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Abstract

Hippocampal place cells of freely moving rodents display an intriguing temporal
organization in their responses known as ‘theta phase precession’, in which indi-
vidual neurons fire at progressively earlier phases in successive theta cycles as the
animal traverses the place fields. Recent experimental studies found that in addition
to phase precession, many place cells also exhibit accompanied phase procession,
but the underlying neural mechanism remains unclear. Here, we propose a neural
circuit model to elucidate the generation of both kinds of phase shift in place cells’
firing. Specifically, we consider a continuous attractor neural network (CANN)
with feedback inhibition, which is inspired by the reciprocal interaction between
the hippocampus and the medial septum. The feedback inhibition induces intrinsic
mobility of the CANN which competes with the extrinsic mobility arising from
the external drive. Their interplay generates an oscillatory tracking state, that is,
the network bump state (resembling the decoded virtual position of the animal)
sweeps back and forth around the external moving input (resembling the physical
position of the animal). We show that this oscillatory tracking naturally explains
the forward and backward sweeps of the decoded position during the animal’s
locomotion. At the single neuron level, the forward and backward sweeps account
for, respectively, theta phase precession and procession. Furthermore, by tuning the
feedback inhibition strength, we also explain the emergence of bimodal cells and
unimodal cells, with the former having co-existed phase precession and procession,
and the latter having only significant phase precession. We hope that this study
facilitates our understanding of hippocampal temporal coding and lays foundation
for unveiling their computational functions.
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Figure 1: Theta phase coding and the continuous attractor neural network with feedback inhibition.
A. Phase precession of a probe neuron and the theta sequence consisting of �ve neurons �ring
sequentially in a theta cycle. B. Both phase precession and procession of a probe neuron, and the
corresponding forward theta sequence and backward theta sequence in a theta cycle. C. Up: the
network model structure. Neurons in the CANN are arranged on an one-dimensional neuronal track,
with each receiving feedback inhibition under the interaction with the medial septum. Below: input
and output to a single neuron in the model. D. A schematic diagram of the reciprocal interaction
between the hippocampus and the medial septum through GABAergic neurons.

1 Introduction

The mammalian hippocampus is responsible for spatial navigation [1, 2] and episodic memory [3–6].
Rodent studies have revealed two prominent �ring features of hippocampal place cells during animals'
locomotion. First, each place cell has localized spatial coding which �res in restricted regions of a
given environment (place �elds) [7, 8]. Second, the �ring of a place cell displays detailed temporal
organization known as `theta phase precession', whereby neuronal spikes are elicited at successively
earlier phases of the theta cycles of the local �eld potential (LFP) as the animal travels through the
place �eld (Fig. 1A) [9, 10]. This phase precession of individual neurons results in that the activities
of consecutively activated place cells along the animal's moving trajectory are compressed into a
�ring sequence within a theta cycle, named forward theta sequence (Fig. 1A) [10–14]. It has been
hypothesized that such theta sequences compress sequential responses of neurons at the behavioral
timescale (seconds) into the theta-cycle timescale (tens of milliseconds) in a temporally ordered way,
which is short enough to enable spike-time-dependent plasticity (STDP) between neurons [15, 16].
Thus, theta phase precession may serve as a neural substrate for the formation of spatial and episodic
memories [17].

Recently, experimental studies found that in addition to phase precession, many place cells in
the hippocampus of freely moving rodents also exhibit phase procession, i.e., a place cell �re at
progressively later phases in successive theta cycles as the animal traverses the place �eld (Fig.1B) [18–
22]. Analogy to the formation of forward theta sequences, phase procession of place cells �ring
consecutively along the animal's moving trajectory results in reverse theta sequences. From the
view of information processing, phase precession and procession correspond respectively, to the
prospective and retrospective evaluations of animals' ongoing behaviors, which further supports the
forward and reverse replays during memory consolidation [23–26]. Instead of existing alone in a theta
cycle, a recent study showed that the reverse theta sequence co-exists with the forward theta sequence
in individual theta cycles [27] (Fig. 1B). As it has far-reaching implications to brain functions, a
large volume of modelling studies has been devoted to understand the generation of theta phase
precession of place cells. These models can be roughly divided into two categories, with one focusing
on the mechanism of single cell oscillation [9, 28–31] and the other on the mechanism of recurrent
interactions between neurons [32–34] (see more discussions in Sec. 5). However, these models have
not accommodated the newly found phase procession which co-exists with phase precession in theta
cycles, and hence need to be re-evaluated.

