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Abstract. Population equations for infinitely large networks of spiking neurons have a long tradition in theoret-
ical neuroscience. In this work, we analyze a recent generalization of these equations to populations
of finite size, which takes the form of a nonlinear stochastic integral equation. We prove that, in
the case of leaky integrate-and-fire neurons with escape noise and for a slightly simplified version
of the model, the equation is well-posed and stable in the sense of Brémaud and Massoulié. The
proof combines methods from Markov processes taking values in the space of positive measures and
nonlinear Hawkes processes. For applications, we also provide efficient simulation algorithms.
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1. Introduction. Neuronal population equations describe the dynamics of large networks
of neurons in terms of single neuron parameters [31]. As such, they are useful mathematical
abstractions for relating microscopic and large-scale brain signals and contribute to the bio-
physical interpretation of the latter [17]. Their motivation is twofold: on the one hand, they
enable the theoretical analysis of emergent phenomena, like collective oscillations [7, 30, 14];
on the other hand, from the data analysis point of view, they constitute the basis of “forward
models” of large-scale brain signals [17, 44, 8, 4, 26]. This second motivation requires neuronal
population equations to achieve the right balance between accuracy (the equation faithfully
captures the dynamics of the population of neurons it represents) and usability (the equation
can be efficiently simulated).

An example of such a neuronal population equation is the integral equation (or refractory
density equation) for a homogeneous network of spiking neurons (“neuronal population”) [29,
30, 12, 31, 47]. Contrary to standard neural-mass models [52, 17, 35], the integral equation
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captures the effect of neuronal refractoriness on the mean population dynamics [12, 31, 47]
and is exact in the mean-field limit if neurons are modeled as intensity-based renewal point
processes [16, 25, 10]. Specific examples of the integral equation are the time-elapsed neuron
network model [39] (or age-structured model [22]) and the voltage-structured model of [16, 25].

Besides capturing the effect of single neuron dynamics (such as postspike refractory ef-
fects) on the mean population dynamics, there is a second challenge for neuronal population
equations: the proper account of fluctuations. Fluctuations of the average population activity
are present in the case of finite population sizes and vanish in the mean-field limit of infinitely
many neurons. From a modeling perspective, an important question arises: Are the relevant
neuronal populations large enough so that finite-size fluctuations can be neglected? There is
no clear answer to this question, but the anatomical and functional organization of the cerebral
cortex into different cortical areas, columns, and layers each containing different cell classes [32,
41, 45, 2] requires a subdivision of a cortical circuit into many relatively small populations. For
example, at the scale of a cortical column, empirical data from mouse barrel cortex suggests
populations of around 50 to 2000 neurons [36]. For these population sizes, finite-size fluctua-
tions are nonnegligible, and this noise may strongly impact the nonlinear population dynamics
[48]. Therefore, modeling cortical circuits at the mesoscopic scale of populations requires a
stochastic description, which is in marked contrast to the deterministic integral equation.

Rigorous extensions of the integral equations to account for finite-size fluctuations are
subject to an accuracy/usability trade-off. If neuronal refractoriness is neglected, the popula-
tion equation reduces to that of [19, 20], and finite-size noise can be added by the linear-noise
approximation [33] or, granting some Markov embedding, by the diffusion approximation [20],
whose numerical implementation is relatively simple [11]. These approaches fail to reproduce
the nonstationary dynamics of the mean population activity and the temporal correlation
structure of fluctuations for a population of spiking neurons with refractoriness (Figure 1(a)).
On the other hand, if one does not neglect refractoriness, central limit theorem-based argu-
ments lead to formal stochastic PDEs (SPDEs) [9, 23], which are computationally expensive
to simulate, or to formal integral equations with colored noise [18], for which a simulation
algorithm is unknown.

In [48], a heuristic extension of the integral equation with finite-size fluctuations is derived.
It can be easily simulated and takes into account the effects of neuronal refractoriness. While
this extension is not exact, its numerical implementation gives an accurate approximation to
the dynamics of finite-size networks of spiking neurons, such as the broad class of generalized
integrate-and-fire neurons [42, 48] and formal renewal-type neurons [30, 40]. Moreover, since
it takes the form of an intensity-based point process, the likelihood of a population spike train
can be easily computed, which enables efficient data fitting [43, 51]. The intensity function
of this point process exhibits a novel type of nonlinear history dependence that goes beyond
nonlinear Hawkes processes and has not been studied mathematically so far. In particular,
the stability of the process observed in simulations is poorly understood from the theoretical
point of view. Therefore, the aim of this work is to give a rigorous foundation to the model
of [48] and prove its stability.

Below, we briefly give a review of some standard population equations. We then present
the finite-size model of [48] in a slightly simplified form. Finally, we show that the simplified
model, in the case of leaky integrate-and-fire (LIF) neurons with escape noise [30, 27], can be
written as an SPDE driven by Poisson noise, which will be the main object of study in this
work.
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Figure 1. Mesoscopic population dynamics. (a) Top: Spike-raster plot of a microscopic model of N = 200
uncoupled leaky integrate-and-fire neurons with escape noise, (1.1) with J = 0. Neurons were initialized in a
synchronized state, i.e., all neurons spiked at time t =0. Bottom: Empirical population activity measured with
temporal bin size h = 0.001s (black line) and macroscopic population activity predicted by the deterministic
integral equation (1.7) for N — oo with vo = do (gray line). (b) Comparison of the power spectral densities
(as defined in Appendiz D, see also [48]) of the empirical population activities A y(t) of the microscopic model
(black line, exact theory [31]) and A, (t) of the mesoscopic model (blue line, simulation). (c, d) A; (1.12b)
and mass My (1.14) for simulations of the mesoscopic model (blue line) and the “naive” mesoscopic model with
AZ =0 (orange line). For comparison, the macroscopic model and the mesoscopic model with fixed AZ =217
Hz (corresponding to the temporally averaged A of the mesoscopic model) are shown by gray and green lines,
respectively. (e, f) Same as (c, d) but for a longer simulation time. Parameters: Tm, = 0.02 s, p = 20 mV,
fu)=ce* /B ¢=10 Hz, =10 mV, A, =1 mV.

1.1. Neuronal population equations. To give a mathematical introduction to the integral
equation formalism, it is useful to consider the special case of LIF neurons with escape noise
[30, 27], which is also the main case we will treat in this work. Let us consider a network of
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N identical neurons that are all-to-all connected with uniform connection strength J/N for
J € R. Each neuron i has a voltage variable U»" which evolves according to the system of
SDEs: For alli=1,..., N,

N N il | J e N
l t (2 1, s
(1.1a) AUy = S——tdt = Uz ZdZt
N .
+
Here, ZZ" is the spike counting process of the neuron 7 and has intensity f ( ) t~ de-

noting the left limit. Furthermore, y; comprises the resting potential and the (p0331bly time-
dependent) external drive, 7y, is the membrane time constant, f : R — R, is the intensity
function, and {7('1'}2‘:17“_, ~ is a collection of independent Poisson random measures on Ry x R
with Lebesgue intensity measure.

Equation (1.1) is called a microscopic model because the neuronal dynamics is modeled
with single-cell resolution (Figure 1(a), top). A drastic reduction of the complexity of the
model can be achieved by coarse-graining over the population of neurons. To this end, we
consider the empirical population activity

N ZzN ZZN

(1.2) AN = ~ Z ”"

where b > 0 is a small time interval determining the temporal resolution (Figure 1(a), bottom).
Neuronal population equations are models of such coarse-grained quantitities that describe
the neuronal dynamics at the scale of whole populations. If the population is of finite size
(N < 00), the dynamics is called a mesoscopic model, while the dynamics for an infinitely large
population (N — 00) is referred to as a macroscopic model. In [16, 25], the authors proved that,
in the macroscopic limit N — oo, if the initial conditions {Ué}i:17.,,7 ~ are independent and
identically distributed with law 1, the empirical measure of the system (1.1) is characterized
by the voltage-structured PDE (with solutions in the sense of measures [14]): For all w € R
and t > 0,

) ouptant) + 0 ( (M 4 Tl lduct) ) =~ F(aplet) + bl
(1.3b) pPo = 1,

where p; := p(-,t) and pi[f] := [5 f(u)p(du,t).
The latter can be interpreted as the population activity
(1.4) lhlfg lim At 'y = A(t) := pi[f].

Furthermore, p¢[1] =1 for all ¢ > 0 expressing the fact that the number of neurons is conserved.

We now transform (1.3) into an integral equation. For all continuous functions a : Ry — R,
we define the time-dependent vector field b*(¢,u) := (uy — w)/mm + Ja(t) and write, for all
0<s<t, @&t(u) the associated flow given by

t—s t t t—r
(1.5) si(u) :==ue m —l—/ e mm L dr+ J/ " mapdr for all ueR.
S S

Tm
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We can now define, for all 0 <s <t,

(1.6) A (t]s) == f(D5+(0)) and S%(t|s) :=exp (—/ A(rls) dr) .

The function \%(t|s), called the hazard rate, gives the intensity at time ¢ (i.e., the instantaneous
probability of emitting a spike) as a function of the time of the last spike s and the past
population activity (a(r))s<r<¢; the membrane potential dynamics of LIF neurons—leaky
integration and spike-triggered reset, (1.1a)—is accounted for in the definition of A*(t|s).
Similarly, the function S%(¢|s), called the survival, gives the probability of not emitting a
spike in the time interval |s,¢[, given that the last spike was emitted at time s. By the method
of characteristics, we get that the population activity A(¢) solves the integral equation

(1.7) A(t) = HA®) + / M (1]3)54 (1]5) A(s)ds,
0
where
(1.8) HA@) = [ @ (w)e IO ),
R

Equation (1.7) is the integral equation of [52, 29, 30]; see also [13]. Note that, traditionally,
the integral equation has no explicit initial condition and therefore requires a normalizing
condition [31, sect. 14.1]. The integral equation (1.7) is normalized such that

. t
(1.9) HA(t) +/ SA(t|s)A(s)ds =1
0
for all £ > 0, where we defined
(1.10) HA(t) = / e~ Jo F@8()dry, ().
R

The normalization, (1.9), expresses the fact that the number of neurons is conserved.! Note
that the integral equation (1.7) is simply the time derivative of the normalizing condition
(1.9); this fact has been originally used to derive the integral equation [30].

