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Abstract: The combination of transcranial magnetic stimulation (TMS) and electroencephalography
(EEG) offers an unparalleled opportunity to study cortical physiology by characterizing brain electri-
cal responses to external perturbation, called transcranial-evoked potentials (TEPs). Although these
reflect cortical post-synaptic potentials, they can be contaminated by auditory evoked potentials
(AEPs) due to the TMS click, which partly show a similar spatial and temporal scalp distribution.
Therefore, TEPs and AEPs can be difficult to disentangle by common statistical methods, especially in
conditions of suboptimal AEP suppression. In this work, we explored the ability of machine learning
algorithms to distinguish TEPs recorded with masking of the TMS click, AEPs and non-masked
TEPs in a sample of healthy subjects. Overall, our classifier provided reliable results at the single-
subject level, even for signals where differences were not shown in previous works. Classification
accuracy (CA) was lower at the group level, when different subjects were used for training and test
phases, and when three stimulation conditions instead of two were compared. Lastly, CA was higher
when average, rather than single-trial TEPs, were used. In conclusion, this proof-of-concept study
proposes machine learning as a promising tool to separate pure TEPs from those contaminated by
sensory input.

Keywords: transcranial magnetic stimulation; electroencephalography; TMS-EEG; evoked potentials;
machine learning; neural networks

1. Introduction

The combination of transcranial magnetic stimulation (TMS) and electroencephalog-
raphy (EEG) has become an increasingly used approach to assess cortical physiology in
healthy humans [1–4] and patients affected by disorders of the central nervous system [5–7].
There is considerable evidence to support the notion that EEG signals following TMS,
either measured as transcranial-evoked potentials (TEPs) or oscillations, mostly reflect the
summation of excitatory and inhibitory post-synaptic potentials generated by direct activa-
tion of cortical neurons [8–10]. However, recent research has demonstrated that auditory
and somatosensory input caused by TMS may give rise to evoked responses which can
contaminate the TEP [11–13]. This is particularly the case for the TMS click, which can
result in auditory-evoked potentials (AEPs), mostly consisting in a negative/positive com-
plex (N100/P200) distributed at the vertex, compatible with saliency-related multimodal
responses [13,14].
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Whereas differences between TEPs and AEPs are clear in early (<70 ms) and late
(>120 ms) signals [13], they might be more subtle around 100 ms. The N100 of the
N100/P200 AEP complex (AEP-N100) has recently been demonstrated to be physiologi-
cally distinct from a similar N100 (TEP-N100) wave, which is part of the TEP obtained by
stimulation of the primary motor cortex (M1) [3,15]. In addition to its central location and
to the fact that it is invariably followed by a P200, the AEP-N100 differs from the TEP-N100
by its shorter latency and suppression by appropriate countermeasures (i.e., the use of
noise masking and/or ear defenders) [13,16,17]. By contrast, the TEP-N100 persists even
after optimal suppression of the TMS click [5,13], is located at the stimulation site [3,15],
has a longer latency, and is not followed by a P200 [13] (Table 1).

Table 1. Features of the two different N100 waves elicited either by the TMS click (“Auditory” N100)
or resulting from direct cortical activation by transcranial magnetic stimulation (“TEP” N100). See
Introduction for details.

«Auditory» N100 «TEP» N100

Can be suppressed by noise masking/ear
defenders

Cannot be suppressed by noise masking/ear
defenders

Located at the vertex Located at the stimulation site

Followed by a P200 Not followed by a P200

Shorter latency Longer latency

Despite the aforementioned differences, the spatial and temporal distribution of the
two N100 might be similar enough to prevent accurate discrimination by common statistical
approaches used in the TMS-EEG field [13]. Contamination of TEPs by AEPs might be
even greater in case of suboptimal masking of the TMS click. This might occur for several
reasons, including high TMS intensity, low tolerance for the masking noise by test subjects,
or experimental settings which entail particularly loud stimulation, such as cerebellar
TMS [18,19]. Therefore, efficient computational approaches to discriminate TEPs from
AEPs and, by extension, to understand whether the former are contaminated by the latter,
are highly desirable.

