by the left and right components of the mo-

tional degree of freedom. The time evolution in step 3 of the protocol is
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obtained by applying the unitary

U(t) = e
≠i

Hn,at

~ = e
≠iÊna

†
at≠igC‡z(a+a

†)t (4.3.2)

= D
†
1

gC

Ên

‡z

2
e

≠iÊna
†
at

D

1
gC

Ên

‡z

2
(4.3.3)

for the duration of a time t = ·1. Thus, the initial state evolves to

|Â(t = ·1)Í =N

1
|–e

≠iÊn·1 + gC

Ên

(1 ≠ e
≠iÊn·1)Í|LÍ (4.3.4)

+ |–e
≠iÊn·1 ≠ gC

Ên

(1 ≠ e
≠iÊn·1)Í|RÍ

2
.

where N is an appropriate normalisation factor. Assuming a ground

state cooled nanoparticle, – = 0 and the quantum state simplifies to

|Â(t = ·1)Í = 1Ô
2

1
| gC

Ên

(1 ≠ e
≠iÊn·1)Í|LÍ (4.3.5)

+ | ≠ gC

Ên

(1 ≠ e
≠iÊn·1)Í|RÍ

2

= 1Ô
2

1
| + —Í|LÍ + | ≠ —Í|RÍ

2
, (4.3.6)

where — = gC

Ên

(1 ≠ e
≠iÊn·1). To reveal the entanglement and verify the

superposition in the nanoparticle through the presence of interference

fringes, the motional wavepacket of the atom is brought back together as

|L, eÍ æ |C, eÍ and |R, gÍ æ |C, gÍ, where C is now the center, and the

interferometer is closed so that the joint ion-nanoparticle state becomes

|Â(t = ·1)Í = N

1
| gC

Ên

(1 ≠ e
≠iÊn·1)Í|eÍ (4.3.7)

+ | ≠ gC

Ên

(1 ≠ e
≠iÊn·1)Í|gÍ

2
|CÍ

= N

1
| + —Í|eÍ + | ≠ —Í|gÍ

2
|CÍ (4.3.8)

In order for highly non-Gaussian spatial superposition states of the nanopar-

ticle to be produced, a measurement has to be performed in the x-basis

{ 1Ô
2(|gÍ+ |eÍ), 1Ô

2(|gÍ≠ |eÍ)} of the atom. Conditionally, the nanoparticle
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(a) Wigner function of |Â+(·2)Í.
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0
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(b) Wigner function of |Â≠(·2)Í.

Figure 4.2: Three-dimensional depiction of the Wigner functions W(x,p) for
the states (a) |Â+(·2)Í and (b) |Â≠(·2)Í for displacement values
— =

Ô
2. The colour bars indicate the value of W(x,p) for differ-

ent values of position x and momentum p. In the above, I have
used adimensional x æ

Ô
2‡1x and corresponding p.

is projected to the state

|Ân,±Í = N±(—)
1
| + —Í ± | ≠ —Í

2
(4.3.9)

where the normalization is N±(—) = 1
2±2e≠2|—|2

. From the normalization,

one can find the probability for each outcome. For the |+Í = 1Ô
2

1
|gÍ+|eÍ

2

state, it is N
2
+(—) while for the |≠Í = 1Ô

2

1
|gÍ ≠ |eÍ

2
state, it is N

2
≠(—).

At this point in the experiment, the conditional quantum state of the

nanoparticle is recovered as

|Ân,±Í = N±(—)
3 1

2fi”x2
n

4 1
4

⁄ Œ

≠Œ

3
e

≠ (x+2—”xn)2

4”x
2
n ± e

≠ (x≠2—”xn)2

4”x
2
n

4
|xÍdx

(4.3.10)

in position space, where I have assumed the wavepacket representation

of a coherent state

Â(x, 0) =
3 1

2fi”x2
n

4 1
4
e

≠ (x≠x0)2

4”x
2
n

+ip0x (4.3.11)

