
Multi-level Identification Performance for RC-based Control-oriented Model
of the UK Office Archetype

Guokai Chen1, Ivan Korolija1, Dimitrios Rovas1
1University College London, London, United Kingdom

Abstract

Resistance-capacitance-based grey-box models are
widely adopted as one of the modelling solutions in
model-predictive controls. These models have been
evaluated to determine the optimal level of complex-
ity in standardised cases. However, further evalua-
tions are needed to draw more universal conclusions
across diverse scenarios, modelling approaches, and
operational conditions.

In this study, a series of grey-box models were iden-
tified by MPCPy based on a British office model,
followed by a parametric analysis on model format,
modelling details, training data volume, and valida-
tion periods. The R2C2 model yielded the most accu-
rate predictions with less deviations, and more accu-
rate estimations were observed in multi-zone models.
Additionally, it is suggested to consider direct normal
irradiance as a modelling input in multi-zone models,
and adaptive re-calibrations are recommended when
significant changes in solar radiations occur.

Highlights

• Evaluates identification accuracy in a parametric
analysis on modelling levels, model orders, and
model inputs;

• Contributes to understanding the grey-box
model performance under weekly-based occu-
pancy patterns;

• Highlights recommendations for developing
multi-zone grey-box models in UK;

• Discusses data-training periods and adaptive re-
calibration scheme for control-oriented models.

Introduction

As a data-driven approach, model-based predictive
control (MPC) was progressively developed and ap-
plied to buildings and HVAC systems, but there are
few real-world case studies demonstrating successful
solutions for building control and operations (Drgoňa
et al., 2020; Yao and Shekhar, 2021; Blum et al.,
2022). One of the bottlenecks in MPC implemen-
tation is the absence of generalised yet effective so-
lutions for developing and identifying the control-

oriented model in MPC. According to Rockett and
Hathway (2017), obtaining an appropriate model for
MPC was estimated to take up 70% of time during
its implementation, hence diminishing the benefits of
model predictive control. Meanwhile, developing such
an accurate control-oriented model also has positive
effects on the reduction of deviations between the
measurements in real buildings and estimated pre-
dictions from control-oriented models.

Numerous simulation-based and real-world case stud-
ies revealed their modelling solutions for the control-
oriented models in MPC, which can be classified into
three types of models: the white-box model, grey-box
model, and black-box model. The grey-box model is
a combination of the white-box and black-box mod-
els. It requires less predetermined information, such
as building parameters, than the white-box model
and can calibrate parameters in simplified models
with a smaller dataset than the black-box approach.
RC models are informative because they present the
model structures of building envelopes and HVAC
systems and the algorithms of basic thermodynamics
in the resistance-capacitance (RC) format. Nonethe-
less, RC models were incapable of performing precise
calculations in nonuniform heat convection, such as
buoyancy effects and air exchange between the indoor
and outdoor environments (Li et al., 2021).

With the convenience of a concise and relatively
accurate format, grey-box models, especially the
resistance-capacitance (RC) models, are preferred
by researchers and engineers to be selected as the
control-oriented model in buildings. An organised ap-
proach presented in Candanedo et al. (2022) proposed
several RC-based control-oriented models for Cana-
dian archetypes that provide generalised and afford-
able models to estimate control effects at the build-
ing and district levels. A multi-level modelling ap-
proach covering the development of both single-zone
and multi-zone models was demonstrated in the arti-
cle, with the advantages of flexibility and convenience
in benchmarking. Harb et al. (2016) developed sev-
eral RC models to identify the demands of both resi-
dential and office buildings located in central Europe,
getting accurate models within acceptable levels.