In recent years, machine learning algorithms have been widely used in different fields,
such as engineering, economics, biology, and medicine [20]. The success of these algo-
rithms lies in their ability to identify relationships among data which are otherwise hard to
reveal. In particular, these methods try to approximate unknown laws that rule a complex
real-world system by using samples observed from the system itself. When dealing with
classification problems, the system is a model that associates a given input to a certain
group or class. The goal is to build a “machine” able to correctly classify any input. This
mechanism of exploiting observed data is called “learning”, which is traditionally divided
into supervised and unsupervised. In supervised learning, the machine is “trained” on
samples that are input–output pairs, where the input is the set of sample features, while
the output is the group to which the sample belongs. A solution to address classification
problems is to use the so-called artificial neural networks, representing one of the most
common tools in supervised learning. As the name suggests, these networks try to simulate
the highly connected brain neural system and are made of one or more layers of parallel
“neurons” that receive an input and produce an output. In particular, the input of each
neuron is the weighted sum of the outputs of the neurons of the previous layer, passing
through an activation function. The input of each neuron is typically transformed through
a sigmoidal function into a scalar value that can be interpreted as a Yes/No output of the
neuron. In classification problems, the input to the first layer is a weighted sum of the
sample features, while the output from the last layer represents the class predicted by the
artificial neural network. Roughly speaking, the training process consists of choosing the
weights that minimize a measure of the error between the true and the predicted classifica-
tions. When the groups to which the samples belong are unknown, unsupervised learning
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techniques can be used to find out some patterns in the data. Relevant examples include
the clustering and community detection problems, where the aim is to divide data into
groups based on some measure of similarity or on the density of the connections [21–23].

The aforementioned features make machine learning algorithms particularly suited to
discriminate data based on subtle differences. Additionally, such computational solutions
are critically helpful when generating predictions with large and unwieldy data, where
the number of input variables far exceeds the number of subjects [24], such as TMS-EEG
signals. Therefore, we tested machine learning ability to differentiate TEPs recorded with
noise masking, TEPs without masking, and AEPs, in conditions where common statistical
approaches provided suboptimal results [13].

2. Materials and Methods

The aim of the present set of experiments was to classify TEPs obtained in different
conditions with regards to contamination of AEPs and pure auditory responses (Figure 1).
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Figure 1. Butterfly plots (left row) and topographical plots of TEPs in the early, middle, and late
ToIs, and three different stimulation conditions (C1–TEP masked, upper row; C2–AEP, middle row;
C3–TEP not masked, lower row).

The data were included in a previously published work, to which the reader is re-
ferred to for full technical details [13]. Briefly, the EEG was recorded using a DC-coupled,
TMS-compatible amplifier (Actichamp, BrainProducts, GmbH). Signals were recorded with
a sampling rate of 5000 Hz from 63 active electrodes mounted on a cap (actiCAP) in accor-
dance with the international 10–10 system. The pre-processing pipeline included epoching
(−1 to 1 s), artefact removal by ICA, and filtering (band stop 48–52 Hz, band pass 1–100 Hz).
The procedures described in the original research were performed in accordance with the
Declaration of Helsinki and approved by the human subjects review board of the University
College London. Participants gave written informed consent prior to the experimental
session. Each dataset was composed of 120 epochs, and three experimental conditions
were considered. Condition 1 (C1) corresponded to TEPs obtained during masking of
the TMS click; in condition 2 (C2), only AEPs were present; in condition 3 (C3), effective
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cortical stimulation was obtained without masking of the TMS click, so as to obtain mixed
responses due to both direct cortical stimulation and auditory input. Signals were divided
into three time windows of interest (ToI). These corresponded to the main peaks of the
global mean field potential (GMFP) and were named early (15–65 ms), middle (66–120 ms),
and late (121–270 ms) [13]. Our main aim was to investigate the classification accuracy (CA)
of our neural network in the middle ToI, where a cluster-corrected permutation approach
failed to disclose significant differences between C1 and C2 [13]. However, we extended
our analysis to all ToIs to observe the classification performance of the algorithm when
clearer differences were present between conditions (early and late ToIs). Due to the large
number of observations required, single trial data were initially used for the training phase
of the network in most experiments (except for B3, as detailed below).