to have p0 = ÈpÍ = 0 for the sake of simplicity. The state in Eq. 4.3.10

is non-classical, as is demonstrated by the Wigner functions W (x, p) =
1
~fi

s Œ
≠Œ Â

ú(x + y)Â(x ≠ y)e 2ipy

~ dy in Fig. 4.2. To evidence this nonclassi-

cality experimentally, one has to look for interferometric fringes, while
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the measurements generally available are position measurements, which

could be highly precise. In the state described in Eq. 4.3.10, the fringes

are actually in the momentum quadrature. Thus to obtain position

fringes, the system is now allowed to evolve for a time t = ·2 = fi

2Ên

,

corresponding to a fi/2 rotation in phase space that maps momentum to

position p ¡ mÊnx (or x ¡ p

mÊn

). The time-evolution of coherent states

of a simple harmonic oscillator [133] is given by

�—(x, t) =
3 1

2fi”x2
n

4 1
4
e

≠i
Ênt

2 e
—

2
e

≠2iÊnt≠|—|2
2 e

≠ 1
4”x

2
n

(x≠2”xn—e
≠iÊnt)2

(4.3.12)

for a general coherent state. The time evolution at time ·2 follows ac-

cordingly and is

�—(x, ·2) =
3 1

2fi”x2
n

4 1
4
e

≠i
fi

4 e
≠—

2≠|—|2
2 e

≠ 1
4”x

2
n

(x+i2”xn—)2
(4.3.13)

which simplifies again if — is assumed to be real. For the superposition

in the nanoparticle state, the evolution yields

|Ân,±(·2)Í =
⁄

dxN±(—)
3 1

2fi”x2
n

4 1
4 1

e
≠i

fi

4 e
≠—

2
e

≠ 1
4”x

2
n

(x+i2”xn—)2
(4.3.14)

± e
≠i

fi

4 e
≠—

2
e

≠ 1
4”x

2
n

(x≠i2”xn—)22
|xÍ

=
⁄

dxN±(—)
3 1

2fi”x2
n

4 1
4
e

≠i
fi

4 e
≠ x

2
4”x

2
n

1
e

≠ i—x

”xn ± e
+ i—x

”xn

2
|xÍ

The probability for finding the nanoparticle in the position x is then

p(x) = |Èx|Ân,+(·2)Í|2 (4.3.15)

= |N+(—)|2
3 1

2fi”x2
n

4 1
2
e

≠ x
2

2”x
2
n 4 cos2

3
—x

”xn

4

with a sine term for the state of opposite sign. This implies that in order

to obtain the fringes, the position x has to be measured better than to a
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precision ±‘ given by

‘ ≥ ”xn/—. (4.3.16)

As the envelop function e
≠ x

2
2”x

2
n decays over the ground state spread ”xn,

the measurement of the fringes has to occur within this Gaussian, im-

plying — > 1 is needed, which in turn implies a detection precision ‘ to

better than the standard quantum limit [134] ”xn. For a phonon loss

rate [135] of the nanoparticle of “, a decoherence rate is proportional to

� ≥ “|—|2, which requires “ to be reduced to below an appropriate value.

4.4 Estimates in Physical Realizations

From Eq. (4.3.14) it follows that the size of the spatial superposition of

the nanoparticle which is created is

�xn = 4—”xn ≥ 4gC

Ên

”xn. (4.4.1)

To determine the strength of the coupling gC , the size of the atomic

superposition lmax has to be estimated first. Aiming for an lmax ≥ 1 µm, I

will now examine the requirements for that. Following the Stern-Gerlach

method, with an atomic mass of ma ≥ 10≠25 kg and Êa ≥ 100 kHz, yields

lmax ≥ µB
maÊ2

a

ˆBz

ˆx
≥ 10≠8 ˆBz

ˆx
m. (4.4.2)

Thus by choosing ˆBz

ˆx
≥ 100 T/m, a superposition size lmax ≥ 1 µm

can be obtained. Similarly following the Raman scheme, with a Rabi

frequency �eff ≥ 1 MHz [136], but with npulse number of pulses,

lmax ≥ npulse
~k�eff
maÊ2

a

≥ npulse10≠8 m. (4.4.3)
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In conclusion, a hundred Raman pulses [18] can generate the desired su-

perposition. For a distance d ≥ 10 µm between the traps, a nanoparticle

of mass mn ≥ 10≠14 kg in a trap of frequency Ên ≥ 100 Hz [137] and a

ground state spread ”xn =
Ò

~
2mn�n

≥ 0.1 Å, the coupling gC becomes

gC = e
2
”xnlmax

~ 4fi‘0d3 ≥ 104Hz. (4.4.4)