Inaccurate identification has a negative influence on
developing a comparable model for improving the per-
formance of model-predictive control. Several studies
have been undertaken recently to examine the effect
of modelling structures and parameters on the identi-
fication accuracy of the grey-box model. For instance,
Arroyo et al. (2020) compared the modelling outcome
of single-zone and multi-zone grey-box models in a 7-
zone residential building with a hydronic heating sys-
tem, where the performance of the single-zone model
is comparable to that of the centralised multi-zone
model. Blum et al. (2019) investigated the impact
of model structures, data length, and identification
algorithms on identification accuracy in standardised
single-zone models, BESTEST Case 600 and 900, and
indicated that the values and quality of the train-
ing data have significant impacts on model accuracy.
In these studies, the accuracy of the model identi-
fication procedure was measured by the differences
between the measured and estimated values. Yet,
the energy performance of archetypes varies greatly
due to their dimensions, envelopes, weathers, occu-
pant levels, and setpoints, resulting in different con-
trol consequences. There are still emerging needs for
further investigations on (1) performance validations
of these reduced-order models in different buildings
and realistic operation conditions, and (2) finding op-
timal identification-related parameters when identi-
fying grey-box models in different modelling levels.
These investigations are necessary steps to enhance
the accuracy of the control-oriented models, and im-
prove its adaptability for a wider range of buildings.

This research, therefore, proposes an initial solution
for the development of the control-oriented model for
UK office buildings with the fan-coil unit (FCU) sys-
tem, identified by the values of electricity and indoor
temperature which were simulated from a white-box
emulator for the British office archetype. A paramet-
ric analysis of different modelling levels (single-zone
or multi-zone model), the number of model orders,
the types of radiation inputs, training data lengths,
and validation periods will be conducted, in order to
assess their impacts on the accuracy of model identi-
fication in the proposed control-oriented model. The
parametric results will provide guidelines for devel-
oping control-oriented models for office buildings by
analysing the best-performing RC model. Meanwhile,
different validation results will also be examined over
extended control periods for a discussion on the re-
calibration scheme.

Methods

Building information

Archetypal buildings represent a large scale of build-
ings and provide a good abstraction of building pa-
rameters and layout according to a national-level
dataset, as compared to existing studies that target
specific buildings. Models developed on the basis of

Figure 1: Floor plan of the selected model (Type 2-
CS in Korolija et al. (2013)), representing for most
popular office buildings in the UK

Figure 2: Model development and identification work-
flow for control-oriented models of office buildings.

an archetype model are capable of predicting typical
conditions of building demands and energy usage at
a larger scale and saving the model development time
in the evaluations (Candanedo et al., 2022). In the
research, a 3-zone office building with a fan-coil unit
system developed by Korolija et al. (2013) is chosen
to represent a typical floor of office buildings in the
UK. The floor plan is depicted in Figure 1 since it is
the most common layout in UK office buildings. Zone
1a and 1b are marked as the office area, while zone 2
is the connected space with fewer occupants. Latest
best-practice U-values and weekly-based occupancy
patterns from UK National Calculation Methodol-
ogy were applied as the modelling parameters in the
white-box model. The total heating capacity of three
fan coils is 83.1kW, which is sufficient to meet the
building’s peak heating requirements. The heating
setpoint is set to 21◦C during working hours (7:00 -
19:00) on weekdays, with a setback temperature of
12◦C for the remainder of the time. Typical Mete-
orological Year (TMY) weather data from London
Gatwick was selected as the design scenarios in both
models.

Model development

Figure 2 demonstrates the workflow for developing
two types of Modelica models described in this pa-
per. The white-box model, which represents the
virtual building, was developed Modelica Buildings
Library version 8.1.0 according to the building pa-
rameters and occupant patterns derived from UK
office archetypes. In order to reduce model com-
plexity and improve scalability, the white-box model
only modelled building envelopes and secondary



HVAC system within a single floor, without consid-
ering the thermal transmissions from the roof and
ground. Building envelope were modelled by the de-
tailed zone models, ThermalZones.Detailed.MixedAir
component, and then they were connected to
the Fluid.HeatExchangers.HeaterCooler u compo-
nents for simulating the fan coil unit. Meanwhile,
in line with the grey-box model, energy consump-
tions caused by outdoor air were added into FCU for
the calculation of the heating input power in each
zone. According to ASHRAE (2018), these energy
consumptions can still be calculated individually at
the later stage if the outdoor air flowrate and supply
air temperature are held constant.

