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Abstract

We propose a mean-field model of interacting point processes where each process has a memory of
he time elapsed since its last event (age) and its recent past (leaky memory), generalizing Age-dependent
awkes processes. The model is motivated by interacting nonlinear Hawkes processes with Markovian

elf-interaction and networks of spiking neurons with adaptation and short-term synaptic plasticity.
By proving propagation of chaos and using a path integral representation for the law of the

imit process, we show that, in the mean-field limit, the empirical measure of the system follows a
ultidimensional nonlocal transport equation.
2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND

icense (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

The dynamics of many interacting particle systems can be approximated, when the size
f the system tends to infinity, by a partial differential equation (PDE) [26]. This not only
inks microscopic and macroscopic scales but also stochastic and deterministic models. For

ean-field models, one can prove this type of results by exploiting the propagation of chaos
henomenon, i.e. for i.i.d. initial conditions, particles become asymptotically independent in
he mean-field limit [31,47].

Propagation of chaos arguments have been applied to the study of interacting point
rocesses [9,15,29,30]. This has been particularly important for the field of theoretical neu-
oscience as it has provided a rigorous footing to the population density formalism, where the
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dynamics of a population of neurons is described by a PDE (see [22, Part III]). An example
of population density equation is the refractory density (or age-structured) equation [18,20–22,
36,37,46], which has recently been proved to be exact in the mean-field limit [4,8,42].

The models considered in [4,8,42] all assume that the point processes are ‘renewal’ (in some
oose sense), i.e. each process has a memory of its past that is restricted to the time elapsed since
ts last event. The fact that, in the ‘renewal’ case, the mean-field limit can by characterized by
elatively simple deterministic equations has long been recognized in theoretical neuroscience
nd has led to a large body of work [18,19,46,52]. In contrast, the case where point processes
re not ‘renewal’ is much less understood. In particular, even though some heuristic population
ensity equations have been proposed for the ‘non-renewal’ case [33,38,48], their exactness in
he mean-field limit has not been proved. The aim of this work is therefore to propose a general
ramework for relating interacting ‘non-renewal’ point processes with PDEs, in the mean-field
imit. This framework relies on the definition of an abstract interacting point process model,
hich generalizes Age-dependent Hawkes processes [4,43].

.1. Interacting age and leaky memory dependent Hawkes processes

Consider a system of N interacting point-processes, interacting through a common variable
X N

t . Each point process i is associated with 1 + d variables (for d a positive integer): an
age variable Ai,N

t which represents the time elapsed since the last event of process i and a
d-dimensional vector of leaky memory variables Mi,N

t which models the effect of the recent
past of process i . The point process i has stochastic intensity ( f (Ai,N

t− ,Mi,N
t− , X N

t−))t∈R+
where

f : R+ × Rd
× R → R+ is the intensity function. Intuitively, this means that if we

write (Z i,N
t )t∈R+

the counting process associated with the point process i , the instantaneous
probability for Z i,N to jump in ]t, t + dt], given the past Ft , is

P(Z i,N
t+dt > Z i,N

t |Ft ) = f (Ai,N
t ,Mi,N

t , X N
t )dt.

Between events (jumps) of process i , the age variable Ai,N
t grows linearly with time whereas

the leaky memory variables Mi,N
t drift following the vector field b : Rd

→ Rd .
At each event of process i , its age Ai,N

t is reset to 0 and its leaky memory Mi,N
t jumps to

Mi,N
t + Γ (Mi,N

t ), where Γ : Rd
→ Rd is the jump function. The fact that the variables Mi,N

t
re not reset to a fixed value at each event allows them to accumulate the effect of successive
vents.

Finally, the time-dependent effect of an event of point process i on point process j is
determined by the interaction function h : R+ × R+ × Rd

→ R which depends on A j,N
t

and M j,N
t . Since the function h is the same for all i and j , the interaction is said to be of

mean-field type.
The model can be described by a system of stochastic integral equations: for i = 1, . . . , N ,

Ai,N
t = Ai

0 + t −

∫ t

0
Ai,N

s− d Z i,N
s , (1a)

Mi,N
t = Mi

0 +

∫ t

0
b(Mi,N

s )ds +

∫ t

0
Γ (Mi,N

s− )d Z i,N
s , (1b)

Z i,N
t =

∫
[0,t]×R+

1z≤ f (Ai,N
s− ,Mi,N

s− ,X N
s−)π

i (ds, dz), (1c)
40
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with

X N
t =

1
N

N∑
j=1

H j
t +

1
N

N∑
j=1

∫ t

0
h(t − s, A j,N

s− ,M j,N
s− )d Z j,N

s . (1d)

The collection {π i
}i∈N∗ is a sequence of independent Poisson random measures on R+ × R+

with Lebesgue intensity measure. We work on the filtered probability space (Ω ,F, (Ft )t∈R+
,P)

where {π i
}i∈N∗ is independent of F0 and Ft = F0 ∪ σ

(
{π i ([0, t], B)}i∈N∗,B∈B(R+)

)
. For

all i ∈ N∗, Ai
0 and Mi

0 are F0-measurable random variables taking values in R+ and Rd

respectively and (H i
t )t∈R+

is a F0-measurable C(R+) random function. The 1/N scaling in (1d)
will allow us to take the mean-field limit N → ∞.

If f does not depend on the leaky memory variables M and h does not depend on the age
A nor M, (1) reduces to a system of interacting Age-dependent Hawkes processes [4,43]. If,
in addition, f does not depend on A, the model further reduces to a mean-field system of
interacting nonlinear Hawkes processes (with vanishing self-interaction) [9,10]. The model (1)
has two motivations: first, it is general enough to encompass several concrete examples from
the theory of nonlinear Hawkes processes and neuroscience (see below); second, its mean-field
limit can be characterized by a PDE.

1.2. Motivating examples

Hawkes processes [23] provide a flexible and intuitive model for point processes with
dependence on the past. They have found applications in finance [1,24], seismology [35], social
systems [6], genomics [45] and neuroscience [17,28,41,44,49,50], among other fields. Neuro-
science research has mainly focused on nonlinear Hawkes processes [2] since they are closely
related to well-established neuron models such as the Spike Response Model [19,21,22,25]
and the Recursive Linear-Nonlinear Poisson Model [41], both variations of Generalized Linear
Models (see [22] Part II and references therein). However, the models differ from the nonlinear
Hawkes processes considered in [9,10] in that, even when N is large, self-interaction (the effect
of process i on itself) does not vanish. Self-interaction vanishes in [9,10] because it is scaled
by 1/N . Let us now consider the case where self-interaction h can be different from hetero-
interaction h (the effect of a process on the other processes) and only hetero-interaction is
scaled by 1/N : for i = 1, . . . , N ,

Z i,N
t =

∫
[0,t]×R+

1
{z≤ f (X i,N

s− )}π
i (ds, dz), (2a)

X i,N
t (i) = Hi

t +
1
N

∑
j ̸=i

H j
t +

∫ t

0
h(t − s)d Z i,N

s +
1
N

∑
j ̸=i

∫ t

0
h(t − s)d Z j,N

s , (2b)

where f : R → R+ is monotonically increasing and {(Ht (i))t∈R+
}i=1,...,N are F0-measurable

andom C(R+) functions. The model (2) is a mean-field system of interacting nonlinear Hawkes
processes with non-vanishing self-interaction. In the context of neuroscience, (2) can be seen
as a mean-field network of Generalized Linear Model/Spike Response Model neurons.