In order to measure the generalization ability of the neural network, i.e., the CA on
new input–output pairs, the available data were divided into a training set and test set; the
former was used for the training phase, while the purpose of the latter was to measure the
CA, defined as the ratio between the number of correctly classified samples and the whole
number of samples of the test set. The neural network was trained by using the built-in
MATLAB function trainNetwork. As an optimization algorithm to train the network, we
chose adam [25], which is a popular stochastic method that uses random subsamples at each
iteration and employs estimates of the 1st moment and the 2nd raw moment of the gradient.
We set the maximum number of iterations to 100. In each run, the data of the training set
were first normalized by subtracting the mean and dividing by the standard deviation. We
used a single fully connected layer with three neurons. As output layers, we used a softmax
layer, which applies a softmax function to the input, followed by a classification layer. The
latter is needed because the neural network is used for classification purposes, while the
softmax layer was chosen as it is known to be useful for computing probability estimates in
the context of multiclass problems.

The aim of our numerical experiments was to assess the ability of neural networks to
correctly identify the contribution of AEPs to the TEP by discriminating signals obtained in
different conditions (C1, C2, C3), as explained above. We applied a k-fold cross validation,
with k being a positive integer number (5, in our case) [26,27]; this technique consists of
dividing the dataset into k subsets of (approximately) equal size, such that one of them is
used as the test set and the remaining ones form the training set. This is repeated k times,
in order to use a different subset as the test at every run. The classification error is then
computed as the average over the k test sets (Figure 2).
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The experiments were divided into two groups, as explained in Figure 3.
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In group A, we aimed to investigate the ability of the network to correctly classify
TEPs at the single-subject level. This was done by using either the whole set of 63 electrodes
(A1) or the 2 electrodes (CP3 and FCz, according to the 10–20 International System of
Electrode Placement) where signals showed maximum differences between conditions C1
and C2, due to the different topographies of TEPs and AEPs [13] (Figure 4).
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In this set of calculations, 80% of the trials were used both for training and test sets.
Group B experiments were designed to investigate whether a correct classification between
conditions could be reached if data from all subjects were pooled together. In experiment
B1, we trained the classifier using 80% of all trials, while the remaining 20% were used as a
test set; for each participant, trials were mutually assigned to training or test sets. However,
with the aim of building classifiers suited for practical usage, in experiments B2, B3, and B4,
training trials and test trials were obtained from different subsets of subjects. In particular,
80% of participants was used to obtain training data and 20% for test data. The nature of
the variables considered was different in the last three experiments. Whereas single trials
were used for both training and test data in B2, the average over all trials for each subject
(see Figure 5) was used for both phases in experiment B3. This was done to investigate
whether signal averages, which are more commonly used for TMS-EEG studies, could be
suitable in this context. In the last experiment B4, single-trial data were used for training,
while averages were used as test sets, to investigate whether features of single epochs were
sufficient to correctly classify average TEPs (Figure 5).
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in the three different stimulation conditions (C1−TEP masked; C2−AEP; C3−TEP not masked).

Since, in most experiments, only one value of the CA was computed under each
condition, there were no distributions to allow for a formal statistical analysis; therefore, a
descriptive account of the results is given below.

3. Results

A full account of CA values is given in Table 2. Figure 6 depicts the average CA
separately for ToIs, comparisons between stimulation conditions, and experiments.
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Table 2. Results of all the numerical experiments. Percentages refer to the classification accuracy of
the neural network in each comparison.

Early ToI Middle ToI Late ToI

C1 vs.
C2

C1 vs.
C3

C2 vs.
C3

C1 vs.
C2 vs.

C3

C1 vs.
C2

C1 vs.
C3

C2 vs.
C3

C1 vs.
C2 vs.

C3

C1 vs.
C2

C1 vs.
C3

C2 vs.
C3

C1 vs.
C2 vs.