In the case of LIF neurons with escape noise, the voltage-structured equation (1.3) is
equivalent to the integral equation (1.7) if A4 (¢|s) is defined by (1.6). However, we could
have chosen a different definition for the hazard rate A (t|s); the integral equation is therefore
more general than (1.3). In fact, (1.7) can be seen as a renewal equation that holds for any

'The conservation of neuronal mass can be understood as follows: At time ¢, H* (t) represents the fraction
of neurons (#neurons divided by N) that had their unique last spike before time 0, while for s € [0,¢[ the term
S4(t|s)A(s)ds represents the fraction of neurons that had their unique last spike time in the interval [s, s + ds]
(here A(s)ds is the fraction of neurons that fired in that interval and S#(¢|s) is the probability for one neuron
of not emetting a spike in s, t[ given a spike at time s). Therefore, fot 54 (t|s)A(s) ds represents the fraction of
neurons that had their unique last spike in [0,¢[. Hence, (1.9) states that the fraction of neurons at time ¢ that
had their unique last spike time before time ¢ (either before time 0 or since time 0) is equal to unity. Since this
statement holds for all ¢ > 0 and each neuron has exactly one last spike time before time ¢, the total number
of neurons must be conserved.

© 2023 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license
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population of neurons modeled as time-inhomogeneous renewal processes [40]. For example,
the Fokker—Planck equation for neuronal networks with diffusive noise (see [31, Chap. 13]) or
the time-elapsed neuron network model [39] can also be written as an integral equation with
a suitable choice of the hazard rate.

1.2. The finite-size integral equation. In [48], the authors derive a generalization of the
integral equation (1.7) which takes into account finite-size noise. For clarity, we will present
the equation of [48] in the case of LIF neurons with escape noise. Before presenting the model,
we need to extend the definitions (1.6). For all nondecreasing functions z : Ry 5 ¢t +— z; with
bounded variation on finite time intervals, we redefine, for all 0 < s <t,

t—s t t—r t—r
(1.11) O, (u) :=ue ™ +/ efm'urdr—i—J/ e mmdz, for all ueR.
’ s Tm 1s,t]
We can now extend the definitions (1.6), (1.8), and (1.10), replacing ®4 by (1.11).
For a finite number of neurons N, the finite-size integral equation of [48] (“mesoscopic
model”) can be written as follows: For all ¢t >0,

(1.12a) Zt:% 1, oya m(ds,dz),
[0,¢] xR
(1.12b) A, = HZ(t)+/ N (t]5)S% (t]s)dZs + AZ (1—Hz(t)— SZ(t]s)dZs> ,
[0,] [0,] n
GZ(t) + M (t1s){1 — SZ(t|s)}S% (t|s)dZs
(L120) A7 = () + Jio.0 A7 ()] (t]s)}S*(t]s) |

GZ(1) + Jfig.q {1 — S7(t]9)}5% (t]5)dZs

where 7 is a Poisson random measure on Ry x Ry with Lebesgue intensity measure and
[-]+ =max(0,-). The functions G? and G? are analogous to H? and H?:

GZ (1) = / f(q)({t(u)){l_e*fotf(‘bg,r(“))dr}effutf(q’g,r(u))dryo(du),
R

G2 (1) = / {1_e*f(ff(@g,r(u»dr}e*f(ff(@?,r(U))dryo(du)'
R

The mesoscopic model (1.12) defines a jump process Z;, where jumps of size 1/N occur with
intensity NA;-. The derivation of (1.12), explained in detail in [48, pp. 35-43], involves
heuristic arguments and approximations. Consequently, this mesoscopic model is inexact
(in contrast to the formal SPDE of [9, 23]). However, extensive numerical simulations have
shown that the model is highly accurate in many multiscale modeling applications [48] (see
also Figure 1(b)). Moreover, it has the advantage of being an intensity-based and history-
dependent point process and, as such, can be efficiently simulated and used for statistical data
analysis [43, 51]. A concise derivation of (1.12) is presented in section 4, where we also show
that, for some convenient initial condition, the functions H?, H? , GZ, and GZ are trivial.

The finite-size analogue of the population activity A(t) for infinitely large populations
(1.7) is the distributional derivative of Z;,

. 1
Zt:N;(S(t_tk)7

© 2023 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license
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where t, is the jump times of Z; and §(-) denotes the Dirac delta distribution.? We call Z
the population spike train (sum of d-pulses at spike times t;). Note that the biologically
relevant quantity is the empirical population activity at a finite time resolution, Agb =

h! tt+b+ Zods = [Z(t + ) — Z(t)]/h, for some small time interval h > 0. Furthermore,
we will often call the finite-size population model, (1.12), a mesoscopic model in contrast to
“macroscopic model” that refers to the case N — oo. Note that the variables A; and Z;
describe the neuronal activity of the population as a whole, driven by only one single Poisson
noise 7(dt,[0,NA;-]). A time discretization of the mesoscopic model permits an efficient
simulation of the neuronal dynamics directly on the population level, without the need to
simulate individual neurons (see section 5 and Algorithm A.1). Importantly, even though the
mesoscopic model is an approximation, it accurately captures the statistics of the population
activity Ai\fh of the original microscopic model. In particular, the fluctuation statistics of
the population activities Aivh and Aivh, as expressed by their power spectral density, are well
matched (Figure 1(b), also see [48] for further examples).

A key difference between the macroscopic model for an infinitely large population (1.7)
and the mesoscopic model (1.12) is the “correction term” AZ(1 —...) in (1.12b) arising due
to finite network size, N < oo. This correction term may seem unexpected in light of the
following heuristic argument: in (1.7) for infinite N, the fraction of neurons A(s)ds firing in
the past, s < t, contribute to the current activity A(t)dt with probability A4(t|s)S4(t|s)dL.
For finite IV, the corresponding fraction of neurons is dZs, and assuming that the probability
to fire their next spike at time ¢ is again given by A\ (ts)S4(t|s)dt, the expected activity
should be given by the much simpler expression Ay paive = HZ (t) + f(f A (t|s)S? (t|s)dZs. This
naive finite-size model is obtained by putting A7 = 0 and thus lacks the “correction term.”
Numerical simulations of the naive finite-size model indeed reproduce the transient initial
dynamics of the population activity at short times, including damped oscillations caused by
refractoriness (Figure 1(c), orange curve). However, longer simulations of the naive model
reveal that the population rate A; strongly fluctuates and eventually collapses to the silent
solution A; = 0. In contrast, the mesoscopic model, (1.12) with AtZ > 0, reaches a nonsilent,
stationary state consistent with the microscopic model (1.1) (Figure 1(e)). A completely open
theoretical question is, Why does the “correction term” in (1.12b) “stabilize” the finite-size
neuronal population dynamics?

To address this question mathematically, we focus our analysis on the case where the
modulating factor AZ is fixed (A = A > 0). This is a simplified version of the finite-size
integral equation (1.12), for which we can prove a rigorous stability result. Note that fixing
A7 = A > 0 is for mathematical tractability only; for practical modeling, A? as defined in
(1.12c¢) should be preferred (a detailed simulation algorithm is presented in section 5).

Before presenting our main stability result in subsection 1.4, we provide some additional
insights into the mechanisms of the finite-size integral equation (1.12), in particular, why the
naive model (A =0) is expected to fail. First, in subsection 1.2.1, we show a close relationship
between the finite-size integral equation and nonlinear Hawkes processes, for which stability
properties are well known. Second, in subsection 1.2.2, we propose a heuristic argument for the

2Formally, Zydt == dZ;, where dZ is the Lebesgue—Stieltjes measure associated with the counting measure
Z.
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Downloaded 10/11/23 to 138.199.6.184 . Redistribution subject to CCBY license

ON A FINITE-SIZE NEURONAL POPULATION EQUATION 1003

stability in terms of neuronal mass conservation and an analogy with the Cox—Ingersoll-Ross
process.

1.2.1. Relationship with nonlinear Hawkes processes. If J =0 (neurons do not interact),
p: = p (the external drive is constant), and A7 = A, (1.12) reduces to a nonlinear Hawkes
process [5]: For all £ >0,

(1.13a) Zy = % Loy _m(ds,dz),
[O,t]XR+
(1.13b) A= A+ HO4) — AFO®) +/ (0(t]s) — A)S°(t]s) dZs | |
0

=:hA (t—s) +

where A°, SO, HY and H° correspond to the definitions (1.6), (1.8), and (1.10) when ®Z (1.11)
is replaced by ®9(u) = ue” e fst e_%% dr.

The function h* : Ry — R in (1.13a) can be interpreted as the self-interaction kernel of
the nonlinear Hawkes process. The model (1.13) is not particularly useful in practice since
it only approximates the dynamics of a population of noninteracting neurons with constant
external input. Nevertheless it sheds light on the role of A for the stability of the mesoscopic
model, and it helps to see why the theory of nonlinear Hawkes processes [5] will prove to be
instrumental in this work. It is easy to verify that [;°h*(t)dt=1if A=0and [;°Rr™(t)dt <1
if A>0. If A=0, (1.13) is a critical Hawkes process and has a nontrivial stationary solution
only if h? is heavy-tailed [6] (which is not the case for the neuron models considered here). On
the other hand, if A >0, (1.13) is a stable nonlinear Hawkes process with a unique stationary
solution (Theorem 1 in [5] and see also [15]). Hence, in the time-homogeneous (y; = p) and
noninteracting case (J =0), Ay = A > 0 is a sufficient condition for the stability of (1.13) in
the sense of [5].

To generalize this stability result to the interacting case (J # 0), we will use a Markov
embedding of (1.12) and the Meyn-Tweedie theory [37], in addition to standard techniques

for nonlinear Hawkes processes [5].

