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ANALYSIS AND NUMERICAL APPROXIMATION OF
STATIONARY SECOND-ORDER MEAN FIELD GAME PARTIAL

DIFFERENTIAL INCLUSIONS\ast 
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Abstract. The formulation of mean field games (MFG) typically requires continuous differentia-
bility of the Hamiltonian in order to determine the advective term in the Kolmogorov--Fokker--Planck
equation for the density of players. However, in many cases of practical interest, the underlying op-
timal control problem may exhibit bang-bang controls, which typically lead to nondifferentiable
Hamiltonians. We develop the analysis and numerical analysis of stationary MFG for the general
case of convex, Lipschitz, but possibly nondifferentiable Hamiltonians. In particular, we propose
a generalization of the MFG system as a partial differential inclusion (PDI) based on interpreting
the derivative of the Hamiltonian in terms of subdifferentials of convex functions. We establish the
existence of a weak solution to the MFG PDI system, and we further prove uniqueness under a
similar monotonicity condition to the one considered by Lasry and Lions. We then propose a mono-
tone finite element discretization of the problem, and we prove strong H1-norm convergence of the
approximations of the value function and strong Lq-norm convergence of the approximations of the
density function. We illustrate the performance of the numerical method in numerical experiments
featuring nonsmooth solutions.

Key words. mean field games, Hamilton--Jacobi--Bellman equations, nondifferentiable Hamilto-
nians, partial differential inclusions, monotone finite element method, convergence analysis
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1. Introduction. Mean field games (MFG), as introduced by Lasry and Lions
[31, 32, 33] and independently by Huang, Malham\'e, and Caines [25], consider the
asymptotic behavior of rational stochastic differential games as the number of players
approaches infinity. Under suitable assumptions, the system of equations consists
of a Hamilton--Jacobi--Bellman (HJB) equation for the value function associated to
the underlying stochastic optimal control problem faced by the players, coupled with
a Kolmogorov--Fokker--Planck (KFP) equation for the density of players within the
state space of the game. MFG systems find applications in a broad range of areas,
such as economics, population dynamics, and mass transport [1, 23, 22]. We refer the
reader to the surveys in [4, 22, 21] for extensive reviews of the literature on the theory
and applications for a variety of MFG problems.

The numerical solution of MFG systems is an active area of research and has led
to various approaches. Monotone finite difference methods on Cartesian grids are con-
sidered in [3, 2, 5]. In particular, under the assumption that the continuous problem
admits a unique classical solution, [2] shows the convergence of the approximations
of the value function in some first-order Sobolev space for the stationary case and in
some Bochner--Sobolev space for the time-dependent case, along with convergence of
the approximations of the density function in some Lebesgue spaces. The assumption

\ast Received by the editors August 31, 2022; accepted for publication (in revised form) October 6,
2023; published electronically January 12, 2024.

https://doi.org/10.1137/22M1519274
Funding: The work of the authors was supported by University College London (UCL) and

the use of the UCL Myriad High Performance Computing Facility (Myriad@UCL) and associated
support services.

\dagger University College London, Department of Mathematics, London WC1H 0AY, UK (yohance.
osborne.16@ucl.ac.uk, i.smears@ucl.ac.uk).

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

138

D
ow

nl
oa

de
d 

02
/2

8/
24

 to
 2

.1
02

.7
.5

5 
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

https://doi.org/10.1137/22M1519274
mailto:yohance.osborne.16@ucl.ac.uk
mailto:yohance.osborne.16@ucl.ac.uk
mailto:i.smears@ucl.ac.uk


MEAN FIELD GAME PARTIAL DIFFERENTIAL INCLUSIONS 139

of the existence of a classical solution was then removed in [5], which showed con-
vergence of the approximations to a weak solution of the system. There is also an
alternative approach to the solution of the problem when the couplings of the sys-
tem are local. In this case, the MFG system can at least formally be related to
the first-order optimality conditions of convex optimization problems, which leads to
other methods based on optimization; see, for example, [6, 11]. Fully discrete semi-
Lagrangian schemes have also been proposed in [13, 14] for first- and second-order
MFG systems.

We now outline the motivation for the present paper. Recall that MFG PDE
systems are derived from models of large numbers of players solving stochastic optimal
control problems. It is well known from stochastic optimal control that, in many
applications of practical interest, the underlying controls may be of the bang-bang
type, which typically lead to discontinuities in the optimal control policies and the
possibility of nonunique optimal controls in some regions of the state space. In turn,
this generally leads to nondifferentiable Hamiltonians, which pose special challenges
for the analysis and numerical analysis of MFG systems.

To illustrate these challenges, we consider as a model problem a stationary MFG
system of the form

 - \nu \Delta u+H(x,\nabla u) + \kappa u= F [m] in \Omega ,(1.1a)

 - \nu \Delta m - div

\biggl( 
m
\partial H

\partial p
(x,\nabla u)

\biggr) 
+ \kappa m=G(x) in \Omega ,(1.1b)

along with homogeneous Dirichlet boundary conditions u= 0 and m= 0 on \partial \Omega . The
unknowns u andm denote, respectively, the value function and the density function for
the player distribution of the game. Here, the domain \Omega \subset \BbbR n is a bounded connected
open set in \BbbR n, n \geq 2, and \nu > 0 and \kappa \geq 0 are constants. Precise assumptions on
the data H, F , and G are given below in section 2. The system (1.1) includes as
special cases the stationary MFG model considered in [31] (in which case \kappa and G
vanish) and some models of discounted MFG [19]. However, note that in contrast
to the periodic boundary conditions considered in [31], we consider (1.1) along with
Dirichlet boundary conditions, which arise in models where players may enter or exit
the game, and thus m is not a probability density function in general. This explains
why there is no Lagrange multiplier term in the first equation (1.1a). The source
term G and the term involving \kappa in (1.1) are also relevant in the context of temporal
semidiscretizations of time-dependent MFG systems.

The Hamiltonian in (1.1) is given in terms of components of the underlying sto-
chastic optimal control problem; we therefore consider Hamiltonians H of the form

H(x,p) := sup
\alpha \in \scrA 

(b(x,\alpha ) \cdot p - f(x,\alpha )) \forall (x,p)\in \Omega \times \BbbR n,(1.2)

where \scrA denotes the set of controls, b is the controlled drift, and f is a control-
dependent running cost component set by the underlying stochastic optimal control
problem. For simplicity, we assume that \scrA is a compact metric space and that b :
\Omega \times \scrA \rightarrow \BbbR n, f : \Omega \times \scrA \rightarrow \BbbR are uniformly continuous, so that the supremum in (1.2)
is achieved. In many applications, the controls that achieve the supremum (1.2) may
be nonunique for some (x,p) \in \Omega \times \BbbR n, which often leads to discontinuous optimal
controls of the bang-bang type. In these cases, the Hamiltonian H is then typically
Lipschitz continuous but not differentiable everywhere. However, most works so far
on MFG require differentiable or even C1 Hamiltonians, which can be quite restrictive
in practice.
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140 YOHANCE A. P. OSBORNE AND IAIN SMEARS

Nondifferentiable Hamiltonians pose an immediate and obvious challenge for
analysis since the advective term in (1.1b) is then no longer well-defined in a classical
sense. This leads to the problem of finding a suitable relaxed meaning for the equation
in these situations. From a modeling perspective, this corresponds to the question of
how the players of the game choose among the optimal controls when they are not
unique. To the best of our knowledge, the analysis of MFG with nondifferentiable
Hamiltonians seems to only have been considered in [17] for the special case of Hamil-
tonians of the form H(m,p) = \kappa (m)| p| for some given function \kappa ; see Remark 3.2 for
further comments. Specific examples are presented in [9] showing how the uniqueness
of solutions may fail for nondifferentiable Hamiltonians and nonmonotone couplings;
in these examples, the advective term is unambiguous since the gradients of the value
functions avoid the points of nondifferentiability of the Hamiltonian. Otherwise, the
analysis and numerical analysis of MFG problems with nondifferentiable Hamiltonians
remain largely untouched.

Our first main contribution in this work is to provide a suitable generalized mean-
ing for the system (1.1) when H is nondifferentiable and to prove results on the exis-
tence and uniqueness of solutions under conditions where they are expected to hold.
Using the fact that the Hamiltonian H is convex with respect to its second argument,
our approach is based on relaxing (1.1b) as the following partial differential inclusion
(PDI):

 - \nu \Delta m+ \kappa m - G(x)\in div (m\partial pH(x,\nabla u)) in \Omega ,(1.3)

where \partial pH denotes the Moreau--Rockafellar pointwise partial subdifferential ofH with
respect to p and the inclusion is understood in a suitable weak sense. The resulting
MFG PDI is then

 - \nu \Delta u+H(x,\nabla u) + \kappa u= F [m] in \Omega ,

 - \nu \Delta m+ \kappa m - G(x)\in div (m\partial pH(x,\nabla u)) in \Omega ,

u= 0, m= 0, on \partial \Omega .

(1.4)

We first prove the existence of weak solutions of (1.4) for rather general problem
data. Then, crucially, we show the uniqueness of solutions for (1.4) for monotone
couplings following the strategy of Lasry and Lions [31, 33], thus extending important
uniqueness results to the case of nondifferentiable Hamiltonians. Our approach is also
significant in terms of the mathematical modeling since it does not require additional
modeling assumptions on how the players choose among the optimal controls when
they are not unique; see Remark 4.2 below for more specific comments.

Our second main contribution is to propose and study a monotone finite element
method (FEM) for approximating weak solutions to the MFG PDI (1.4). In this con-
text, monotonicity of the FEM refers to the presence of a discrete maximum principle.
There is a wide range of approaches to constructing monotone FEMs; see, for instance,
[15, 8, 34, 37, 12]. The discretization considered here is based on the one from [28] for
degenerate fully nonlinear HJB equations, where convergence to the unique viscosity
solution was shown; see also [27, 26]. To keep the analysis as simple as possible, we
concentrate on a monotone FEM where the discrete maximum principle is achieved
via artificial diffusion on strictly acute meshes.

The main result on the analysis of the numerical approximations is given in Theo-
rem 5.4, which shows convergence of the numerical approximations in the small mesh
limit for uniquely solvable MFG PDI systems. In particular, we prove strong conver-
gence in the H1-norm of the approximations to the value function u. We also show
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MEAN FIELD GAME PARTIAL DIFFERENTIAL INCLUSIONS 141

that the approximations of the density function m converge strongly in Lq-norms for
q \in [1,2\ast ), 2\ast = 2n

n - 2 , as well as weak convergence in H1. For general nondifferentiable
Hamiltonians, a proof of strong convergence in H1 of the density approximations is
not currently available due to a lack of continuity in the advective terms of the KFP
equation. However, if some additional continuity is assumed (which holds, for in-
stance, when the Hamiltonian is C1), then the density approximations also converge
strongly in H1; see Corollary 5.5. We then complement the convergence analysis with
two numerical experiments that illustrate the performance of the method.

This paper is organized as follows. We outline the notation in section 2, and we
formulate the notion of a weak solution for the MFG PDI (1.4) and state the main
results on the continuous problem in section 3. The main results on the analysis
of the continuous problem are then proved in section 4. In section 5, we introduce
a monotone finite element scheme along with main results on the well-posedness of
the method and its convergence. This is followed by the proofs of these results in
section 6. Section 7 presents the results of some numerical experiments.

2. Notation. We denote \BbbN := \{ 1,2,3, \cdot \cdot \cdot \} and let n\in \BbbN , n\geq 2. For a Lebesgue
measurable set \omega \subset \BbbR n, let \| \cdot \| \omega denote the standard L2-norm for scalar- and vector-
valued functions on \omega . Let \Omega be a bounded, open connected subset of \BbbR n with
Lipschitz boundary \partial \Omega . The n-dimensional open ball of radius r and center x0 \in \BbbR n

is denoted by Br(x0). For a set \scrC \subset \BbbR n, we denote its closed convex hull by conv\scrC .
We make the following assumptions on the data appearing in (1.4). Let \nu > 0 and

\kappa \geq 0 be constants, and let G\in H - 1(\Omega ). We will say that G\in H - 1(\Omega ) is nonnegative
in the sense of distributions if \langle G,\phi \rangle H - 1\times H1

0
\geq 0 for all functions \phi \in H1

0 (\Omega ) that are

nonnegative a.e. in \Omega . Next, let F :L2(\Omega )\rightarrow H - 1(\Omega ) be a possibly nonlocal operator
that satisfies

\| F [z]\| H - 1(\Omega ) \leq c1 (\| z\| \Omega + 1) \forall z \in L2(\Omega ),(2.1a)

\| F [m1] - F [m2]\| H - 1(\Omega ) \leq c2\| m1  - m2\| \Omega \forall m1,m2 \in L2(\Omega ),(2.1b)

where c1, c2 \geq 0 are constants. We will say that F is strictly monotone if

\langle F [m1] - F [m2],m1  - m2\rangle H - 1\times H1
0
\leq 0 =\Rightarrow m1 =m2(2.2)

whenever m1,m2 \in H1
0 (\Omega ). Note that although the domain of F is L2(\Omega ), the mono-

tonicity condition (2.2) is needed only for arguments in the smaller space H1
0 (\Omega ).