C3

A1 92.29% 90.07% 91.69% 86.83% 87.84% 86.34% 88.44% 81.17% 83.65% 81.80% 84.94% 75.74%
A2 85.28% 73.43% 82.65% 69.26% 80.18% 66.16% 78.23% 61.22% 76.63% 68.56% 75.01% 60.08%
B1 84.24% 77.24% 84.40% 71.65% 75.21% 70.53% 77.57% 62.24% 76.49% 76.46% 77.53% 64.84%
B2 72.27% 61.44% 74.12% 56.05% 62.97% 54.25% 62.65% 43.73% 67.54% 61.45% 62.59% 48.62%
B3 91.67% 66.67% 84.17% 72.78% 75.83% 65.83% 63.33% 50.00% 79.17% 79.17% 68.33% 65.00%
B4 89.17% 79.17% 87.50% 75.55% 65.83% 60.00% 75.83% 47.22% 84.17% 75.83% 73.33% 67.22%
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As a general trend, results were better in the early ToI, intermediate in the late ToI, and
worse in the middle ToI (Figure 6A). In terms of stimulation conditions, C1 and C2 were the
most effectively discriminated, followed by C2 vs. C3 and C1 vs. C3. Bivariate comparisons
generally yielded a higher accuracy than the comparison of all three conditions together
(Figure 6B); this is not surprising, as, in general, one expects a lower accuracy when passing
from binary to multiclass classification.

CA values for different experiments are indicated in Figure 6C. Experiment A1, which
was conducted to classify the trials at the single subject level, considering data from all 63
recording electrodes, resulted in a higher CA; the latter was lower when only two electrodes
(CP3 and FCz) were used (experiment A2).

Differently from experiments A1 and A2, which were carried out at the single subject
level, group B experiments were performed at the group level. In experiment B1, where
trials from all subjects were pooled, the CA was lower than in A1. The CA in experiment B2,
where separate subgroups of patients were used for training and test phases, was generally
worse than in B1. Compared to B2, accuracy values were higher in experiment B3, where
signal averages were used for both the training and test phases. Importantly, the results
were similar to B3 if single trials were used for classification and averages for the test phase
(experiment B4).

4. Discussion

In this proof-of-concept work, we investigated the ability of a machine learning algo-
rithm to classify AEPs and TEPs obtained in different noise masking conditions. Overall,
CA was higher in the early ToI, lower at the group level, when different subjects were used
for training and test phases, and again lower when three stimulation conditions instead of
two were compared. The CA was also higher when signal averages, rather than single-trial
TEPs, were used.

4.1. Classification Accuracy in Different Time Windows of Interest

The main objective of our study was to discriminate TEPs from AEPs in a time window
(the middle ToI of the present work) where separation with common statistical procedures
was proven to be difficult [13]. Therefore, it is not surprising that CA values were lowest in
the middle ToI and higher in the late ToI, where, conversely, the presence of a central P200
in the AEPs but not in the TEPs makes the distinction between the two easier [13]. Two
results were, however, unexpected. First, the CA was high (84.94%) also when comparing
the late ToI in C2 and C3, which share auditory input. Second, the highest CA was found
in the early ToI. In particular, a very high (92.29%) CA in the early ToI was found not only
when comparing masked TEPs and AEPs (C1 and C2), which show clear differences, but
also when comparing masked and non-masked TEPs (90.07%) (C1 and C3), which appear
very similar (Table 2 and Figure 6). While it is difficult to interpret the latter result, it is
possible that the machine learning algorithm used was particularly sensitive in detecting
differences related to high-frequency, early- and middle-latency auditory components,
which occur within 50 ms after the stimulus [28] and are, therefore, present in the early
ToI. These results point to the ability of our algorithm to highlight differences between TEP
conditions that are not easily observed or disclosed by permutation-based statistics.