Thus, the size of the nanoparticle superposition is

�xn = 4gC

Ên

”xn ≥ 4nm. (4.4.5)

The value of the superposition in phase space ≥ 4— ≥ 400. While

the above estimates for lmax and hence �xn amount to relatively large

displacements, smaller superposition sizes with smaller displacements —

should only be much easier to generate. Assuming — ≥ 10, the required

spatial resolution [130] is 10 picometer.

4.5 Verification of Entanglement

In addition to verifying the superposition through the fringe patterns in

position as described, it may also be of interest to try and verify the atom-

nanoparticle entanglement directly. All previous measurements of entan-

glement of two continuous variable systems have either been through an

indirect method or only for Gaussian two-mode entangled states through

Gaussian (EPR) witnesses [138]. If the states in Eq. (4.3.8) are labelled

| + —Í = |0Í, | ≠ —Í = |1Í, the result is a two qubit entangled state. Note

that it is not the maximally entangled state

1Ô
2

1
|0Í|eÍ + |1Í|gÍ

2
(4.5.1)

unless — æ Œ, but it is already a reasonable approximation for — ≥ 2

as the overlap decays as È0|1Í ≥ e
≠4|—|2 . A recently proposed method to
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evidence the entanglement of the atom and nanoparticle is based on the

notion of encoding a spatial qubit in the nanoparticle’s spatial degree of

freedom [139], inspired by work on encoding photonic spatial qubits [140].

This treatment has so far been applied to freely propagating, untrapped

systems but not yet been investigated for nanoparticles in ion traps. In

general, to measure the entanglement of the state in Eq. (4.3.14), an en-

tanglement witness such as W = X ¢ X + Y ¢ Y has to be measured.

A measurement in the X basis for the atom and a measurement of the

nanoparticle in the X basis as well, and similarly measuring both in the

respective Y basis. The measurement of the ion in two complementary

bases is straightforward: { 1Ô
2

1
|gÍ+|eÍ

2
,

1Ô
2

1
|gÍ≠|eÍ

2
} for the X-basis and

{ 1Ô
2

1
|gÍ+i|eÍ

2
,

1Ô
2

1
|gÍ≠i|eÍ

2
} for the Y -basis. When spatial qubit states

|Â+,nÍ = 1Ô
2(|0Í±|1Í) are prepared, the probability distributions p±(x) of

positions in the fringe pattern correspond to X eigenvalues of +1 and ≠1

respectively. Similarly, when the state |Â+i,nÍ = 1Ô
2(|0Í±i|1Í) is prepared,

the probability distributions of positions in the fringe pattern pi±(x) cor-

respond to Y eigenvalues of +1 and ≠1 respectively. The measurements

in the X and Y bases on the atom therefore project the nanoparticle’s

quantum state into either of the states N±(i)(—)(| + —Í ± (i)| ≠ —Í) with

N±(—) = 1
2±2e≠2|—|2

and N±i(—) = 1Ô
2 . However, the above described

measurement of the nanoparticle in the X and Y basis for the spatial

qubit states is non-trivial and does not exactly correspond to measur-

ing an interference pattern as the latter is obtained by averaging over a

large ensemble. The form of the spatial qubit Pauli operators have not

been rigorously worked out in terms of position measurements (assum-

ing that this is the most easily measured observable – the position of a

nanoparticle). Rather, only a heuristic argument has been made. The

construction of appropriate Xn and Yn operators for the nanoparticle,

when it is treated as a qubit, will now be described formally. Subtleties

regarding the explicit computation of the entanglement witness that have
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not been discussed in [139] will be addressed.