Example 1. The conditions (2.1a), (2.1b), and (2.2) are satisfied by a broad
class of operators. For example, this class includes local operators F : L2(\Omega ) \rightarrow 
L2(\Omega ) of the form F [z](x) := f(z(x)), x \in \Omega , z \in L2(\Omega ), where the function f :
\BbbR \rightarrow \BbbR is strictly monotone and Lipschitz continuous. This class also includes some
nonlocal operators, such as F := ( - \Delta ) - 1 : L2(\Omega ) \rightarrow H1

0 (\Omega ), where ( - \Delta ) - 1 denotes
the inverse Laplacian with a homogeneous Dirichlet boundary condition. In this
case, F is strongly monotone with respect to the H - 1(\Omega )-norm and is thus strictly
monotone in L2(\Omega ). The conditions above also allow some operators of the differential
type. For instance, we can have F : L2(\Omega )\rightarrow H - 1(\Omega ) defined by \langle F [z], \phi \rangle H - 1\times H1

0
:=

 - 
\int 
\Omega 
z\bfitv \cdot \nabla \phi dx for all z \in L2(\Omega ) and \phi \in H1

0 (\Omega ), where \bfitv \in C1(\Omega ;\BbbR n) is a vector
field that satisfies \nabla \cdot \bfitv > 0 in \Omega . In this case, \langle F [m1]  - F [m2],m1  - m2\rangle H - 1\times H1

0
=

1
2

\int 
\Omega 
(\nabla \cdot \bfitv )(m1  - m2)

2dx for all m1 and m2 in H1
0 (\Omega ), so F is strictly monotone on

H1
0 (\Omega ). This is an example where it is helpful to require monotonicity only on the

smaller space H1
0 (\Omega ).

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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142 YOHANCE A. P. OSBORNE AND IAIN SMEARS

Recall that the Hamiltonian H : \Omega \times \BbbR n \rightarrow \BbbR is defined by (1.2) and that b and f
are uniformly continuous on \Omega \times \scrA with \scrA a compact metric space. The Hamiltonian
H then satisfies the bounds

| H(x,p)| \leq c3 (| p| + 1) \forall (x,p)\in \Omega \times \BbbR n,(2.3a)

| H(x,p) - H(x, q)| \leq c4| p - q| \forall (x,p, q)\in \Omega \times \BbbR n \times \BbbR n,(2.3b)

with c3 := max\{ \| b\| C(\Omega \times \scrA ;\BbbR n),\| f\| C(\Omega \times \scrA )\} and c4 := \| b\| C(\Omega \times \scrA ;\BbbR n). It is then clear

that the mapping v \mapsto \rightarrow H(\cdot ,\nabla v) is Lipschitz continuous from H1(\Omega ) into L2(\Omega ).
Given arbitrary sets A and B, an operator \scrM that maps each point x \in A to a

subset of B is called a set-valued map from A to B, and we write \scrM :A\rightrightarrows B. For the
Hamiltonian given by (1.2), its pointwise Moreau--Rockafellar partial subdifferential
with respect to p is the set-valued map \partial pH : \Omega \times \BbbR n \rightrightarrows \BbbR n defined by

\partial pH(x,p) :=
\Bigl\{ 
\~b\in \BbbR n :H(x, q)\geq H(x,p) +\~b \cdot (q - p) \forall q \in \BbbR n

\Bigr\} 
.(2.4)

Note that \partial pH(x,p) is nonempty for all x\in \Omega and p\in \BbbR n because H is real-valued and
convex in p for each fixed x\in \Omega . Note also that for the special case of a differentiable
convex function, the (partial) subdifferential at a point is simply the singleton set
containing the value of the (partial) derivative at the point. Furthermore, the subdif-
ferential \partial pH is uniformly bounded since (2.3b) implies that for all (x,p) \in \Omega \times \BbbR n,
the set \partial pH(x,p) is contained in the closed ball of radius c4 = \| b\| C(\Omega \times \scrA ;\BbbR n) centered
at the origin.

Given a function v \in W 1,1(\Omega ), we say that a real-valued vector field \~b : \Omega \rightarrow 
\BbbR n is a measurable selection of \partial pH(\cdot ,\nabla v) if \~b is Lebesgue measurable and \~b(x) \in 
\partial pH(x,\nabla v(x)) for a.e. x\in \Omega . The uniform boundedness of the subdifferential sets im-
plies that any measurable selection \~b of \partial pH(\cdot ,\nabla v) must belong to L\infty (\Omega ;\BbbR n). Thus,
the correspondence between a function v \in W 1,1(\Omega ) and the set of all measurable
selections of \partial pH(\cdot ,\nabla v) defines a set-valued map between W 1,1(\Omega ) and L\infty (\Omega ;\BbbR n).

Definition 2.1. Let H be the function given by (1.2). We define the set-valued
map DpH : W 1,1(\Omega )\rightrightarrows L\infty (\Omega ;\BbbR n) by

DpH[v] :=
\Bigl\{ 
\~b\in L\infty (\Omega ;\BbbR n) : \~b(x)\in \partial pH(x,\nabla v(x)) for a.e. x\in \Omega 

\Bigr\} 
.

We show in Lemma 4.3 below that DpH[v] is nonempty for all v in W 1,1(\Omega ).

3. Continuous problem and main results.

3.1. Problem statement. We now introduce the notion of a weak solution for
the MFG PDI (1.4).

Definition 3.1 (weak solution of (1.4)). We say that a pair (u,m) \in H1
0 (\Omega )\times 

H1
0 (\Omega ) is a weak solution of (1.4) if there exists a vector field \~b\ast \in DpH[u] such that

for all \psi ,\phi \in H1
0 (\Omega ), there hold\int 
\Omega 

\nu \nabla u \cdot \nabla \psi +H(x,\nabla u)\psi + \kappa u\psi dx= \langle F [m],\psi \rangle H - 1\times H1
0
,(3.1a) \int 

\Omega 

\nu \nabla m \cdot \nabla \phi +m\~b\ast \cdot \nabla \phi + \kappa m\phi dx= \langle G,\phi \rangle H - 1\times H1
0
.(3.1b)

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

02
/2

8/
24

 to
 2

.1
02

.7
.5

5 
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



MEAN FIELD GAME PARTIAL DIFFERENTIAL INCLUSIONS 143

The weak formulation of the problem given in Definition 3.1 can be reformulated
in terms of a PDI. In particular, recalling the definition of the set-valued map DpH
in Definition 2.1 above, for given m,u\in H1

0 (\Omega ), let

div (mDpH[u])

(3.2)

:=

\biggl\{ 
g \in H - 1(\Omega ) : \exists \~b\in DpH[u] s.t. \langle g,\phi \rangle H - 1\times H1

0
= - 

\int 
\Omega 

m\~b\cdot \nabla \phi dx \forall \phi \in H1
0 (\Omega )

\biggr\} 
.

In other words, the set div (mDpH[u]) is the set of all distributions in H - 1(\Omega ) of the
form div(m\~b), where \~b\in DpH[u]. Then the definition of a weak solution in Definition
3.1 is equivalent to requiring that (u,m) \in H1

0 (\Omega )\times H1
0 (\Omega ) solves the following pair

of conditions, which hold in the sense of distributions in H - 1(\Omega ):

 - \nu \Delta u+H(x,\nabla u) + \kappa u= F [m],(3.3a)

 - \nu \Delta m+ \kappa m - G(x)\in div (mDpH[u]) .(3.3b)

Therefore, the PDI system (3.3) is the weak formulation of (1.4).

Remark 3.2. In [17, Definition 3.1], Ducasse, Mazanti, and Santambrogio propose
a definition of weak solutions for problems with Hamiltonians of the form H(m,p) :=
\kappa (m)| p| . In particular, their definition for a weak solution (u,m) involves an advective
velocity term V in the KFP equation replaced by a possibly nonunique vector field V
that satisfies the conditions (in the present notation)

\| V \| L\infty (\Omega ;\BbbR n) \leq \kappa (m), V (x) \cdot \nabla u(x) = \kappa (m)| \nabla u(x)| for a.e. x\in \Omega .(3.4)

Although it is not stated therein, it is straightforward to check that the conditions
in (3.4) are equivalent to requiring that V belongs to the partial subdifferential
\partial pH(m,\nabla u). Thus, modulo the dependence of the Hamiltonian on the density of
players, our approach significantly generalizes that of [17] to more general nondiffer-
entiable Hamiltonians.

3.2. Main results. The first main result for the continuous problem (3.1) is the
following.

Theorem 3.3 (existence of weak solutions). There exists a pair (u,m)\in H1
0 (\Omega )\times 

H1
0 (\Omega ) that is a weak solution of (1.4) in the sense of Definition 3.1 satisfying

\| m\| H1(\Omega ) \leq C\ast \| G\| H - 1(\Omega ),(3.5)

\| u\| H1(\Omega ) \leq C\ast \ast 
\Bigl( 
\| G\| H - 1(\Omega ) + \| f\| C(\Omega \times \scrA ) + 1

\Bigr) 
(3.6)

for some constants C\ast ,C\ast \ast \geq 0 depending only on n, \Omega , \nu , \| b\| C(\Omega \times \scrA ;\BbbR n), \kappa , and c1.

The second main result ensures the uniqueness of weak solutions of (1.4) under a
monotonicity condition on F that is similar to the one that was used by Lasry and
Lions in [33]. Since we also consider problems with source terms, we shall further
require nonnegativity of G in the sense of distributions.

Theorem 3.4 (uniqueness of weak solutions). If F is strictly monotone and G is
nonnegative in the sense of distributions in H - 1(\Omega ), then there exists a unique weak
solution pair (u,m)\in H1

0 (\Omega )\times H1
0 (\Omega ) to (1.4) in the sense of Definition 3.1.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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144 YOHANCE A. P. OSBORNE AND IAIN SMEARS

Remark 3.5. To avoid any confusion, we stress that Theorem 3.4 guarantees the
uniqueness of the weak solution pair (u,m) under the relevant hypotheses, although
the advective vector field \~b\in DpH[u] that appears in Definition 3.1 may be nonunique.
Note also that the monotonicity condition on F is similar to the monotonicity con-
dition on the coupling term used by Lasry and Lions in [31] for classical solutions to
ergodic mean field game systems with C1 Hamiltonians.

3.3. An example. Let us consider an example problem that motivates the def-
inition of Definition 2.1 and illustrates some challenges that arise in the case of non-
differentiable Hamiltonians.

Example 2. For simplicity, we consider a system in one space dimension,

 - uxx +H(ux) = F [m],  - mxx  - G(x)\in (m\partial pH(ux))x in \Omega ,(3.7)

where \Omega = ( - 1,1) \subset \BbbR , along with the homogeneous Dirichlet boundary conditions
u=m= 0 on \partial \Omega = \{  - 1,1\} . We consider a MFG where the control set of the players is
\scrA = \{  - 1,1\} , where the drift b and running-cost component f are given by b(x,\alpha ) = \alpha 
and f(x,\alpha ) = 0 for all \alpha \in \scrA and x\in \Omega . The resulting Hamiltonian in (1.2) therefore
simplifies to H(ux) = sup\alpha \in \scrA (\alpha ux) = | ux| . Let G(x) = \chi [ - 1/2,1/2], where \chi [ - 1/2,1/2]

denotes the indicator function for the interval [ - 1/2,1/2], and let the coupling term
F [z] := z  - h+ 1 - \chi [ - 1/2,1/2] for all z \in L2(\Omega ), where the function h is defined by

h(x) :=

\Biggl\{ 
1
2

\bigl( 
1 - e| x|  - 1

\bigr) 
if x\in [ - 1, - 1/2]\cup [1/2,1],

1
2

\Bigl( 
5
4  - e - 

1
2  - x2

\Bigr) 
if x\in [ - 1/2,1/2].

(3.8)

Note that G is nonnegative and F is strongly monotone on L2(\Omega ), so (3.7) admits a
unique solution. The problem can be solved analytically, and the exact solution is

m(x) = h(x), u(x) =

\Biggl\{ 
1 - | x| + e - 

1
2  - e

1
2 - | x| if x\in [ - 1, - 1/2]\cup [1/2,1],

e - 
1
2  - 1

2 if x\in [ - 1/2,1/2].
(3.9)

Furthermore, we find that the unique function \~b\ast \in DpH[u], for which  - mxx  - 
(\~b\ast m)x =G in \Omega is given by \~b\ast | [ - 1, - 1/2] = 1, \~b\ast | ( - 1/2,1/2) = 0, and \~b\ast | [1/2,1] = - 1. To

see that \~b\ast is unique, note that if \^b\ast \in L\infty (\Omega ) also satisfies  - mxx  - (\^b\ast m)x =G in \Omega ,
then m(\~b\ast  - \^b\ast ) is constant in ( - 1,1). Since m satisfies the homogeneous Dirichlet
condition on the boundary, we deduce that the constant must be zero, and since m is
nonvanishing inside \Omega , we find that \~b\ast =\^b\ast a.e. in \Omega ; thus, \~b\ast is unique.

