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Abstract— This paper addresses the problem of localizing a
stationary RF emitter with a mobile UAV, equipped with a
single directional antenna. By rotating around its vertical axis,
it determines a bearing towards the emitter. Our interest is
in optimally selecting the measurement positions to achieve a
fast localization. The majority of such systems described in the
literature use greedy planning to select the next measurement
position. This work experimentally tests an algorithm that
performs a non-myopic planning until the final localization
step. The algorithm is based on the policy rollout principle
and showed good performance in previous simulative studies.
It is adapted to match the needs of a real world setup and
evaluated in flight trials. Adaptions include the avoidance of
close range measurements to prevent inaccurate measurements
at high elevation, and the filtering of poor measurements.

I. INTRODUCTION

Emitter localization is the problem of finding the position
of a radio frequency (RF) emitter. It has applications in
tracking radio-tagged animals, search and rescue, localization
of RF interferences, and military surveillance. A localization
requires measurements from multiple positions, motivating
the use of mobile systems like unmanned aerial vehicles
(UAVs). In this paper we consider a UAV equipped with
a directional antenna. By performing a rotation around its
vertical axis, it can measure the received power over the
swept angle and compute a bearing towards the emitter. The
quality of a localization with bearing only measurements is
known to be geometry dependent. Different measurement
positions lead to a faster or slower localization. Our goal is
to perform measurements in a way that minimizes the time
until the emitter is localized. For this, we developed a control
algorithm that successively determines the next measurement
position of the UAV.

The localization of RF emitters from mobile systems
has attracted considerable interest in the sensor fusion and
robotics literature. These systems can in general be cate-
gorized into those measuring the signal strength (received
signal strength indicator, RSSI) and those that compute a
bearing towards the emitter. RSSI-based systems [1]–[3] use
the fading of signal power over distance to compute a range
estimate for the emitter. Bearing-based systems compute a

1Folker Hoffmann, Hans Schily, and Alexander Charlish
are with the Sensor Data & Information Fusion department
at the Fraunhofer Institute for Communication, Information
Processing and Ergonomics FKIE, Wachtberg, Germany.
{firstname.secondname}@fkie.fraunhofer.de

2Markus Krestel is with the Schönhofer Sales and Engineering GmbH,
Siegburg, Germany. At the time of this work, he was working at Fraunhofer
FKIE.

3Matthew Richie and Hugh Griffiths are with the Department of Elec-
trical Engineering, University College London, London, United Kingdom.
{m.ritchie, h.griffiths}@ucl.ac.uk

direction estimate towards the emitter, often by rotation of a
directional antenna [3]–[10]. Using a combination of direc-
tional and omnidirectional antennas, an ambiguous pseudo-
bearing can be computed without rotation [11].

Several of those systems implement automatic planning
of the sensor path to maximize the system performance,
often based on a greedy planner. [2] selects the next heading
that maximizes the Rényi divergence over the next 5 s. In
[1] a fast heuristic planner is presented which reduces the
distance towards the emitter. Similarly, [9] moves towards
the estimated source direction. [7] moves to a position on
the minor axis of the uncertainty, with an adaptive distance.
In [3] a formation of UAVs moves its formation center to the
estimated target position. [4] selects the next measurement
position, which minimizes the expected entropy of the next
position estimate. A greedy planner is also used in [11].
The work in [8] assumes the target to be at the outer bound
of the uncertainty and then selects the theoretically optimal
two next measurement positions to localize a target on this
position.

These systems mostly work in a myopic way, only
considering a limited time horizon and often ignoring the
uncertain outcomes of future measurements. In comparison,
this paper presents a planning algorithm that plans from
the current state until the end of the localization process,
considering the full uncertainty of the current emitter position
estimate and different actions in the future based on different
outcomes of measurements. The control algorithm presented
here was developed in previous work [12]–[14] and shows
good performance in simulations. This paper is based on
the presentation in [15] and describes the transfer of the
algorithm to a real system and experimental results.

Section II formally states the planning problem. Section
III presents the path planning algorithm and describes the
adaptations necessary for experimental evaluation of the al-
gorithm. The system and the experimental area are described
in Section IV. We discuss the localization performance and
the quality of our time prediction model in Section V. Finally,
Section VI concludes the paper.