Meanwhile, as the control-oriented models, RC-based
grey-box models were identified by the measurements
and inputs of the white-box model. A total of twelve
grey-box model implementations were developed in
order to justify the best implementation for the grey-
box model, with parameterization in the level of mod-
elling details including two modelling levels, three
types of modelling order, and two sets of modelling
input.

Three model orders presented in Figure 3, namely
the R2C2, R4C3, and R6R4 models, were considered
since they were recognised as common RC model lay-
outs in Li et al. (2021). The R2C2 model consisted
of two thermal resistances for external wall rw and
internal wall ri, and two capacitances for zone air cz
and internal wall ci. In the meantime, the model took
account for the heating power from FCU Qfcu [W],
convective internal gains Qcon [W], and radiative in-
ternal gains Qrad [W]. Indoor temperature Ti was af-
fected by several weather disturbances, including the
outdoor dry-bulb air temperature Tout [

◦C] and hori-
zontal solar radiation which was the product of global
horizontal irradiance Qglo [W/m2], absorption coeffi-
cient α, and the area of external wall Aw [m2]. Com-
pared to the R2C2 model, internal wall capacitances,
ci, and thermal resistance caused by infiltration, rinf ,
were added to the R4C3 model; fan-coil component’s
resistance re and capacitances ce were further added
to the R6C4 model. Since direct sunlight has a sub-
stantial impact on the solar gain for UK buildings,
two sets of weather-related modelling inputs will be
compared to determine underlying benefits of includ-
ing direct normal solar radiations in the grey-box
model, which can be calculated from the product of
the direct normal irradiance Qdir [W/m2], transmit-
tance of solar gains through windows g, and the area
of window glazing Ag [m2]. Two modelling levels in-
cluding single-zone and multi-zone model were com-
pared, and the development of the multi-zone models
was based on hierarchical modelling in Modelica. In
other words, the multi-zone models were developed
from a combination of three single-zone models with
the aforementioned model structures and were linked
by internal wall resistance.

Figure 3: Three grey-box implementations tested for
single-zone simplified FCU system: (a) R2C2 model
(b) R4C3 model (c) R6C4 model. Contents in brack-
ets are the additional modelling inputs to be tested.

Model identification

Parameter estimation was solved in Python using
the open-source MPCPy package (Blum and Wet-
ter, 2017) by using JModelica optimisation. With the
help of the CasADI toolbox (Andersson et al., 2019)
in the back end and the MA57 solver (HSL, 2013),
MPCPy has capabilities to transfer Modelica mod-
els into a high-level dynamic optimisation problem.
Identification of estimated values can be illustrated
by an objective function, shown in Equation 1.

min
θi

J =

∫ t1

t0

∣∣Ti,est − Ti,mea

∣∣ dt (1)

The equation seeks a list of properly estimated pa-
rameters θi (listed in Table 1) in the grey-box model,
while minimising the deviations between the indoor
air temperature predictions Ti,est [◦C] and measure-
ments Ti,mea [◦C] from the starting time t0 to the
ending time t1 [s] of training periods. In other
words, grey-box models in the format of Figure 3
were trained by the white-box data over a 30-minute
interval, including the data from heating power in-
put (Qfcu), internal gains (Qcon and Qrad), weather



data (Tout, Qglo and Qdir), building parameters (Aw

and Ag), and indoor temperature (Ti). Each param-
eter in Table 1 were then estimated within a reason-
able, predetermined boundary by using the Latin Hy-
percube Sampling method (Blum and Wetter, 2017;
Blum et al., 2019) with 10 iterations. The maximum
solver steps were limited to 2,000 steps and 300 sec-
onds per iteration to ensure optimisation convergent
when using the largest training set.