This example illustrates several points. First, the solution m is not continuously
differentiable in the interior of the domain, and thus m /\in H2(\Omega ) despite the fact that
F [m] and G are in L2(\Omega ). This is due to the jumps in the vector field b\ast at x=\pm 1/2.
This example shows how loss of smoothness of the solution can occur in the interior
of the domain for problems with nondifferentiable Hamiltonians.

The second point concerns the motivation for choosing the subdifferential DpH[u]
as the appropriate set for defining the possible advective fields in Definition 2.1. Ob-
serve that in the region ( - 1/2,1/2), the set of optimal feedback controls is the whole
control set \scrA = \{  - 1,1\} since ux = 0 in ( - 1/2,1/2). However \~b\ast (x) /\in \scrA for all
x \in ( - 1/2,1/2); i.e., \~b\ast does not coincide with any optimal feedback policy in this
region. Since \~b\ast is unique in this example, it is then clear that in Definition 2.1, we
cannot generally require that \~b\ast necessarily belong to smaller sets than DpH[u], such
as the set of drifts generated by optimal feedback policies.
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4. Analysis of the continuous problem.

4.1. Preliminary results. We begin by introducing the pointwise maximizing
set of the Hamiltonian. Define the set-valued map \Lambda : \Omega \times \BbbR n \rightrightarrows \scrA by

\Lambda (x,p) := argmax\alpha \in \scrA \{ b(x,\alpha ) \cdot p - f(x,\alpha )\} \forall (x,p)\in \Omega \times \BbbR n.(4.1)

Note that \Lambda (x,p) is nonempty for all x \in \Omega and all p \in \BbbR n since \scrA is compact and
the functions b and f are uniformly continuous. The following lemma, which is a
consequence of [7, Proposition 4.4], shows the link between the sets of maximizing
controls and the subdifferentials of the Hamiltonian.

Lemma 4.1. Let H be given by (1.2). Then

\partial pH(x,p) = conv \{ b(x,\alpha ) : \alpha \in \Lambda (x,p)\} \forall (x,p)\in \Omega \times \BbbR n.(4.2)

Remark 4.2. Lemma 4.1 offers some insight into the significance of the term \~b\ast 
appearing in Definition 2.1 from a modeling perspective. Indeed, it shows that for
a.e. x \in \Omega , \~b\ast (x) is in the closed convex hull of the set of drifts generated by the
optimal controls from \Lambda (x,\nabla u(x)). This suggests that the players in the same region
of state space can make distinct choices among nonunique optimal controls, leading
to an aggregate advective flux for the player density.

To show thatDpH possess nonempty images, we introduce an auxiliary set-valued
map. For a given v \in W 1,1(\Omega ), let \Lambda [v] denote the set of all Lebesgue measurable
functions \alpha \ast : \Omega \rightarrow \scrA that satisfy \alpha \ast (x) \in \Lambda (x,\nabla v(x)) for a.e. x \in \Omega . We will refer to
each element of \Lambda [v] as a measurable selection of \Lambda (\cdot ,\nabla v(\cdot )). It is known that \Lambda [v]
is nonempty for each v \in W 1,1(\Omega ) (see, e.g., [36, Theorem 10]), where the proof of
the existence of measurable selections ultimately rests on the Kuratowski and Ryll--
Nardzewski selection theorem [30]. We now show that the set-valued map DpH has
nonempty images.

Lemma 4.3. For each v \in W 1,1(\Omega ), the set DpH[v] is a nonempty subset of
L\infty (\Omega ;\BbbR n), and we have the uniform bound

sup
v\in W 1,1(\Omega )

\Biggl[ 
sup

\~b\in DpH[v]

\| \~b\| L\infty (\Omega ;\BbbR n)

\Biggr] 
\leq \| b\| C(\Omega \times \scrA ;\BbbR n).(4.3)

Proof. Let v \in W 1,1(\Omega ) be given. We need to showDpH[v] is nonempty. Nonempti-
ness of \Lambda [v] implies that there exists a Lebesgue measurable map \alpha \ast : \Omega \rightarrow \scrA such
that \alpha \ast (x)\in \Lambda (x,\nabla v(x)) for a.e. x\in \Omega , and thus H(x,\nabla v(x)) = b(x,\alpha \ast (x)) \cdot \nabla v(x) - 
f(x,\alpha \ast (x)) for a.e. x \in \Omega . Now suppose q \in \BbbR n is arbitrary. We find by definition of
H(x, q) that for a.e. x\in \Omega ,

H(x, q)\geq b(x,\alpha \ast (x)) \cdot q - f(x,\alpha \ast (x))

= b(x,\alpha \ast (x)) \cdot q+H(x,\nabla v(x)) - b(x,\alpha \ast (x)) \cdot \nabla v(x)
=H(x,\nabla v(x)) + b(x,\alpha \ast (x)) \cdot (q - \nabla v(x)) .

It follows then that b(x,\alpha \ast (x))\in \partial pH(x,\nabla v(x)) for a.e. x\in \Omega . Furthermore, we have
b(\cdot , \alpha \ast (\cdot )) \in L\infty (\Omega ;\BbbR n) since \| b(\cdot , \alpha \ast (\cdot ))\| L\infty (\Omega ;\BbbR n) \leq \| b\| C(\Omega \times \scrA ;\BbbR n). Hence, DpH[v] is
nonempty, as claimed. Finally, the bound (4.3) follows immediately from the fact that
for all (x,p)\in \Omega \times \BbbR n, the subdifferential set \partial pH(x,p) is contained in the closed ball
of radius \| b\| C(\Omega \times \scrA ;\BbbR n) centered at the origin.

The following lemma shows that DpH has a certain closure property with respect
to convergent sequences of its arguments and their measurable selections.
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146 YOHANCE A. P. OSBORNE AND IAIN SMEARS

Lemma 4.4. Suppose \{ vj\} j\in \BbbN \subset H1(\Omega ), \{ \~bj\} j\in \BbbN \subset L\infty (\Omega ;\BbbR n) are sequences such
that \~bj \in DpH[vj ] for all j \in \BbbN . If vj \rightarrow v in H1(\Omega ) and \~bj \rightharpoonup 

\ast \~b in L\infty (\Omega ;\BbbR n) as
j\rightarrow \infty , then \~b\in DpH[v].

Proof. Introduce the set Y :=
\bigl\{ 
v \in L2(\Omega ) : v(x)\geq 0 for a.e. x\in \Omega 

\bigr\} 
of nonnegative

a.e. functions in L2(\Omega ), and note that Mazur's theorem implies that Y is weakly closed
in L2(\Omega ) since it is convex and strongly closed. Let q \in \BbbR n be a fixed but arbitrary
vector. Define the sequence of real-valued functions \{ \omega j\} \infty j=1 \subset L2(\Omega ) by

\omega j(x) :=H(x, q) - H(x,\nabla vj(x)) - \~bj(x) \cdot (q - \nabla vj(x))(4.4)

for each j \in \BbbN and a.e. x\in \Omega . It follows from the definitions of the subdifferential sets
(2.4) and Definition 2.1 that \omega j \in Y for each j \geq 1. The hypothesis of strong con-
vergence of \{ vj\} j\in \BbbN and weak-\ast convergence of \{ \~bj\} j\in \BbbN implies the weak convergence
\omega j \rightharpoonup \omega in L2(\Omega ), where

\omega (x) :=H(x, q) - H(x,\nabla v(x)) - \~b(x) \cdot (q - \nabla v(x))(4.5)

for a.e. x \in \Omega . Since Y is weakly closed, it follows that \omega \in Y . Since q \in \BbbR n is
arbitrary and since \BbbR n is separable, we conclude that \~b\in DpH[v].

4.2. Existence of weak solutions. In this section, we prove Theorem 3.3. To
begin, we introduce notation describing a collection of linear differential operators in
weak form. Given C0 \geq 0, let \scrG (C0) denote the set of all operators L : H1

0 (\Omega ) \rightarrow 
H - 1(\Omega ) of the form

\langle Lu,v\rangle H - 1\times H1
0
=

\int 
\Omega 

\nu \nabla u \cdot \nabla v+\~b \cdot \nabla uv+ cuv dx,(4.6)

where the coefficients satisfy

\| \~b\| L\infty (\Omega ;\BbbR n) + \| c\| L\infty (\Omega ) \leq C0 and c\geq 0 a.e. in \Omega .(4.7)

Moreover, given an operator L \in \scrG (C0) for some C0 \geq 0, we define L\ast : H1
0 (\Omega ) \rightarrow 

H - 1(\Omega ), the formal adjoint of L, by \langle L\ast w,v\rangle H - 1\times H1
0
:= \langle Lv,w\rangle H - 1\times H1

0
for all w,v \in 

H1
0 (\Omega ). The invertibility of operators L and their adjoints L\ast from the class \scrG (C0)

is well known and follows from the the Fredholm alternative together with the weak
maximum principle and the comparison principle (see [20, Chapters 8 and 10]). In the
analysis below, we will use the following stronger result, which shows that for fixed
C0, there is a uniform bound on the norm of the inverses of all operators and their
adjoints from the class \scrG (C0).

Lemma 4.5. Let C0 \geq 0 be given. For every operator L \in \scrG (C0), both L and
L\ast are boundedly invertible as mappings from H1

0 (\Omega ) to H - 1(\Omega ), and there exists a
constant C1 > 0 depending on only \Omega , n, \nu , and C0 such that

sup
L\in \scrG (C0)

max

\biggl\{ \bigm\| \bigm\| L - 1
\bigm\| \bigm\| 
\scrL (H - 1(\Omega ),H1

0 (\Omega )) ,
\bigm\| \bigm\| \bigm\| L\ast  - 1

\bigm\| \bigm\| \bigm\| 
\scrL (H - 1(\Omega ),H1

0 (\Omega ))

\biggr\} 
\leq C1.(4.8)

Moreover, we will use the following result, which guarantees both well-posedness
for a class of HJB equations in weak form and a useful continuity property.
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MEAN FIELD GAME PARTIAL DIFFERENTIAL INCLUSIONS 147

Lemma 4.6 (well-posedness of the HJB equation). Let m\in L2(\Omega ) be given. Then
there exists a unique u\in H1

0 (\Omega ) such that\int 
\Omega 

\nu \nabla u \cdot \nabla \psi +H(x,\nabla u)\psi + \kappa u\psi dx= \langle F [m],\psi \rangle H - 1\times H1
0
\forall \psi \in H1

0 (\Omega ).(4.9)

There exists a constant C2 depending only on \Omega , n, \nu , \kappa , \| b\| C(\Omega \times \scrA ;\BbbR n), and c1 such
that

\| u\| H1(\Omega ) \leq C2

\Bigl( 
\| m\| \Omega + \| f\| C(\Omega \times \scrA ) + 1

\Bigr) 
.(4.10)

Moreover, the solution u depends continuously on m; i.e., if \{ mj\} j\in \BbbN \subset L2(\Omega ) is

such that mj \rightarrow m in L2(\Omega ) as j \rightarrow \infty , then the corresponding sequence of solutions
\{ uj\} j\in \BbbN \subset H1

0 (\Omega ) to the problem (4.9) converges in H1
0 (\Omega ) to the unique solution u of

(4.9).

The proofs of Lemmas 4.5 and 4.6 are given in Appendix A for completeness. We can
now show the existence of weak solutions to (1.4) in the sense of Definition 3.1 by a
fixed point argument.

Proof of Theorem 3.3. We start by developing an iterative sequence of function
pairs \{ (uj ,mj)\} j\in \BbbN in H1

0 (\Omega )\times H1
0 (\Omega ) as follows: Let m1 \in H1

0 (\Omega ) be given. Then for
each j \geq 1, we define inductively uj , mj+1 \in H1

0 (\Omega ) as the unique solutions of\int 
\Omega 

\nu \nabla uj \cdot \nabla \psi +H(x,\nabla uj)\psi + \kappa uj\psi dx= \langle F [mj ],\psi \rangle H - 1\times H1
0

\forall \psi \in H1
0 (\Omega ),(4.11)

\int 
\Omega 

\nu \nabla mj+1 \cdot \nabla \phi +mj+1
\~bj \cdot \nabla \phi + \kappa mj+1\phi dx= \langle G,\phi \rangle H - 1\times H1

0
\forall \phi \in H1

0 (\Omega ),

(4.12)

where \~bj is chosen from DpH[uj ]. Note that the unique solvability of (4.11) is given
by Lemma 4.6. Then the existence of a choice \~bj \in DpH[uj ] is assured by Lemma 4.3,
and the unique solvability of (4.12) follows from Lemma 4.5. We consequently obtain
sequences \{ mj\} j\in \BbbN \subset H1

0 (\Omega ), \{ uj\} j\in \BbbN \subset H1
0 (\Omega ), and \{ \~bj\} j\in \BbbN \subset L\infty (\Omega ;\BbbR n). Note that

the sequence \{ \~bj\} j\in \BbbN is uniformly bounded as a result of (4.3). Since L1(\Omega ;\BbbR n) is
separable and thus the unit ball of L\infty (\Omega ;\BbbR n) is weak-\ast sequentially compact, we
may pass to a subsequence, without change of notation, that satisfies \~bj \rightharpoonup 

\ast \~b\ast in
L\infty (\Omega ;\BbbR n) for some \~b\ast \in L\infty (\Omega ;\BbbR n) as j\rightarrow \infty . Furthermore, Lemma 4.5 implies that
there exists a constant C1 such that

\| mj+1\| H1(\Omega ) \leq C1\| G\| H - 1(\Omega ) \forall j \in \BbbN ,(4.13)

and thus \{ mj\} j\in \BbbN is uniformly bounded in H1
0 (\Omega ). By the Rellich--Kondrachov com-

pactness theorem, we may pass to a further subsequence, without change of notation,
that satisfies mj \rightharpoonup m in H1

0 (\Omega ) and mj \rightarrow m in L2(\Omega ) for some m\in H1
0 (\Omega ) as j\rightarrow \infty .