1.2.2. Approximate conservation of neuronal mass. In contrast to the conservation of
neuronal mass in the macroscopic model, (1.9), such a strict conservation law no longer holds
for the mesoscopic model, (1.12). However, in analogy to (1.9), we would expect the neuronal
“mass”

(1.14) My:=H?(t)+ | S%(t]s)dZ,

[0,¢]
to stay close to 1. This feature is supported by simulations of the mesoscopic model showing
that M; fluctuates around unity (Figure 1(d),(f)). Indeed, with the number of neurons in the
system (1.1) being obviously constant, the finite-size population model (1.12) should reflect
this mass conservation principle.

Let us consider the first hitting time 7* =inf{t > 0: A; = 0}. For 0 <t < 7*, the intensity
Ay is strictly positive; hence (1.12b) can always be written as

Ay=HZ(t)+ | N(t]5)S%(t]s)dZs + A7 (1 — My).
[0.4]

© 2023 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license
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By formal differentiation of (1.14), we obtain for 0 <t < 7*

(1.15)  dM;=—H?(t)dt + dZ; — (/ M (t|s)SZ (t]s) dZS) dt = AZ (1 — My)dt + dZ;,
[0

7t]

where Z; := 7, — f(f A, ds is the compensated jump process. Equation (1.15) yields some rough
insights into the dynamics of the neuronal mass M;. For simplicity, let us assume AtZ =A to
be constant. First, the conditional mean Mf := E[M;|7* > t] can be obtained by averaging
(1.15): dM¢ = A(1— M¢)dt. This equation shows that its solution, M¢ =1+ (HZ(0) —1)eA,
is attracted to unity if A > 0. Conversely, in the naive model, when A = 0, the conditional
mean does not drift toward unity but remains constant, M¢ = HZ(0) for all ¢ > 0. Second,
in the naive model (A =0), once M, hits the boundary 0, it sticks to this boundary forever,
ie., My =0 for all ¢ >7* (Figure 1(f)). In fact, if f is upper bounded by || f||c < 00, we have
0< Ay <||fllcoMyi + A(1 — My). Thus, My =0 and A = 0 entail that A4; = 0, and hence the
“noise” dZ in (1.15) vanishes.

Third, if the jumps of Z; are small and frequent enough and if the increments of Z; are
“independent” enough, we may replace dZ, by its diffusion approximation y/A;/NdW;, where
W; is a Wiener process. If we further assume that A; and M; vary roughly in proportion
(as suggested by Figure 1(e),(f) for the naive model), we expect that M; behaves like a Cox—
Ingersoll-Ross process, dM,; = Al - Mt)dt + 0\/@th, where o is the volatility parameter.
Due to the drift term, this process fluctuates around its mean E[M;] = 1 if A > 0, consis-
tent with simulations of the model (Figure 1(d),(f)). Such drift force is absent in the naive
model, A =0, in which case th = JMth describes the critical Feller branching diffusion
which goes extinct in the long run (and once it hits 0 remains there forever) with extinction
probability P(M; = 0|My=z) = e~ +%.

1.3. Markov embedding of the finite-size integral equation. As the voltage-structured
equation (1.3) can be transformed into an integral equation, assuming A7 = A, we can trans-
form the stochastic integral equation (1.12) back into a voltage-structured SPDE driven by
Poisson noise. Denoting M the space of nonnegative finite measures on R, for all M _-valued
random variables g, the SPDE formally writes as the following: For all ¢ >0 and u € R,

(1.16a) Bup(du, t) + B, <<“t; Yy JZt> p(du,t—>> = — F(u)p(du,t) + Zydo(du),
1 -
(1.16b) Zi= 7 Loy, m(ds,dz)  with Ap:= [p[f]+ AL —[|pelD]+,
[0,t}XR+
(L16c)  po=7a,
where ||-|| denotes the total variation norm, that is, the total mass of the measure.

We will give a precise meaning to the SPDE (1.16) and show that it is equivalent to the
stochastic integral equation (1.12) in section 2 below. The two jump terms d,(J Zsp(du,t™))
and Z;8 (du) have the following interpretation: At each jump time of Z;, the current mass of
the solution p(du,t) is shifted by J/N, and a mass (1/N)dp is added to the current value of the
solution (emulating the membrane potential reset of LIF neurons, (1.1a)). Although the jump
intensity NA;- of Z; is not a priori bounded, we shall prove in Lemma 2.4 below that a.s. Z
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has only a finite number of jumps within each finite time interval such that (1.16) is well-posed
as a measure-valued piecewise deterministic Markov process having cadlag trajectories.

We say that (1.16) is the Markov embedding of the jump process (1.12) (with AZ = A)
and that Z is the jump process associated with the solution p.

1.4. Assumptions and main result. The main result of this work concerns the stability
of (1.16). We use a notion of stability that is close to that of Brémaud and Massoulié [5] for
nonlinear Hawkes processes.

We say that a jump process Z is stationary if, for all 7 > 0, the time-shifted process
(Ziyr — Z7)¢>0 has the same law as (Z; — Zp)i>0. Then, we say that a solution p to (1.16)
with the M -valued random initial condition 7y is stationary if the associated jump process
7 is stationary.

Since the noise in (1.16) comes from a Poisson random measure, we can naturally construct
a coupling of two solutions p and p to (1.16) (for different, possibly random, initial conditions)
on the same probability space, using the same underlying Poisson random measure. Writing
Z and Z the jump processes associated with p and p, we define T, the coupling time of Z and
Z, i.e., the time starting from which Z and Z are identical,

(1.17) T.:= inf {r >0: (Zisr — Zo)iso = (Zosr — ZT)tZO} ,

with the usual convention that T, = +oco if Z and Z never couple. In other words, T, is the
time starting from which p and p have the exact same jump times. By abuse of terminology,
we will say that T, is the coupling time of p and p, although it is in fact the coupling time of
the associated jump processes. We can now adapt the definition of stability in variation of [5].

Definition 1.1 (stability in variation). The voltage-structured SPDE (1.16) is stable in vari-
ation if there exists a stationary process {p,vp} solving (1.16) such that, for all M -valued
random initial conditions vy, there exists a coupling of p and p (a solution to (1.16) with initial
condition 1) such that the coupling time T, of p and p is a.s. finite.

In modeling terms, the stability in variation implies that, for any (random) initial condition
7o, the population spike train Z; relaxes to a unique stationary process in finite time. More
specifically, for any initial condition 7y € M, if we draw 7y from a stationary distribution
and if we simulate the two corresponding processes with the same Poisson noise, they couple
in finite time a.s.. In particular, this implies the uniqueness of the stationary distribution.
To prove that (1.16) is stable in variation, we need the following assumption.

Assumption 1.2. puy =p € R.

This just means that the external drive is time-homogeneous, and it is a natural assumption
to make if we want to show relaxation to a stationary process.
The other important assumption concerns the intensity function f.

Assumption 1.3. f is bounded, i.e., || f]loo < 00, and infyer f(u) =: fmin > 0.

A simple example of a function satisfying the assumption is the shifted sigmoid. Note that
these bounds do not allow taking an exponential function f (or any unbounded function) or
having an absolute refractory period (short interval of time following a spike during which
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a neuron cannot spike). In other terms, neurons cannot be forced to spike in a finite time
interval or be forced to stay silent. Nevertheless, since || ||~ can be arbitrarily large and finin
can be arbitrarily small, these bounds do not meaningfull alter biological realism.

Finally, to prove that the stationary process exists, we need the following assumption.

Assumption 1.4. f is differentiable, and f’ is bounded. Furthermore, there exists a positive
constant C' such that |uf’(u)| < C for all w.

This is a purely technical assumption and is rather innocent since f is anyway bounded.
We can now state our main result.

Theorem 1.5. Grant Assumptions 1.2-1.4. The voltage-structured SPDE (1.16) is stable
m variation.

The proof is divided into two parts. In the first part, using Meyn—-Tweedie theory [37], we
show that the solutions of (1.16) satisfy a certain recurrence property which then allows us to
prove that the associated jump processes couple, using methods from [5] for nonlinear Hawkes
processes. In the second part, we prove the existence of a nontrivial stationary process solving
(1.16).

In simulations, the simplified model with fixed A, (1.16), has a qualitatively similar be-
havior (from the stability point of view) to the original model of [48], where A# has an explicit
expression in terms of the past Z (see section 4). Hence, the proof of Theorem 1.5 provides
an important understanding of the role of the “correction term” AZ(1—---) in the original
model (Figure 1(c)—(f)).

1.5. Plan of the paper. First, in section 2, we prove the well-posedness of the SPDE
(1.16) as a measure-valued piecewise deterministic Markov process. The proof of Theorem 1.5
is then presented in section 3.

In section 4, we present a concise derivation of the finite-size integral equation (1.12), and
a simple simulation algorithm is provided in section 5. A general simulation algorithm for
multiple interacting populations of generalized integrate-and-fire neurons can be found in the
appendix.

2. Well-posedness. Although the SPDE (1.16) might look somewhat formal, it can be
rigorously formulated in terms of a piecewise deterministic Markov process (PDMP) taking
values in the space M of all positive measures on R. We endow M with the topology of
weak convergence, which makes M Polish.

Since Assumptions 1.2 and 1.3 are always imposed in what follows, we will omit their
mention. In particular, we will always assume that f is bounded.

For all v € M, let us write (S(¢)v)¢>0 := (p(+,t))e>0 the solution to the transport equation

(2.1)  Oup(du,t) — 8, <<“ — “) p(du,t)> = —f(u)p(du,t)  for all (u,t) € R x R*,

Tm

po =r.

With the notation of (1.5), take the flow ®2; without exterior input, that is, a = 0. Then we
have the explicit representation
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(2.2) Sty = /R Sag ,(uye” Jo I @By (g

(S(t))ter, can be seen as a substochastic Co-semigroup of bounded linear operators on M.
Moreover, we introduce, for any a € Ry and any v € M, the shifted measure

Agv:B(R)> B v((B—a)).