Let us now assume that h is an Erlang kernel, i.e. there exists d ∈ N∗ such that

h(t) = ce−αt td−1

,

(d − 1)!

41
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for some c ∈ R and α > 0. Self-interaction can then be translated into a ‘Markovian cascade
of memory terms’ [10,11]: adjusting the initial conditions, (2) can be equivalently written: for
= 1, . . . , N ,

Z i,N
t =

∫
[0,t]×R+

1
{z≤ f (Mi,N

s− (1)+X i,N
s− )}π

i (ds, dz), (3a)

Mi,N
t = Mi

0 +

∫ t

0
AMi,N

s ds + cZ i,N
t , (3b)

X i,N
t =

1
N

∑
j ̸=i

H j
t +

1
N

∑
j ̸=i

∫ t

0
h(t − s)d Z j,N

s , (3c)

where Mi,N
s− (1) denotes the first element of the vector Mi,N

s− . The d-by-d matrix A has all
diagonal terms equal to −α, all superdiagonal terms equal to 1, and all other terms equal
to 0; the d dimensional vector c is defined by c(k) = 1k=dc. This is equivalent to setting

(m) = Am and Γ (m) = (0, . . . , 0, c) in (1b). The fact that there are N distinct variables X i,N
t

nstead of a common shared variable X N
t as in (1) does not affect the mean-field limit since

he difference between X N
t and X i,N

t is of order 1/N (see [4]).
The generalization of (3) to the case where h is a sum of Erlang kernels is straightforward.

f course, a sum of Erlang kernels can simply be a sum of exponential kernels, which is more
ommon in neuroscience [22,33,34,48]. Notably, taking one exponential kernel with c < 0 is
nough to model the effects of neuronal refractoriness and spike-frequency adaptation [33].

In the example (3), the leaky memory variables M influence the intensity function f but does
not influence the interaction function h. However, in the general model (1), h can depend on M.
In the context of neuronal modeling, this dependence can be used to account for the effects of
short-term synaptic plasticity (STP) [53]. Using the notation of the general model (1), we can
describe a network of spiking neurons with refractoriness and ‘Tsodyks–Markram’ STP [51].
The Tsodyks–Markram model [51] captures the interplay between synaptic depression and
facilitation and has been used to model working memory [32], chaotic dynamics [5] and
learning in hierarchical circuits [39]. Taking d = 2, the leaky memory variables (the STP
variables of the Tsodyks–Markram model) follow, for initial conditions Mi

0 supported in
[U, 1] × [0, 1] with U ∈ ]0, 1[,

Mi,N
t = Mi

0 +

∫ t

0
b(Mi,N

s )ds +

∫ t

0
Γ (Mi,N

s− )d Z i,N
s , (4a)

ith the vector field

b
(
m(1),m(2)

)
=

(
U − m(1)

τF
,

1 − m(2)
τD

)
, (4b)

here τF > 0 and τD > 0 are the facilitation and depression timescales respectively, and with
the jump function

Γ
(
m(1),m(2)

)
=
(
U (1 − m(1)),−m(1)m(2)

)
. (4c)

t is easy to verify that the leaky memory variables Mi,N
t then take values in [U, 1] × [0, 1].

inally, we take f independent of the leaky memory variables and h of the form h(t, a,m) =

(1)m(2)h̄(t). The model we just described generalizes interacting Age-dependent Hawkes
rocesses [4,43] and is more detailed than the model with purely facilitating synapses and
ithout refractoriness studied in [16].
42
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These two motivating examples are clearly special cases of the general model (1). The fact
hat in both examples, the variables Mi,N

t relax to some fixed value in the absence of jumps
otivates the name ‘leaky memory’. Importantly, both examples satisfy the main assumptions
e will use in this work (see Section 2).

.3. Methods and relation to previous work

To prove propagation of chaos in the mean-field limit, we use the method of coupling
à la Sznitman [47]: to show the convergence of the time-marginals, we follow Fournier
and Löcherbach [14] (see also [16]); to show the convergence of the processes, we use the
method of Delattre, Fournier and Hoffmann [9] (later used by Chevallier [4] and Ditlevsen
and Löcherbach [10]). Our approach for relating the limit process with the limit PDE differs
from previous work [4] for it relies on a path integral representation. This representation turns
an earlier heuristic method from Naud and Gerstner [34] into a rigorous argument. Contrarily
to [4] where PDE solutions in measure space are considered, our method treats PDE solutions
in L1 space and does not involve the semigroup theory results of [3]. More importantly, the
path integral method allows us to derive a representation formula for the solution to the PDE.
The limit PDE we obtain is a generalization of the Time Elapsed Neuron Network Model of
Pakdaman, Perthame and Salort [36] and of the refractory density equation [18,20,22] to the
case of neurons with adaptation and short-term synaptic plasticity.

1.4. Plan of the paper

The main results of this work, namely propagation of chaos (Theorem 1) and the charac-
erization of the mean-field limit by a PDE (Theorem 2), are presented in Section 2, together
ith the assumptions required. The proof of Theorem 1 is presented in Section 3. In Section 4,
e show that under more restrictive assumptions, we can get a propagation of chaos result

nalogous to that of [4,9,10]. Finally, the proof of Theorem 2 is presented in Section 5.

. Assumptions and main results

eneral notations. The uniform and Euclidean norms are denoted by ∥·∥ ∞ and ∥·∥ respec-
tively. We write

Γ∞ := supm∈Rd

Γ (m)
. We use C,CT and CT,0 to denote positive constants

that can change from line to line) where the subscript T signals the dependence on time and
the subscript 0 the dependence on the law of

(
A1

0,M1
0, (H 1

t )t∈R+

)
.

In this work, we always assume that the functions f , h, b and Γ satisfy:

ssumption 1.

(i) The functions f , h and Γ are bounded.
(ii) There exists a bounded, strictly increasing and continuously differentiable function

ψ : R+ → R+ with ψ(0) = 0 and satisfying

|ψ ′(a) − ψ ′(a∗)| ≤ κ|ψ(a) − ψ(a∗)|, ∀a, a∗
∈ R+,

for some κ > 0, such that, for all (a,m, x, a∗,m∗, x∗) ∈ (R+ × Rd
× R)2, and for all

t ∈ R+,

| f (a,m, x) − f (a∗,m∗, x∗)| ≤ L f (|ψ(a) − ψ(a∗)| +
m − m∗

+ |x − x∗
|),

|h(t, a,m) − h(t, a∗,m∗)| ≤ Lh(|ψ(a) − ψ(a∗)| +
m − m∗

),
for some L f and Lh > 0.