II. PROBLEM DESCRIPTION

The state consists of the position of the emitting target
xt = (xt, yt) and the platform position xp

k = (xp
k, y

p
k), where

k denotes the decision step. We model the joint state as the
4-dimensional vector

xk = (xt,xp
k) = (xt, yt, xp

k, y
p
k) ∈ R4 . (1)

At each step, the system performs a measurement

zk = atan2(yt − ypk, x
t − xp

k) +N (0, σ2) (2)



of the angle between target and platform with additive
Gaussian noise. We assume the target to be the only emitter
in reception range and the standard deviation σ of the noise
to be known. The duration of a measurement is modeled as a
constant time tM , during which the UAV must rotate without
changing position.

After taking a measurement, the control algorithm selects
the next sensing action. An action ak ∈ Ak ⊆ R2 taken by
the system represents the next measurement position. The
UAV moves to this position, which is modeled with the
transition function

xk+1 = f(xk,ak) = (xt,ak) . (3)

This movement takes an amount of time

tD(xp
k,ak) =

∥xp
k − ak∥2
vp

(4)

where vp models the speed of the platform. Sensing and
moving therefore lead to the joint cost of

c(xp
k,ak) = tD(xp

k,ak) + tM . (5)

The emitter position is not observable from a single bear-
ing measurement. Therefore, we integrate all measurements
into a belief

btk(x̌
t) = p(xt = x̌t | bt0,a0:k−1, z1:k) (6)

which is a probability distribution over the emitter position.
Here bt0 denotes prior knowledge. In our experiments this
consists of the extension of the experimental area, on which
it is uniformly distributed. The action a0 might either be
the result of planning on the prior belief, or a given first
measurement position. In the experiments a0 is explicitly
specified. The belief about the full state space

bk(x̌
t, x̌p) = p(xk = (x̌t, x̌p)) (7)

= btk(x̌
t) · δxp

k
(x̌p) (8)

also contains the position of the platform. The platform
position is fully observable, and therefore given by the Dirac
delta centered on the true platform position. The localization
process continues until the expected root-mean-squared error
(RMSE) of the current estimate is below a threshold µT . We
denote the index of termination by K, which means K is the
lowest integer with µ(bK) ≤ µT . K is a random variable,
dependent on the received measurements.

The control problem is then to find a policy

ak = π(bk) (9)

which at each decision step minimizes the expected time until
localization for the current belief. This time corresponds to
the expected future cost and is formalized by the value

V π(bk) = E

K−1∑
i≥k

c(xp
i , π(bi))

 (10)

of a belief bk, when following policy π. The expectation
goes over all future measurements zk+1:K and possible target
positions xt ∼ btk. The next section describes a planning
algorithm for this problem.

III. PATH PLANNING ALGORITHM

A. Localizer

The bearing measurements of the target are fused to a tar-
get position estimate, using a grid-based discrete Bayes filter.
The grid is initialized with a uniform prior and a side-length
of 100 cells for the larger axis. Each measurement updates
the density estimate in each cell, using a normal distributed
likelihood. As the target estimate becomes more accurate,
the grid is adaptively resized, to achieve a more fine-grained
resolution. Details about the localizer can be found in [14].
The point estimate is extracted based on the cell with the
maximum a posteriori density. If a measurement is an outlier,
in the sense that the 4σ cones of all measurements do not
intersect, the localization process is terminated with an error.

B. Policy rollout based planner

The path planning algorithm used in this paper is based on
the policy rollout principle. Policy rollout [16] is an approx-
imate dynamic programming technique, which estimates the
future cost of an action by the expected value of the next
belief, when following a base policy πB in future decisions.
Then the rollout policy πR is given by

πR(bk) = argmin
a∈Ak

E
[
c(xp

k,a) + V πB

(bk+1)
]

(11)

= argmin
a∈Ak

QπB

(bk,a) . (12)

The action value QπB

represents the expected cost when
performing an action and afterwards following the base
policy in all subsequent steps until the objective is achieved.
In our case, the cost of the immediate action is deterministic
and the expected value of V πB

(bk+1) can be computed using
samples, leading to the following Monte Carlo estimate of
QπB

:

QπB

(bk,a) = c(xp
k,a)+

1

Na

Na−1∑
j=0

Kaj−1∑
i>k

c(xp
aji, π

B(baji)) .

