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Spatially anisotropic S = 1 square-lattice antiferromagnet with single-ion anisotropy realized
in a Ni(II) pyrazine-n, n′-dioxide coordination polymer
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The Ni(NCS)2(pyzdo)2 coordination polymer is found to be an S = 1 spatially anisotropic square lattice with
easy-axis single-ion anisotropy. This conclusion is based upon considering in concert the experimental probes
x-ray diffraction, magnetic susceptibility, magnetic-field-dependent heat capacity, muon-spin relaxation, neutron
diffraction, neutron spectroscopy, and pulsed-field magnetization. Long-range antiferromagnetic (AFM) order
develops at TN = 18.5 K. Although the samples are polycrystalline, there is an observable spin-flop transition and
saturation of the magnetization at ≈80 T. Linear spin-wave theory yields spatially anisotropic exchanges within
an AFM square lattice, Jx=0.235 meV, Jy=2.014 meV, and an easy-axis single-ion anisotropy D=−1.622 meV
(after renormalization). The anisotropy of the exchanges is supported by density functional theory.
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I. INTRODUCTION

Low-dimensional quantum magnetism continues to be an
intensively studied research field, for both fundamental as-
pects of physics and potential technological implications
[1]. Moreover, because of the multitude of different struc-
tures and connectivities provided by hybrid organic/inorganic
compounds, it seems likely that molecule-based materials
will play an important role in the future of electronic and
magnetic devices. Understanding how different molecular lig-
ands can be used to couple magnetic moments and underpin
low-dimensional structures are important milestones along
this road. Toward this end, we have studied a variety of
coordination-polymer magnetic systems with different dimen-
sionalities, exchange energies, and spin quantum numbers
(see, e.g., Refs. [2–11]). Within the field of quantum magnets,
the subfield of two-dimensional (2D) systems is attractive
due to the ability to support long-range entangled states [12]
and the analogies to theories of high-temperature supercon-
ductivity (HTSC). Historically, HTSC in copper compounds
has pushed extensive research of S = 1

2 materials, while the
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discovery of iron-based HTSC has highlighted the need for
S = 1 (and maybe larger) 2D quantum magnets to be studied
in that context [13]. The extension to S = 1 allows the usual
three dipolar operators and dipolar magnetic ordering (as in
S = 1

2 ) but adds the complexity of five additional quadrupo-
lar operators and respective magnetic order parameters [14].
Recently, advances in neutron scattering data acquisition and
modeling have shown the quantitative effects of quadrupolar
excitations in the triangular lattice S = 1 material FeI2 [15].

Here, we consider a Hamiltonian of the spatially
anisotropic S = 1 antiferromagnet (AFM) on a square
lattice with single-ion anisotropy. Typically, this equation is
written as

H = Jx

∑
〈i, j〉x

Si · S j + Jy

∑
〈i, j〉y

Si · S j + D
∑

i

S2
iz, (1)

where the first sum is along the x direction of the square
lattice having exchange energy Jx, the second sum along
the y direction with exchange energy Jy, angle brackets de-
note nearest-neighbor summations, and D is the single-ion
anisotropy. There are often 1 subscripts on Jx and Jy, as a com-
mon addition to this Hamiltonian is diagonal exchange within
the square (J2), which is frustrating with respect to J1 [13]. In
the limit that Jx or Jy is zero and D is zero, then Eq. (1) reduces
to uncoupled S = 1 isotropic spin chains that have a gapped
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ground state called the Haldane phase [16–18]. The parameter
α = Jx/Jy is often introduced as a notational convenience.
Then this Haldane phase has a region of stability in the phase
space of α and D/Jy [19]. In the D = 0 limit, a small but finite
coupling (e.g., α ≈0.04) between chains induces a quantum
phase transition from the Haldane phase to a long-range or-
dered AFM phase [19–21]. Jointly considering D and α shows
that both parameters are destabilizing with respect to the Hal-
dane phase, either toward long-range magnetic order or quan-
tum paramagnetism. The parameter J2d = 1

2 (Jx + Jy) is used
in cases where the effect of spatially anisotropic exchange is
undeterminable, and Jx = 2α

(1+α) J2d and Jy = 2
(1+α) J2d . Finally,

sufficiently large easy-plane anisotropy introduces a quantum
paramagnetic phase that has no dipolar order but instead a
quadrupolar order parameter 〈S2

z − 2
3 〉.

Experimentally, coordination-polymer chemistry has been
foundational to provide real systems that obey Eq. (1). There
is a synergistic relationship between the parallel maturity of
magnetochemistry and the many-body physics that describes
low-dimensional quantum magnets. While the state of the
art does not yet allow deterministic crystal engineering to
connect synthesis to the resultant magnetism Hamiltonian, in
some cases, the ever-growing library of compounds allows
for increasing control of parameters like D and J from the
constituent ligands and ions of compounds. An example of
this connection is in our work on S = 1 Ni(II) coordination
polymers [8]. We have been engaged in the detailed study of
S = 1

2 and 1 quantum magnets based on polymeric
2D [M(pyz)2]2+ (M = Cu or Ni) square grids [2,5,22]. The
geometry of these grids may be perfectly square (due to tetrag-
onal in-plane symmetry) or bear some rhombic distortion by
imposing M · · · M edges of slightly different lengths and/or
metal-ligand bond angles appreciably more or less than 90°.