Hence, from (4.13) and the weak convergence of \{ mj\} j\in \BbbN to m in H1
0 (\Omega ), we find

\| m\| H1(\Omega ) \leq C1\| G\| H - 1(\Omega ).(4.14)

Moreover, since \~bj \rightharpoonup 
\ast \~b\ast in L\infty (\Omega ;\BbbR n) and since mj \rightarrow m in L2(\Omega ), we have mjbj \rightharpoonup 

m\~b\ast in L2(\Omega ;\BbbR n) as j\rightarrow \infty . Therefore, we may pass to the limit in (4.12) to find that\int 
\Omega 

\nu \nabla m \cdot \nabla \phi +m\~b\ast \cdot \nabla \phi + \kappa m\phi dx= \langle G,\phi \rangle H - 1\times H1
0

\forall \phi \in H1
0 (\Omega ).(4.15)
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148 YOHANCE A. P. OSBORNE AND IAIN SMEARS

Due to the property of continuous dependence of solutions of the HJB equation on
the data, as stated in Lemma 4.6, the sequence uj converges to u \in H1

0 (\Omega ), which
solves \int 

\Omega 

\nu \nabla u \cdot \nabla \psi +H(x,\nabla u)\psi + \kappa u\psi dx= \langle F [m],\psi \rangle H - 1\times H1
0

\forall \psi \in H1
0 (\Omega ).(4.16)

The fact that \~b\ast \in DpH[u] follows directly from Lemma 4.4. Thus, it is seen from
(4.15) and (4.16) that (u,m) is a weak solution pair of the MFG PDI system in the
sense of Definition 3.1. The bounds (3.5) and (3.6) then follow directly from (4.14)
and (4.10).

4.3. Uniqueness of weak solutions. Using Definition 2.1, in addition to a
strict monotonicity condition on F and the nonnegativity of G in the sense of dis-
tributions in H - 1(\Omega ), we obtain the uniqueness of weak solutions in the sense of
Definition 3.1 through a monotonicity argument similar to [33].

Proof of Theorem 3.4. Suppose that there exist (ui,mi), i \in \{ 1,2\} , which each
satisfy (3.1) with\int 

\Omega 

\nu \nabla ui \cdot \nabla \psi +H(x,\nabla ui)\psi + \kappa ui\psi dx= \langle F [mi],\psi \rangle H - 1\times H1
0

\forall \psi \in H1
0 (\Omega ),(4.17a) \int 

\Omega 

\nu \nabla mi \cdot \nabla \phi +mi
\~bi \cdot \nabla \phi + \kappa mi\phi dx= \langle G,\phi \rangle H - 1\times H1

0
\forall \phi \in H1

0 (\Omega )(4.17b)

for some \~bi \in DpH[ui]. Since G is nonnegative in the sense of distributions in H - 1(\Omega ),
the comparison principle (see the proof of [20, Theorem 10.7]) applied to (4.17b)
implies that mi \geq 0 a.e. in \Omega for each i \in \{ 1,2\} . After choosing as test functions
\psi =m1  - m2 and \phi = u1  - u2 in (4.17) and subtracting the equations, we eventually
find that \int 

\Omega 

m1\lambda 12 +m2\lambda 21 dx= \langle F [m1] - F [m2],m1  - m2\rangle H - 1\times H1
0
,(4.18)

where the functions \lambda ij are defined by

\lambda ij :=H(\cdot ,\nabla ui) - H(\cdot ,\nabla uj) +\~bi \cdot \nabla (uj  - ui), i, j \in \{ 1,2\} .(4.19)

By definition of DpH[ui], in particular that \~bi(x) \in \partial pH(x,\nabla ui(x)) for a.e. x \in 
\Omega , we see that \lambda ij \leq 0 a.e. in \Omega for i, j \in \{ 1,2\} . Therefore, (4.18) implies that
\langle F [m1]  - F [m2],m1  - m2\rangle H - 1\times H1

0
\leq 0, and thus the strict monotonicity condition

(2.2) on F implies that m1 = m2. Consequently, u1 and u2 satisfy (4.17a) with
identical right-hand-side F [m1] = F [m2]. Therefore, Lemma 4.6 implies that u1 =
u2. This shows that there is at most one weak solution to (1.4) in the sense of
Definition 3.1.

Remark 4.7. In cases where the MFG PDI (3.1) admits a unique solution (u,m),
the collection of transport vectors \~b\ast \in DpH[u] for which (3.1) holds constitutes an
equivalence class of vector fields under the following equivalence relation: For vector
fields \~b1,\~b2 \in DpH[u],

\~b1 \sim \~b2 if and only if

\int 
\Omega 

m\~b1 \cdot \nabla \phi dx=
\int 
\Omega 

m\~b2 \cdot \nabla \phi dx \forall \phi \in H1
0 (\Omega ).

Therefore, whenever \~b1,\~b2 are in the above equivalence class, div(m\~b1  - m\~b2) = 0 in
the sense of distributions in H - 1(\Omega ). For instance, in three space dimensions, this
implies that the vector m\~b1  - m\~b2 is the curl of a vector potential in a distributional
sense.
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5. Monotone continuous Galerkin finite element scheme. In this section,
we introduce a monotone finite element scheme for approximating solutions to the
weak formulation (3.1). In the following, we shall further assume that \Omega is a poly-
hedron in addition to the earlier assumption that it is a bounded connected open set
with Lipschitz boundary.

5.1. Notation. Amesh \scrT is a collection of closed n-dimensional simplices, called
elements, K with nonoverlapping interiors that satisfy \Omega =

\bigcup 
K\in \scrT K. Each vertex of

an element K of a given mesh is called a node of the element. A face of an element
K \in \scrT is the convex hull of a collection of n nodes of K, which has positive (n - 1)-
dimensional Hausdorff measure (cf. [16]). For instance, when the space dimension
n= 2, each face of an element K \in \scrT is one of its three edges. We will always assume
that a given mesh \scrT is conforming (or often called matching) [16]; i.e., for any element
K \in \scrT with nodes \{ x0, \cdot \cdot \cdot , xn\} , the set \partial K\cap \partial K \prime for each element K \prime \in \scrT , K \prime \not =K, is
the convex hull of a (possibly empty) subset of \{ x0, \cdot \cdot \cdot , xn\} . Let \{ \scrT k\} k\in \BbbN be a given
sequence of conforming meshes. For each k \in \BbbN , let the mesh size of a given mesh \scrT k
be defined by hk :=maxK\in \scrT k

diam(K). We assume that hk \rightarrow 0 as k\rightarrow \infty . We assume
that \{ \scrT k\} k\in \BbbN is shape-regular; i.e., there exists a real-number \delta > 1, independent of
k \in \BbbN , such that \forall k \in \BbbN , \forall K \in \scrT k, diam(K) \leq \delta \rho K , where \rho K denotes the radius of
the largest inscribed ball in the element K. We assume in addition that the family of
meshes \{ \scrT k\} k\in \BbbN is nested; i.e., for each k \in \BbbN , the mesh \scrT k+1 is obtained from \scrT k via
an admissible subdivision of each element of \scrT k into simplices.

Given an element K, we let \scrP 1(K) denote the vector space of n-variate real-
valued polynomials of total degree 1 that are defined on K. The discretization of the
continuous problem (3.1) is based on the following finite element spaces:

Vk := \{ v \in H1
0 (\Omega ) : v| K \in \scrP 1(K) \forall K \in \scrT k\} \forall k \in \BbbN .

Given k \in \BbbN , the space Vk admits a unique nodal basis of hat functions that we denote
by \{ \xi 1, \cdot \cdot \cdot , \xi Nk

\} , which corresponds to a maximal collection of nodes \{ x1, \cdot \cdot \cdot , xNk
\} of

the mesh \scrT k, such that \xi i(xj) = \delta ij for i, j \in \{ 1, \cdot \cdot \cdot ,Nk\} , where \delta ij is the Kronecker
delta. Moreover, Vk inherits the standard norm onH1

0 (\Omega ), and we denote this norm by
\| \phi \| Vk

:= \| \phi \| H1(\Omega ) for \phi \in Vk. Note that due to nestedness of the sequence of meshes
\{ \scrT k\} k\in \BbbN , Vk is a closed subspace of Vk+1 for each k \in \BbbN . In addition, the union

\bigcup 
k\in \BbbN Vk

is dense in H1
0 (\Omega ). We let V \ast 

k denote the space of continuous linear functionals on
Vk with the standard norm denoted by \| \cdot \| V \ast 

k
. For any operator \scrZ : Vk \rightarrow V \ast 

k , we
define the adjoint operator \scrZ \ast : Vk \rightarrow V \ast 

k by \langle \scrZ \ast w,v\rangle V \ast 
k \times Vk

:= \langle \scrZ v,w\rangle V \ast 
k \times Vk

for all
w,v \in Vk.

Let k \in \BbbN be given. For K \in \scrT k, we denote by \{ \psi K
k,0, \cdot \cdot \cdot ,\psi K

k,n\} \subset Vk the set of
nodal basis functions associated with the n+ 1 nodes of K and let

\sigma k
K := diam(K) min

0\leq i\leq n

\bigm| \bigm| \nabla \psi K
k,i

\bigm| \bigm| , \sigma k := min
K\in \scrT k

\sigma k
K .(5.1)

We note that due to the shape regularity of the family of meshes \{ \scrT k\} k\in \BbbN , there exist
constants \sigma ,\sigma > 0, independent of k \in \BbbN , such that

\sigma \leq \sigma k \leq \sigma \forall k \in \BbbN .

We assume in addition, for subsections 5.2 and 5.3 and section 6, that the family
of meshes \{ \scrT k\} k\in \BbbN is strictly acute [12] in the following sense: There exists \theta \in (0, \pi /2),
independent of k \in \BbbN , such that for each k \in \BbbN , the nodal basis \{ \xi 1, \cdot \cdot \cdot , \xi Nk

\} of Vk
satisfies
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150 YOHANCE A. P. OSBORNE AND IAIN SMEARS

\nabla \xi i \cdot \nabla \xi j | K \leq  - sin(\theta ) | \nabla \xi i| K | | \nabla \xi j | K | \forall 1\leq i, j \leq Nk, i \not = j,\forall K \in \scrT .(5.2)

The condition (5.2) can be interpreted geometrically. For instance, in two space
dimensions, the strict acuteness condition (5.2) indicates that the largest angle of a
given triangle K \in \scrT k is at most \pi 

2  - \theta , while in three space dimensions, (5.2) indicates
that each angle formed by the six pairs of faces of any tetrahedron K \in \scrT k is at most
\pi 
2  - \theta (see [12]).

5.2. A monotone FEM. The proof of the uniqueness of weak solutions of
(3.1) uses the comparison principle of elliptic operators (see section 4). In order to
preserve this approach on the discrete level, we consider here approximations by a
monotone FEM that satisfies a discrete maximum principle (see, e.g., [15]). As such,
we will consider a finite element discretization of (3.1) that employs the method of
artificial diffusion on strictly acute meshes [12, 28] to ensure nonnegativity of the
approximations for the density.