4.5.1 Pauli Operators for the Spatial Qubit

In a number of trapped ion or photon experiments, the spin of an ion

or the polarisation of a photon are regularly used to define a two-level

system. The quantum bit can however also be encoded in a continuous

variable system, such as the center-of-mass motion of a trapped nanopar-

ticle. The Pauli basis, together with the identity operator, allows for

the decomposition of any 2 ◊ 2 density operator representing the qubit

state. This decomposition is also known as the Bloch decomposition.

An ideal qubit can hence be characterized through the Pauli matrices,

which are themselves traceless hermitian and unitary. A Pauli operator

is typically expressed through combinations of the complete orthonor-

mal computational basis states {|0Í, |1Í} or the basis states {|+Í, |≠Í}.

For example, the Pauli matrix ‡x, which can be understood as both a

fi-rotation around the x-axis of the Bloch sphere and a representation

of the quantum analogue of a logical NOT operation, can be written in

terms of its eigenbasis as ‡x = |+ÍÈ+| ≠ |≠ÍÈ≠|. I will use this notation

to find an expression for a position measurement operator intended to

realise a Pauli measurement on the nanoparticle. Since the spatial distri-

bution of the nanoparticle positions will be used to construct these Pauli

operators by placing detectors at specific locations, it will become appar-

ent that the implementation of ideal Pauli measurements is non-trivial

because the nanoparticle basis states |Â+,nÍ, |Â≠,nÍ are not orthogonal in

an approximate sense.

To realise a logical Xn measurement on the nanoparticle and construct

a spatial qubit, the Pauli operator ‡xn
= |Â+,nÍÈÂ+,n| ≠ |Â≠,nÍÈÂ≠,n|,

where the subscript n labels the quantum state as the state of the

nanoparticle, has to be measured. However, since this operator can-
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not be readily measured due to the absence of spatial fringes at ·1, an

equivalent operator ‡xn
(·2) = Xn has to be constructed which acts on

the time evolved state. It is imperative to express the operator in the

position basis using a truncated form of the identity resolution

Xspatial = 1
4L2

⁄
L

≠L

⁄
L

≠L

|xÍÈx|Xn|xÕÍÈxÕ|dxdx
Õ
. (4.5.2)

Since the atom has been measured accordingly in its X basis and the

nanoparticle has been projected and time evolved into either of the two

states in Eq. (4.3.14), these states (with the subscript n dropped) can be

used for the construction of Xspatial. Writing Xn = |Â+(·2)ÍÈÂ+(·2)| ≠

|Â≠(·2)ÍÈÂ≠(·2)|,

Xspatial = 1
4L2

⁄
L

≠L

⁄
L

≠L

Èx|Xn|xÕÍ|xÍÈxÕ|dxdx
Õ (4.5.3)

= 1
4L2

⁄
L

≠L

⁄
L

≠L

Èx|Â+(·2)ÍÈÂ+(·2)|xÕÍ|xÍÈxÕ|dxdx
Õ

≠ 1
4L2

⁄
L

≠L

⁄
L

≠L

Èx|Â≠(·2)ÍÈÂ≠(·2)|xÕÍ|xÍÈxÕ|dxdx
Õ
.

It can already be seen from this general expression that the resulting

operator Xspatial is not diagonal in the position basis. Inserting the ex-

pression of the time-evolved superposition states at ·2, one recovers

Xspatial = 1
L2

⁄
L

≠L

⁄
L

≠L

N
2
+(—)

1 1
2fi”x2

n

2 1
2
e

≠ (x
2+x

Õ2)
4”x

2
n (4.5.4)

◊ cos
1 —x

”xn

2
cos

1 —x
Õ

”xn

2
|xÍÈxÕ|dxdx

Õ

≠ 1
L2

⁄
L

≠L

⁄
L

≠L

N
2
≠(—)

1 1
2fi”x2

n

2 1
2
e

≠ (x
2+x

Õ2)
4”x

2
n

◊ sin
1 —x

”xn

2
sin

1 —x
Õ

”xn

2
|xÍÈxÕ|dxdx

Õ
.