In the current study, we propose a neural circuit model to elucidate the underlying mechanism
of the co-occurrence of phase precession and procession in individual theta cycles, as well as
many other recent experimental �ndings. Speci�cally, we consider a continuous attractor neural
network (CANN) with feedback inhibition (Fig. 1C). The CANN is a conceptualized circuit model
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for the network of place cells [35–38], and the feedback inhibition models the interplay between
the hippocampus and the medial septum with reciprocally connected GABAergic neurons [39–42]
(Fig. 1D). Without feedback inhibition, the CANN holds a localized bump-shaped activity state
(resembling the decoded virtual position of the animal), which can smoothly track the movement of
the external input (resembling the physical position of the animal). When a strong enough feedback
inhibition is added, it destabilizes the neuronal �ring and induces intrinsic mobility of the bump
activity. This intrinsic mobility competes with the extrinsic mobility (arising from the external drive)
and causes an oscillatory tracking state, i.e., the network bump sweeps back and forth around the
external moving input. Intriguingly, we �nd that this oscillatory tracking naturally gives rise to the
phase shift of place cell �ring during animals' locomotion. At the neuron ensemble level, the forward
and backward bump sweeps account for, respectively, the forward and reverse theta sequences of the
place cell ensemble. At the single neuron level, individual neurons in the CANN exhibit both phase
precession and procession as the external input travels through their �ring �elds, with precession and
procession occurring in the forward and backward bump sweeps, respectively. Moreover, we �nd
that the feedback inhibition strength is the key for generating different phase shift patterns in place
cell �ring. With a weak feedback inhibition, all the neurons in the CANN are bimodal cells, which
possess co-existed phase precession and procession in their �rings. With a strong feedback inhibition,
all the neurons in the CANN are unimodal cells, which possess only signi�cant phase precession in
their �rings. We also theoretically elucidate the underlying network dynamics for producing these
�ring behaviours. We hope that this study helps us to unveil the underlying mechanism of phase
shifts of place cells, and sheds light on our understanding of temporal coding of hippocampal neurons
and the related functions in spatial navigation and episodic memory.

2 The Computational Model

2.1 A CANN with feedback inhibition

For simplicity, we study a one-dimensional (1D) CANN (modeling animals' free moving on linear
tracks), and results can be naturally generalized to the 2D case. The 1D CANN is a conceptualized
circuit model of the place cell ensemble, which consists of neurons arranged conceptually on a
1-dimensional neuronal track according to their relative �ring locations (Fig. 1C). It is noteworthy that
the relative location of two neurons on the neuronal track is irrelevant with their relative anatomical
location in the hippocampus, i.e., neurons situated in the CANN can be viewed as place cells being
re-arranged according to their place �elds during animals' locomotion on the linear track. Denote
U(x; t ) as the synaptic input received by the neuron at locationx, with x 2 (�1 ; 1 ), andr (x; t )
the corresponding �ring rate. The dynamics of the CANN is written as,

�
dU(x; t )

dt
= � U(x; t ) + �

Z 1

�1
J (x; x 0)r (x0; t) dx0 � V (x; t ) + I ext (x; t ); (1)

r (x; t ) =
gU(x; t )2

1 + k�
R1

�1 U(x0; t)2dx0
; (2)

where� is the neuron time constant, and� represents the neuron density. The recurrent connections
are translation-invariant, which is given byJ (x; x 0) = J0=(2�a ) exp

�
� (x � x0)2=(2a2)

�
, with

J0 the maximum connection strength anda the range of neuronal interactions.I ext (x; t ) is the
external input to the CANN, which resembles the physical location of the animal moving on the
linear track. The nonlinear relationship between the �ring rater (x; t ) and the synaptic inputU(x; t )
is implemented by the divisive normalization, whose strength is controlled byk in the denominator
of Eq.2, andg is a gain factor. The divisive normalization implicitly models the contribution of
inhibitory neurons to the pyramidal neurons, which could be implemented by shunting inhibition
in the real neural system [43]. It has been shown that withk < �J 2

0 =(8
p

2�a ), the CANN holds
a continuous family of Gaussian-shaped stationary states (bump states), and these bumps form a
manifold on which the network is neutrally stable [44, 45] (how the network bump state tracks the
external input will be discussed in Sec. 2.2).

V (x; t ) in Eq. 1 represents the feedback inhibition received by each neuron at locationx, whose
dynamics is written as,

� v
dV(x; t )

dt
= � V (x; t ) + mU(x; t ); (3)
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where� v is the time constant ofV (x; t ), and� v � � holds, implying that the feedback inhibition is
a much slower process compared to the neuronal response. The parameterm controls the strength
of feedback inhibition, i.e., the larger them, the stronger the inhibition. It is noteworthy that the
feedback inhibition described in Eq. 3 does not simply mean that neurons in the medial septum
receive direct excitatory input from neurons in the CANN and in turn inhibit them accordingly, but
instead, represents an overall effect of the interplay between the hippocampus and the medial septum.
This interplay may be implemented by the long-range reciprocal projections via GABAergic neurons
in the hippocampo-septo-hippocampo loop [40, 46–48] (see more discussion in Sec. 5).