Table 1: Boundaries of estimated parameters in the
grey-box model identification

Variable name Minimum Maximum Unit
rw 1× 10−5 0.01 K/W
ri 1× 10−6 0.01 K/W
rinf 1× 10−5 0.01 K/W
re 1× 10−6 0.01 K/W
α 0 5 1
g 0 5 1
cw 106 5× 1010 J/K
ci 106 1010 J/K
cz 106 1010 J/K
ce 1000 107 J/K

Different training periods (ranging from 1 to 7 days)
were tested in the parametric analysis to further eval-
uate the impact of dataset size and modelling param-
eters. Therefore, a total of 84 testing cases were exe-
cuted in the Ubuntu 18.04 operating system, and mul-
tiprocessing was implemented by the Python built-in
multiprocessing module to accelerate the simulations.
The accuracy of the model identification procedure
was defined as the Coefficient of Variation of Root
Mean Square Error (CV[RMSE]) and the Normalised
Mean Bias Error (NMBE), which evaluates hourly
deviations of indoor air temperature between estima-
tions and measurements during the training period
in the current week and the validation period in the
following week. CV(RMSE) and NMBE are defined
in Equation 2 and 3 where the ¯Ti,mea denotes the
average of measured indoor temperature [◦C] (since
Ti,mea > 0), and n is the number of hours in the
testing period. NMBE could inform biase direction
of errors, while CV(RMSE) could quantify the level
of deviations. As highlighted in ASHRAE Guide-
line 14 ASHRAE (2014), these two statistical indica-
tors are common indices used in building calibration,
and hourly temperature deviations within 20% for
CV(RMSE) and ±10% for NMBE would be accept-
able in model validation studies (Jain et al., 2020).

CV(RMSE) =

√∑n
1 (Ti,est − Ti,mea)2

n
× 100

¯Ti,mea
[%]

(2)

NMBE =

∑n
1 (Ti,est − Ti,mea)

n
× 100

¯Ti,mea
[%] (3)

Measurements used for training were derived from

the peak weekly heating load over the year begin-
ning on January 22th and ending on January 28th,
and the flowing one-week period beginning on Jan-
uary 29th and ending on February 4th was consid-
ered as the validation period. Meanwhile, the iden-
tification results were further validated over the fol-
lowing three extended periods for discussing the re-
calibration scheme.

Results

General identification results

Since the CV(RMSE) and NMBE can indicate the
deviation between the estimated values and actual
values, these two indicators demonstrate the level
of training accuracy during the training periods,
whereas during the validation periods, the valida-
tion CV(RMSE) and NMBE indicate the accuracy
of model prediction under the grey-box model in
comparison to the ”real” measurements. Conse-
quently, both values are displayed in Figure 4 in
the group of training data length. The majority
of training CV(RMSE) values are found to be less
than 5%, and NMBE are within ±1%. This train-
ing data demonstrates that the grey-box model was
adequately trained by the optimisation algorithm de-
scribed above and that model mismatches were min-
imised during the training periods. In the valida-
tion results, however, CV(RMSE) and NMBE values
were significantly higher after only using 1-day train-
ing data, because weather conditions on a single day
could be biased and the number of estimation steps
is limited. For grey-box models trained with two- to
seven-day’s data, CV(RMSE) remains below 7%. To
pursue lower computational costs, the optimal num-
ber of training days therefore is 2 to 3 days (96 -
144 estimation steps). Further extending the train-
ing period to 6-7 days was not hugely detrimental
to the identification accuracy, and in fact, the devi-
ations in six training days were smaller than 4-day
training data because the grey model was exposed to
the weekend’s free-floating condition.

Figure 4: CV(RMSE) and NMBE during the training
and validation periods, grouped by training day length.

The high CV(RMSE) and NMBE observed in the



Figure 5: Predicted indoor temperature values in (a)
R2C2 model (b) R6C4 model compared to the mea-
surements

R2C2 model based on one-training-day data was fur-
ther determined through a comprehensive analysis.
The validation results of indoor temperature recorded
in the single-zone R2C2 and R6C4 models are illus-
trated in Figure 5, along with results from a longer
training day. Significant deviations were observed
in the single-zone R2C2 model transferring to high
NMBE values up to 25% in 1-day training results.
However, the deviation decreased rapidly with longer
training data. It could be determined that insufficient
training steps led to an overestimation of both solar
absorption and capacitance variables in the model. In
contrast, the R6C4 model with a higher level of detail
performed reasonably accurate identification with one
day of training data, but more deviations occurred
with longer training periods, indicating overfitting.