Putting pp = 1y, we can construct a pathwise solution to (1.16) following the procedure:
1. We start from an initial value vy € M, at time t =0.
2. We consider the counting process

Zr = / ]leN[(S(S)Vo)[f}—l—A(l—HS(S)VO||)]+7T(CZS, dz)
[0,t] xR+

together with its first jump time 71 :=inf{t >0: 7} =1}.
3. We put p; := S(t)vp for all t < 71
4. At time 7!, we update

1
(23) pPr1i= A% (S(’Tl)ljo) + N(S[)

and we return to step 1, replacing vy by py1 and time 0 by 7.

Remark 2.1. This construction provides indeed a PDMP taking values in M ; in between
the successive jumps of Z; only the transport equation acts, and we shall show below that
only a finite number of jumps occurs within each finite time interval. We have the explicit
representation

(2.4a) PtZ/5q>§t(u)€_ff:f(q)‘{T(“))drl/o(du)+/ Spz, e - 1Oz
R [0,2]
1

(2.4b)  Z, Lo<Nlpy- 111440 lp,- ) (5, d2).

B N [O,t] XR+

In the above formula, the first term on the right-hand side (RHS) of (2.4a) corresponds to
(2.2), except that we have to replace the null exterior input by Z such that, at each jump of Z,
the original mass is shifted by J/N, according to the jump term A s of (2.3). The second term

corresponds to the source term %50 which is added at each jump of Z and then transported
by S(%).

The above notion of solution is actually equivalent to the notion of a mild solution of the
SPDE (1.16) driven by Poisson noise (see [24] and [50]). However, since the only underlying
noise is Poisson, with finite jump intensity, the notion of a PDMP with values in M seems
to be more natural in this context.

Remark 2.2. Using the representation (2.4a), we can easily make the link between the
SPDE (1.16) and the stochastic integral equation (1.12). Taking the definition of A; in (1.16),
we have
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Ar=[pel 1+ AL = llpelDl+

) [ @ (w)e Jo I @S Dy (du) 4 | f(@F,(0))e SO OMrag,
Ry [O’t]

+A<1_ / o= Ji TOF )dry () — / efstf(‘?f,r(o))drdZS)
R, 10,¢]

(using (1.6), (1.8), and (1.10))

+

I

+

2z Z (41)S% (¢|5)dZ, . Z (4|5)dZ,
_ [H (t)+/[0’t])\ (t]5)SZ (t]5)dZ +A<1 i /Ms Q )dZ)

showing that (1.16) and (1.12) are equivalent. Also, since

[l 2]l = / o= o F@EDdry (g 4 / e JI@L gz — gz 4 [ §Z(4|s)dZs,
R, 10,] [0,1]

lloe|| is equivalent to the neuronal mass M; defined in (1.14).

In what follows we study the extended generator L of our process in the sense of Meyn
and Tweedie [37]. Extended generators are defined by the pointwise convergence and the fact
that a fundamental martingale property reminiscent of the It6 formula is verified. For the
convenience of the reader we recall its definition: We set D(L) as the set of all measurable
functions g : My — R for which there exists a measurable function h : M4 — R such that
t—E,(h(p:)) is continuous in 0 and such that for all v € M, for all ¢t >0,

L Eu[g(pr)] - 9(v) =E, [; h(ps)ds;
2. E,[fy |h(ps)|ds] < oc.
In this case, we write Lg := h.

On a restricted set of test functions, we can explicitly calculate the extended generator
L of the PDMP described above: For all ¢ € C}(R) (bounded and continuously differentiable
functions), for all v € M, and using the abuse of notation ¢(v) := v[p], we have that

25 Lo(v)=- / U o (w)(du) — vl

Wb~ L ([ (10t 57 ) o) + 500 - o161

We now show that this process is well defined. For that sake, let us define, for all K > 0,
the exit time

(2.6) TE :=inf{t>0: ||p]| > K}.

Remark 2.3. The TX are well-defined stopping times since the sets {v € M, : ||v| > K}
are the preimage of | K, +o0[ by the linear form 1: M4 — R4, v+ v[1], and we have endowed
M with the topology of weak convergence. For a general treatment of the measurability of
hitting times, see [1] and in particular Theorem 2.4 of that article.

Up to time 7% the overall jump intensity of the process is bounded by || f||c K + A such
that the procedure described above is well defined up to the explosion time of the process
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¢ = limg_, o T*. To show that (1.16) is well defined on R, we need to prove that the
PDMP defined above is nonezplosive in the sense of [37], i.e., ( = +o0 a.s.. We follow the
standard “drift condition”-based approach of [37]. Writing V' (v) := ||v|| = v[1], for all v € M,
we have the following lemma.

Lemma 2.4 (Foster—Lyapunov inequality). There ezist K* >0, d >0, and ¢ >0 such that
(2.7) for all v e M, LV(v) <dlj, <g+ —c(1+V)(v).

Proof. Using (2.5) and V(v) = v[1], we have LV (v) = —v[f] + [v[f] + A1 — ||v]])]+-

Two cases arise: either [v[f] + A(1 — ||v||)]+ > 0, in which case LV (v) = A(1 — ||v||) =
A—AV(v), or [v[f] + A(1 — ||v|])]+ =0, in which case LV (V) = —v[f] < — fminV (V).

Whence, LV (v) <A — (fmin A A)V(v). We can adapt the constants to obtain (2.7). M

Arguing as in Theorem 2.1 of [37], Lemma 2.4 guarantees that the PDMP is nonexplosive.
Hence, we have proved the well-posedness of (1.16).

Proposition 2.5 (well-posedness). For all vy € M., there exists an M -valued pathwise
unique solution to (1.16) on Ry.

3. Stability.

3.1. Coupling. More than nonexplosion, the “drift condition”-based method of [37, 3§]
allows us to show that the PDMP (1.16) satisfies a certain “recurrence” property.

For all K > 0, let us write the hitting time tx := inf{t > 0 : ||p|| < K} and denote by
E,,[tx] the expected hitting time of the PDMP (1.16) starting in state vp € M4 at time 0.

Lemma 3.1. Take the constant K* of Lemma 2.4. For all vo € My such that ||vg] > K*,

Proof. The proof is standard, but we reproduce it here to highlight the fact that it holds
even if the space in which the process evolves is not locally compact.

We use V' and the constants of Lemma 2.4. For any ¢t >0 and any M > K*, by Dynkin’s
formula (see [37]),

tIANTM
Euo [V (poarsr)] = V(o) + B, / LV (ps)ds <V (vp) + dt,
0

where TM is the exit time defined in (2.6) and where d is given in (2.7).
Since V (piary) > M1, <4, this implies

V(I/()) + dt
7M .

Taking M — oo, by monotone convergence, P, (¢ <t) =0, which implies nonexplosion.
We now make another use of Dynkin’s formula:

tALgex NTM
Epo [V (ptatienrm)] =V (g) + Eyy / LV (ps)ds
0

tAL e NTM
<V (vp) — cE,, / (14 V)(ps)ds.
0
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Whence,
EAEgex NTM %
K —E, ATM -K
]E’VO/ (1 + V)(ps)ds < V(VO) o[v(pt/\tx AT )] < V(VO) )
0 C C
Taking ¢, M — oo, we get, by monotone convergence,
T . K*
EVO/ (14 V)(ps)ds < L.
0 C
The fact that E,, [tg<] <E,, JK* (14 V)(ps)ds concludes the proof. [ ]

The definition of stability we use involves the notion of coupling of two processes (see
subsection 1.4). For vy and 7y € M, a natural way to couple two processes p and p following
(1.16) with initial condition v and 7y, respectively, is to construct them with the same Poisson
random measure 7. With this coupling, the associated jump processes Z and Z; follow, for
all t >0,

1
Zei= 5 Lo<N{p. (/14 A0~ p. ], T(ds, d2),
[Ovt]XR+
.1
Zii=5 L <N (£1+A= ] 5.1)), T (ds, d2)-
[O,t]XR+

For all £ > 0, we can now introduce the event
Et = {Zt-i-s — Zt = Zt+5 - Zt for all s > O}

on which both jump processes couple after time ¢. With (F;);>0 denoting the natural filtration
of the coupled process, we have a lower bound on P(E};|F).

Lemma 3.2. For any K >0, there exists a constant € €]0, 1 such that, for all t >0,

(3.1) P(E|FL) = eljip, |+ )1a|<K)-

Proof. We use the shorthand A[v] := [v[f] + A(1 — ||v||)]+ for all v € M. Fix any t >0
such that ||p¢|| + ||p¢]| < K. Write 7} :=inf{s > t: (Zs — Zi) + (Zs — Z;) > 1/N} the next jump
after time ¢. Noticing that, for all t <s <7}, A[ps] V A[ps] < || fllo K + A, we clearly have that
t < 7}; that is, there is no accumulation of jumps in finite time.

In what follows, we evaluate the difference A[py] — A[ps] for ¢ < s.

We start by considering the difference ps[f] — ps[f] for all t < s < 7! It is clear that, for
all t <s <7},

ps[f]—/Rpt(dU)f@?,s(U))eXp <— /tsf(q’?,r(u))dT) < K| flloce™ (oM

where ® is the flow of the transport equation (2.1) and where, for the inequality, we use
the bounds of f given by Assumption 1.3. Consequently, for all t < s < 7}, |ps[f] — ps[f]] <
2K || f|looe™ O min . Similarly, | ||ps|| — ||5s|] < 2K e (570 fmin,
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At the jump time 7, two cases arise.

e 7} is an asynchronous jump, that is, only one of the two processes, say Z, jumps, in

which case p is shifted to the rlght by J/N, and a Dirac mass N60 is added (see (2.3)).
Then, for all s € [r}, 77, where 77 :=inf{s > 7} : (Zs — Z3) + (Zs — —Z. 1) >1/N}, we

have

pulf) = [ o (@0F(@Y (TN e (— / @0 (e g/

B exp( /f >
ulf) = [ ey (@ oo (- [ :f(‘I’g;r(u))d?“) .