(13)
Here Na is the number of Monte Carlo samples used to

evaluate action a. We use a discretized action set Ak, and the
sequential halving algorithm, to determine how often each
action is sampled.

The sequential halving algorithm is an algorithm to find
the best action of a finite set of alternatives, when only noisy
samples of the action values are available [17]. It works by
successively eliminating actions over multiple rounds and
focuses the sampling on the promising ones. In the first round
it samples each action. Then the worse half of the actions is
removed. In the second round only the remaining actions are
sampled, and again the worse half is removed. This continues
until only a single action is remaining. The total budget N is
distributed evenly on the rounds, which means that in later
rounds more samples are used for each remaining action.

When predicting the future costs, the index of the state
xaji and belief baji refers to decision step i in the j-th



rollout, when evaluating action a. We use common random
numbers (CRNs) to evaluate the action value, i.e. use the
same target positions and measurement uncertainties to re-
duce the sampling variances. Details can be found in [14]
and [15].

C. Restrictions to the action space

Due to the elevation dependency of the antenna pattern, a
measurement taken close to the target is extremely unreliable.
We consider this restriction in the planner by limiting Ak to
actions sufficiently distant from the probable target positions.
To determine probable target positions, a convex hull C95(bk)
is computed, which contains 95% of the probability mass
of the target estimate. This corresponds to the convex hull
of the top 95% percentile of the grid cells, ordered by the
probability mass they contain. Then the action set

Ak =
{
a ∈ A : d(a, C95(bk)) > rmin

}
(14)

consists of those actions that keep at least a minimum
distance from this convex hull. Here d(a, C) computes the
minimal distance between action a and convex hull C, A
is the original action set, and rmin is a parameter. Figure 8
shows an example of the convex hull and a reduced action
set. If Ak is empty or contains only one action, we reduce the
threshold rmin until there are at least two actions. However,
this situation did not occur in our experiments.

D. Base policy

The used base policy selects an action greedily from
the action set (14). The action is chosen to maximize the
determinant of the Fisher information, which is a common
criterion in the literature [18], [19]. We approximate the grid-
based belief btk by a maximum a posteriori point estimate x̃t

k

and a covariance P̃t
k. Then the base policy

πB(bk) = argmax
a∈Ak

det

((
P̃t

k

)−1

+ J(a, x̃t
k)

)
(15)

selects actions that maximize the determinant. The Fisher
information J(a, x̃t

k) of a target at position x̃t
k = (x̃t, ỹt),

measured from position a = (xa, ya) is given by

J(a, x̃k) =
1

σ2r̃2

(
sin θ̃ · sin θ̃ − 1

2 sin 2θ̃

− 1
2 sin 2θ̃ cos θ̃ · cos θ̃

)
(16)

where r̃ = ∥x̃t
k − a∥2 is the distance between the point

estimate and the measurement position, and θ̃ = atan2(ỹt −
ya, x̃t − xa) the angle. It should be noted that this base
policy is only feasible because of the restricted action set, as
otherwise the most informative action would always be the
one that lies directly over the target estimate, with r̃ → 0.

E. Detection of measurement outliers

Even for measurements taken at a sufficient distance,
outliers can occur. In most of the cases the measured power
over angle has a pattern that strongly differs from the antenna
pattern. We use the cosine similarity measure to filter out
measurements that do not match the antenna pattern.

Therefore, the measured power over angle mk ∈ R180 is
considered as a vector that contains the received power in
2◦ bins. With ψ(zk) ∈ R180 we denote the antenna pattern
(see Figure 3), focused on the measured bearing zk. Then
the measurement quality is given by the scalar product

q(zk) =
m

∥m∥2
· ψ(zk)

∥ψ(zk)∥2
(17)

which is a value between -1 and 1, and quantifies how
similar the measurement is to the antenna pattern. We accept
a measurement if this value is above a threshold qmin, and
otherwise perform a new measurement at the same position.