Optimisation on model structures

Further optimisations on the development of control-
oriented models were emphasised on the modelling
methods, after choosing the data from 2 to 7 train-
ing days to eliminate the potential inaccurate results.
A comparison of different modelling methods, i.e.,
the single-zone case versus the multi-zone case, was
demonstrated in Figure 6. The median CV(RMSE)
from multi-zone modelling methods were lower than
the ones from the single-zone model, with the help
of more detailed models. However, more multi-zone
cases had inaccurate predictions (NMBE<-5%) in
zone 1b with a wider distribution. These negative
NMBE values would cause over-sizing of heating de-
mands and ultimately affect system operations. To
explore the causes of this phenomenon, Figure 7 illus-
trates indoor temperature predictions from different
zones in a multi-zone R6C4 model, compared to the
measurement in zone 1a. Notably, some variations in
south-oriented zones (zone 1b and 2) were both found
in the weekday’s occupied hours and the weekend’s
free-floating hours. It indicated some modifications

Figure 6: Comparison of CV(RMSE) and NMBE in
single-zone model against multi-zone model, sorted by
zones

Figure 7: Predicted indoor temperature values from
all zones in a multi-zone R6C4 model compared to
measurements in zone 1a

in the multi-zone model could be done to minimise
the observed temperature mismatch.

According to the pilot simulation, the addition of di-
rect normal irradiance data could improve the ac-
curacy of estimating solar gains. Figure 8 demon-
strates the compared results from identified models
with different irradiance input variables, categorised
by the modelling levels discussed in the previous
paragraph. Adding additional irradiance input to
single-zone models did not produce significant dif-
ferences in CV(RMSE) and NMBE, as the median
values for both groups were approximately at 4.5%
and -1.8% respectively. Conversely, considerable im-
provements were made in multi-zone control-oriented
models, with a lower CV(RMSE) value at 4.0% and
NMBE value being closer to 0. These changes in ra-
diation types narrowed the CV(RMSE) distribution
in zone 1b significantly because direct normal irra-
diance, an additional external data source for train-
ing, is useful for accurately estimating solar gains in
south-facing zones. Thus, a multi-zone model should
consider direct solar irradiance in the model identifi-
cation, especially in the south-facing zones located in
the northern hemisphere at high latitudes.

Furthermore, the model complexity of control-
oriented control is one of the most crucial aspects
in the identification of the model. As demonstrated
in Figure 9, an analysis of suitable model order was
conducted in a single-zone model trained without di-



Figure 8: Comparison of CV(RMSE) and NMBE
in models with or without direct normal irradiance
(Qdir) as input variables in the training

Figure 9: Comparison of CV(RMSE) and NMBE in
different model orders in the parametric analysis

rect irradiation and a multi-zone model trained with
direct irradiation, based on the recommendation of
adding external data sources and selecting proper
modelling methods. Single-zone cases showed simi-
lar distributions among these three types of models.
The R2C2 model had a lower median CV(RMSE)
value (4.3%) and small NMBE (0.2%). As for multi-
zone models, the R4C3 model had the optimal struc-
ture with the lowest CV(RMSE) at 3.8% among all
three model orders, but the R2C2 model had a sim-
ilar CV(RMSE) distribution with NMBE value clos-
ing to 0 (median value at 0.5%). Hence, the final
result demonstrated that the R2C2 model is gener-
ally recommended in the single-zone model , and both
the R2C2 and R4C3 model are recommended in the
multi-zone model as the control-oriented model for
the UK office archetype.