We introduce a family of artificial diffusion coefficients that will be used in the
finite element discretization of (3.1). Let \mu > 1 be a fixed constant. Then for each
k \in \BbbN , we define the artificial diffusion coefficient \gamma k : \Omega \rightarrow \BbbR elementwise over \scrT k by

\gamma k| K :=max

\Biggl( 
\mu 
\| b\| C(\Omega \times \scrA ;\BbbR n)diam(K) + \kappa diam(K)2

\sigma k sin(\theta )
 - \nu ,0

\Biggr) 
\forall K \in \scrT k.(5.3)

With the artificial diffusion coefficients \{ \gamma k\} k\in \BbbN given by (5.3), the P1-continuous
Galerkin finite element discretization of (3.1) that we consider is the following: Given
k \in \BbbN , find (uk,mk)\in Vk \times Vk such that there exists \~bk \in DpH[uk] satisfying

\int 
\Omega 

(\nu + \gamma k)\nabla uk \cdot \nabla \psi +H(x,\nabla uk)\psi + \kappa uk\psi dx= \langle F [mk],\psi \rangle H - 1\times H1
0

\forall \psi \in Vk,

(5.4a)

\int 
\Omega 

(\nu + \gamma k)\nabla mk \cdot \nabla \phi +mk
\~bk \cdot \nabla \phi + \kappa mk\phi dx= \langle G,\phi \rangle H - 1\times H1

0
\forall \phi \in Vk.(5.4b)

Remark 5.1 (basic properties of artificial diffusion coefficients). We observe some
key properties of the artificial diffusion coefficients given by (5.3). First, for each
k \in \BbbN , \gamma k is in L\infty (\Omega ), constant elementwise, and nonnegative a.e. in \Omega . Moreover,
there holds supk\in \BbbN \| \gamma k\| L\infty (\Omega ) <\infty due to the shape regularity of the family \{ \scrT k\} k\in \BbbN .
Second, since the sequence of mesh sizes \{ hk\} k\in \BbbN satisfies hk \rightarrow 0 as k \rightarrow \infty by
assumption, there exists k\ast \in \BbbN , which depends on \nu , \mu , \theta , \kappa , and \| b\| C(\Omega \times \scrA ;\BbbR n), such
that for all k\geq k\ast , we have \gamma k = 0 a.e. in \Omega . Hence,

\| \gamma k\| L\infty (\Omega ) = 0 \forall k\geq k\ast ,(5.5)

and thus we recover consistency of the discrete problems (5.4) with the continuous
problem (3.1) in the limit as the mesh size vanishes. More generally, it is well known
that the inclusion of artificial diffusion provides sufficient but not always necessary
conditions for obtaining a discrete maximum principle.

5.3. Main results. We can now state the main results concerning the finite
element scheme (5.4). The first result concerns the existence of solutions to (5.4).

Theorem 5.2 (existence). For each k \in \BbbN , there exists a discrete solution pair
(uk,mk) \in Vk \times Vk that solves (5.4). Moreover, there exist constants C\ast 

1 ,C
\ast 
2 \geq 0,

independent of k \in \BbbN , such that
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MEAN FIELD GAME PARTIAL DIFFERENTIAL INCLUSIONS 151

sup
k\in \BbbN 

\| mk\| H1(\Omega ) \leq C\ast 
1\| G\| H - 1(\Omega ),(5.6a)

sup
k\in \BbbN 

\| uk\| H1(\Omega ) \leq C\ast 
2

\Bigl( 
\| G\| H - 1(\Omega ) + \| f\| C(\Omega \times \scrA ) + 1

\Bigr) 
.(5.6b)

Next, the uniqueness of solutions to (5.4) holds under the same monotonicity and
nonnegativity assumptions of Theorem 3.4.

Theorem 5.3 (uniqueness). Suppose that the coupling term F is strictly mono-
tone and G is nonnegative in the sense of distributions in H - 1(\Omega ). Then for each
k \in \BbbN , there exists a unique discrete solution pair (uk,mk)\in Vk \times Vk to (5.4).

The proofs of Theorems 5.2 and 5.3 are given in section 6 below.
We now state the first main result on the convergence of the scheme (5.4).

Theorem 5.4 (convergence). Assume that the coupling term F is strictly mono-
tone and G is nonnegative in the sense of distributions in H - 1(\Omega ). Let (u,m) denote
the unique pair that solves (1.4) in the sense of Definition 3.1, and let \{ (uk,mk)\} k\in \BbbN 
denote the sequence of solutions generated by (5.4). Then as k\rightarrow \infty ,

uk \rightarrow u in H1
0 (\Omega ), mk \rightarrow m in Lq(\Omega ), mk \rightharpoonup m in H1

0 (\Omega )(5.7)

for any q \in [1,2\ast ), where 2\ast =\infty if n= 2 and 2\ast = 2n
n - 2 if n\geq 3.

In general, the strong convergence of \nabla mk to \nabla m in L2(\Omega ;\BbbR n) is not known.
The difficulty lies in the fact that it appears possible that the sequence \{ \~bk\} k\in \BbbN 
might be such that there is no subsequence that converges in a sufficiently strong
sense. However, under additional conditions, the weak convergence of the density ap-
proximations in H1

0 (\Omega ) can be improved to strong convergence. This is the case,
for instance, if the Hamiltonian H given by (1.2) is such that partial derivative
\partial H
\partial p exists and is continuous in \Omega \times \BbbR n. In fact, a weaker hypothesis than this
can be formulated that ensures strong convergence of the density approximations
in H1

0 (\Omega ).

Corollary 5.5 (strong H1-convergence for density approximations). In addi-
tion to the hypotheses of Theorem 5.4, suppose that the sequence of transport vector
fields \{ \~bk\} k\in \BbbN from (5.4) is precompact in L1(\Omega ;\BbbR n). Thenmk converges tom strongly
in H1

0 (\Omega ) as k\rightarrow \infty .

Remark 5.6. The compactness hypothesis on the sequence of transport vector
fields introduced above is satisfied when the partial derivative \partial H

\partial p exists and is con-

tinuous in \Omega \times \BbbR n. Indeed, in this case, \~bk =
\partial H
\partial p (x,\nabla uk) in L

\infty (\Omega ;\BbbR n) for all k \in \BbbN .
With the strong convergence of the value function approximations in H1

0 (\Omega ) guar-
anteed by Theorem 5.4, it is easy to see that the entire sequence \{ \~bk\} k\in \BbbN converges
strongly to \partial H

\partial p (x,\nabla u) in Ls(\Omega ;\BbbR n) for any s \in [1,\infty ). Hence, the sequence is pre-

compact in L1(\Omega ;\BbbR n).

6. Analysis of the monotone finite element scheme.

6.1. Stabilization of linear differential operators. We will say that a linear
operator L : Vk \rightarrow V \ast 

k satisfies the discrete maximum principle provided that the
following condition holds: If w \in Vk and \langle Lw, \xi i\rangle V \ast 

k \times Vk
\geq 0 for all i\in \{ 1, \cdot \cdot \cdot ,Nk\} , then

w\geq 0 in \Omega . For the analysis of (5.4), we introduce a collection of linear operators that
are perturbations of discrete relatives to the operators considered in the continuous
setting of Lemma 4.5. Recall the definition of the sequence \{ \gamma k\} k\in \BbbN given in (5.3).
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152 YOHANCE A. P. OSBORNE AND IAIN SMEARS

For each k \in \BbbN , let Wk denote the collection of linear operators L : Vk \rightarrow V \ast 
k of the

form

\langle Lw,v\rangle V \ast 
k \times Vk

:=

\int 
\Omega 

(\nu + \gamma k)\nabla w \cdot \nabla v+\~b \cdot \nabla wv+ \kappa wv dx \forall w,v \in Vk,

with \~b : \Omega \rightarrow \BbbR n denoting a Lebesgue measurable vector field satisfying the uniform
bound \| \~b\| L\infty (\Omega ;\BbbR n) \leq \| b\| C(\Omega \times \scrA ;\BbbR n).

By adapting the proof of [12, Theorem 4.2] and [28, section 8], we obtain the
following result, which will assist with ensuring nonnegativity of finite element ap-
proximations \{ mk\} k\in \BbbN of the density function and proving convergence of the scheme
(5.4).

Lemma 6.1 (stabilization via artificial diffusion). Given k \in \BbbN , each operator
L\in Wk, and its adjoint L\ast , satisfy the discrete maximum principle.

6.2. Well-posedness. First, we establish that the numerical scheme (5.4) is
well-posed; i.e., it admits a unique numerical solution for each k \in \BbbN . Suppose C0 \geq 0
is given. Fundamental to the conclusion of Lemma 4.5 is the fact that operators from
\scrG (C0) and their adjoints are invertible as maps from H1

0 (\Omega ) into H - 1(\Omega ). We will
employ a discrete version of Lemma 4.5 in the analysis of (5.4).

Lemma 6.2. There exists a constant C\ast 
1 > 0, independent of k \in \BbbN , such that

sup
k\in \BbbN 

sup
L\in Wk

max

\biggl\{ \bigm\| \bigm\| L - 1
\bigm\| \bigm\| 
\scrL (V \ast 

k ,Vk)
,
\bigm\| \bigm\| \bigm\| L\ast  - 1

\bigm\| \bigm\| \bigm\| 
\scrL (V \ast 

k ,Vk)

\biggr\} 
\leq C\ast 

1 .(6.1)

Proof. It suffices to show that for any k \in \BbbN and any operator L\in Wk, we have\bigm\| \bigm\| \bigm\| L\ast  - 1
\bigm\| \bigm\| \bigm\| 
\scrL (V \ast 

k ,Vk)
\leq C\ast 

1(6.2)

for some constant C\ast 
1 > 0 independent of k \in \BbbN . Once proved, an application of

the Hahn--Banach theorem allows us to deduce that for any k \in \BbbN and any operator
L\in Wk, we also have

\bigm\| \bigm\| L - 1
\bigm\| \bigm\| 
\scrL (V \ast 

k ,Vk)
\leq C\ast 

1 .

Let k \in \BbbN and L\in Wk be given. We know by Lemma 6.1 that operators L and their
adjoints L\ast satisfy the discrete maximum principle. Since Vk is a finite dimensional
vector space and L : Vk \rightarrow V \ast 

k is a linear map, the discrete maximum principle ensures
the invertibility of both L and L\ast as maps from Vk to V \ast 

k . Moreover, for each f \in V \ast 
k ,

the unique solution uk \in Vk to the equation L\ast uk = f in V \ast 
k satisfies the following

Garding inequality for some constant C\ast > 0 that is independent of k:

\| uk\| H1(\Omega ) \leq C\ast \bigl( \| f\| V \ast 
k
+ \| uk\| \Omega 

\bigr) 
\forall f \in V \ast 

k .(6.3)

Suppose for contradiction that (6.2) does not hold. Then for every integer j \in \BbbN ,
there exists an integer kj \in \BbbN and an operator Lj \in Wkj

such that\bigm\| \bigm\| \bigm\| L\ast 
j
 - 1
\bigm\| \bigm\| \bigm\| 
\scrL 
\Bigl( 
V \ast 
kj

,Vkj

\Bigr) > j,
with the sequence \{ kj\} j\in \BbbN strictly increasing. This implies, together with (6.3), that
there exist sequences \{ uj\} j\in \BbbN \subset H1

0 (\Omega ) and \{ fj\} j\in \BbbN \subset V \ast 
1 such that

uj :=L\ast 
j
 - 1fj \in Vkj

, fj \in V \ast 
kj
, \| uj\| \Omega = 1 \forall j \in \BbbN ,(6.4a)

\| fj\| V \ast 
kj
<

C\ast 

j  - C\ast \forall j >C\ast .(6.4b)
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MEAN FIELD GAME PARTIAL DIFFERENTIAL INCLUSIONS 153

In particular, for all j \in \BbbN , there holds

\langle L\ast 
juj , v\rangle V \ast 

kj
\times Vkj

=

\int 
\Omega 

(\nu + \gamma kj
)\nabla uj \cdot \nabla v+ uj\~bj \cdot \nabla v+ \kappa ujv dx= \langle fj , v\rangle V \ast 

kj
\times Vkj

(6.5)

for all v \in Vkj , with some \~bj satisfying the uniform bound \| \~bj\| L\infty (\Omega ;\BbbR n) \leq \| b\| C(\Omega \times \scrA ;\BbbR n)

by definition of the inclusion Lj \in Wkj
. Garding's inequality (6.3) and (6.4b) imply

that there exists a constant C > 0, independent of j, such that \| uj\| H1(\Omega ) \leq C for all

j \in \BbbN . Since the sequence \{ \~bj\} j\in \BbbN \subset L\infty (\Omega ;\BbbR n) is uniformly bounded, we may pass
to a subsequence without change of notation to get, as j\rightarrow \infty ,

uj \rightharpoonup u in H1
0 (\Omega ), uj \rightarrow u in L2(\Omega ),(6.6a)

\~bj \rightharpoonup 
\ast \~b\ast in L\infty (\Omega ;\BbbR n).(6.6b)

Let vl \in Vl be given for some fixed l \in \BbbN . By nestedness subspaces \{ Vk\} k\in \BbbN in
H1

0 (\Omega ), we get by (6.5) that\int 
\Omega 

\nu \nabla uj \cdot \nabla vl + uj\~bj \cdot \nabla vl + \kappa ujvl dx+

\int 
\Omega 

\gamma kj
\nabla uj \cdot \nabla vl dx= \langle fj , vl\rangle V \ast 

kj
\times Vkj

(6.7)

for all j \in \BbbN such that kj \geq l. We have for all l \in \BbbN that \langle fj , vl\rangle V \ast 
kj

\times Vkj
\rightarrow 0 as j\rightarrow \infty 

by (6.4b). Moreover, uniform boundedness of the sequence \{ uj\} j\in \BbbN in H1
0 (\Omega ) and

(5.5) imply that

lim
j\rightarrow \infty 

\bigm| \bigm| \bigm| \bigm| \int 
\Omega 

\gamma kj
\nabla uj \cdot \nabla vl dx

\bigm| \bigm| \bigm| \bigm| = 0 \forall l \in \BbbN .