While the underlying direction finder [20] potentially
returns multiple measurements, here we use the assumption
that only a single target is present.

IV. EXPERIMENTAL SETUP

A. System description

To evaluate the algorithm, we built an experimental system
based on the AR200 UAV platform1 (see Figure 1). The
payload attached to the UAV consists of a Yagi antenna,
a USRP B210 receiver, an Ellipse-D IMU, a Gigabyte
Brix 8550 computer, and a Huawei e3372h LTE stick for
communication. Figure 2 shows an image of the payload.
The total weight of the payload amounts to 2.061 kg. Our
emitter is based on a Raspberry Pi Zero and a LimeSDR
software defined radio, which sends a continuous sine wave
at 1984MHz. This frequency was chosen due to an existing
license to send on this frequency.

The AR200 UAV is controlled from a ground station. The
path planner runs on a laptop and communicates with the
ground station over a USB connection. In addition, the laptop
is connected to the payload via an LTE connection.

The payload computer and laptop both run the robot
operating system (ROS), version 16.04. The payload contains
a node controlling the receiver, as well as a node performing
the direction finding [20]. The extracted bearing measure-
ments are sent to the laptop, where they are used to perform
the path planning. The planner runs as a Java application
on the laptop, and communicates with a Python-based ROS
node over the ZeroMQ protocol.

In addition, we run a ROS node acting as a bridge to the
UAV ground station. This node does not support a dedicated
rotation of the UAV. We therefore perform the rotation by
a sequence of three waypoints with different headings. This
leads to a rotation based on three parts (see Figure 4). Before
starting the rotation, the platform is kept stationary for one
second to ensure it is in a stable position.

B. Experimental area

The experimental area is approximately 313 meters long
and 120 meters wide. We discretized the area into possible
waypoints, as can be seen in Figure 5. In total there are 112
actions from which the planner can choose, with a distance of
15 meters each. The ground station was placed at the origin.

1https://www.airrobot.de/



Fig. 1. Experimental platform with mounted payload.

Fig. 2. Payload.

At the same location a human pilot was present, to perform
landing and take-off, as well as to interrupt the UAV in case
of emergencies. Note that the action set does not extent to the
western border, as otherwise a tree line in the experimental
area would have obstructed the line of sight between the
human pilot and the UAV.

V. EXPERIMENTAL RESULTS

A. Performed flights

We performed six flights on three different days to analyze
the system. Table II shows an overview over those flights.
Additional flights were taken previously for debugging and
setup of the system. Flights 1-3 were made for system iden-
tification, consisting partially of manual measurements and
partially of automatic localization attempts. Afterwards, the
parameters of the planner were fixed to those shown in Table
I. All flights were made at an altitude of approximately 20m.
Flights 1-3 also included additional debugging. However, the
direction finding algorithm was the same during flight 1-6,
therefore those flights are included in the statistics about the
direction finding performance.

For flights 4-6, we selected emitter positions B and C to
increase the action space of the planner. As measurements
should be taken at least 50m away from the 95% confidence

Fig. 3. Pattern of the antenna, mounted on the UAV.

Fig. 4. Rotation during a measurement. The last rotation from 400 to 350
degrees is part of the movement to the next waypoint.

Fig. 5. Experimental area in an east, north, up (ENU) coordinate system.
A, B, and C denote the two different emitter positions. The index denotes
different positions from different trial days. The ground station was located
at the coordinate origin. Green dots indicate the action set. The UAV start
position corresponds to action a0. Map data © OpenStreetMap contributors.



TABLE I
PLANNER PARAMETERS

Parameter Value Description

σ 7◦ Measurement standard deviation
µT 10m Localization accuracy threshold
rmin 50m Minimal distance to uncertainty
v 7m/s Platform speed
tM 30 s Time of a measurement
N 1000 Total number of Monte Carlo samples
qmin 0.7 Threshold on measurement quality

area, a centrally placed emitter limits the set of potential
actions more than one on the border of the area. This was
required because of the restricted size of our experimental
area.