43
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(iii) The vector field b and jump function Γ are Lipschitz continuous.

The fact that f is bounded guarantees the well-posedness of the system (1) and a path-wise
unique càdlàg strong solution to (1) can be constructed using a standard thinning procedure.
(i i) says that f and h are Lipschitz continuous with respect to a ψ-modified metric on the age
ariable. An example of possible function is ψ(a) = 1 − exp(−aκ). The ψ-modified Lipschitz
ontinuity of f implies that the effect of a on f saturates for large a. Note that in the STP
xample (4), since the leaky memory variables take values in the compact [U, 1] × [0, 1], the

jump function (4c) is effectively Lipschitz.
To prove propagation of chaos, we need some assumptions on {(A0(i),M0(i),

Ht (i))t∈R+
)}i∈N:

ssumption 2.

(i) The 3-tuples {(A0(i),M0(i), (Ht (i))t∈R+
)}i∈N are i.i.d.

(ii) The random function (H 1
t )t∈R+

is such that (E[H 1
t ])t∈R+

∈ C(R+).
(iii) For all T > 0, there exists CT,0 > 0 such that supt∈[0,T ] Var[H 1

t ] ≤ CT,0.

A condition similar to (i i i) is used in [4]. Note that in [4], Chevallier considers i.i.d. random
nteraction functions instead of a deterministic function h, common to all the point processes.
s he proved that, under some square integrability condition, the randomness in the interaction

unctions averages out in the mean-field limit, we focus here on the fixed h case.
The first main result of this work is a quantified propagation of chaos theorem:

heorem 1. Grant Assumptions 1 and 2. For all T > 0, there exists CT,0 > 0 such that

sup
t∈[0,T ]

E
[
|ψ(A1,N

t ) − ψ(A1
t )| + ∥M1,N

t − M1
t ∥ + |X N

t − xt |

]
≤ CT,0 N−1/2, (5)

here (A1
t ,M1

t , xt )t∈R+
(the limit process) is given by the path-wise unique càdlàg strong

olution to

A1
t = A1

0 + t −

∫ t

0
A1

s−d Z1
s , (6a)

M1
t = M1

0 +

∫ t

0
b(M1

s )ds +

∫ t

0
Γ (M1

s−)d Z1
s , (6b)

Z1
t =

∫
[0,t]×R+

1z≤ f (A1
s−,M

1
s−,xs )π

1(ds, dz), (6c)

xt = E[H 1
t ] +

∫ t

0
E[h(t − s, A1

s ,M1
s ) f (A1

s ,M1
s , xs)]ds. (6d)

urthermore, for all t ∈ [0, T ], writing L
(
ψ(A1

t ),M1
t

)
the law of (ψ(A1

t ),M1
t ), there exists

′

T,0 > 0 such that

sup
t∈[0,T ]

E

⎡⎢⎣W1

⎛⎝ 1
N

N∑
i=1

δ(ψ(Ai,N
t ),Mi,N

t ),L
(
ψ(A1

t ),M1
t

)⎞⎠
⎤⎥⎦ ≤ C ′

T,0 N−1/2, (7)

here W1 denotes the 1-Wasserstein distance.

It directly follows from Theorem 1 and the Continuous mapping theorem that for all t > 0,
he empirical measure of the system (1) at time t converges in probability to the time-marginal
44
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b

of the law of the limit process:

1
N

N∑
i=1

δ(Ai,N
t ,Mi,N

t ,X N )
P

−−−→
N→∞

L
(

A1
t ,M1

t , xt

)
. (8)

The second main result relates the time-marginals L
(

A1
t ,M1

t , xt
)

of the law of the limit
process with the solution to a nonlocal transport equation. To formulate the transport equation,
we define the jump mapping γ (m) = m + Γ (m) and we write ∇· the divergence operator
in Rd . To stay within the standard framework of (mass-conservative) transport equation with
solutions in L1 [40], we need:

Assumption 3.

(i) The vector field satisfies b ∈ C1(Rd ,Rd ) and ∇ · b ∈ C1(Rd ,Rd ).
(ii) The jump mapping γ is a proper local C1-diffeomorphism.

heorem 2. Grant Assumptions 1 and 3. Further assume that the law of the initial condition
A1

0,M1
0) is the absolutely continuous probability measure u0(a,m)dadm and (E[Ht ])t∈R+

=

H̄ 1
t )t∈R+

∈ C(R+). Then, the time-marginals ρt ⊗ δxt := L
(

A1
t ,M1

t , xt
)

of the law of the limit
rocess (6) correspond to the unique weak solution to

∂tρt (a,m) + ∂aρt (a,m) + ∇ ·
(
b(m)ρt (a,m)

)
= − f (a,m, xt )ρt (a,m), (9a)

ρt (0, ·) = γ∗

(∫
R+

f (a, ·, xt )ρt (a, ·)da

)
, (9b)

xt = H̄t +

∫ t

0

∫
Rd

∫
R+

h(t − s, a,m) f (a,m, xs)ρs(a,m)dadmds, (9c)

ρ0(a,m) = u0(a,m), (9d)

where ∇· denotes the divergence on the variables m and γ∗(. . . ) denotes the pushforward
easure by γ ) in the sense that (ρ, x) ∈ C(R+, L1(R+ × Rd )) × C(R+) and, for all G ∈
∞
c (R+ × R+ × Rd ),

0 =

∫
Rd

∫
R+

G(0, a,m)u0(a,m)dadm +

∫
R+

∫
Rd

∫
R+

{
[∂t + ∂a + b(m) · ∇]G(t, a,m)

+(G(t, 0, γ (m)) − G(t, a,m)) f (a,m, xt )
}
ρt (a,m)dadmdt, (10)

here ∇ denotes the gradient operator on the variables m.

Assumption 3 (ii) guarantees that for all m ∈ γ (Rd ), the preimage γ−1(m) is a finite set of
oints and (9b) can be more explicitly written

ρt (0,m) = 1γ (Rd )(m)
∑

m′∈γ−1(m)

1
| det(Jγ (m′))|

∫
R+

f (a,m′, xt )ρt (a,m′)da, (11)

here det(Jγ (m′)) denotes the determinant of the Jacobian matrix Jγ (m′).
All the results and proofs can be adapted to the simpler case where the system is not

ge-dependent, as in the Erlang kernel example (3). For this example, the limit PDE (9)
ecomes

∂ ρ (m) + A∇ ·
(
mρ (m)

)
= f (m(1) + x )ρ (m − c) − f (m(1) + x )ρ (m),
t t t t t t t

45
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xt = H̄t +

∫ t

0
h(t − s)

∫
Rd

f (m(1) + xs)ρs(m)dmds,

ρ0(m) = u0(m).