It is the role of each part of the operator Xspatial for the overlaps of nearly

orthogonal states to be infinitesimally small and ideally zero. In the finite

support approximation of |Â+ÍÈÂ+|, the first term should not have any

overlap with |Â≠ÍÈÂ≠|. In the case of freely propagating nanoparticles,
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this condition can be fulfilled by introducing two assumptions. In par-

ticular, in Eq. (4.5.4), the first assumption requires the integrals to be

split into separate spatial regions, where a select subset of the regions is

discarded, and the second assumption is that x ¥ x
Õ ¥ 0. Similarly, for fi-

nite support approximation of |Â≠ÍÈÂ≠|, the second term should not have

any overlap with the |Â+ÍÈÂ+| term. This is fulfilled for x ¥ x
Õ ¥ fi”xn

2—
,

once the integrals have again been split into separate selected regions

and integrated over small variations in position.

Similarly for Yn, the general spatial representation is

Yspatial = 1
4L2

⁄
L

≠L

⁄
L

≠L

N
2
+i

(—)
1 1

2fi”x2
n

2 1
2
e

≠ (x
2+x

Õ2)
4”x

2
n f1(x, x

Õ)|xÍÈxÕ|dxdx
Õ

(4.5.5)

≠ 1
4L2

⁄
L

≠L

⁄
L

≠L

N
2
≠i

(—)
1 1

2fi”x2
n

2 1
2
e

≠ (x
2+x

Õ2)
4”x

2
n f2(x, x

Õ)|xÍÈxÕ|dxdx
Õ

where

f1(x, x
Õ) = 2 sin

1 —x

”xn

2
sin

1 —x
Õ

”xn

2
+ 2 cos

1 —x

”xn

2
cos

1 —x
Õ

”xn

2
(4.5.6)

≠ 2 sin
1 —x

”xn

2
cos

1 —x
Õ

”xn

2
≠ 2 cos

1 —x

”xn

2
sin

1 —x
Õ

”xn

2

f2(x, x
Õ) = 2 sin

1 —x

”xn

2
sin

1 —x
Õ

”xn

2
+ 2 cos

1 —x

”xn

2
cos

1 —x
Õ

”xn

2
(4.5.7)

+ 2 sin
1 —x

”xn

2
cos

1 —x
Õ

”xn

2
+ 2 cos

1 —x

”xn

2
sin

1 —x
Õ

”xn

2
.

Due to the non-vanishing overlaps, it may not be possible to trivially ap-

proximate Xspatial and Yspatial as diagonal projectors of the form s
L1 dx|xÍÈx|≠

s
L2 dx|xÍÈx| onto two distinct spatial regions L1 and L2 as has been sug-

gested in [139]. Using Xspatial as an example, I will discuss why and in how

far the general case of the spatial qubit method for trapped nanoparticles

differs from the approximate form of the spatial qubit operators assumed

in previous works.
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Motivated by the idea of associating the placement of two detectors

at specific locations L1 and L2 in order to conduct an effective Xspatial

measurement, the first and second terms in Eq. (4.5.4) are split into sums

of integrations over separate spatial regions. Regions where the contribu-

tions from the cosine and sine are respectively small are discarded. This

discarding in and of itself is already to be taken with a grain of salt and

will have to be included in the probability of not detecting the position

of the nanoparticle in either detector locations associated with Xspatial or

Yspatial measurements. In keeping with the approximation however,

X̃spatial = 1
‘2

⁄
L1+‘

L1≠‘

⁄
L1+‘

L1≠‘

N
2
+(—)

1 1
2fi”x2

n

2 1
2
e

≠ (x
2+x

Õ2)
4”x

2
n (4.5.8)

◊ cos
1 —x

”xn

2
cos

1 —x
Õ

”xn

2
|xÍÈxÕ|dxdx

Õ

≠ 1
‘2

⁄
L2+‘

L2≠‘

⁄
L2+‘

L2≠‘

N
2
≠(—)

1 1
2fi”x2

n

2 1
2
e

≠ (x
2+x

Õ2)
4”x

2
n

◊ sin
1 —x

”xn

2
sin

1 —x
Õ

”xn

2
|xÍÈxÕ|dxdx

Õ
.

where the locations are selected as L1 = 0 and L2 = fi”xn

2—
. For overlaps

which may be well approximated as delta functions in position, X̃spatial

can be approximated by an operator diagonal in the position basis over

narrow supports

X̃spatial,d = 1
2‘

⁄
‘

≠‘

|xÍÈx|dx (4.5.9)

≠ 1
2‘

⁄ fi”xn

2—
+‘

fi”xn

2—
≠‘

|xÍÈx|dx.