Recalling (6.6a), (6.6b), we send j\rightarrow \infty in (6.7) to then obtain\int 
\Omega 

\nu \nabla u \cdot \nabla vl + u\~b\ast \cdot \nabla vl + \kappa uvl dx= 0 \forall l \in \BbbN .

Since l was arbitrary, density of the union
\bigcup 

l\in \BbbN Vl in H
1
0 (\Omega ) allows us to conclude\int 

\Omega 

\nu \nabla u \cdot \nabla \phi + u\~b\ast \cdot \nabla \phi + \kappa u\phi dx= 0 \forall \phi \in H1
0 (\Omega ).

Thus, u solves an elliptic equation with an operator that is the adjoint of an operator
from the class \scrG (C0) for some constant C0. Lemma 4.5 then implies that u = 0 in
H1

0 (\Omega ) necessarily, contradicting the fact that \| u\| \Omega = 1, which follows from (6.4a)
and (6.6a). Hence, (6.1) is proved for some constant C\ast 

1 independent of k \in \BbbN , as
required.

By using Lemma 6.2 and Schaefer's fixed point theorem, in a fashion similar to the
proof of Lemma 4.6, we obtain a well-posedness result for the discrete HJB equation
in (5.4).

Lemma 6.3. Let k \in \BbbN be given. Then for each m \in L2(\Omega ), there exists unique
uk \in Vk such that\int 

\Omega 

(\nu + \gamma k)\nabla uk \cdot \nabla \psi +H(x,\nabla uk)\psi + \kappa uk\psi dx= \langle F [m],\psi \rangle H - 1\times H1
0

\forall \psi \in Vk.(6.8)

There exists a constant C\ast 
1 , independent of k \in \BbbN , such that

\| uk\| H1(\Omega ) \leq C\ast 
1

\Bigl( 
\| m\| \Omega + \| f\| C(\Omega \times \scrA ) + 1

\Bigr) 
.(6.9)
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154 YOHANCE A. P. OSBORNE AND IAIN SMEARS

Moreover, the solution uk depends continuously on m; i.e., if \{ mj\} j\in \BbbN \subset L2(\Omega ) is

such that mj \rightarrow m in L2(\Omega ) as j \rightarrow \infty , then the corresponding sequence of solutions
\{ uj\} j\in \BbbN \subset Vk to (6.8) converges in Vk to the solution uk of (6.8).

Proofs of Theorems 5.2 and 5.3. Let k \in \BbbN be given. We deduce the existence
of discrete solutions to (5.4) using Lemma 6.2 and Lemma 6.3 in an adaptation of
the proof of Theorem 3.3. The uniform estimate (5.6a) follows immediately from the
discrete KFP equation (5.4b) and the uniform bound (6.1). The bound (5.6b) then
follows directly from (5.6a) and (6.9).

The uniqueness of solutions to (5.4) follows when F is strictly monotone and G
is nonnegative in the sense of distributions in H - 1(\Omega ), with the details being similar
to the proof of Theorem 3.4 since the space Vk is a subspace of H1

0 (\Omega ). Indeed, this
follows through since the linear differential operator featuring in the discrete KFP
equation of (5.4) is the adjoint of an operator in the class Wk. Therefore, we have
access to the discrete maximum principle via Lemma 6.1, which ensures nonnegativity
everywhere in \Omega for the density approximation mk.

6.3. Convergence. In this section, we employ a compactness argument to prove
the convergence result Theorem 5.4 when unique solutions of (3.1) are ensured under
the hypotheses of Theorem 3.4. Note that, in addition, the following proof yields an
alternative method of showing the existence of weak solutions to (1.4) in the sense of
Definition 3.1.

Proof of Theorem 5.4. Let \{ (uk,mk)\} k\in \BbbN denote the sequence of solutions given
by Theorem 5.3 with associated vector fields \~bk \in DpH[uk] (k \in \BbbN ). Since Theorem
5.2 indicates that the sequences \{ mk\} k\in \BbbN , \{ uk\} k\in \BbbN are uniformly bounded in H1

0 (\Omega )
while \{ \~bk\} k\in \BbbN is uniformly bounded in L\infty (\Omega ;\BbbR n), we may pass to subsequences,
without change of notation, that satisfy, as k\rightarrow \infty ,

mk \rightharpoonup m in H1
0 (\Omega ), mk \rightarrow m in Lq(\Omega ),(6.10a)

uk \rightharpoonup u in H1
0 (\Omega ), uk \rightarrow u in Lq(\Omega ),(6.10b)

\~bk \rightharpoonup 
\ast \~b\ast in L\infty (\Omega ;\BbbR n)(6.10c)

for some m,u \in H1
0 (\Omega ), for some \~b\ast \in L\infty (\Omega ;\BbbR n), and for any q \in [1,2\ast ), where the

critical exponent 2\ast = \infty if n = 2 and 2\ast = 2n
n - 2 if n \geq 3. Notice in particular that

mk
\~bk converges weakly to m\~b\ast in L2(\Omega ;\BbbR n) as k\rightarrow \infty .
Let v \in Vj be given for some fixed j \in \BbbN . Since the sequence \{ mk\} k\in \BbbN satisfies\int 

\Omega 

(\nu + \gamma k)\nabla mk \cdot \nabla v+mk
\~bk \cdot \nabla v+ \kappa mkv dx= \langle G,v\rangle H - 1\times H1

0
\forall k\geq j

and we have the convergence given by (6.10a) and (6.10c), along with the uniform
boundedness of the sequence \{ \nabla mk\} k\in \BbbN in L2(\Omega ;\BbbR n) and the vanishing of the artificial
diffusion coefficients given by (5.5), we obtain in the limit, as k\rightarrow \infty ,\int 

\Omega 

\nu \nabla m \cdot \nabla v+m\~b\ast \cdot \nabla v+ \kappa mv dx= \langle G,v\rangle H - 1\times H1
0

\forall v \in Vj .

Since j was arbitrary, density of the union
\bigcup 

j\in \BbbN Vj in H1
0 (\Omega ) allows us to conclude\int 

\Omega 

\nu \nabla m \cdot \nabla \phi +m\~b\ast \cdot \nabla \phi + \kappa m\phi dx= \langle G,\phi \rangle H - 1\times H1
0

\forall \phi \in H1
0 (\Omega ).(6.11)
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Next, observe that the boundedness of \{ uk\} k\in \BbbN in H1
0 (\Omega ) and (2.3a) imply that

the sequence \{ H(\cdot ,\nabla uk)\} k\in \BbbN is bounded in L2(\Omega ). Therefore, there exists g \in L2(\Omega )
such that by passing to a subsequence without change of notation, we have, as k\rightarrow \infty ,

H(\cdot ,\nabla uk)\rightharpoonup g in L2(\Omega ).(6.12)

For fixed j \in \BbbN , the definition of the sequence \{ uk\} k\in \BbbN implies that for all k\geq j,\int 
\Omega 

(\nu + \gamma k)\nabla uk \cdot \nabla v+H(x,\nabla uk)v+ \kappa ukv dx= \langle F [mk], v\rangle H - 1\times H1
0

\forall v \in Vj .(6.13)

Therefore, the convergence given by (6.10a), (6.10b), and (6.12), together with the
vanishing of the artificial diffusion coefficients given by (5.5) and the uniform bound-
edness of the sequence \{ \nabla uk\} k\in \BbbN in L2(\Omega ;\BbbR n), implies that we obtain\int 

\Omega 

\nu \nabla u \cdot \nabla v+ gv+ \kappa uv dx= \langle F [m], v\rangle H - 1\times H1
0

\forall v \in Vj

after sending k\rightarrow \infty in (6.13). As j was arbitrary, we conclude from the above that\int 
\Omega 

\nu \nabla u \cdot \nabla \psi + g\psi + \kappa u\psi dx= \langle F [m],\psi \rangle H - 1\times H1
0

\forall \psi \in H1
0 (\Omega )(6.14)

and in particular that \| \nabla u\| 2\Omega = \nu  - 1(\langle F [m], u\rangle H - 1\times H1
0
 - 
\int 
\Omega 
gudx - \kappa \| u\| 2\Omega ).

On the other hand, the definition of \{ uk\} k\in \BbbN gives

\nu \| \nabla uk\| 2\Omega +

\int 
\Omega 

H(x,\nabla uk)uk dx+ \kappa \| uk\| 2\Omega +

\int 
\Omega 

\gamma k| \nabla uk| 2 dx= \langle F [mk], uk\rangle H - 1\times H1
0

for each k \in \BbbN . In view of the convergence given by (6.10a), (6.10b), and (6.12), along
with the uniform boundedness of the sequence \{ \nabla uk\} k\in \BbbN in L2(\Omega ;\BbbR n), the vanishing
of the artificial diffusion coefficients given by (5.5), and the Lipschitz continuity of
the coupling term F , we find that

lim
k\rightarrow \infty 

\| \nabla uk\| 2\Omega = \nu  - 1

\biggl( 
\langle F [m], u\rangle H - 1\times H1

0
 - 
\int 
\Omega 

gudx - \kappa \| u\| 2\Omega 
\biggr) 
= \| \nabla u\| 2\Omega .(6.15)

Because (6.10b) holds, we deduce via (6.15) that

lim
k\rightarrow \infty 

\| uk\| H1(\Omega ) = \| u\| H1(\Omega ).(6.16)

Since uk converges weakly to u in H1
0 (\Omega ) by (6.10b) and we have convergence of norms

by (6.16), we deduce strong convergence in H1
0 (\Omega ): uk \rightarrow u as k \rightarrow \infty . Because the

mapping v \mapsto \rightarrow H(\cdot ,\nabla v) is Lipschitz continuous from H1(\Omega ) into L2(\Omega ), it then follows
that (6.12) is in fact strong convergence in L2(\Omega ) with g = H(\cdot ,\nabla u). Hence, (6.14)
gives the weak HJB equation:\int 

\Omega 

\nu \nabla u \cdot \nabla \psi +H(x,\nabla u)\psi + \kappa u\psi dx= \langle F [m],\psi \rangle H - 1\times H1
0

\forall \psi \in H1
0 (\Omega ).(6.17)

To deduce convergence to a weak solution of (1.4), we need to show that \~b\ast \in 
DpH[u] in addition to the established equations (6.11), (6.17). But this follows by
applying Lemma 4.4 to \{ (\~bk, uk)\} k\in \BbbN after passing to an appropriate subsequence.
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156 YOHANCE A. P. OSBORNE AND IAIN SMEARS

In summary, we have shown that a subsequence of the finite element approxima-
tions \{ (uk,mk)\} k\in \BbbN converges to a weak solution (u,m) of (1.4) in the sense that

uk \rightarrow u in H1
0 (\Omega ), mk \rightarrow m in Lq(\Omega ), mk \rightharpoonup m in H1

0 (\Omega )(6.18)

as k\rightarrow \infty for any q \in [1,2\ast ). But the uniqueness of the solution of (3.1) then implies
that the whole sequence \{ (uk,mk)\} k\in \BbbN converges to the unique solution of (3.1), as
required.

Under the additional hypothesis on the transport vector fields given in Corol-
lary 5.5, we obtain strong convergence of the density approximations in H1

0 (\Omega ).

Proof of Corollary 5.5. To prove strong convergence of \{ mk\} k\in \BbbN in H1
0 (\Omega ), let

us consider an arbitrary subsequence \{ mkj
\} j\in \BbbN with a corresponding subsequence

of transport vector fields \{ \~bkj
\} j\in \BbbN . By the stated hypotheses in the Corollary 5.5,

together with H\"older's inequality and the fact that the sequence \{ \~bkj
\} j\in \BbbN is uni-

formly bounded in L\infty (\Omega ;\BbbR n), we deduce that there exists s > n such that the se-
quence \{ \~bkj

\} j\in \BbbN is precompact in Ls(\Omega ;\BbbR n). Therefore, there exists a subsequence of

\{ \~bkj
\} j\in \BbbN , to which we pass without change of notation, that converges in Ls(\Omega ;\BbbR n),

s > n, to a Lebesgue measurable vector field b : \Omega \rightarrow \BbbR n that is in L\infty (\Omega ;\BbbR n). From
Theorem 5.4, we know that mkj \rightarrow m in Lr(\Omega ) as j\rightarrow \infty for any r \in [1,2\ast ) (where we
recall 2\ast = 2n

n - 2 when n \geq 3 and 2\ast =\infty when n = 2). Hence, by H\"older's inequality

and a suitable choice of r \in [1,2\ast ), we deduce that mkj
\~bkj

\rightarrow mb strongly in L2(\Omega ;\BbbR n)
as j\rightarrow \infty . Consequently, the weak convergence of \{ mkj

\} j\in \BbbN to m in H1
0 (\Omega ) and hence

weak convergence of the gradients \{ \nabla mkj
\} j\in \BbbN to \nabla m in L2(\Omega ;\BbbR n) implies that

lim
j\rightarrow \infty 

\int 
\Omega 

mkj
\~bkj \cdot \nabla mkj dx=

\int 
\Omega 

mb \cdot \nabla mdx.(6.19)

From the discrete KFP equation (5.4b), we obtain

\int 
\Omega 

(\nu + \gamma kj )| \nabla mkj | 2 dx+
\int 
\Omega 

mkj
\~bkj \cdot \nabla mkj dx+ \kappa \| mkj\| 2\Omega = \langle G,mkj \rangle H - 1\times H1

0
.