As a consequence,

while

0alF) = Bl < 1o D |+ )+ 1210 ==

< 2K||f||Ooe_fmin(5_7_t1)e_fmin(Ttl _t) _I_ Hf”OO e_fmin(S_Ttl)
- N

- f _
_ 2K||f||oo Smin(s—1) H ]\H[OO Sonin(s—T; )
e 7} is a synchronous jump, in which case we obtain similarly that, for all s € [}, 72],

5[] = Bslf1] < 26| [l oce™ im0,

Similar estimates hold for |||ps|| — ||ps]||. Since the function = — x4 is Lipschitz with
Lipschitz constant 1, this implies that

|Alps] = Alps] < lps(f) = ps(F) + Alllps ]l — 1155l

Working iteratively with respect to the successive jump times 7', > 2, and using the
above arguments, we deduce that for an appropriate constant C > 0, for all ¢ < s,

(3-2) |Alps] = Alps)| < Ce™ 0|l pg | + |1 ell) + C/ e fmnl=dD,,

Jt,s]

where (Dg)s>¢ is the process counting the asynchronous jumps of Z and Z. Notice that
(Ds)s>¢ has stochastic intensity (N|A[ps] — A[ps]|)s>¢- In particular, the above upper bound
implies that, on [t, 00[, (Ds)s>¢ is stochastically upper bounded by a linear Hawkes process, say
(Hy)s>¢, with self-interaction kernel h(s) = NCe~/=* and with time-inhomogeneous baseline
rate s = NCe =0 (| oy || + |3t

The rest of this proof follows the arguments given in the proof of Theorem 2 of [5, p. 1581]
together with their Lemma 1. Here are the details of the argument: As a consequence of the
above, we obtain the lower bound

P(E|Ft) =P (D([t, 00[) = 0| F;) = P (H ([¢, 00[) = 0].F%)
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since D is stochastically upper bounded by N. But, by the structure of the Hawkes process,

B (H([t, 0]) = 0]Fy) = exp (— [ NCe e ) + Hﬁtwds)
— exp (“NC(lpell + 15411/ i)

Putting e := exp(—2NCK/ fuin) concludes the proof. [ |

Theorem 3.3. Let p and p be the coupled processes defined above for the initial conditions vy
and vy € M., and write E(,, ;) for the associated expectation. Then, the associated counting
processes Z and Z couple a.s. in finite time, i.c.,

P <limsup {(ZS)SZt # (Zs)s>t}> =0.
t——+o0

Moreover, the associated coupling time T, dgﬁned in (1.17) above, admits exponential mo-

ments; that is, there exists a positive constant X > 0 such that, for all initial conditions vy and

vy e My,

(33) E(Vo,l;())[e)\Tc} < +00.

Proof. The beginning of the proof of this theorem is similar to Lemma 5 of [5]. Defining
Eo :=UX B, (E[1g_|Fi])e>0 is a uniformly integrable martingale, and we have E[1g__|F] —
1, as..

However, for all K >0, we have, by Lemma 3.2,

E[]].E‘OO |ft] = ]P)(Eoo|ft) > ]P)(Et|ft) > 5]1{Hpt||+||ﬁrHSK} for all t > 0.

We can easily adapt the proofs of Lemmas 2.4 and 3.1 to discrete times n € N and show that
there exists K* > 0 such that P(limsup,, .o {|lonl| + [|pnl] < K*}) = 1. Hence, 1g_ > ¢ as.,
which in turn implies that P(Es) = 1. Since the event E., is the complement of the event
limsup,_,  so{(Zs)s>t # (Zs)s>t}, this concludes the first part of the proof.

The proof of the existence of exponential moments for the coupling time, which is rather
classical, is postponed to Appendix B. |

3.2. Existence of the stationary process. We construct a stationary process Z following
the lines of [5]. The main idea is to show that a construction on the whole line R, that
is, starting from ¢ = —oo, is feasible. If it is so, then intuitively the constructed process is
automatically stationary. More precisely, we have the following theorem.

Theorem 3.4. In addition to the usual assumptions, grant Assumption 1.4. Then there
exists a unique stationary process Z solving (1.16).

Proof. We only need to show that a stationary process Z exists; uniqueness follows then
from the coupling property stated in Theorem 3.3 above.

We construct a sequence Z™ of jump processes in the following way: For any fixed n > 1,
let (pI™, ZI"]) be the solution of (1.16) defined on [—n,co[, starting at time —n from the initial

condition p[fll = %60, With
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o _ L ] i A [l ] _

ARES 1 __yamm(ds,dz) with A" = |pg  [f] + A1 —|lps|]) for all t > —n
N Jiongxr, =70 +

and Zt[n] =0 for all t < —n.
In order to obtain a standardized sequence of processes, we put

2= 7 gl

In this way, for all n, Z[" is an element of the Skorokhod space D(R,R) with Z([)n] =0. We
shall also consider the associated sequence of processes

XM= ) = Al

such that the stochastic intensity of N z" i Al(s):= N[X S[T,L} + Al

Step 1. We first show that the family (Z ] x M)nzl is tight in the Skorokhod space
D(R,R?). To do so, we use the criterion of Aldous; see Theorem VI.4.5 of [34]. It is sufficient
to prove that

(a) for all >0, all € >0,

limlimsup sup IP’(|Z£T,L] -z + |X7[_7,L] — XM >e) =0,

o0 n—oo (T,T/)EP(,,T

where P, 7 is the set of all pairs of stopping times (7,7') such that =7 <7 <7/ <
T4+0o<T as;

(b) for all T'> 0, lim gtos SUP,, P(sup_T<s<T(|Zs[n]| + Xgn]) >K)=0.

To check (a), observe that o

E[|Z[7}—Z£”]|]§;E/ A[”]()ds<\/2T\/ sup E [(A(s))2].

T<s<T

Note that (A["(s))? < C‘Hp‘[gn]H2 + C' for some constants C,C’ independent of n. By similar
arguments as in the proof of Lemma 2.4, we have that W (v) := ||v||? satisfies

(3.4) for all v e M, LW (v)<a-—W(v)

for suitable constants «, 3 > 0.% Then, it is straightforward to show that (3.4) implies

sup sup  E[W(pl)] < oo,
n —T<s<T

implying (a) for the sequence of processes Z™.

We now turn to the study of the sequence of processes X ("] We show how to control
p"![f]; the control of ||pl™|| is obtained similarly by taking f = 1. We fix stopping times 7 < 7/
and consider the increment p[;] [f] — p[Tn ] [f] on the event ZE,L] — zI" = 0. On this event,

3See Appendix C.
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GRS / P (du) <f<‘1’3,7f(u>)exp (— / ' f@?,s(U))dS) - f(U)> :

R

Then,

|f<q>3,7/<u>>exp (— / ' f(@Q,S(U))dS> ~ f(u)

exp (— /T f(<1>9,S(U))dS> -1

<A@ () = flu)| + || flloo (1 — =W l>),

T, T

<A@ _(w) = F@) + [ flls

T, T

Using that |<I>S T,(u) —u| < (1 —e~ /™) |u— p|, Taylor’s formula implies
F(@0 () = ()| < |FEI(L = e/ ™)|u— pl,

T, T

where € € [u, ®° ,(u)]U[®° ,(u),u].
T, T T, T
We first produce an upper bound in the case where u > p and p > 0. Since |f'(u)| < C/u
by Assumption 1.4 and since £ > ®° ,(u), we have
T,T

(3.5) £@0 ()~ F(u)] <O - e~™)C,
where
1
Cy :=sup (u—p).

uZN Ue_O/T"‘ + /’I’(l — e_O'/Tm)

Moreover, it is clear that, for any o¢ > 0, sup,<,, Co < 00.

If £ <0and p<u<0, we use that f/(¢) is bounded on [u,0] to obtain (3.5). The case
u < p is treated analogously.

As a consequence, we get the global upper bound (on the event ZE,L] — ZEL} =0):

PP = APIf] < et — e ) I, with k= || fllee V 1/ T

T

We conclude the control of pl™[f], on the event Z [7] — ZLM = 0, using the Foster—Lyapunov
T

inequality (Lemma 2.4)
E|lpl")|| <E|pl"| +dT,  with d from (2.7),

and the fact that suanHpgn] | < oo.
To deal with the event Z [7;} - ZLn] > (, observe that
T

E Up[ﬁ 1= Al ] 11{2[71_Z;n]>0}] <1 llocE [(np[jw +I1o1) n{zv;]_mo}] .
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Moreover, for any stopping time 7 taking values in between —T and T, we have

E ||pL”]H11{Zv;]_Zw>O}} < \/EHp[T"]IIQ\/JP’(Zf?] -z >0).

Using similar arguments as above but now with the Lyapunov function W (v) = ||v|?, we
obtain

sup E[| pl||? < oc.
n

Finally, using the already established control over ZI"| we get that
limsupP(Z") — ZI" > 0) =,
O'\LO n T

which concludes the proof of (a).
(b) Let us first observe that sup_p<s<p |Z£n}| < Zgﬂ - Z[_n]T7 and

sup |XP <0 sup o <0 (1"l + 25 - 21).
—T<s<T —T<s<T
We can then conclude using the moment estimates established above.

Step 2. By tightness we can extract a subsequence ny such that (Z (il X [”’“]) converges,
in D(R,R?), to a limit process that we shall denote (Z, X). We now show that Z is necessarily
stationary. For that sake, take a test function ¢ : D(R,R) — Ry which is continuous (with
respect to the Skorokhod topology) and bounded and which does only depend on Z € D(R,R)
within a finite time interval [a,b] C R. We have to show that, for every ¢ >0,

Elp(Z2)] =E[p(6:2)],

where 6,7 is the shifted counting process defined by (0;2)s = Z;4+s — Z; for all s > 0.
By weak convergence, we have that

Elp(2)] - Elp(60:2)] = lim E[p(Z1"))] ~ Elp(6:2"))).