4.2. Classification Accuracy in Different Conditions of Transcranial Stimulation and
Noise Masking

The CA in different stimulation conditions yielded the expected results (Figure 6B).
The highest average value was obtained when comparing C1 and C2, i.e., masked TEPs
and AEPs, which present marked differences due to auditory input suppression (C1) and
the absence of direct cortical stimulation (C2). A slightly lower CA was reached comparing
C2 and C3 (AEP and non-masked TEPs), which differed only in terms of direct cortical
activation by TMS. The comparison between C1 and C3, which shared similar transcranial
activation but differed in terms of AEPs suppression, yielded lower CA (around 70%). The
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simultaneous comparison of all three conditions was the one providing the lowest CA
(around 64%), probably due to the increased complexity of the design.

4.3. Classification Accuracy in Different Experiments

Average CA values in different experiments are described in Figure 6C. Experiment
A1, where the whole set of 63 electrodes was used to classify TEPs at a within-subject level,
yielded the best results, with an average CA of more than 85%. This figure is particularly
noteworthy considering that TEPs are usually quantified by averaging tens or hundreds of
trials, due to a low signal-to-noise ratio (SNR) [15]. This suggests that the different cortical
activation pattern caused by transcranial activation and auditory input has recognizable
features even in low SNR conditions. In experiment A2, we tested the hypothesis that
the CA would be increased in conditions similar to A1, but instead using signals from
the two electrodes showing maximal differences between C1 (CP3, masked TEPs) and
C2 (FCz, AEPs). The result was the opposite, i.e., the CA was sensibly lower than in
experiment A1 (~73%). These results might indicate that even signals from electrodes that
are not intuitively linked to differences between conditions contain useful information for
classification.

In a further set of experiments, we tested the performance of our classifier at the group
level. In experiment B1, where data from each subject were used for both training and test
sets, the CA (~74%) was lower than in A1. Average CA values further decreased (~60%) in
experiment B2, where data from two independent subject samples were used for training
and test phases. It is likely that the CA in both experiment B1 and B2 suffered from the
noisy nature of the single-trial TMS-EEG data. In B1, the CA was probably higher than in
B2 due to the fact that inter-subject variability was the same for the data used in the training
and test phases, whereas in the latter condition, the independence of the data used in the
two phases accounted for a decrease in common features. It is very important to note that,
in similar randomization conditions, the CA was increased (~72%) when average TEPs
were used; this indicates that, in this context, a cleaner signal more than compensated for
the much lower number of observations used in the training phase. It is unclear, however,
whether this positive effect was due to the use of average TEPs in the training or test phase.
Further information on this point was provided by experiment B4, where a CA (~73%)
similar to that in experiment B3 was obtained. This indicates that the efficacy of the training
phase was stable when a larger amount of more noisy data was used, provided that the test
set still included average TEPs.

5. Conclusions

This proof-of-concept study demonstrates the feasibility of using machine learning
algorithms to address the contamination of TEPs by AEPs, an important methodological
problem in TMS-EEG literature [11–13]. Some results were predictable, such as the average
CA when comparing different conditions in terms of AEP suppression (Figure 6B). Other
results, such as the very high CA in the early ToI (Figure 6A), were less intuitive. Our
study provides novel insights into the contamination of TEPs by AEPs, revealing both
expected and unexpected patterns in the data. These findings suggest that machine learning
algorithms may offer advantages over traditional statistical approaches.

Although results were very positive at the single-subject level when comparing two
stimulation conditions, the ability of the tested classifier was slightly lower when classifi-
cation was attempted on all three stimulation conditions and when including data from
different subjects in the training and test phases. While our results are encouraging, there
are several limitations to this study, including the use of time-domain signals only and the
relatively small sample size.

In conclusion, machine learning algorithms represent a promising solution to objec-
tively assess the contamination of TEPs by AEPs. However, the quality of the results
obtained by a machine learning approach can strongly depend on the number of available
samples. Future studies should explore the use of different measures, such as metrics in the
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time–frequency domain, and larger datasets, both within and across laboratories, to further
validate the potential of machine learning algorithms to objectively assess contamination of
TEPs by AEPs. Our findings have important implications for the design and interpretation
of TMS-EEG studies and may ultimately help to improve the accuracy and reproducibility
of this valuable technique in neuroscience research.
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