Validation on the extended weeks

Considering that the control-oriented models are sim-
plified models whose performance would be affected
by input values, an additional validation was con-
ducted to further validate the robustness of the model
based on the recommended model orders and model
structure. The validation week was extended from
the following first week (starting from Jan 29th) to
the fourth week (starting from February 19th) after
the training week. Condensed but deviated results
were identified in those extended weeks, indicated
by Figure 10. With a median CV(RMSE) of 4.1%

Figure 10: Validation results in the extended valida-
tion periods

and NMBE of -0.8% in the original validation week,
temperature prediction performed worse in the next
three weeks. The deviations in the 2nd and 4th week
exceeded the acceptable range, with the highest de-
viated values occurring in the second week median
(CV(RMSE) at 10.4% and NMBE at -9.0%. Signifi-
cantly, validation CV(RMSE) and NMBE values were
related to the conditions in the training periods, as in-
fluenced by weather fluctuations in this case. Table 2
showed the average values of CV(RMSE) and NMBE,
outdoor temperature Tout, global horizontal irradi-
ance Iglo,hor, and direct normal irradiance Idir,nor in
the training week and the extended validation weeks
to illustrate their internal relationships. Due to com-
parable values in outdoor temperature and solar ra-
diation, validation week 1, which is the original vali-
dation week, produced the most accurate predictions
compared to the other three validation weeks. This
demonstrated that the initial validation week was an
appropriate choice for validating the identification
and performance of the control-oriented model devel-
oped for the UK office archetype. Nonetheless, begin-
ning in the second week, both horizontal and normal
irradiance increased by at least one and ten times,
respectively, in comparison to the training week. The
lack of training in high-radiation scenarios compro-
mised the accuracy of the identification.

Table 2: CV(RMSE), NMBE, outdoor temperature
(Tout) and solar irradiance (Iglo,hor, Idir,nor) values
of the training week and four proceeding weeks
Evaluation

weeks
CV

(RMSE)
[%]

NMBE
[%]

Tout

[◦C]
Iglo,hor
[W/m2]

Idir,nor
[W/m2]

Training 3.5 -0.8 3.1 21.9 4.4
Validation 1 4.6 -1.4 3.7 24.2 4.9
Validation 2 10.3 -6.9 4.3 62.4 98.6
Validation 3 6.7 -3.7 2.4 48.8 37.2
Validation 4 8.4 -4.9 2.0 50.2 59.5

Discussion

Recommendations for control-oriented model
development

The training and validation of the proposed RC
control-oriented models yielded reasonably accurate



results, as training CV(RMSE) was less than 5%,
with NMBE within ±1%. Meanwhile, the marjor-
ity of validation CV(RMSE) was less than 7%, indi-
cating good identification results. While an optimal
level of modelling details, model structure, and the
training dataset size could further enhance the accu-
racy of the grey-box model, recommendations for RC
control-oriented model can be drawn from this iden-
tification.

Firstly, the identification of the single-zone model
was significantly different from that of the multi-zone
model. Relating to the results from Figure 6 and Fig-
ure 9, the multi-zone model appeared to be a more
accurate model, with its R4C3 model yielding the
lowest identification CV(RMSE) among all models.
It matched the outcomes of other model identifica-
tions study (Arroyo et al., 2020). In fact, multi-zone
models were a higher-order model with nine capaci-
tances as opposed to three capacitances in the single-
zone model. Moreover, additional measurements in
each zone are helpful to identify the grey-box model
and minimise the temperature deviation. Therefore,
it is difficult to justify the optimal model structure
between the single-zone model and the multi-zone
model, but the multi-zone model has more potential
to calibrate as an accurate model. It should be depen-
dent on the model complexity, computational costs,
and the objectives of the control-oriented model dur-
ing the model development process. For example, a
multi-zone RC model could indicate zone-level peak
demands, reducing the possibility of under- or over-
sizing in each zone. In addition, the multi-zone model
should be modified to adapt to weather changes, such
as capturing direct solar radiation.