2.2 Tracking behaviors of the CANN with feedback inhibition

In this section, we show how the network bump (internal representation) tracks the external input
(external physical location). Without loss of generality, we consider that the external input to the
CANN has the following Gaussian form:

I ext (x; t ) = � exp
�
�

(x � vext t)2

4a2

�
; (4)

wherevext represents the moving speed of the external bump input (resembling the moving speed
of the animal on the linear track), and� controls the strength of the external input. It is known that
without the external input drive, i.e.,� = 0 , the network bump can move spontaneously due to the
destabilization of neural �ring by the feedback inhibition (Fig. 2A). Speci�cally, whenm > �=� v ,

the bump moves with an speedvint = (2 a=�v )
q

m� v =� �
p

m� v =� [49] (see Fig. 2B and SI.2 for
the mathematical derivation). We term this spontaneously moving as the intrinsic mobility hereafter,
which is independent of the external drive.

When both the external input (from sensory drive) and the feedback inhibition (from the interaction
with the medial septum) are applied to the CANN, the bump mobility is determined by these two
factors in a competitive way, that is, the external input tends to drive the bump to move at the
speedvext , and the feedback inhibition tends to drive the bump to move at the intrinsic speedvint .
Depending on the relative strengths of these two factors (controlled by� andm in Eq. 4 and Eq. 3,

Figure 2: Tracking behaviors of the CANN with feedback inhibition. A. Without external input,
the network bump moves spontaneously with a intrinsic speedvint due to destabilization from the
feedback inhibition. The bump in blue representsU(x; t ) and the bump in black representsV (x; t )
which always lags behind the bumpU(x; t ). B. Intrinsic speedvint as a function of the feedback
inhibition strengthm. C. The phase diagram of the tracking states with respect to the input strength
� and the feedback inhibition strengthm. D. Traveling wave state with a largem. E. Smoothing
tracking state with a smallm. F. Oscillatory tracking state with a moderatem. D-F: Bumps in red
represent the external bump input (physical position of the animal), and bumps in blue represent the
network bump (virtual position of the animal). For parameter settings of producing these �gures, see
SI.1 and the uploaded code.
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respectively), the network exhibits three different tracking behaviors as summarized in Fig. 2C.
Speci�cally, we can study the tracking behaviors by �xing one parameter while varying the other.
While �xing the external input strength� and varying the feedback inhibition strengthm, we have

• Travelling wave: when the feedback inhibition is relatively strong (largem), the network holds
the travelling wave state (Fig. 2D), in term of that the bump moves spontaneously at the speed of
vint , independent of the external input. This is understandable: although the external input tends
to attract the network bump, the feedback inhibition has a stronger force to push it away, which
causes the bump to move with its intrinsic speed.

• Smooth tracking: when the feedback inhibition is relatively weak (smallm), the network holds
the state of smooth tracking (Fig. 2E), in term of that the bump is completely attracted by the
external input and moves at the speedvext . This is because the feedback inhibition is not strong
enough to push the network bump away.

• Oscillatory tracking : when the feedback inhibition is moderate, the network holds the state of
oscillatory tracking (Fig. 2F), in term of that the overall motion of the bump follows the external
moving input, while its position oscillates around the instant position of the external input. This
oscillatory tracking originates from the competition between the intrinsic mobility caused by the
feedback inhibition and the drive of the external moving input, which we explain in details below.

2.3 The oscillatory tracking state

In this section, we present the analytical solution of the network model in the parameter regime of
oscillatory tracking (see SI.3 for mathematical details). Due to the Gaussian-like neuronal connections
and global inhibition (Eq. 2), we �nd that the network states in Eq. 1- 3 can be approximated as
Gaussian forms, which are expressed as:

U(x; t ) = Au (t) exp

(

�
[x � z(t)]2

4a2

)

; (5)

r (x; t ) = A r (t) exp

(

�
[x � z(t)]2

2a2

)

; (6)

V (x; t ) = Av (t) exp

(

�
[x � z(t) + d(t)]2

4a2

)

: (7)

HereAu (t), A r (t) andAv (t) denote the bump heights at timet (note thatU(x; t ), r (x; t ) andV(x; t )
all have bump-shaped pro�les).z(t) denotes the position of bump centers ofU(x; t ) andr (x; t ),
which are always phase-locked on the neuronal track.d(t) is the displacement of the bump centers
betweenU(x; t ) andV(x; t ), due to the delayed feedback inhibition with respect to the neuronal

Figure 3: Oscillatory tracking in our model. A. Illustration of the oscillatory tracking as a sinusoidal
wave with an positive offsetd0 around the external input. For simplicity, only the bump centers
are shown (blue: network bump center; red: external bump center). B. The phase diagram of the
oscillation frequency with respect to the input strength� and the feedback inhibition strengthm.
Grided area represents the traveling wave or the smooth tracking state (as shown in Fig. 2C) where
no oscillation exists. C. Simulation (red dots) and analytical (blue lines) results of the oscillation
frequency as a function of the input strength� and the feedback inhibition strengthm, respectively.
For parameter settings of producing these �gures, see SI.1 and the uploaded code.
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