(6.20)

We deduce from (6.10a), (5.6a), (5.5), and (6.20) that

lim
j\rightarrow \infty 

\| \nabla mkj
\| 2\Omega = \nu  - 1

\biggl( 
\langle G,m\rangle H - 1\times H1

0
 - \kappa \| m\| 2\Omega  - 

\int 
\Omega 

mb \cdot \nabla mdx

\biggr) 
.(6.21)

We also deduce from the discrete KFP equation (5.4b) that b and m satisfy\int 
\Omega 

\nu \nabla m \cdot \nabla \phi +mb \cdot \nabla \phi + \kappa m\phi dx= \langle G,\phi \rangle H - 1\times H1
0

\forall \phi \in H1
0 (\Omega ).

Hence,

\| \nabla m\| 2\Omega = \nu  - 1

\biggl( 
\langle G,m\rangle H - 1\times H1

0
 - \kappa \| m\| 2\Omega  - 

\int 
\Omega 

mb \cdot \nabla mdx

\biggr) 
.(6.22)

We thus obtain from (6.21) and (6.22), together with the fact that mkj
\rightarrow m in L2(\Omega )

as j\rightarrow \infty , that

lim
j\rightarrow \infty 

\| mkj
\| H1(\Omega ) = \| m\| H1(\Omega ).(6.23)
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Since mkj converges weakly to m in H1
0 (\Omega ) by Theorem 5.4 and we have convergence

of norms by (6.23), we deduce that mkj \rightarrow m as j \rightarrow \infty strongly in H1
0 (\Omega ). The

argument above shows that any subsequence of \{ mk\} k\in \BbbN has a further subsequence
that converges to m in H1

0 (\Omega ), and thus the whole sequence is convergent. This
completes the proof.

Remark 6.4 (convergence in H\"older norms). When the space dimension n= 2, the
domain \Omega is convex, and G \in L2(\Omega ), one can derive a uniform H\"older-norm bound
for the approximating sequence \{ mk\} k\in \BbbN (see [29, Theorem 3.20]). It follows that
\{ mk\} k\in \BbbN converges strongly to m in some H\"older space. This likewise holds for the
corresponding sequence of value function approximations \{ uk\} k\in \BbbN if F : H1

0 (\Omega ) \rightarrow 
L2(\Omega ).

7. Numerical experiments. As illustrated by the example in section 3.3, when
the Hamiltonian H is nonsmooth, the solution (u,m) of the problem is not necessarily
smooth even in the interior of the domain. The numerical experiments shown below
are designed to study the performance of the method on problems with nonsmooth
solutions. We also consider relaxing the condition on the meshes to being weakly
acute rather than strictly acute, and we investigate the singularly perturbed limit
\nu \rightarrow 0. Concerning terminology, for a given problem and a given sequence of meshes
\{ \scrT k\} k\in \BbbN , we say that the numerical method has optimal rates of convergence in some
norm if the rate of convergence of the approximations is the same as the rate of con-
vergence of a sequence of best approximations from the corresponding approximation
spaces \{ Vk\} k\in \BbbN once the mesh size is sufficiently small. The optimal rate is naturally
dependent on the regularity of the solution of the given problem.

7.1. Setup of the first two experiments. For the experiments given in sec-
tions 7.2 and 7.3, we take \Omega \subset \BbbR 2 to be the unit square, and we consider the continuous
problem (3.1), where we let the diffusion coefficient \nu = 1 and the reaction coefficient
\kappa = 0. The choice of Hamiltonian H : \Omega \times \BbbR 2 \rightarrow \BbbR for both experiments is set to be

H(x,p) := max
\alpha \in B1(0)

(\alpha \cdot p) = | p| \forall (x,p)\in \Omega \times \BbbR 2.(7.1)

It is clear from (7.1) that b(x,\alpha ) := \alpha for (x,\alpha ) \in \Omega \times B1(0) \subset \BbbR 2 \times \BbbR 2, and hence
\| b\| C(\Omega \times \scrA ;\BbbR 2) = 1. Moreover, the subdifferential \partial pH : \Omega \times \BbbR 2 \rightrightarrows \BbbR 2 is given by

\partial pH(x,p) =

\Biggl\{ \Bigl\{ 
1
| p| p
\Bigr\} 

if p \not = 0,

B1(0) if p= 0
\forall x\in \Omega .(7.2)

The choices of the coupling term F and source G \in H - 1(\Omega ) differ between both ex-
periments. The computations are performed on a sequence of uniform, conforming,
shape-regular, weakly acute meshes on \Omega . The formula (5.3) shows that the inclusion
of artificial diffusion is not always necessary when \nu is large enough on strictly acute
meshes. In order to test this also for weakly acute meshes, we take the artificial diffu-
sion coefficient to be identically zero. To compute the discrete solutions, we employ a
fixed point approximation of (5.4) that follows the fixed point process described in the
proof of Theorem 5.2. In each iteration, we approximate the discrete HJB equation
(5.4a) via a policy iteration method, and we resolve the linear system resulting from
the discrete KFP equation (5.4b) via LU factorization. For an introduction to policy
iteration in general, we refer the reader to [10, 24]. We used the open-source finite
element software Firedrake [35] to perform the computations.
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158 YOHANCE A. P. OSBORNE AND IAIN SMEARS

7.2. First experiment. We consider the approximation of a known solution
pair that uniquely satisfies (3.1) with suitable coupling term F and source term G \in 
H - 1(\Omega ). For this experiment, we take the coupling term F :L2(\Omega )\rightarrow H - 1(\Omega ) defined
via

\langle F [v],\psi \rangle H - 1\times H1
0
:=

\int 
\Omega 

tanh(v)\psi dx+ \langle J,\psi \rangle H - 1\times H1
0

\forall \psi \in H1
0 (\Omega ),\forall v \in L2(\Omega ),

where the functional J \in H - 1(\Omega ) is given by

\langle J,\psi \rangle H - 1\times H1
0
:=

\int 
\Omega 

h\psi + \~t \cdot \nabla \psi dx \forall \psi \in H1
0 (\Omega ),

with \~t : \Omega \rightarrow \BbbR 2 and h : \Omega \rightarrow \BbbR defined by

\~t(x, y) :=

\biggl( 
(1 + log(x))y log(y),
(1 + log(y))x log(x)

\biggr) 
, h(x, y) :=

\bigm| \bigm| \~t(x, y)\bigm| \bigm|  - tanh (xy(1 - x)(1 - y)) .

Note that \~t \in L2(\Omega ;\BbbR 2) and h \in L2(\Omega ), so indeed J \in H - 1(\Omega ). Next, we take the
source term G\in H - 1(\Omega ) to be

\langle G,\phi \rangle H - 1\times H1
0
:=

\int 
\Omega 

r\phi + \~g \cdot \nabla \phi dx \forall \phi \in H1
0 (\Omega ),

where r : \Omega \rightarrow \BbbR is given by r(x, y) := 2(x(1  - x) + y(1  - y)) and \~g : \Omega \rightarrow \BbbR 2

is the vector field whose image is xy(1 - x)(1 - y)

| \~t| 
\~t whenever \~t(x, y) \not = (0,0)T and is

(0,0)T whenever \~t(x, y) = (0,0)T . It can be shown that F is strictly monotone and
that \langle G,\phi \rangle H - 1\times H1

0
\geq 0 if \phi \in H1

0 (\Omega ) is nonnegative a.e. in \Omega . Therefore, the weak
formulation (3.1) is indeed well-posed according to Theorem 3.4. Moreover, the unique
solution (u,m) to (3.1) in this case is given by

u(x, y) := xy log(x) log(y), m(x, y) := xy(1 - x)(1 - y) \forall (x, y)\in \Omega .(7.3)

In Figure 1, we plot the relative errors in various norms versus the mesh size h
for a sequence of finite element approximations obtained from (5.4). Observe that
convergence in the norm is seen in each plot. We see that the H1-norm of the error
of the approximations of the value function converge at a slower rate than that of the
error of the approximations of the density function. This is due to the fact that u
has lower regularity compared to m: m \in C\infty (\Omega ) \cap C(\Omega ), but u /\in H2(\Omega ). In fact, u
is in the Besov space H

3
2 - \epsilon (\Omega ) for arbitrarily small 0 < \epsilon < 1

2 . In Figure 1, we thus
see that the convergence rates of the method are optimal. Moreover, the transport
vector field approximations converge strongly in the L2-norm. This is likely due to
the transport vector field approximations converging a.e. to the vector field 1

m \~g, along
with the fact that the gradient \nabla u \not = 0 a.e. in \Omega .

7.3. Second experiment. For this experiment, we choose the coupling term F
and source G\in H - 1(\Omega ) in such a way that the conditions of Theorem 3.4 still hold so
that the problem still admits a unique weak solution, but in this example, the exact
solution is not known explicitly. We set the coupling term F :L2(\Omega )\rightarrow H - 1(\Omega ) via

\langle F [v],\psi \rangle H - 1\times H1
0
:=

\int 
\Omega 

(arctan(v) + 2sgn((x - 0.5) cos(8\pi y)))\psi dx
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MEAN FIELD GAME PARTIAL DIFFERENTIAL INCLUSIONS 159

Fig. 1. First experiment. Convergence plots for approximations of the value function, density
function, and transport vector. The rate of convergence for H1-norms of the errors of the approx-
imations of the value function is close to the optimal value of 1/2, and the rate of convergence in
the H1-norm for the density function is of order 1.

for all \psi \in H1
0 (\Omega ) and v \in L2(\Omega ), and we let G\in H - 1(\Omega ) be given by

\langle G,\phi \rangle H - 1\times H1
0
:=

\int 
\Omega 

1

2
(sgn(sin(4\pi x) sin(4\pi y)) + 1)\phi + \~c \cdot \nabla \phi dx \forall \phi \in H1

0 (\Omega ),

where \~c : \Omega \rightarrow \BbbR 2 is defined by

\~c(x, y) :=

\Biggl\{ 
y(1,0)T if 0<x< 2/3,

y2( - 1,0)T otherwise.

It is easy to show that F is strictly monotone and that \langle G,\phi \rangle H - 1\times H1
0
\geq 0 for all \phi \in 

H1
0 (\Omega ) that is nonnegative a.e. in \Omega . The exact solution is not known, so we measure

the errors using a computed reference solution on a very fine mesh. To illustrate the
discrete reference solution that we will consider, in Figure 2, we display contour plots
of the computed reference solution. We note that the displayed approximation for
m is nonnegative everywhere in \Omega . In Figure 3, we plot the relative errors versus
mesh size h. These results were obtained with respect to a discrete reference solution
(u,m) that was computed on a much finer mesh than the approximation displayed in
Figure 2. The convergence rate of the H1-norm of the error in the approximations of

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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160 YOHANCE A. P. OSBORNE AND IAIN SMEARS

Fig. 2. Second experiment. Approximate contour plot of u (left) and m (right) computed on a
fine mesh.

Fig. 3. Second experiment. Convergence plots for approximations of the value function, density
function, and transport vector. We observe a first-order rate of convergence for the H1-norms of
the error of the approximations of the value function and a rate of order approximately 1/2 for the
H1-norm errors of the approximations of the density function.
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the value function approximations is now 1, which is optimal, as u is smooth. The
convergence rate of the H1-norm errors of the approximation of the density is close
to 1/2, which is the expected optimal rate given the limited regularity of the density
function m as a result of the line singularity in the right-hand-side source term G.

7.4. Third experiment. For the final experiment, we investigate the robustness
of the method in the singularly perturbed limit, where the diffusion parameter \nu 
becomes small. Let \Omega = ( - 1,1), and let H(x,p) := | p| . Let F : L2(\Omega ) \rightarrow L2(\Omega ) be
defined by F [m](x) =m(x) + 1 for all m \in L2(\Omega ), and let G(x) = 1 for all x \in \Omega . We
set \kappa = 0, and we consider the problem for various values of \nu > 0. For each \nu > 0,
the exact solution is then given by

u(x) = - | x|  - x2

2
+
\nu (\nu + 1)

2
e

| x|  - 1
\nu + ae - 

| x| 
\nu + b,

m(x) = \nu + | x|  - (\nu + 1)e
| x|  - 1

\nu ,

(7.4)

with constants a := \nu (\nu +1)
2 e - 

1
\nu  - \nu and b := 3 - \nu (\nu +1)(1+e - 2/\nu )

2 + \nu e - 
1
\nu . Note that the

density m is not continuously differentiable despite all problem data being smooth
with the sole exception of the Hamiltonian. Furthermore, for small \nu , the density m
exhibits a sharp boundary layer close to the boundary, and m(x)\rightarrow m\ast (x) := | x| for
all x \in \Omega in the limit \nu \rightarrow 0. Observe that m\ast /\in H1

0 (\Omega ) since m\ast does not satisfy the
homogeneous Dirichlet boundary condition, and thus it is clear that we cannot expect
the convergence ofmk tom in theH1-norm to be robust with respect to \nu as \nu becomes
small. Considering instead the L2-norm of the error \| m - mk\| \Omega , the expected optimal
effective rate of convergence is of order 1/2 on quasi-uniform meshes in the coarse-

mesh regime where \nu \ll hk since it can be proved that infvk\in Vk
\| m\ast  - vk\| \Omega \gtrsim h

1/2
k for

quasi-uniform sequences of meshes. Given the choice of the coupling term F , we also
expect an effective rate of convergence of order 1/2 for \| u - uk\| H1(\Omega ) when \nu \ll hk.