Now we use the coupling property proven in Theorem 3.3 above. For any fixed k and t we
realize ZI™) and 6,Z1") according to the construction used in the proof of Theorem 3.3.

This means the following: Let m(dt,dz) be a Poisson random measure on R x Ry which
has intensity dtdz on R x Ry. We construct Z[™] using the atoms of m within [—ny, co[ xR,
starting from %50 at time —ng. Then we choose, independently of 7, a random measure
Peny, ™~ E(p[fﬁ]k“). Note that this law does not depend on ng; it only depends on ¢. Finally,
we realize the process 6, 2] letting it start at time —ny, from the initial condition p_,, and
using the same underlying Poisson random measure 7. Let T7:,, be the finite coupling time
of the two processes. Notice that, once again, E(ngp) does not depend on ng.

Using this coupling, we obtain

Elp(Z")] — Elp(6:21)]| < lellaoP(Tty > i+ @) = ]l ooBTeoup > i + @) 0

coup =
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as ny — oo, implying that E[o(Z)]—E[p(6:Z)] = 0. Since the test functions ¢ form a separating-
class (see Theorem 1.2 in [3, p. 8|), we have that Z and 6;Z have the same law, whence
stationarity.

Step 3. Now, we verify that the process Z, where Z is taken from the stationary limit
process (Z,X) constructed above, is a jump process where jumps of size 1/N occur with
intensity A\ := N[X;- + Al+.

To ease the notation, in what follows, we rename the subsequence nj by n. Using the
Skorokhod representation theorem, we may assume that the above weak convergence is al-
most sure for a particular realization of the couples (Z [l x [”}). Hence, we know that, a.s.,
(zIM, X"y — (Z, X) and A\ — X, Moreover, let Z be the process having intensity A for the
same underlying Poisson random measure as (the realization of) Z. Then, by Fatou’s lemma,
for any ¢t >0,

_ 2 = 1 t
E|Z — Z,| <liminfE|Z" — Z,| < NlimianE/ A (s) — A(s)|ds =0,
n n 0

where we used the uniform integrability of the A7 namely, that SUp,, SUP4e(o /] E[)\Ln]] < 00.
The same argument shows that E|Z; — Z;| = 0 for all £ <0. Hence Z = Z a.s., implying that
Z has the limit intensity A.

Step 4. Finally, we show that the limit process Z has the right dynamic; i.e., its intensity
\¢ is equal to A given by

(3.6) \p:=N [ > %exp <—/T f(@%hs(o»ds) (F(®F ,(0)) —A)+ A for all t € R,
g +

k:T,.<t

where T}, denotes the jump times of Z and ®Z is given in (1.11).
The goal of this step is to show that A = A. Fix some time £ > 0 and a truncation level
K > 1. Since, a.s., Z does not jump at time ¢ or time —K for all K > 1, Proposition VI.2.2.1

of [34] implies that Zt[n] — Z[ﬂ( — Zy — Z_ k. Therefore, we may choose nx to be such that
Zt[n] -7 [nl]( = Zy—Z_g for all n > ng. By the continuity properties of the Skorokhod topology,

as n — oo, we have that T,Ln} — T as n— oo for all Z_g < k < Z; (Proposition VI.2.2.1 of
[34]). Hence,

S den(- [l (030)a) (1 (053 0) -2)

k—K<TM<t

S e (- [ @00 @0 - o).

ki—K<Tp<t

Notice that the expression on the left-hand side corresponds to the terms contributing to X t[yf],
issued by jumps happening after time — K. Since we know that Xt[n] converges to X; for almost

all ¢, this implies that, for all K,
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o= 3 gew(- [ ko)) F 00 -8

k- K<Ty<t
. [n]
i Y geo ( [ 1 (@2 0) d8> (7 (#7:1,0) -4).
ETM<—K
where this last limit is necessarily finite. Letting K — oo we deduce that

o= 3 feo(- [ k @, ,(0)ds ) (F(0F,,0) - )

k:Tk<t
. . 1 t n n
e 3 gew (= [ (o 0) ) (5 (05,0) <),
- ETM<—K T
Next, we shall prove that
1 t .
o pmim 3 o= [ (5 0)a) s (5,0) -0 e
BTN <—K k

a similar argument proving that

) . 1 t Zln]
Klgnoonh_)rrolo Z N XP ( /T,L"] f <<I)T,£"],s(0)> ds |A=0 as.,

k‘:TIEM <-K

to obtain that, indeed, \; = N[X;- + Al = \;.
Let us now prove (3.7). Using Fatou’s lemma, we get

o 1 t . .
68 Elm lm o 3 tew ( [t (2, <0>)d8)f (27.0)
kTN < *

1 t [n] [n]
<1}?11£10fhnrg10%f1[3 Z W &XP <— /T["] f <<I>%£n]78(0)> ds) f ((I)é”],t(o))
k

kT,<K

Using the same arguments as those leading to (3.2), we have

1 t Zln] Z(n] [n] |, —min(f)(t+K)
_ — ) ) < min .
> Nexp< /Tin]f<<I>T£n]75(0)>ds £ (2207,0) < Iflllo"cle

ETM<—K

Therefore, the RHS of (3.8) is upper bounded by

HfHoohmmfhmme Hp[n [)e~ min(HEK) — ¢

since sup,, sup E(|| p[n] ||) < co. This concludes the proof. [ ]

Corollary 3.5. Under the same assumptions as in Theorem 3.4, there exists a unique sta-
tionary process {p,p} solving (1.16).
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Proof. Taking the process Z € D(R,R) constructed in Theorem 3.4 and using the same
notations as in (3.6), the stationary process {p, 7} corresponding to Z is simply

0
) 1
Vg = E exXp <_ - f(éghs(o))d‘s) N(sq)%k,o(o)’

T, <0

and for all ¢t > 0,

t
) 1
pr=>_ exp (— /Tk f(‘Pi,s(O))dS) ~007,.(0)- u

To<t

4. Background on the finite-size population equation. In this section, we first present a
concise derivation of the stochastic integral equation (1.12), which synthesizes the arguments
of the original derivation [48]. Following the integral equation convention [29, 30] and as in
[48], we formally put the initial condition at time —oo, and (1.12) reads as follows: for all
teR,

1
(4.1a) Az, = NT((

/ )\Z(t|s)SZ(t]s)dZs+AtZ<1—/ SZ(t\s)dZs)
]—o0,t] |—o0,t]

where 7 is a Poisson random measure on R x R, having Lebesgue intensity and A% and S%
are defined by (1.6) with replacement (1.11). Furthermore, the time-dependent modulating
factor A7 is given by

dt,[0, NA;-]),

(4.1b) A=

)

+

g M (H){1 — 57 (2]5)} 5% (U,
. 7z _ :
1 N = = 521527,

Note that, in the original formulation of the model (see equations (11) and (12) in [48]), the
expression for the time-dependent modulating factor A7 involved a “variance function” wv.
Integrating equation (12) in [48] gives v(t|s) = {1 — SZ(t|s)}SZ(t|s)Zs. As a consequence,
equation (11) in [48] can be written as (4.1c), eliminating v.

To understand the reasoning behind the derivation of (4.1), one needs to keep in mind that
the goal is to obtain an intensity-based and history-dependent point process (i.e., that only
depends on the past Z) approximating the empirical population activity of the microscopic
model (1.1).

Let (Zs)s<+ denote the past population activity. In terms of (Zs)s<¢, the stochastic in-
tensity of the empirical population activity (of the microscopic model), at time ¢, can be
expressed as

(4.2) N/]_ t[AZ(t]s)GZ(t\s)dZs,

where, for all past spike times s, GZ(t|s) denotes the “microscopic survival processes”: if there
was a spike at time s, &7 (t|s) = 1 if the neuron which has fired at time s has not fired a spike in
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]s,t[, and &% (t|s) = 0 if it has. We need to approximate (4.2) by an expression which does not
involve the microscopic &% (t|s) but only the past Z. Writing AG?Z (t|s) := &% (t|s) — S%(t|s),
we have

Z Z o Z s Z s Z s A s
(4.3) /]oo’t[x (t5)& (t\s)dzs_/}m[x (t]5) 5% (¢] )dZs+/ M (1)) AGZ (1] 5)dZ

]700715[

Note that, since the number of neurons N is strictly preserved (in the microscopic model),

(4.4) /]_ t[AGZ(t|s)dZs:1— / SZ(t|s)dZs

]_Oovt[

To replace the microscopic AGZ(t|s) on the RHS of (4.3), we introduce a family of condition-
ally independent (conditioned on Z) survival processes {(&%(t|s)) />, Js—one for each past
spike time s < t—defined by -

&7(¢]s) - {1 %f v < T,

0 ift>Ty,
where {7} past spike time s<¢ 1S accessory random variables satisfying the following conditions:
(i) the variables {7} past spike time s<¢ are conditionally independent given Z and (ii), for all
past spike time s < t, Ty takes values in [s,+oo] and satisfies P(Ts > t/|Z) = S%(t|s) for
all # € [s,t[ (Ts can therefore be interpreted as a “death” time given by the survival S%).
Importantly, the processes {(&%(t|s)) tle[sﬂ}s are close but not exactly equivalent to the
microscopic {(&%(t'|s $)), o St]}s,
processes AGZ (t]s ) = &7 (t|s) — S#(t|s). However, the conditional independence of the
processes {(GZ t'ls ]}S will allow us to close the system of equations (see below), and
this is the reason Why tLey are introduced.