In total, eleven localization attempts were made, which can
be seen in Table III. All of those had the UAV starting at the
same position, shown in Figure 5. Seven localization attemps
were fully successful, in the sense that the uncertainty was
reduced successfully and the target was in the indicated
uncertainty region. In two localization attempts (1 & 4) this
was not the case, however, the target was at least somewhat
close to the estimate. Two localization attempts (5 & 6)
showed a completely wrong localization, which was due to
the corresponding initial measurements were outliers. These
outliers, together with the prior that the emitter is in the
experimental area, reduced the uncertainty sufficiently that
the emitter was considered localized after the first measure-
ment. Therefore, the error criterion described in Section III-A
was not triggered. Outliers are further discussed in the next
section.

A localization typically required 4-6 measurements and
took an average time of 3:53 minutes to localize emitter B
and 3:02 (excluding 5 & 6) to localize emitter C. The paths
taken by the UAV are shown in Figures 6 and 7 for emitter
position B and C, respectively. It can be seen that the planner
takes measurements from multiple directions, trying to be
as close as possible to the target while keeping the 50m
distance. Figure 6 also illustrates how the planner adaptively
reacts on different measurements. Measurements taken in
flight 4 were all slightly more to the right, than measurements
taken at flight 6. Therefore, in flight 4 the planner always flew
to a waypoint at the north-eastern border of the experimental
area, being convinced that this was sufficiently far from the
target. In comparison, in flight 6 the planner always took a
waypoint at the south-western border.

Figure 8 shows a single decision step of the planner.
Only actions sufficiently far from the uncertainty estimate
are evaluated. The actions are evaluated in multiple rounds,
as the sequential halving algorithm focuses on the most
promising actions. The color of the actions indicates the
round in which they are eliminated. As the sequential halving
algorithm eliminates half of the remaining actions in each
round, this took six rounds for 56 viable actions in this
step. It is visible that the planning algorithm quickly focuses
on actions close to the target estimate. As the sequential

Fig. 6. Flight paths to localize emitter position B1 (left, localization attempt
1-4) and B2 (right, localization attempt 10-11). The emitter positions are
indicated by the upright blue triangles. Localizations are indicated by the
downward triangles. The shaded area around the estimates corresponds
to the 95% probability mass of the uncertainty (C95(bK)). Map data
© OpenStreetMap contributors.

Fig. 7. Flight paths to localize emitter position C. The emitter position is
indicated by an upright blue triangle. Localizations are indicated by the
downward triangles. The shaded area around the estimates corresponds
to the 95% probability mass of the uncertainty (C95(bK)). Map data
© OpenStreetMap contributors.

halving algorithm uses the same number of samples in each
round, the computation strongly focuses on the better actions.
Actions eliminated in the first round were evaluated only
with two samples, while the two last remaining actions were
evaluated with in total 165 samples each.

B. Bearing measurements

In total, the data from all flights contains 106 measure-
ments. Of those, 19 are outliers, defined as having an error
greater than 30◦. Of the 13 measurements taken with a
distance lower than 50m, 10 measurements are outliers
indicating the high likelihood of a false measurement at short
distances. Figure 9 shows the error of each measurement,
dependent on the cosine similarity to the antenna pattern.
Again, it can be seen that below a distance of 50m, mea-
surements are mostly random, even if they have a high
similarity measure. For measurements taken farther away,
the threshold of 0.7 rejects most of the outliers. Together,
this justifies the approach of a cautious planner, which does
both, try to keep a sufficient distance from the target and



Fig. 8. Action evaluation in localization attempt 7, after the second
measurement. The color of the action indicates in which of the six rounds
it is eliminated. The selected action has a red border. The green line
corresponds to the path of the UAV, gray are the measurements, the blue
triangle is the ground truth and cyan is C95(b2). Map data © OpenStreetMap
contributors.

TABLE II
FLIGHTS

Flight Emitter Duration Avg. Wind Max Wind #Msr

1 A1 11:56 - - 12
2 A1 20:14 - - 13

3 A2 21:13 5.6 km/h 14.3 km/h 32
4 B1 19:05 6.5 km/h 15.0 km/h 19

5 C 18:17 2.6 km/h 5.6 km/h 16
6 B2 14:23 3.2 km/h - 14

Duration in [mm:ss]. No wind speed measurements were taken for flight
1 and 2. The wind measurement device showed an error message for the
maximal wind speed on flight 6. Each group of two flights was made on a
separate day. # Msr = Number of measurements. Flight 5 also contains two
measurements not belonging to an automatic localization attempt, which
therefore do not appear in Table III.