To illustrate why, I refer to the two terms comprising X̃spatial as X̃
(1)
spatial
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and X̃
(2)
spatial, where

X̃
(1)
spatial = 1

‘2

⁄
L1+‘

L1≠‘

⁄
L1+‘

L1≠‘

N
2
+(—)

1 1
2fi”x2

n

2 1
2
e

≠ (x
2+x

Õ2)
4”x

2
n (4.5.10)

◊ cos
1 —x

”xn

2
cos

1 —x
Õ

”xn

2
dxdx

Õ

X̃
(2)
spatial = ≠ 1

‘2

⁄
L2+‘

L2≠‘

⁄
L2+‘

L2≠‘

N
2
≠(—)

1 1
2fi”x2

n

2 1
2
e

≠ (x
2+x

Õ2)
4”x

2
n (4.5.11)

◊ sin
1 —x

”xn

2
sin

1 —x
Õ

”xn

2
dxdx

Õ
.

In the limit ‘ æ 0, the function X̃
(1)
spatial tends to 1 and the function

X̃
(2)
spatial tends to an expression proportional to the overlap e

≠ fi
2

8—2 , which

for large values of — may also tend to O(1). In this sense, as a rough

approximation, it provides a justification for treating Xspatial as X̃spatial,d.

The spatial variation ‘ can of course also be set to realise a wider box,

for example one with ‘ æ fi”xn

8—
.

In more general situations, the approximations from the previous para-

graph will no longer apply. For small values of —, the exponential en-

velope in the second term X̃
(2)
spatial will not approach 1 and the operator

Xspatial will also not be diagonal. In order to show that any approxima-

tion of Xspatial works well, what is generally required is to show that

ÈÂ+(·2)|X̃(2)
spatial|Â+(·2)Í ¥ 0 (4.5.12)

and

ÈÂ≠(·2)|X̃(1)
spatial|Â≠(·2)Í ¥ 0. (4.5.13)

Similar arguments and position diagonal approximations for Yspatial can

be made with its first part approximated by a narrow integral near L1 =
fi”xn

4—
and L2 = ≠fi”xn

4—
. In this case,

ÈÂ+i(·2)|Ỹ (2)
spatial|Â+i(·2)Í ¥ 0 (4.5.14)
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and

ÈÂ≠i(·2)|Ỹ (1)
spatial|Â≠i(·2)Í ¥ 0. (4.5.15)

It will be up to future works aiming to treat nanoparticles as spatial

qubits to prove both of these requirements on an individual case by case

basis. The specific realisations of Xspatial depend on a number of experi-

mental factors, such as the types of detectors (e.g. the characteristic of

the available optical fields in case of optical detection) and the geometry

of the experiment.

4.6 Summary

A specific protocol for creating superpositions of nanoparticles through

interactions with ions via the Coulomb force has been investigated. I find

that superpositions on the scale of �x ≥ 10 nm should be readily achiev-

able in settings where both particles are confined in separate ion traps.

Upon repetition of the experimental protocol, the nanoparticle’s fringes

in position can be used to evidence the superposition, provided the posi-

tion can be measured to better than the standard quantum limit and the

principal mechanisms of decoherence are sufficiently suppressed. I fur-

ther introduce a method of entanglement verification, which requires the

placement of detectors at specific locations in order to map select regions

of the spatial fringes of the nanoparticle to measurements in complemen-

tary bases that correspond to the eigenbases of Pauli operators. I outline

some of the difficulties in constructing such types of approximate spatial

qubit operators and highlight cases in which the approximation may not

hold, since near orthogonality of the measurement eigenstates cannot be

ensured.