We make the approximation

e.g., the conservation equation (4.4) does not hold for the

(4.5) / N (t|s) AGZ (t]s)dZs ~ AtZ/ AGZ(t|s)dZs
|—o0,¢] ]—o0,t]
where
2
AZ :=argminE (/ (A(t|s) — A) Aéz(ﬂs)dZS) Z
A |—o0,t[
=argminE / ()\Z(t|s) —A)QAéZ(t|S)2dZS Z
A ]—o0,t[
(4.6) — argmin / (V(t]s) ~ )" E [a87 (1])?| 2] dz..
A ]—o0,t[

Note that, in the definition of A7, (4.6), we have used &7 (t|s) instead of the microscopic
G&7(t|s), which would have defined the minimum conditional mean squared error of the
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approximation (4.5). While this replacement cannot be rigorously justified, it allows us to ap-
proximate the conditional mean squared error and, in particular, the position of its minimum.
Since E[AGZ (t]s)?| Z] = {1 — S%(t|s)}SZ(t|s) and taking the derivative with respect to A in
(4.6), we get

Joon A7 (t19){1 = 87 (t]5)}S7 (¢]5)dZ,

A =
' oo {1 = S7(t])}S%(t]s)dz

We have obtained an approximation of the stochastic intensity (4.2) which only involves the
past Z:

N/ M (t]5)&Z (t|s)dZ,
}_Oovt[

zN[/ )\Z(t|s)SZ(t]s)dZS+AtZ<1—/ SZ(tys)dzs>
J—o0,t] |—o0,t[

(Taking the positive part on the RHS simply guarantees that the intensity is nonnegative.)

In practice, we can deal with the ill-defined initial condition at time —oo by assuming that
Z;=0for all t <0 and Zy =1 (all neurons spike at time 0). Consistently, we also put AZ = 0.
Then, the model (4.1) can be written as follows: For all ¢ >0,

+

1
da t:1+7 ]1< 1 w(ds,dz),
T Z z<NA ds,d
N J0g]xR, — ¢
(47b) At = / )\Z(t\s)SZ(ﬂs)dZs + AtZ 1— / Sz(t|$)dZs 7
[0,¢] 0.4 .
(4.7¢) a2 Jon X () {1~ 57(115)} 5% (t]s)dZ,
. Z—

Jog {1l = S%(t]s)}S%(t]s)dZs

with the initial condition Zyp =1 and AZ =0. Assuming that the original model (4.1) has the
same stability property as the simpler model (1.16), this practical choice of initial condition
is acceptable as it will be “forgotten” after some time.

5. Simulation algorithm. Here, we present a simple simulation algorithm for (4.7). The
algorithm presented below can be easily adapted to the more realistic case of multiple inter-
acting populations for generalized integrate-and-fire neurons [48], as we show in Appendix A.

To ease the notation, here, we drop all the superscripts Z. We can rewrite (1.5) and (1.6)
as the solution of an SDE: for any s > 0,

(5.1a) dsc(;’s) — A(t]5)S(t]s),
(5.1b) du(t)s) = "= ) gy o gaz,

with A(¢|s) = f(u(t|s)) and initial conditions S(s|s) =1 and u(s|s)=0.
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Finite history. For all t > 0, let us define the free membrane potential h(t) as the solution of

s
(5.2) dhy =" " " gt v Jdz,

Tm

with initial condition hg = 0 (cf. (5.1b)). It is clear that, for fixed s > 0, |u(t|s) — ht| = 0
when t — co. In practice, there exists a sufficiently large time T > 1, such that, for t —s > T,
the initial condition for (5.1b) will be forgotten, and the membrane potential u(t|s) with last
reset time s can be well approximated by the free membrane potential hy. We call T the
history length. Associated with the free membrane potential is the free hazard rate defined as
Afree(t) := f(ht). The free hazard rate can be interpreted as the firing intensity of neurons that
have fully recovered from refractoriness because the last spike of those neurons happened be-
fore time ¢t —T and thus has been approximately forgotten. For the numerical implementation,
it is useful to consider the slightly modified model, in which we use the above approximation,
i.e., where A(t]s) is set to Afyec(t) if t —s>T. For the sake of notational simplicity, we will use
the same symbols for this approximate model. For 0 < ¢ < T, there is no difference between
the approximate and the original model. Hence, the solution of the approximate model is
governed by (4.7) and (5.1). However, for ¢t > T, the integrals in (4.7b) and (4.7c) do not
need to be evaluated over the whole history from 0 to ¢ but reduce to integrals over |t —T',]:

(5.3a) Ay = / A(t]s)S(t]s)dZs + Apree(t) e + Ay (1 —/ S(t\s)dZs—xt>] :
Jt—T1] Jt—T] .
) 4, e UL SEDNSUNIZs + Agreelt)z
f]t—T,t]{l — S(t|s)}S(ts)dZs + 2
These expressions depend on the additional variables z; := f[o,th] S(t|s)dZs and z; =

f[o i {1 — S(t|s)}S(t[s)dZs that solve the following SDEs [48]:

(5.4a) dxy = —Afree(t)xedt + S(t|t — T)dZi 7, xr =0,
(5.4b) dzy = =2 free(t)zpdt + {1 = S(t|t — T)}S(t|t — T)dZs—r, 2y =0.

Time discretization. The model with finite history length (5.3) with the SDEs (5.1) and
(5.4) suggests a straightforward update scheme in discrete time. To this end, we consider an
equally spaced partition of the time-axis with mesh A¢ and time points ¢; = tAt, 1=0,1,2,....
Furthermore, we partition the co-moving history frame |t — T',¢] in discrete time points Spi=
(t—T +r)At, r = 1,...,T, with T = T/At. On the discrete time points, we define the
following quantities:

nmg = ZS,,‘,{,"-At — ZS S £ = S(fAt ‘ Smg), Umg = u(fAt | Srf)’

vt T

NI ; |
Pr,f =1—exp [—2 (A(tAt | Sr,f) +A((E+ 1) At sr,f)) ’

hy:=h(tAt), x;:=x(tAt), y;:=y(tAt), z;:=2(tAt)

~ At ~ .

Ppi=1—exp |—— (Afree(TAE) + Npree((E+ 1) AL))
Using these quantities, the mesoscopic model can be simulated with the following update rule
[48]: For r=1,..., 7 —1,
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(5.5a) g1 = M1 o
(5-5b) Sr,£+1 = (1 - Pr+1,£) Sr+1,£7
Hiar — Upy1 nri
(5.5¢) Up i =Upypjt < _ g At ) At,
_ Ming —hg | M7
(5.5d) hioy=hi+ ( R ) At,
5.5e) 23 = (1= P a;+ 8 41ny 511

1 Py)" 2 + Py + ( - 51,£+1) S1 1M

with boundary conditions S ;=1 and uy ;=0 for all t>0, and

(5.5g) Nriv = %, 55 ~ Binomial(N, ﬁi)’
B T T
(5.5h) g =P+ ) P iS,in i+ Py (1 —ai= ) S’r,f”'r,f) :
r=2 r=2

D T
Bz, P (1 - Sr,f) Sl
— .
2+ Zr:Z (1 - Sr,f) Sr Ny i

The independent, identically distributed binomial random variables ff represent the total
number of neurons that fire in the time interval (£At,(f + 1)At]. Therefore, the empirical
population activity, (1.2), and the corresponding population rate (intensity) are finally ob-
tained as Ajay Ay =Ny /At and A;p, = n;/At, respectively. A pseudocode implementation
of the mesoscopic model, (5.5), is given in Algorithm 5.1. A Julia-code implementation of the

(5.51) Py ;=

Algorithm 5.1. Mesoscopic neuronal population model.
Data: External stimulus at grid points fi;,, t=1,... tsim

Result: Population activities Azz, A, and rates A;x,, t= 1,... tsim

= 5T /At]+1 2=0,2=0,h=0 nr=1,n1.7-1 =0 Apar=1/At Si.7 =1, up.7 =0
Afree = f(h)l )\I:T = f(h)>
for all timest =1, ..., tgmy do

[

[

8 | h h+[(piar = h)/Tm + JAG_pyarad At Px = PEire(f(h), Afree) W = Prz, X =z,
Y=Pz,Z=zax+2-W 2 (1-P)22+W forr=2,...,7 do
4 Up_1 = U7»+[(,LLfAt*UT)/Tm‘f’JA(f_l)At’At]At Py, A\r—1 = Pfire(f(ur—1), Ar) m = Spn,
v=_(1-=8)m W« W + Pym; /1l W= f[Ot])\(t|9)S(t|s)
5 X+ X +m; //X—fOt]S(t|s)
6 Y <Y + Py /Y= fOt s){1—-5 |5)}S(t|<s)ng
7 Z «— 7 +v; // Z:= f[o,t]{l S(t|s)}S(t|s)dZs
8 Sr—l = (1 - P)\)Sr Np—1 =Ny
9 end
10 T x+Siny z < z2+(1-51)S1ny if Z > 0: PA =Y/Z, else P, =0 7 = min(max(0, W+
Pr(1 - X)), 1); // expected spike count N7 = NA;At
11 draw n7 = Binomial(N,n)/N A;p; = n/At Apay ap = n7 /AL
12 end
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extended model (Appendix A, Algorithm A.1) is publicly available at the following GitHub
link: https://github.com/schwalger /mesodyn-LIF.

Function Pfire(\, A\yq)

1 P)\ = ()\ + )\Dld)At/Q;
2 if Py > 0.01 then Py < 1 — e~ ™,
3 return Py, A

6. Conclusions. We have proven that a simplified version of the model proposed in [48]
is well-posed and stable in variation in the sense of Brémaud and Massoulié [5]. The simpli-
fied model is a Markov embedding of an intensity-based and history-dependent point process
where the history dependence is, loosely speaking, more “nonlinear” than in nonlinear Hawkes
processes (in the sense that the past filtering function is updated at each jump event such that,
even in the argument of the intensity function f(-), the dependence on the past is not linear
any more, that is, not given by convolution over the past events). To deal with this difficulty in
the proofs, we combined arguments for Markov processes taking values in the space of positive
measures and nonlinear Hawkes processes. From this point of view, the finite-size population
equation (1.12) is even more “nonlinear,” which makes its mathematical analysis challenging.
The simplified model and the original model of [48] could therefore be seen as examples of
general intensity-based and history-dependent point processes, extending nonlinear Hawkes
processes. Despite their mathematical complexity, these general point processes are rather
practical for applications since they can be efficiently simulated and, as intensity-based pro-
cesses, can be easily fitted to empirical data using likelihood-based methods [43, 51]. We hope
that this work will stimulate further mathematical research on these general intensity-based
processes, which have already proven to be useful in neuroscience.