For the STP example (4), the limit PDE reads

∂tρt (a,m) + ∂aρt (a,m) + ∇ ·
(
b(m)ρt (a,m)

)
= − f (a, xt )ρt (a,m),

ρt (0,m) = 1γ (D)(m)
1

1 − m(1)

∫
R+

f (a, xt )ρt (a, γ−1(m))da,

xt = H̄t +

∫ t

0
h̄(t − s)

∫
Rd

∫
R+

m(1)m(2) f (a, xs)ρs(a,m)dadmds,

ρ0(a,m) = u0(a,m),

here D =]U, 1[×]0, 1[ and γ (m) =
(
U + [1 − U ]m(1), [1 − m(1)]m(2)

)
.1

Theorems 1 and 2 have two important implications for neuronal modeling: first, they provide
rigorous footing to multidimensional population density equations, which could be simulated
sing mesh-based methods described in [7,27,33]; second, they confirm that, not only in the
imple ‘renewal’ cases, the PDE point of view can be used to study the nonlinear dynamics of
arge networks of spiking neurons [12].

. Proof of Theorem 1 (Propagation of chaos)

The approach here is standard. We use a fixed-point argument to show that the limit
rocess (6) is well-defined. Then, we use the coupling method [47] to prove that a typical
article converges to the limit process.

.1. Well-posedness of the limit process

roposition 1. Grant Assumption 1 and assume that (E[H 1
t ])t∈R+

∈ C(R+). There exists a
ath-wise unique càdlàg strong solution (A1

t ,M1
t , xt )t∈R+

taking values in R+ ×Rd
×R to (6).

urthermore, (xt )t∈R+
∈ C(R+).

roof. For all y ∈ C(R+), let us write (Ay
t ,My

t , x y
t )t∈R+

the càdlàg strong solution to

Ay
t = A1

0 + t −

∫ t

0
Ay

s−d Z y
s ,

My
t = M1

0 +

∫ t

0
b(My

s )ds +

∫ t

0
Γ (My

s−)d Z y
s ,

Z y
t =

∫
[0,t]×R+

1z≤ f (Ay
s−,M

y
s−,ys )π

1(ds, dz).

hen, we set

x y
t = E[H 1

t ] +

∫ t

0
E[h(t − s, Ay

s ,My
s ) f (Ay

s ,My
s , ys)]ds.

Since f and h are bounded, by dominated convergence, we have that (x y
t )t∈R+

∈ C(R+).
hus, for all T > 0, we can define the operator

ΦT : C([0, T ]) → C([0, T ]), (yt )t∈[0,T ] ↦→ (x y
t )t∈[0,T ].

1 Using (11), a simple calculation gives det(J (γ−1(m))) = 1 − m(1).
γ
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The solution (Ay
t ,My

t , x y
t )t∈[0,T ] is a solution to (6) on [0, T ] if and only if (yt )t∈[0,T ] =

x y
t )t∈[0,T ], or equivalently, if and only if (yt )t∈[0,T ] is a fixed point of ΦT . We are going to

how that for T small enough, ΦT is a contraction for the uniform norm.
For all y and y∗

∈ C([0, T ]), by triangular inequality and using the Lipschitz continuity and
he boundedness of f and h, we have, for all t ∈ [0, T ],⏐⏐⏐⏐⏐

∫ t

0
E[h(t − s, Ay

s ,My
s ) f (Ay

s ,My
s , ys)]ds

−

∫ t

0
E[h(t − s, Ay∗

s ,My∗

s ) f (Ay∗

s ,My∗

s , y∗

s )]ds

⏐⏐⏐⏐⏐ ≤ C
∫ t

0
∆sds,

where

∆s := E
[
|ψ(Ay

s ) − ψ(Ay∗

s )| + ∥My
s − My∗

s ∥ + |ys − y∗

s |

]
.

By Itô’s formula for jump processes,

ψ(Ay
t ) = ψ(A1

0) +

∫ t

0
ψ ′(Ay

s )ds −

∫
[0,t]×R+

ψ(Ay
s−)1z≤ f (Ay

s−,M
y
s−,ys )π

1(ds, dz).

Whence,

E[|ψ(Ay
t ) − ψ(Ay∗

t )|] ≤ E

⎡⎣⏐⏐⏐⏐⏐
∫ t

0
ψ ′(Ay

s ) − ψ ′(Ay∗

s )ds

⏐⏐⏐⏐⏐
⎤⎦

+E

⎡⎣⏐⏐⏐⏐⏐
∫

[0,t]×R+

ψ(Ay
s−)1z≤ f (Ay

s−,M
y
s−,ys ) − ψ(Ay∗

s−)1
z≤ f (Ay∗

s−,M
y∗

s−,y
∗
s )
π1(ds, dz)

⏐⏐⏐⏐⏐
⎤⎦ .

Notice that by Assumption 1, |ψ ′(Ay
s ) − ψ ′(Ay∗

s )| ≤ κ|ψ(Ay
s ) − ψ(Ay∗

s )|. Then, by triangular
inequality and using the Lipschitz continuity and the boundedness of f and ψ , we easily get

E[|ψ(Ay
t ) − ψ(Ay∗

t )|] ≤ C
∫ t

0
∆sds;

similarly, using the Lipschitz continuity of b, Γ and f and the boundedness of Γ and f , we
et E[∥My

t − My∗

t ∥] ≤ C
∫ t

0 ∆sds. Thus, for all t ∈ [0, T ],

∆t ≤ C
∫ t

0
∆sds +

y − y∗


∞,

and by Grönwall’s lemma, ∆t ≤
y − y∗


∞ exp(Ct). Whence,ΦT (y) − ΦT (y∗)


∞ ≤ C ′T exp(CT )

y − y∗


∞.

or T small enough, ΦT is a contraction and has a unique fixed point by Banach’s fixed-point
heorem. The fixed point gives the unique solution to (6) on [0, T ]. Since the constants C and

′ do not depend on T nor on the law of (A1
0,M1

0, (H 1
t )t∈R+

), we can iterate the argument
bove on successive time intervals of length T to obtain the solution to (6) on R+. □

.2. Convergence

roof. The proof of the convergence (5) follows the same general strategy as in [9, Theorem 7].
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u

T
t
n

For all i = 1, . . . , N , we define the coupled limit process (Ai
t ,Mi

t , Z i
t )t∈R+

as the path-wise
nique càdlàg strong solution to

Ai
t = Ai

0 + t −

∫ t

0
Ai

s−d Z i
s,

Mi
t = Mi

0 +

∫ t

0
b(Mi

s)ds +

∫ t

0
Γ (Mi

s−)d Z i
s,

Z i
t =

∫
[0,t]×R+

1z≤ f (Ai
s−,M

i
s−,xs )π

i (ds, dz),

xt = E[H 1
t ] +

∫ t

0
E[h(t − s, A1

s ,M1
s ) f (A1

s ,M1
s , xs)]ds.

he process (Ai
t ,Mi

t , Z i
t )t∈R+

is coupled to (Ai,N
t ,Mi,N

t , Z i,N
t )t∈R+

in the sense that it shares
he same (Ai

0,Mi
0, (H i

t )t∈R+
) and the same Poisson random measure π i . The variable xt has

o index i as it the same for all i ; it can be interpreted as the deterministic time-varying ‘mean
field’ which acts uniformly on all the individual processes. Importantly, the limit processes
{(Ai

t ,Mi
t , Z i

t )t∈R+
}

N
i=1 are i.i.d. For all t ≥ 0, let us define

∆1,N
t := E

[
|ψ(A1,N

t ) − ψ(A1
t )| + ∥M1,N

t − M1
t ∥ + |X N

t − xt |

]
.