A future direction of research will be to analyse the possibility of squeez-
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ing the nanoparticle’s quantum state after the atom has been measured,

which may result in requiring less precise fringe measurements. An-

other area of investigation will consist of devising a rigorous theoretical

framework in order to test the validity of the spatial qubit method for

nanoparticle experiments.
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Chapter 5

Conclusion

This thesis provides contributions to the field of quantum sensing, in par-

ticular its possible applications to the detection of particles. In Chap-

ter 2, I have explored how quantum superpositions of massive objects

may be used to sense low energy neutrinos produced by a reactor source

via their momentum transfer to the superposed object. Assuming an

interferometic matter-wave sensing scheme, the momentum transfer due

to the weak coherent neutral-current scattering of neutrinos from the

nuclei in the target is reflected in the accumulation of a relative phase

between the components of the superposition. A total detector mass

larger than the current demonstrated record holder [44], or an array of

several slightly lighter masses [141], is needed in order to obtain sig-

nificant phase signatures. While the required minimum detector mass

presents an experimental challenge, the use of quantum sensors for fun-

damental physics research is in general an upcoming field of research that

will doubtlessly gain even more traction in the coming years. This is the

case because most large-scale particle physics detectors lack the ability

to resolve low momentum transfer interactions. In future work, a more

complete picture of the actual experimental signatures may be obtained

by including other types of possible neutrino interactions on the one hand

and resorting to other mathematical models to account for high-energy

particle scattering on the other.
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In principle, large-mass interferometers may also be used for searches

of select dark matter candidates. The detection of particulate winds,

referring to a directional stream of particles, may present an especially

interesting application for interferometric matter-wave sensors. In the

future, superpositions of large masses may also find wider commercial

application, for example as sensors for precision measurements of gas

particles or leakages.

The sensing of directional particle sources through quantum superposi-

tions has been treated in more generality in Chapter 3. There, I have

shown how the size of the superposition in the sensing object’s motional

states may be optimally chosen in order to coherently sense directional

environments. A concrete example for single photon detection has been

presented. Calculations with other incident particles are in the works.

In order to complete the picture, I have discussed in Chapter 4 a promis-

ing scheme for the experimental realisation of the large mass superposi-

tions required for the detection of elusive and scarcely interacting parti-

cles. The chapter provides the blueprint for the aim of exploiting large

Coulomb force couplings of charged trapped nanoparticles and ions. The

ion, which is more easily controlled, is prepared in a motional superpo-

sition state. Entanglement of the ion-nanoparticle system is generated

through the interaction and represents the underlying mechanism for cre-

ating a superposition in the nanoparticle’s motional states. This can be

regarded as a remote version of Stern-Gerlach interferometry, with the

spin (here replaced by atomic internal levels, possibly hyperfine levels)

outside the nanoparticle. The obvious advantage is that the internal

levels can be more easily addressed via lasers, which may not pene-

trate the nanoparticle well enough to address an embedded single atomic

qubit. I further describe how the superposition of the nanoparticle can

be evidenced through the presence of interference fringes in position and

present the idea of treating the nanoparticle as a spatial qubit, where I
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emphasize the technical difficulties of constructing spatial Pauli operators

to be used for witnessing the entanglement. A future line of investiga-

tion will be to extend the notion of a spatial qubit encoding for the

nanoparticle to qudits. This may enable one to avoid the inefficiency of

the experiment with spatial qubits, where a large number of outcomes,

where the nanoparticle is not detected close to either of the detection

regions is discarded. Qudits may also have a natural application in grat-

ing based nanoparticle interferometry [46]. Another area of research is

motivated by the recently experimentally demonstrated dipole-dipole in-

teraction between optically levitated nanoparticles [142] and how this

observed interaction may be utilized to generate large mass superposi-

tions in neutral atom-nanoparticle systems. Further improvements of

the presented scheme may be achieved by looking at the influence of

squeezing the nanoparticle state. Of course, one of the most important

questions is whether nanoparticle based quantum sensors will really be

useful in comparison to extant sensors, both classical, and quantum such

as those using atom interferometry or quantum light. These questions

should become clearer in the future, as full analysis of these setups in the

presence of possible noise sources are investigated.
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