Appendix A. Multipopulation model. The only difference between the neuron model
in (1.1) and the generalized integrate-and-fire model considered in [48] is the addition of a
synaptic filtering kernel € and an absolute refractory period A,ps > 0. Accordingly, (1.1a) is
replaced by

) U’
dUiN = B2 g Nz NZ/ $)dZIN | dt | Lypiv

Tm (S) t]

where T N is an additional ¢ ‘age”-variable defined by the stochastic dynamics dTZ’ =dt —
Tz NdZ ! N, which clocks the time elapsed since the last spike of neuron i. Then, the definitions
for the hazard rate A and the survival S can be easily adapted replacing ® in (1.11) by

t—s

t t—r
Z(u)i=ue ™ +/ e ™ (MT—{—J/ e(r—s’)dz;) dr for all ue R
’ s Tm ]—o0,7] 5

and replacing A in (1.6) by \*(t|s) = f( §+Aabs,t(0))1t25+Aabs'
As explained in [48], it is straightforward to generalize (4.7) (with the aforementioned ex-
tensions) to multiple interacting populations. Importantly, the multipopulation model allows
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us to coarse-grain microscopic models of large biological networks of neurons, like a cortical
column.

Again, we will henceforth drop the superscripts Z. Let us consider a system of K inter-
acting (homogeneous) populations, each consisting of N',..., N¥ neurons, with parameters

{Nk7 Trlrcn Aibg? fka 6k7 (Mf)tZO}k:L..A,K

and average connectivity matrix J, where J* is the average connection strength from pop-
ulation [ to population k. The multipopulation version of (4.7) is the following: For all
k=1,...,K and t > 0,

1
(A.la) ZF =14 = 1oy ge 7°(ds,dz),
[0,t] xRy - s~
[0.2] (0,4 N
Ne(t1s)41 — Sk(t]s) V.S (t]s de
(A.lc) Aic:f[o,t] (tls) i (|3€} (Il |
f[O,t]{l — Sk(t|s) }S*(t]s)dZ
with the initial condition Zj = --- = Z§ =1 and Aj = --- = A’ =0, where {Wk}kzl,...,K is

independent Poisson random measures on R x R, with Lebesgue intensity measure and

(A.2) Sk(1]5) = exp <— / t )\k(r|s)dr) ,

Ne(ts) = £ (uP (]5) L spar,
t e

(A2b) uk(t\s) = ]ltZerA’“ / e i
s+AF

k K
(’T‘k +y Jkl/[ ] e (r — s’)dZi,) dr.
m =1 S,T

For simplicity, we have presented here a version of the multipopulation model without spike-
frequency adaptation or short-term synaptic plasticity, but these features can be included
[48, 46].

In the following we choose a delayed expontial synaptic filter ek(t) = Tik exp <— t_dk> 1> g,

T
where 7F

* is the synaptic decay time constant and d* > 0 denotes the transmission delay
associated with the presynaptic population k. This choice allows us to rewrite (A.2a) and
(A.2b) as the solution of an SDE (with delay): for any s> 0,

dsk(t
U _ Xk (uis)s* (),
duF(t|s K
i P k) S
=1

TRdyf = —ykdt + dZF 4.,

with initial conditions S¥(s|s) =1, u*(s|s) =0, and y§ = 0.
As in the case for a single population (section 5), the infinite history of (A.1) can be
approximated by a finite history. The method is completely analogous to that described in
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Algorithm A.1. Mesoscopic mult1populatlon model with A¥ aps = 0, d*>0,7F>0.
Data: External stimulus at grid points utm, t=1,.. tam. k=1,..., K

Result: Population activities Amt A, and rates AtAt, t=1,..  tem k=1,.... K

4 for all populations k=1,..., K do

5 | TF= L(5T +Aabs)/AtJ +1,Ak, = [Aabs/Atj db = |d¥/At] ok =0, yF =0, 2F =0,
hE=0 nk, =10k =0 Sf =1, uf =0 N = F(hF), N = F(B%);
6 end
7 for all timest =1,...,tgm do
8 for all populations k = 1,..., K do Ifyn Z{il Jkyt for all populations k = 1,..., K
do
9 e N (7N Ve +I§yn]At P,\, Ko = Pflre(f(hk) Miree) W= Pk, X =
2P Y = PR Z=2F o ah W 2P 1-P)2F+W forr=2,...,TF Aﬁbs
do
10 wh_y = b [y, — )/ I8, JAE Py XS = PEiTe(fR(ub_), Ab) m = Skt
v=(1-SFm W < W + Pym; 11 W= [ g A(tls )sk(t|s)dzk
11 X« X +m; /11 X = [ S*(ts)dZ
12 Y « Y + Py /Y= f[o q Ne(t|8){1 — S*(t|s)}S*(t|s)dz*
13 Z <+ Z +v; 11 2= [ o {1 = S"(t]s)} S (t]s)dZ}
14 Sy == P)SF nf_y =nf
15 end
16 o 2F 4 Sknk 2R 2P+ (1 — SF)SEnE for time points in refractory period v =
TF— Ak 4+1,...,7T" do
17 ‘ X%XJrnT nk_ =nk
18 end
19 if Z>0: Pa=Y/Z, else P, =0 7 =min(max(0, W + P5(1 — X)),1); // expected
spike count Nn = NAFAt
20 draw n,r,c = Binomial(N* 7)/N* y* « yre AT 4 (1 — e‘At/Tsk) N _ i/ At AF =
n/At Af =nk, /At
21 end
22 end

section 5 except that, now, each population k& has its own free membrane potential hk(t)
following
K
dh*(t)
-k k k k kL,
T =)+ > T
=1

with initial condition A*(0) =0, and its own history length T* > 7% .
For the discrete time dynamics, being also completely analogous to the single population
case, we get the generalized algorithm.

Appendix B. Exponential moments for T. (end of the proof of Theorem 3.3). Intro-
ducing V(v,7) := 3(||v|| + ||7||) and L as the generator of the coupled processes (py, ), we
obtain as a direct consequence of (2.7) the control

EV(V, 17) < A— (fmin A A)V(Va I;)a
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implying that, for any 0 < ¢ < fmin A A, there exists a suitable constant K™ such that, with
C:={V<K*},
(B.1) LV < —cV + Alg.
Fix some ¢ > 0, and introduce the sequence of hitting times
Ti(6)=inf{t >0:(pt,pt) €C}, Tpi1(0)=inf{t >T,(0)+:(pt,pt) €C}, n>0.

Adapting the arguments of Theorem 3.1 of [21] to our frame, we deduce from (B.1) that there
exist positive constants ¢, A and ¢(d, ), c2(0) with

E .50 [T @] < 1V (0, ) + 2(8)

and
(o) [T O =T < (6, 3) for all n > 1.
Relying on (3.1), we may associate with each T},(d) a Bernoulli random variable U,, ~ B(¢),
independent of Fr, (5), such that
U, =1 implies that, at time 7,,(d), the coupling has succeeded.

In particular,

T. <inf{T,(0) : U, =1}
and
— 0 —
E(”mﬁo) [eATC] S Z E(Vovﬂo) [eATn((S)]l{Ulz"':Unfl:O}]
n=1
for any A > 0. We are now ready to conclude. Since, by monotone convergence,

lim B, o [ATo+1 O] = 1,

Vo,V
A—0 0,%0)

we choose A\ >0 such that, for all 0 <\ < A,

SUDE 5y [Tt OO (1= ) =2 < 1.
n>1

Using that, by successive conditioning,

_ _ HQ n—1
PO < By gy PO (1)

(Voyﬁo

this implies, using the Cauchy—Schwarz inequality,

o0

E(vp,50) €] < ZE(VO,DO) [T Oy v, =0y

n=1
E(VO,DO)GQS\TvL(é)(l — 5)(n_1)/2 < E(yo,f/o)62;\T1(6) Z ,{n—l < 00,
n=1

which concludes the proof.

<

M8

n=1
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Appendix C. Proof of (3.4). Using (2.5), we have LW (v) = =2||v|v[f] + [v[f] + A(1 —
lvN]+(2[lv[| + %) Whenever [v[f]+ A(1 — ||v[|)]+ > 0, this yields, for a suitable constant C,

LW(v) < =2W(v)+C(|lv]+1),

which implies the claim. The easier case [v[f] + A(1—||v]|)]+ = 0 follows simply from the fact
that v[f] > fminl/V||-

Appendix D. Power spectral density. In Figure 1(b), we have characterized the sta-
tionary population activity by the power spectral density (PSD) defined for a wide-sense
stationary process X (t) and f >0 as [28]

(D 1) Cf NI W \ o /T —2mift
. x(f):= lim , Xr(f):= e X(t)dt.
T—o0 T 0

For the mesoscopic model, we estimated the PSD from the simulated, empirical population
activity flivb (), (1.2) with h = 0.001 s, using the averaged periodogram (Bartlett’s method
without windowing). Specifically, for the PSD shown in Figure 1, we segmented a 50-s-long
realisation of the empirical population activity (sampled with time step h = 0.001 s) into 50
nonoverlapping segments of length 7'=1 s, computed the squared absolute values of the fast
Fourier transform for each segment, divided the result by 7" (as in (D.1)), and averaged the
resulting periodograms over all 50 segments.

For the microscopic model with J =0 (as in Figure 1), the neuronal population consists of
N independent renewal processes generated by the LIF model with escape noise. Therefore,
the PSD of A% (t) in the limit h — 0 is well known from the renewal formula [49, 18]

~ o 1—|Prsi(f)?
e A= N Bsa(nP

Here, Prsi(f) = [ Prsi(t)e=?/tdt is the Fourier transform of the interspike-interval density
of single neurons Prgr(t) = A°(t[0)S°(¢]0) 150, and r = [[;~ S°(¢]0) dt] ' is their firing rate.
In Figure 1, these quantities were calculated numerically.
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