Arguing as in the proof of Proposition 1, we get

E
[
|ψ(A1,N

t ) − ψ(A1
t )| + ∥M1,N

t − M1
t ∥

]
≤ C

∫ t

0
∆1,N

s ds.

It remains to control the term E
[
|X N

t − xt |
]
:

Fix T > 0. For all t ∈ [0, T ], by triangular inequality,

E
[
|X N

t − xt |

]
≤ E

[⏐⏐⏐⏐ 1
N

N∑
i=1

H i
t − E[H 1

t ]
⏐⏐⏐⏐]

+ E
[⏐⏐⏐⏐ 1

N

N∑
i=1

∫
[0,t]×R+

h(t − s, Ai,N
s− ,Mi,N

s− )1z≤ f (Ai,N
s− ,Mi,N

s− ,X N
s−)π

i (ds, dz)

−
1
N

N∑
i=1

∫
[0,t]×R+

h(t − s, Ai
s−,Mi

s−)

× 1z≤ f (Ai
s−,M

i
s−,xs )π

i (ds, dz)
⏐⏐⏐⏐]

+ E
[⏐⏐⏐⏐ 1

N

N∑
i=1

∫
[0,t]×R+

h(t − s, Ai
s−,Mi

s−)1z≤ f (Ai
s−,M

i
s−,xs )π

i (ds, dz)

−

∫ t

0
E[h(t − s, A1

s ,M1
s )

× f (A1
s ,M1

s , xs)]ds
⏐⏐⏐⏐]

=:QN
t + RN

t + SN
t . (12)
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w

By Cauchy–Schwarz inequality and Assumption 2,

QN
t ≤

(
Var[H 1

t ]
N

)1/2

≤ CT,0 N−1/2.

y exchangeability, triangular inequality and by the Lipschitz continuity and boundedness of
f and h,

RN
t ≤ C

∫ t

0
∆1,N

s ds.

y Cauchy–Schwarz inequality,

SN
t ≤E

[(
1
N

N∑
i=1

∫
[0,t]×R+

h(t − s, Ai
s−,Mi

s−)1z≤ f (Ai
s−,M

i
s−,xs )π

i (ds, dz)

−

∫ t

0
E[h(t − s, A1

s ,M1
s )

× f (A1
s ,M1

s , xs)]ds
) 2 ] 1/2

=Var

[∫
[0,t]×R+

h(t − s, A1
s−,M1

s−)1z≤ f (A1
s−,M

1
s−,xs )π

1(ds, dz)

]1/2

N−1/2.

However, writing π̃1(ds, dz) := π1(ds, dz) − dsdz the compensated Poisson random
easure, we have, by Itô isometry for compensated jump processes,

Var

[∫
[0,t]×R+

h(t − s, A1
s−,M1

s−)1z≤ f (A1
s−,M

1
s−,xs )π

1(ds, dz)

]

= E

⎡⎣(∫
[0,t]×R+

h(t − s, A1
s−,M1

s−)1z≤ f (A1
s−,M

1
s−,xs )π̃

1(ds, dz)

)2
⎤⎦ ≤ T ∥h∥

2
∞

 f


∞.

ence, SN
t ≤ CT N−1/2. Gathering the bounds, we get

E
[
|X N

t − xt |

]
≤ C

∫ t

0
∆1,N

s ds + CT,0 N−1/2.

inally,

∆1,N
t ≤ C

∫ t

0
∆1,N

s ds + CT,0 N−1/2, ∀t ∈ [0, T ],

nd by Grönwall’s lemma,

∆1,N
t ≤ CT,0 exp(CT T )N−1/2, ∀t ∈ [0, T ], (13)

hich concludes the proof of (5).
By exchangeability,

E

⎡⎢⎣W1

⎛⎝ 1
N

N∑
i=1

δ(ψ(Ai,N
t ),Mi,N

t ),L
(
ψ(A1

t ),M1
t

)⎞⎠
⎤⎥⎦

≤ E
[
|ψ(A1,N ) − ψ(A1)| + ∥M1,N

− M1
∥

]

t t t t

49



V. Schmutz Stochastic Processes and their Applications 149 (2022) 39–59

T
W

4

f
r
c

A

T

w

P
P
a∫
d

T

C
w
A
I
H

h
o

+E

⎡⎢⎣W1

⎛⎝ 1
N

N∑
i=1

δ(ψ(Ai
t ),Mi

t ),L
(
ψ(A1

t ),M1
t

)⎞⎠
⎤⎥⎦ .

hen, we simply use (13) and a result on the convergence of the empirical measures in
asserstein distance [13, Theorem 1] to get (7). □

. Alternative propagation of chaos result

Theorem 1 guarantees the convergence of the time-marginals (see (8)), which is sufficient
or relating the empirical measure of the system (1) with the PDE (9). However, under more
estrictive assumptions on the vector field b and the jump mapping γ , it is possible to get the
onvergence of the processes, as in [4,9,10].

ssumption 4.

(i) Writing (Bt )t∈R+
the flow associated with the vector field b, for all t ≥ 0, Bt is

1-Lipschitz for the Euclidean distance.
(ii) The jump mapping γ is 1-Lipschitz for the Euclidean distance.

heorem 3. Grant Assumptions 1, 2 and 4. For all T > 0, there exists CT,0 > 0 such that

E

[
sup

t∈[0,T ]
|ψ(A1,N

t ) − ψ(A1
t )| + ∥M1,N

t − M1
t ∥

]
≤ CT,0 N−1/2, (14)

here (A1
t ,M1

t )t∈R+
is given by the path-wise unique strong solution to (6).

roof. The well-posedness of the limit process (A1
t ,M1

t , xt )t∈R+
has already been proved in

roposition 1. For the convergence, we follow the same strategy as in [9, Theorem 8] (see
lso [4, Theorem IV.1] and [10, Theorem 1]).