Secondly, the size of training data and the complex-
ity of model structure have a combined influence on
model identification accuracy. For instance, optimal
model structures can vary based on the size of the
dataset and the level of model detail. Under one-
day training data, the single-zone lower-order model
(R2C2) had some biased predictions, while this did
not occur in the detailed, multi-zone models. Simi-
larly, by observing the impact of training lengths on
CV(RMSE) and NMBE from Figure 4, it is possible
to avoid under- and over-fitting by using two to three
days of data for control-oriented models. In fact, good
estimations can be yielded from a multi-zone model
with only one day of training data. Therefore, a more
detailed grey-box model, such as a higher-order model
or a multi-zone model, can have a shorter training pe-
riod.

Thirdly, as shown in Figure 9, there are more negative
NMBE values in higher-order model, resulted by the
oversizing of capacitances. Moreover, the estimations
from R6C4 models with the capacitances of fan-coil
unit were not as accurate as those from the other two
model forms. As the system delay of the fan-coil unit

system was minimal, it was determined that there
were no significant differences between identifying the
energy performance of secondary HVAC systems and
directly identifying energy demands in buildings.

Validation results and re-calibration scheme

From this identification testing, it was found that
selecting proper validation periods for the control-
oriented model is very important, given the fact that
the external weather conditions would highly influ-
ence the estimation of RC parameters in the control-
oriented model. In our case, the results from Table 2
indicated that certain weather indices, including out-
door temperature and solar radiation level in the val-
idation periods, should be matched with the training
periods to ensure the most accurate identification of
control-oriented models. However, several validation
methods, such as time-series split cross-validation and
blocked cross-validation, could be used for evaluating
the robustness of the model.

Moreover, the fluctuating validation results from Fig-
ure 10 suggested that periodic re-estimation of grey-
box parameters is needed, in line with the conclusion
from Blum et al. (2019). An adaptive re-calibrations
scheme could be considered in the operation of the
control-oriented model, in response to changes in
weather variables. New parameter estimation for the
grey-box model could be issued when there were no-
ticeable changes in solar irradiance, concerning the
fact that London is located within mild weather zones
and significant temperature changes would not hap-
pen in a week’s time.

Conclusion

Overall, this paper investigated the optimal mod-
elling level, model input and structures, and training
dataset size for control-oriented models in a British
office archetype with the fan-coil unit system. The de-
velopment pathway of the control-oriented model was
proven to be a valid approach, including generating
a Modelica-based white-box model used for collect-
ing the measurements and developing an RC-based
grey-box model for parameter estimations. Based on
the parametric analysis, several guidelines for devel-
oping control-oriented models of office buildings were
summarised in this study. Single-zone R2C2 model
yielded the most accurate predictions, with a lower
median CV(RMSE) value at 4.3% and smaller NMBE
at 0.2% More accurate estimations were observed in
multi-zone models than single-zone models. A com-
bination of R4C3 zone models adding direct normal
irradiance as the external input was recommended,
which yielded the lowest median hourly CV(RMSE)
at 3.8% against the measurements. Based on a list
of identification results, the length of training days
can be as low as two to three days, but a more sim-
plified model should be trained under a longer train-
ing period since the optimal training data size and



model structure are highly associated with each other.
This modelling guideline overall facilitates the devel-
opment of the control-oriented models of British office
buildings and improves their identification accuracy.

A consequent discussion was drawn based on the va-
lidity of the identification results, evaluated over the
extended validation periods. Higher deviated indoor
temperature predictions were found as there were sig-
nificant weather changes during validation periods.
Therefore, it is recommended that an adaptive re-
calibration approach should be adopted for UK build-
ings, depending on significant changes in solar radia-
tion values.

However, this study did not investigate the effect of
various other factors such as internal loads, operation
time and climate zones. Future works can be focused
on (1) expanding the evaluation under the full-year
condition with different load profiles; (2) investigating
the effects of external disturbances on model identifi-
cation to generate a fully adaptive calibration scheme.
These future works, along with this paper, will be
helpful for developing a robust model-based predic-
tive control at the building and district levels.
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