TABLE III
AUTOMATIC LOCALIZATIONS

Loc. Emitter Fl. T.u.l. Error Exp.Err. C95 #Msr

1 B1 4 3:18 24.34m 9.88m - 4 (+1)
2 B1 4 2:34 15.75m 9.10m ✓ 4
3 B1 4 3:39 1.61m 9.80m ✓ 4 (+1)
4 B1 4 3:52 15.94m 8.31m - 5

5 C 5 0:23 168.27m 7.91m - 1
6 C 5 0:21 174.27m 8.97m - 1
7 C 5 2:56 7.76m 9.65m ✓ 4
8 C 5 2:52 10.47m 8.94m ✓ 4
9 C 5 3:18 7.98m 9.89m ✓ 4

10 B2 6 4:44 9.46m 9.16m ✓ 6
11 B2 6 5:12 9.10m 9.76m ✓ 6 (+2)

Loc. = Localization attempt, Fl. = Flight number as in Table II, T.u.l. =
Time until localization [mm:ss] from the start of the first measurement to
the announcement of the completed localization, Error = Distance between
the point estimate and the ground truth, Exp.Err. = Expected Error µ(bK),
C95 = Whether the target was in C95(bK), #Msr = Number of valid
measurements, passed to the planner. In parentheses are measurements
classified invalid. Grouped localization attempts correspond to the same
flight.

Fig. 9. Measurement error dependent on the cosine similarity outlier
detection criterion.

reject measurements that do not match the antenna pattern.
There are two outliers from a farther distance that are not
detected. These correspond to the initial measurements in
localization attempt 5 and 6. Both point directly into the
corner of the experimental area, which was surrounded by
a metal fence. A likely explanation is that the fence causes
multipath reflections to occur.

Figure 10 shows the measurement errors of those mea-
surements sufficiently far away (> 50m), with a similarity
measure > 0.7 and without those two outliers. On average
the measurement error corresponds to the assumptions of
the planner with a bias of 0.17◦ and a standard deviation
of 7.47◦. However, the distribution seems to vary between
different flights, with especially flight 4 having stronger
errors. This is reflected in the results of localization attempts
1 and 4, where the target is not in the estimated uncertainty
region C95

( bK). It is unclear why the measurement quality
differs from flight to flight. One possible explanation is a
varying GPS quality, resulting in a worse GPS heading,
and therefore direction estimate of the IMU. Our bearing
estimator also explicitly tries to model the received pattern
as a superposition of multiple signals and often returned
multiple bearings. We then selected the bearing with the
highest weight and discarded the others. A further tuning of
the direction finder parameters [20], might force the direction
finder to include less bearings of potentially higher quality.

The assumptions of the planner about the measurements
were fixed after flights 1 and 2, and included an additional
margin on the bearing error. The measurement threshold qmin
was fixed after flight 3.

C. Time prediction accuracy

The planning algorithm predicts the time cost of different
sensing actions to select those which lead to the minimal
expected total cost. For this, it is important that the prediction
model corresponds to the real cost of taking an action. In
this section we analyze how accurate the planning algorithm
models the time costs of the system. While the planner
assumes linear movement, Figure 11 shows that a single
movement of the UAV consists of different phases. First, the
UAV rotates in the direction of its travel. Then it accelerates



Fig. 10. Measurement error for measurements with > 50m distance and
a cosine similarity measure > 0.7, excluding the two outliers. In total 81
measurements. A positive error indicates the measurement being right of
the ground truth. The average errors amount to ϵ1 = −5.90◦, ϵ2 = 1.17◦,
ϵ3 = −0.24◦, ϵ4 = 8.30◦, ϵ5 = −3.13◦, ϵ6 = −4.52◦ and the standard
deviations to σ1 = 1.56◦, σ2 = 5.68◦, σ3 = 6.09◦, σ4 = 9.48◦, σ5 =
4.36◦, σ6 = 1.96◦.

Fig. 11. Orientation and distance traveled during a movement phase.

until its maximal speed, keeps this speed for some time, and
decelerates before reaching the target position.