Let {(Ai
t ,Mi

t , Z i
t )t∈R+

}
N
i=1 be the same coupled limit process as in Section 3.2. The integral

t
0 |d(Z1,N

s − Z1
s )| counts the number of times one counting process jumps whereas the other

oes not, on the time interval [0, t]. We define

δN
t := E

[∫ t

0
|d(Z1,N

s − Z1
s )|

]
=

∫ t

0
E[| f (A1,N

s ,M1,N
s , X N

s ) − f (A1
s ,M1

s , xs)|]ds.

he key observation is that Assumption 4 guarantees

E

[
sup

s∈[0,t]
|ψ(A1,N

s ) − ψ(A1
s )| + ∥M1,N

s − M1
s ∥

]
≤ CδN

t : (15)

learly, sups∈[0,t] |ψ(A1,N
s ) − ψ(A1

s )| ≤
ψ∞ · 1∫ t

0 |d(Z1,N
s −Z1

s )|>0 ≤
ψ∞

∫ t
0 |d(Z1,N

s − Z1
s )|,

hich implies that E[sups∈[0,t] |ψ(A1,N
s ) − ψ(A1

s )|] ≤
ψ∞δ

N
t . On the other hand, by

ssumption 4(i), in a time interval with no jumps in Z1,N nor Z1, ∥M1,N
t −M1

t ∥ cannot increase.
f both Z1,N and Z1 jump at time t , by Assumption 4(ii), ∥M1,N

t − M1
t ∥ ≤ ∥M1,N

t− − M1
t−∥.

ence, the only way to have ∥M1,N
t −M1

t ∥ > ∥M1,N
t− −M1

t−∥ is if Z1,N jumps at time t but not
Z1 or vice versa. However, in these cases, the increase is bounded by

Γ∞. In summary, we
ave that sups∈[0,t] ∥M1,N

s − M1
s ∥ ≤

Γ∞

∫ t
0 |d(Z1,N

s − Z1
s )|, which concludes the verification
f (15).
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We now have to control δN
t . Using (15), we have that

δN
t ≤ L f

∫ t

0
E
[
|ψ(A1,N

s ) − ψ(A1
s )| + ∥M1,N

s − M1
s ∥ + |X N

s − xs |

]
ds

≤ L f

∫ t

0
CδN

s + E[|X N
s − xs |]ds.

Fix T > 0, for all s ∈ [0, T ], we can bound E[|X N
s − xs |] as in the proof of Theorem 1 (see

(12)):

E[|X N
s − xs |] ≤ QN

s + RN
s + SN

s .

with the same variance bounds QN
s +SN

s ≤ CT,0 N−1/2. By exchangeability, triangular inequality
and using (15), we have

RN
s ≤∥h∥ ∞δ

N
s +

 f


∞Lh

∫ s

0
E[|ψ(A1,N

u ) − ψ(A1
u)| − ∥M1,N

u − M1
u∥]du ≤ CT δ

N
s .

Gathering the bounds, we get

δN
t ≤ CT

∫ t

0
δN

s ds + CT,0 N−1/2, ∀t ∈ [0, T ],

nd we conclude using Grönwall’s lemma. □

By exchangeability, (14) implies that for all T > 0, there exists C ′

T,0 > 0 such that

E

[
sup

t∈[0,T ]
|ψ(A1,N

t ) − ψ(A1
t )| + ∥M1,N

t − M1
t ∥ + |ψ(A2,N

t ) − ψ(A2
t )| + ∥M2,N

t − M2
t ∥

]
≤ C ′

T,0 N−1/2.

y standard arguments on the Skorokhod metric and the Continuous mapping theorem, we
ave the weak convergence(

A1,N
t ,M1,N

t , A2,N
t ,M2,N

t

)
t∈R+

w
−−−→
N→∞

(
A1

t ,M1
t , A2

t ,M2
t

)
t∈R+

.

ince (A1
t ,M1

t )t∈R+
and (A2

t ,M2
t )t∈R+

have the same law, by [47, Proposition 2.2], we have the
onvergence in probability of the empirical measure of the system (1) to the law of the limit
rocess:

1
N

N∑
i=1

δ(Ai,N
t ,Mi,N

t )t∈R+

P
−−−→
N→∞

L
(

(A1
t ,M1

t )t∈R+

)
in P(D(R+,R+ × Rd )), (16)

here P(D(R+,R+ ×Rd )) denotes the space of probability measures on the Skorokhod space
(R+,R+ ×Rd ) of càdlàg functions R+ → R+ ×Rd and L

((
A1

t ,M1
t

)
t∈R+

)
denotes the law

f the process
(

A1
t ,M1

t

)
t∈R+

.
The convergence (16) is clearly stronger than the convergence of the time-marginals (7) but

t requires the additional Assumption 4, which is somewhat restrictive.

. Proof of Theorem 2 (Transport equation for the empirical measure)

Here, our aim is to show that if we write (ρt ⊗ δxt )t∈R+
the time-marginals of the law of
he process (6), then (ρt , xt )t∈R+
is a weak solution to (9). To show this, we use the limit
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process to construct a representation formula for ρt . The representation formula is obtained
y making rigorous the heuristic ‘path integral’ method in [34]. We then show that the path
ntegral representation gives a weak solution to (9). Finally, we prove that weak solution to (9)
s unique.

.1. Path integral representation for the time-marginals of the law ot the limit process

To formulate the path integral representation, we first need to introduce some notations and
efinitions.

Let (xt )t∈R+
be given by the limit process (6) and let us write (A∗

t ,M∗
t )t∈R+

the càdlàg
rocess following the dynamics (6a) and (6b) given (xt )t∈R+

and the initial condition (a0,m0) ∈

+ ×Rd . For all t > 0, (A∗
t ,M∗

t ) is deterministic given the initial condition and the jump times
n [0, t]. Hence, for all k ∈ N (the number of jumps in [0, t]) and for all 0 < t1 < · · · < tk ≤ t
the jump times in [0, t]), we can define, recursively, the mappings θ k

t (t1, . . . , tk) : Rd
→ Rd ,

iving M∗
t as a function of the initial condition m0:

θ0
t := Bt , (17a)

∀k ≥ 1, θ k
t (t1, . . . , tk) := Bt−tk ◦ γ ◦ θ k−1

tk (t1, . . . , tk−1), (17b)

here (Bt )t∈R+
is the flow associated with the vector field b.

For all k ≥ 1, we can now define the mapping

φk
t

⎛⎜⎜⎜⎜⎜⎜⎜⎝

⎛⎜⎜⎜⎜⎜⎜⎝
t1
...

tk−1
tk

m0

⎞⎟⎟⎟⎟⎟⎟⎠

⎞⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎝
t1
...

tk−1
t − tk

θ k
t (t1, . . . , tk−1, tk)(m0)

⎞⎟⎟⎟⎟⎟⎟⎠ .

f there are k jumps in the time interval [0, t] and if these jumps occur at times t1, . . . , tk , then
A∗

t ,M∗
t ) = (t − tk, θ k

t (t1, . . . , tk)(m0)). For k = 0, we simply have

φ0
t

⎛⎝( a0
m0

)⎞⎠ =

(
a0 + t
θ0

t (m0)

)
.

If f is bounded (Assumption 1), we can write ηk(t1, . . . , tk; a0,m0)dt1 . . . dtk the probability
ensity over the k-first jump times of the process (A∗

t ,M∗
t )t∈R+

having initial condition
a0,m0). We further define the sub-probability density νk

t (t1, . . . , tk; a0,m0)dt1 . . . dtk :

νk
t (t1, . . . , tk; a0,m0) := 1tk≤t

∫
∞

t
ηk+1(t1, . . . , tk, tk+1; a0,m0)dtk+1.

ote that the mass of νk
t is the probability of having exactly k jumps in the time interval [0, t].

ence, νk
t /
∫
νk

t can be interpreted as the probability density over the k jump times knowing
hat there are exactly k jumps in the time interval [0, t].