We apply the method on uniform meshes on \Omega for \nu \in \{ 10 - 3,10 - 6,10 - 9,10 - 12\} .
Note that in this example, the inclusion of some stabilization, such as artificial dif-
fusion, becomes necessary for stability when \nu is small, so we set the artificial dif-
fusion parameter \gamma k = max(hk/2 - \nu ,0). Figure 4 shows the errors \| m - mk\| \Omega and

Fig. 4. Third experiment. The error \| m - mk\| \Omega and \| u - uk\| H1(\Omega ) for various values of the
diffusion coefficient \nu . In the coarse-mesh regime \nu \ll hk, the effective rate of convergence is of
order 1/2 for both \| m - mk\| \Omega and \| u - uk\| H1(\Omega ) as a result of the strong boundary layer in m that
appears in the singularly perturbed limit.
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162 YOHANCE A. P. OSBORNE AND IAIN SMEARS

\| u - uk\| H1(\Omega ) for the various values of \nu that are attained on relatively coarse meshes.

We observe the expected convergence \| m - mk\| \Omega +\| u - uk\| H1(\Omega ) \lesssim h
1/2
k in the regime

where \nu \ll hk, which remains robust with respect to \nu . For the case where \nu = 10 - 3,
we also observe the final asymptotic convergence rates of order 2 for \| m - mk\| \Omega and
order 1 for \| u - uk\| H1(\Omega ), respectively, on the finer meshes where hk \approx \nu .

8. Conclusion. We have introduced the notion of MFG PDIs as a generaliza-
tion of MFG systems with possibly nondifferentiable Hamiltonians. We established
the existence and uniqueness of weak solutions of the MFG PDI system (1.4) under
appropriate hypotheses. We proved the well-posedness and convergence of numeri-
cal approximations of the system by a monotone FEM. The numerical experiments
suggest that the method can achieve optimal rates of convergence for the different
solution components u and m even in the case of nonsmooth solution pairs and also
suggest convergence in the small viscosity limit.

Appendix A. Proofs of Lemmas 4.5 and 4.6.

Proof of Lemma 4.5. We begin by noting that each operator L \in \scrG (C0) and
its adjoint L\ast are invertible due to the weak maximum principle and the Fredholm
alternative; see [20, Theorem 8.3]. Moreover, a standard application of the Hahn--
Banach theorem implies that L\in \scrG (C0) satisfies\bigm\| \bigm\| \bigm\| L\ast  - 1

\bigm\| \bigm\| \bigm\| 
\scrL (H - 1(\Omega ),H1

0 (\Omega ))
\leq C1(A.1)

for some constant C1 > 0 if and only if
\bigm\| \bigm\| L - 1

\bigm\| \bigm\| 
\scrL (H - 1(\Omega ),H1

0 (\Omega )) \leq C1. Therefore,

it suffices to prove (A.1). Note that Poincar\'e's inequality implies that there is a
constant C depending only on C0 and \Omega such that if L \in \scrG (C0) and if u \in H1

0 (\Omega )
solves L\ast u= f for some f \in H - 1(\Omega ), then we have the Garding inequality

\| u\| H1(\Omega ) \leq C
\bigl( 
\| f\| H - 1(\Omega ) + \| u\| \Omega 

\bigr) 
.(A.2)

We now prove the result by contradiction, so suppose that (A.1) is false; i.e., there exist
sequences \{ uj\} j\in \BbbN \subset H1

0 (\Omega ) and \{ fj\} j\in \BbbN \subset H - 1(\Omega ) such that L\ast 
juj = fj in H - 1(\Omega )

for some Lj \in \scrG (C0), with \| uj\| H1(\Omega ) \geq j\| fj\| H - 1(\Omega ) for all j \in \BbbN . In particular, for
each j \in \BbbN , we have

\langle L\ast 
j uj , v\rangle H - 1\times H1

0
=

\int 
\Omega 

\nu \nabla uj \cdot \nabla v+ uj\~bj \cdot \nabla v+ cjujv dx= \langle fj , v\rangle H - 1\times H1
0

(A.3)

for all v \in H1
0 (\Omega ) for some \~bj \in L\infty (\Omega ;\BbbR n) and cj \in L\infty (\Omega ) that satisfy \| \~bj\| L\infty (\Omega ;\BbbR n)+

\| cj\| L\infty (\Omega ) \leq C0 and cj \geq 0 a.e. in \Omega . Without loss of generality, we can also suppose
that \| uj\| \Omega = 1 for all j \in \BbbN . Then Garding's inequality (A.2) implies that for j
sufficiently large, \| fj\| H - 1(\Omega ) \leq C

j - C , and thus fj \rightarrow 0 in H - 1(\Omega ) as j\rightarrow \infty as well as
supj\in \BbbN \| uj\| H1(\Omega ) <\infty . Therefore, there exist subsequences to which we pass without

change of notation such that uj \rightharpoonup u inH1
0 (\Omega ), uj \rightarrow u in L2(\Omega ), bj \rightharpoonup 

\ast \~b in L\infty (\Omega ;\BbbR n),
and cj \rightharpoonup 

\ast c in L\infty (\Omega ) as j\rightarrow \infty . Note also that the limit c is nonnegative a.e. in \Omega ,
which follows from Mazur's theorem and from the fact that cj \rightharpoonup c in Lp(\Omega ) for all
p <\infty as \Omega is bounded. By passing to the limit in (A.3), we deduce that\int 

\Omega 

\nu \nabla u \cdot \nabla v+ u\~b\cdot \nabla v+ cuv dx= 0 \forall v \in H1
0 (\Omega ).(A.4)

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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Thus, (A.4) implies that u= 0 a.e. in \Omega , which contradicts \| u\| \Omega = limj\rightarrow \infty \| uj\| \Omega = 1,
thereby completing the proof.

Proof of Lemma 4.6. Let m\in L2(\Omega ) be fixed. We start by showing the existence
of a solution of (4.9). We define the operator K : H1

0 (\Omega )\rightarrow H1
0 (\Omega ) by v \mapsto \rightarrow K[v] :=w,

where w \in H1
0 (\Omega ) is the unique solution of\int 

\Omega 

\nu \nabla w \cdot \nabla \psi + \kappa w\psi dx= \langle F [m],\psi \rangle H - 1\times H1
0
 - 
\int 
\Omega 

H(x,\nabla v)\psi dx \forall \psi \in H1
0 (\Omega ).(A.5)

Note that u solves (4.9) if and only if u =K[u] is a fixed point of K. The Lipschitz
continuity of H (cf. (2.3)) and the compactness of the embedding L2(\Omega ) into H - 1(\Omega )
imply that K is a continuous and compact operator from H1

0 (\Omega ) into itself. We now
show that the set \{ w = \lambda K[w], 0 \leq \lambda \leq 1\} is bounded in H1

0 (\Omega ), which implies that
K satisfies the hypotheses of Schaefer's fixed point theorem [18, page 502, Theorem
4] and implies the existence of a fixed point u=K[u]. Note that w= \lambda K[w] for some
0 \leq \lambda \leq 1 if and only if  - \nu \Delta w + \lambda H(\cdot ,\nabla w) + \kappa w = \lambda F [m] in H - 1(\Omega ). Hence, w =
\lambda K[w] implies that there exists \alpha \ast \in \Lambda [w] such that H(x,\nabla w) = b(x,\alpha \ast (x))\cdot \nabla w(x) - 
f(x,\alpha \ast (x)) for a.e. x\in \Omega , and thus w solves the elliptic equation

\langle L\lambda w,\psi \rangle H - 1\times H1
0
:=

\int 
\Omega 

\nu \nabla w \cdot \nabla \psi + \lambda b(x,\alpha \ast (x)) \cdot \nabla w\psi + \kappa w\psi dx

=

\int 
\Omega 

\lambda f(x,\alpha \ast (x))\psi dx+ \langle \lambda F [m],\psi \rangle H - 1\times H1
0

\forall \psi \in H1
0 (\Omega ).

Since \lambda \in [0,1], we have L\lambda \in \scrG (C0) for a constant C0 \geq 0 independent of \lambda . Therefore,
Lemma 4.5 implies that \| w\| H1(\Omega ) \leq C\ast (\| f\| C(\scrA \times \Omega )+\| F [m]\| H - 1(\Omega )) for some constant
C\ast independent of \lambda and w. This shows that \{ w= \lambda K[w], 0\leq \lambda \leq 1\} is bounded and
that there exists a solution of (4.9). A similar argument shows that any solution of
(4.9) satisfies (4.10) due to the growth condition (2.1a) on the coupling term F .

Uniqueness of solutions to (4.9) is a consequence of the weak maximum principle
and the existence of measurable selections of the maximizing set \Lambda . Indeed, if u1 and
u2 are both solutions to (4.9), then there exist measurable selections \alpha i \in \Lambda [ui] for
i \in \{ 1,2\} . Then Lemma 4.1 implies that b(x,\alpha 1(x))\cdot \nabla (u1  - u2) \geq H(x,\nabla u1(x))  - 
H(x,\nabla u2(x)) a.e. in \Omega for i, j \in \{ 1,2\} . Therefore, we find that\int 

\Omega 

\nu \nabla (u1  - u2) \cdot \nabla \psi + b(x,\alpha 1(x))\cdot \nabla (u1  - u2)\psi + \kappa (u1  - u2)\psi dx\geq 0

for all test functions \psi \in H1
0 (\Omega ) that are nonnegative a.e. in \Omega . Since u1 - u2 \in H1

0 (\Omega ),
the weak maximum principle of [20, Theorem 8.1] then implies that u1 \geq u2 a.e. in \Omega .
By symmetry, we also find that u2 \geq u1 a.e. in \Omega , thus showing that u1 = u2.

We now prove the continuous dependence of the solutions on the data. Sup-
pose that we are given a sequence \{ mj\} \infty j=0 \subset L2(\Omega ), with corresponding solutions

\{ uj\} j\in \BbbN of (4.9), and suppose that mj \rightarrow m in L2(\Omega ). Let u \in H1
0 (\Omega ) denote the

corresponding unique solution of (4.9) with datum m. To show convergence of the
whole sequence uj \rightarrow u, it is enough to show that every subsequence of \{ uj\} j\in \BbbN has
a further subsequence that converges strongly to u in H1

0 (\Omega ). Let \{ ujk\} k\in \BbbN be an
arbitrary subsequence. The a priori bound (4.10) and the strong convergence of the
sequence \{ mj\} j\in \BbbN imply that the sequence \{ ujk\} k\in \BbbN is uniformly bounded in H1

0 (\Omega ).
Consequently, there exists a subsequence to which we pass without change of notation
such that ujk \rightharpoonup v in H1

0 (\Omega ) and ujk \rightarrow v in L2(\Omega ) as k\rightarrow \infty for some v \in H1
0 (\Omega ). It

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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is easy to see that the sequence \{ hk\} k\in \BbbN defined by hk := - H(\nabla ujk) - \kappa ujk for k\geq 0
is uniformly bounded in L2(\Omega ). Passing to a further subsequence without change of
notation, we have hk \rightharpoonup h for some h \in L2(\Omega ). Passing to the limit in (4.9) with
mjk \rightarrow m and ujk \rightharpoonup v, we find that\int 

\Omega 

\nu \nabla v \cdot \nabla \psi dx=
\int 
\Omega 

h\psi dx+ \langle F [m] ,\psi \rangle H - 1\times H1
0

\forall \psi \in H1
0 (\Omega ).(A.6)

Consequently, using weak-times-strong convergence, we find that

lim
k\rightarrow \infty 

\nu \| \nabla (v - ujk)\| 
2
\Omega (A.7)

= lim
k\rightarrow \infty 

\biggl[ \int 
\Omega 

(h - hk) (v - ujk)dx+ \langle F [m] - F [mjk ] , v - ujk\rangle H - 1\times H1
0

\biggr] 
= 0.

Thus, ujk \rightarrow v in H1
0 (\Omega ) as k\rightarrow \infty . Lipschitz continuity of H and (A.6) then imply

that v is a solution of (4.9) with datum m. Thus, uniqueness of the solution of (4.9)
shown above implies that v = u in H1

0 (\Omega ). As explained above, this shows that the
whole sequence \{ uj\} j\in \BbbN \rightarrow u in H1

0 (\Omega ).
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