Figure 12 shows the accuracy of the predictions using
a linear model with 7m/s speed and a constant offset of
11.2 s (best fit). The RMSE of this linear model is 4.79 s.
We also developed an improved model after the experiments,
which assumes that the UAV first rotates with 30◦/s into its
target orientation, then constantly accelerates with 1m/s2

until either half of the way or vmax = 8.0m/s, decelerates
before the target position and has an additional constant
offset of 3 s, covering additional stabilizing maneuvers. The
RMSE of this model was 3.02 s. While the more complex
model is more accurate, the error of a linear model is not
significantly higher. However, the linear approximation has
a systematic error and overestimates consistently the travel
costs of measurements with a short travel time, due to the
constant offset.

Taking a measurement requires 21.4 s on average, with
2.9 s standard deviation. As we changed some termination
criteria of the measurement rotation during flight 1 and 2, this
average is computed using only flights 3 to 6. An execution
of the planner requires 0.56 s, with 0.35 s standard deviation.

Fig. 12. Comparison between the prediction of movement time and the
actual time. The linear model is a best-fit with v = 7 m/s. The improved
model considers also acceleration and rotation.

Fig. 13. Comparison between the predicted time for a sensing action,
and the actual time. The improved fit assumes a longer measurement time
t′M = 41.2 s.

Figure 13 shows the full end-to-end time prediction of a
sensing action and the corresponding actual time. The RMSE
of the prediction amounts to 14.1 s. An improved fit uses
t′M = 41.2 s, which leads to an RMSE of 8.5 s. One can
see that the duration of short actions is overestimated, which
mirrors the behavior seen in Figure 12 and indicates that
a better movement model would improve the end-to-end
time prediction, as well. However, in our implementation the
planner had no access to the angle of the UAV. There are
some outliers (A-C) visible in the plot, which correspond
to planner steps with miss-detections and an additional
measurement, making them approximately 21.4 s longer than
expected. The fourth miss-detection (see Table III) happened
at the begin of localization attempt 11, and is therefore not
part of a planning prediction.

Overall, a linear prediction model seems to be an ac-
ceptable approximation, however, overestimates the costs of
closer actions. An improved model would potentially make
those actions more attractive to the planner.

VI. CONCLUSION AND FUTURE WORK

In this paper we presented a system to localize an RF
emitter, autonomously with a UAV. The control algorithm not



only considers the next measurement positions, but performs
a non-myopic planning to minimize the time until localiza-
tion. It is based on a previously developed algorithm, which
showed promising results in simulations. When adapting
the algorithm to a real system, we encountered two major
challenges: First, it is required that the algorithm keeps a
minimal distance from the emitter. Second, occasionally bad
measurements occur, which need to be filtered from the
system.

We solved the first problem by computing a convex hull
that contains 95% of the probability mass of the target
position estimate. Then the planner is limited to those actions
that are sufficiently distant from the convex hull. For the
second problem, we reject all measurements which do not
match the antenna pattern. This decision is made based on
the cosine similarity measure.

We evaluated the algorithm and system in a total of
six flights, and eleven autonomous localization attempts.
From those eleven localization attempts, seven were fully
successful, with the true emitter position in the indicated
uncertainty region. Two flights led to a point estimate close
to the emitter, but with the emitter outside of the uncertainty
estimate. Two flights led to a wrong estimate, due to an
outlier in the measurements. A probable explanation for
this is a multipath reflection. We compared the models the
planner uses for lookahead planning, and found out that
they tend to overestimate the cost of close-by measurements.
However, a more complex movement model can compensate
for those differences. A large amount of unpredictability
comes from the measurements, which are only approximately
normal distributed and therefore hard to account for.

In future work it would be interesting to further analyze
the measurement process. One question would be whether
the variation of the measurement error distribution between
flights can be reduced. It would also be of interest whether
the outlier-detection can be improved or alternative ways to
mitigate outliers can be found.

Also experiments on a less restricted area would be of
interest. Finally, it would be interesting to experimentally
compare the planner with a myopic one. This would show
whether the advantages of non-myopic planning transfer
from simulations to the real world.
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