Lastly, for all k ≥ 1, we denote by Π k
t1,...,tk ,m and Π k

a,m the projections

Π k
t1,...,tk ,m0

: (t1, . . . , tk, a0,m0) ↦→ (t1, . . . , tk,m0),

Π k
a,m : (t1, . . . , tk−1, a,m) ↦→ (a,m).
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By convention, for k = 0, these projections are the identity.
We have the path integral representation:

emma 1. Grant Assumption 1. Let (A1
t ,M1

t , xt )t∈R+
denote the limit process (6) for the initial

ondition (A1
0,M1

0) ∼ u0 and (E[Ht ])t∈R+
∈ C(R+). Then, for all t > 0, the time-marginal

t := L(A1
t ,M1

t ) is given by the representation formula

ρt =

∞∑
k=0

(Π k
a,m ◦ φk

t ◦ Π k
t1,...,tk ,m0

)∗(νk
t u0). (18)

If we further grant Assumption 3 and if u0 is absolutely continuous, then ρt is also absolutely
ontinuous.

roof. Let τk be the time of the kth jump of
(

A1
t ,M1

t , xt
)

t∈R+
. Since

(
A1

t ,M1
t

)
is a function of

he initial conditions
(

A1
0,M1

0

)
and the jump times {τk}k∈N∗ , for any continuous and bounded

est function F on R+ × Rd , we can write E[F(At ,Mt )] as a ‘path integral’:

E[F(A1
t ,M1

t )] = E
[

F(A1
t ,M1

t )1{t<τ1}

]
+

∞∑
k=1

E
[

F(A1
t ,M1

t )1{τk≤t<τk+1}

]
= E

[
F(φ0

t (A1
0,M1

0))1{t<τ1}

]
+

∞∑
k=1

E
[

F(Π k
a,m ◦ φk

t (τ1, . . . , τk,M1
0))1{τk≤t<τk+1}

]
=

∫
Rd

∫
R+

F(φ0
t (a0,m0))ν0

t (a0,m0)u0(da0, dm0)

+

∞∑
k=1

∫
Rd

∫ t

0
· · ·

∫ t

0  
k times

F(Π k
a,m ◦ φk

t (t1, . . . , tk,m0))

×

∫
R+

νk
t (t1, . . . , tk; a0,m0)u0(da0, dm0)  

(Π k
t1,...,tk ,m

)∗(νk
t u0)

dt1 . . . dtk

=

∫
Rd

∫
R+

F(a,m)
( ∞∑

k=0

(Π k
a,m ◦ φk

t ◦ Π k
t1,...,tk ,m0

)∗(νk
t u0)

)
(da, dm),

hence the representation formula (18).
If u0 is absolutely continuous, then vk

t u0 is absolutely continuous for all k ≥ 0. If, in
ddition, Assumption 3 is granted, then φk

t is a proper local diffeomorphism and (Π k
a,m ◦ φk

t ◦
k
t1,...,tk ,m)∗(νk

t u0) is absolutely continuous for all k ≥ 0. The probability measure ρt is therefore
bsolutely continuous. □

.2. From the limit process to weak solutions

roposition 2. Grant Assumptions 1 and 3. Further assume that the law of the initial condition
A1

0,M1
0) is the absolutely continuous probability measure u0(a,m)dadm and (E[Ht ])t∈R+

=

H̄ 1
t )t∈R+

∈ C(R+). Then, the time-marginals (ρt )t∈R+
of the law of the process (given by the
ath integral representation (18)) and (xt )t∈R+
is a weak solution to (9).
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Proof. First, we use the path integral representation (18) to prove that ρ ∈ C(R+, L1(R+×Rd )).
e have to show that for all T > 0, ρ ∈ C([0, T ], L1(R+ × Rd )). Let us take Z1

t from (6c),
hich counts the number of events in the time interval [0, t]. For any t ∈ [0, T ] and any l ∈ N,

∞∑
k=l

νk
t u0

 L1 = P(Z1
t ≥ l) ≤ P(Z1

T ≥ l).

ence, for all t ′, t ∈ [0, T ],ρt ′ − ρt


L1

≤

∞∑
k=0

(Π k
a,m ◦ φk

t ′ ◦ Π k
t1,...,tk ,m0

)∗(νk
t ′u0) − (Π k

a,m ◦ φk
t ◦ Π k

t1,...,tk ,m0
)∗(νk

t u0)


L1

≤

l∑
k=0

(Π k
a,m ◦ φk

t ′ ◦ Π k
t1,...,tk ,m0

)∗(νk
t ′u0) − (Π k

a,m ◦ φk
t ◦ Π k

t1,...,tk ,m0
)∗(νk

t u0)


L1

+2P(ZT > l).

ince P(ZT > l) → 0 as l → ∞, to show that ρ ∈ C([0, T ], L1(R+ ×Rd )), it suffices to show
hat for all k ∈ N,(

(Π k
a,m ◦ φk

t ◦ Π k
t1,...,tk ,m0

)∗(νk
t u0)

)
t∈[0,T ]

∈ C([0, T ], L1(R+ × Rd )).

y the density of Cc(R+ ×Rd ) in L1(R+ ×Rd ), for any ϵ > 0, there exists ũ0 ∈ Cc(R+ ×Rd )
uch that ∥ũ0 − u0∥ L1 < ϵ

3∥ f ∥k
∞

. For all t ∈ [0, T ],(Π k
a,m ◦ φk

t ◦ Π k
t1,...,tk ,m0

)∗(νk
t ũ0) − (Π k

a,m ◦ φk
t ◦ Π k

t1,...,tk ,m0
)∗(νk

t u0)
 L1

=

νk
t (ũ0 − u0)

 L1

≤
 f
 k

∞
∥ũ0 − u0∥ L1 ≤

ϵ

3
.

Hence, by triangular inequality, it only remains to show that for all ũ0 ∈ Cc(R+ × Rd ),(
(Π k

a,m ◦ φk
t ◦ Π k

t1,...,tk ,m0
)∗(νk

t ũ0)
)

t∈[0,T ]
∈ C([0, T ], L1(R+ × Rd )). (∗)

Since ũ0 is compactly supported, there exists C > 0 such that Supp(ũ0) ⊂ [0,C] × [−C,C]d .
or all t ∈ [0, T ],

(Π k
a,m ◦ φk

t ◦ Π k
t1,...,tk ,m0

)∗(νk
t ũ0) ≤ 1[0,C+T ]×[−C−k∥Γ∥∞,C+k∥Γ∥∞]d ∥ũ0∥ ∞ ∈ L1(R+ ×Rd ).

Therefore, (∗) is verified by dominated convergence. This achieves the proof that ρ ∈

C(R+, L1(R+ × Rd )).
Now, we verify that ρ satisfies (10) for all test functions. For any G ∈ C∞

c (R+ ×R+ ×Rd )
and any T > 0, by Itô’s formula for jump processes,

G(T, A1
T ,M1

T ) = G(0, A1
0,M1

0) +

∫ T

0
[∂t + ∂a + b(M1

t ) · ∇]G(t, A1
t ,M1

t )dt

+

∫ (
G(t, 0, γ (M1

t−)) − G(t, A1
t−,M1

t−)
)
1z≤ f (A1

t−,M
1
t−,xt )π

1(dt, dz).

[0,T ]×R+

54



V. Schmutz Stochastic Processes and their Applications 149 (2022) 39–59

w

S
p

5

P
t

P
A

a

Taking the expectation,

E[G(T, A1
T ,M1

T )] = E[G(0, A1
0,M1

0)] +

∫ T

0
E
[
[∂t + ∂a + b(M1

t ) · ∇]G(t, A1
t ,M1

t )
]

dt

+

∫ T

0
E
[(

G(t, 0, γ (M1
t )) − G(t, A1

t ,M1
t )
)

f (A1
t ,M1

t , xt )
]

dt,

hich is equivalent to∫
R+

∫
Rd

G(T, a,m)ρt (a,m)dadm

=

∫
R+

∫
Rd

G(0, a,m)u0(a,m)dadm +

∫ T

0

∫
R+

∫
Rd

{
[∂t + ∂a + b(m) · ∇]G(t, a,m)

+
(
G(t, 0, γ (m)) − G(t, a,m)

)
f (a,m, xt )

}
ρt (a,m)dadmdt. (19)

ince G in compactly supported, the T → ∞ limit of (19) is (10). This concludes the
roof. □

.3. Uniqueness of weak solutions

roposition 3. Grant Assumptions 1 and 3. For any (u0, H̄ ) ∈ L1(R+ × Rd ,R+) × C(R+),
he solution to (9) is unique.

roof. Let (ρ, x) be a weak solution for some (u0, H̄ ) ∈ L1(R+ × Rd ,R+) × C(R+). By
ssumption 3, the border condition (9b) can be written like (11) and the function

(t,m) ↦→ 1γ (Rd )(m)
∑

m′∈γ−1(m)

1
| det(Jγ (m′))|

∫
R+

f (a,m′, xt )ρt (a,m′)da =: pt (m) (20)

is in C(R+, L1(Rd )) since f is bounded and Lipschitz with respect to the third variable.
By the standard theory of transport equations with initial datum in L1 (see [40]) and

treating (20) as a source term, ρ solves

ρt (a,m)

=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

u0(a − t, B−1
t (m)) exp

(∫ t
0 (∇ · b)(B−1

t−s(m))

− f (a − t + s, B−1
t−s(m), xs)ds

)
if a ≥ t,

pt−a(B−1
a (m)) exp

(∫ t
t−a(∇ · b)(B−1

t−s(m))

− f (a − t + s, B−1
t−s(m), xs)ds

)
if 0 < a < t.

(21)

Using (20) and (21), we have the rough bound
ρt


L1 ≤∥u0∥ L1 exp(t
 f


∞):ρt


L1 ≤ ∥u0∥ L1 +

∫ t

0

∫
Rd

pt−a(m)dmda = ∥u0∥L1 +

∫ t

0

∫
Rd

ps(m)dmds

≤ ∥u0∥ L1 +
 f


∞

∫ t

0

∫
Rd

∫
R+

ρs(a,m)dadmds

nd the bound is obtained using Grönwall’s lemma.
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d

B

B

Let (ρ∗, x∗) be another weak solution to (9) for the same (u0, H̄ ). In the following, we
erive bounds on the distance

ρt − ρ∗
t


L1 + |xt − x∗

t | and apply Grönwall’s lemma. This is
relatively straightforward since f and h are bounded and f is Lipschitz with respect to the
third variable. For all finite time T > 0 and for all t ∈ [0, T ],ρt − ρ∗

t


L1

≤

∫
Rd

∫
∞

t

⏐⏐⏐⏐u0(a − t, B−1
t (m))

× exp

(∫ t

0
(∇ · b)(B−1

t−s(m)) − f (a − t + s, B−1
t−s(m), xs)ds

)
− u0(a − t, B−1

t (m))

× exp

(∫ t

0
(∇ · b)(B−1

t−s(m)) − f (a − t + s, B−1
t−s(m), x∗

s )ds

) ⏐⏐⏐⏐dadm

+

∫
Rd

∫ t

0

⏐⏐⏐⏐pt−a(B−1
a (m))

× exp

(∫ t

t−a
(∇ · b)(B−1

t−s(m)) − f (a − t + s, B−1
t−s(m), xs)ds

)
− p∗

t−a(B−1
a (m))

× exp

(∫ t

t−a
(∇ · b)(B−1

t−s(m)) − f (a − t + s, B−1
t−s(m), x∗

s )ds

) ⏐⏐⏐⏐dadm

=: Q1 + Q2.

ut Q1 ≤ ∥u0∥ L f
∫ t

0 |xs − x∗
s |ds, and by triangular inequality (using the shorthand f (xt ) :=

f (a,m, xt )),

Q2 ≤

(∫ t

0

∫
Rd
ρs(0,m)dmds

)
L f

∫ t

0
|xs − x∗

s |ds +

∫ t

0

∫
Rd

⏐⏐ps(m) − p∗

s (m)
⏐⏐ dmds

=

(∫ t

0

∫
Rd

∫
R+

f (xt )ρs dadmds

)
L f

∫ t

0
|xs − x∗

s |ds

+

∫ t

0

∫
Rd

∫
R+

⏐⏐ f (xt )ρs − f (x∗

t )ρ∗

s

⏐⏐ dadmds

≤
 f


∞

∫ t

0

ρs


L1 ds L f

∫ t

0
|xs − x∗

s |ds + sup
s∈[0,t]

ρs


L1 L f

∫ t

0
|xs − x∗

s |ds

+
 f


∞

∫ t

0

ρs − ρ∗

s

 ds.

y the rough bound on
ρt


L1 established above, we getρt − ρ∗

t


L1 ≤ CT,0

∫ t

0

ρs − ρ∗

s

 L1 + |xs − x∗

s |ds.

On the other hand,

|xt − x∗

t | ≤∥h∥ ∞

∫ t ∫ ∫ ⏐⏐ f (xs)ρs − f (x∗

s )ρ∗

s

⏐⏐ dadmds,

0 Rd R+
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R

which can be bounded as shown above. Whence,ρt − ρ∗

t


L1 + |xt − x∗

t | ≤ CT,0

∫ t

0

ρs − ρ∗

s

 L1 + |xs − x∗

s |ds.

By Grönwall’s lemma,
ρt − ρ∗

t


L1 + |xt − x∗

t | = 0 for all t ∈ [0, T ]. Since this is true for
all T > 0, (ρ, x) = (ρ∗, x∗), which concludes the proof. □
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