Among metal-organic compounds, Cu(II) square-lattice
coordination polymers are the most known and the best
characterized. However, the library of related S = 1 Ni(II)
compounds is far less populated, and the ability to grow suit-
able single crystals for detailed investigation is challenging.
Unlike octahedral Cu(II) complexes where the single mag-
netic electron usually resides in the dx2−y2 orbital, octahedral
Ni(II) has unpaired electron density distributed in both dx2−y2

and dz2 orbitals. In addition, Cu(II) is Jahn-Teller active, while
such a distortion does not occur in Ni(II) systems. The im-
pact of the difference in electronic structure tends toward
stronger magnetic couplings exhibited by Cu(II) coordination
compounds than Ni(II) irrespective of the organic bridging
ligands, such as pyrazine (pyz).

Pyrazine may be the most utilized bridging ligand
in coordination chemistry applications, while its diox-
ide, namely, pyrazine-n, n′-dioxide (hereafter pyzdo),
is less explored, although a few notable examples
exist such as Cu X2(H2O)2(pyzdo) (X = Cl, Br) [23],
Co (dca)2(pyzdo) (dca = dicyanamide) [24], and

Mn(NCS)2(pyzdo)2 [25]. In this paper, we have combined
Ni(II) ions with pyzdo ligands to afford the 2D coordination
polymer Ni(NCS)2(pyzdo)2 that is isostructural to the
Mn(II) and Co(II) analogs [25]. The magnetometry data of
Mn(NCS)2(pyzdo)2 and Co(NCS)2(pyzdo)2 are consistent
with high 2D magnetism, suggesting that Ni(NCS)2(pyzdo)2
is likely to obey Eq. (1).

Thus, Ni(NCS)2(pyzdo)2 adds to the small library of
experimental realizations of spatially anisotropic S = 1
square-lattice AFMs with single-ion anisotropy. Aside from
the aforementioned NiX2(pyz)2 compounds [5] (of which
NiBr2(pyz)2 was reported before [26]), we have also found
a recent report on Ni[SC(NH2)2]6Br2 [27], which was shown
to have long-range AFM order at TN = 2.23 K, and magne-
tization data showed a strong magnetic anisotropy, although
details of the Hamiltonian parameters are yet to be deter-
mined.

II. RESULTS AND DISCUSSION

Here, we subjected Ni(NCS)2(pyzdo)2 to a variety of
experimental probes and theoretical models with the goal
of quantitatively determining the Hamiltonian. We begin in
Sec. II A by presenting x-ray diffraction to determine the crys-
tal structure. Section II B presents the temperature-dependent
magnetic susceptibility data, from which the system appears
AFM and highly 2D with J2d = 13.4 K (1.15 meV) and
TN ≈18 K. Heat capacity measurements in zero field are re-
ported in Sec. II C and show a clear peak at TN = 18.5 K
that decreases in temperature with applied magnetic field
consistent with AFM. Muon-spin relaxation (Sec. II D) fur-
ther corroborates these results. Section II E presents neutron
diffraction data, which show the magnetic structure is an AFM
square-lattice with moments (≈1.8 μB per nickel) approxi-
mately along the putative easy axis of the NiN2O4 moieties.
Plane-wave density functional theory (DFT, Sec. II F) sets
the stage for considerations of magnetic exchange and up-
holds the emerging picture of a spatially anisotropic square
lattice. Section II G contains neutron spectroscopy data on a
polycrystalline sample, which are quantitatively modeled with
linear spin-wave theory (LSWT) by a spatially anisotropic
square lattice (Jx = 0.235 meV, Jy = 2.014 meV) having an
easy-axis single-ion anisotropy (D = − 0.811 meV, renor-
malized to −1.622 meV in the low-temperature limit beyond
the approximation of LSWT). Some theoretical modeling
is discussed in Sec. II H, and Sec. II I discusses pulsed-
field magnetization data on a polycrystalline sample. The
latter show quantitative agreement with the saturation field
of the spectroscopy-derived Hamiltonian (μ0HSAT ≈80 T)
and qualitative agreement of the magnetizing curve, consid-
ering a mean-field model. Density matrix renormalization
group (DMRG) theory is also compared with magnetization
and neutron spectroscopy, giving highly similar but quantita-
tively different Hamiltonian parameters. Dimer-cluster DFT
is presented in Sec. II J, which shows how the same pyzdo
ligand can yield an order of magnitude difference in exchange
energies due to modifications of the connecting geometry.
Additional considerations are discussed in Sec. III, and the
main conclusions are summarized in Sec. IV. Experimental
details that are not present in the main body of the text are
available in Appendix.

A. X-ray diffraction

Single-crystal x-ray diffraction was used to determine the
crystal structure of Ni(NCS)2(pyzdo)2 at 90 K, and this com-
pound is isomorphous to the Mn- and Co-analogs reported
several years ago [25]. The crystallographic information file
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FIG. 1. Crystal structure of Ni(NCS)2(pyzdo)2. (a) A section of
one layer of nickel ions bridged by pyzdo ligands. (b) Stacking of
the layers. Molecular units of (c) NiO4N2 octahedra, (d) NCS, and
(e) pyzdo.

(CIF) is available in the Supplemental Material [28]. These
data are presented first, as knowledge of the crystal structure
is foundational to considering the magnetic properties. Each
Ni(II) ion resides on an inversion center and is equatorially co-
ordinated to O-donor atoms from four different pyzdo ligands
at distances of 2.101(1) and 2.104(1) Å. The axial positions
are occupied by N donors from the NCS− anion, and each
NiO4N2 octahedron is slightly compressed along this direc-
tion. The octahedra are rhombically distorted away from ideal
D4h symmetry, with the largest deviation being 86.81(6)◦.

Bridging pyzdo ligands connect NiO4N2 octahedra into
2D arrays of tiled parallelograms defined by [1, −1, 0]
and [0, 0, 1] real space directions, Fig. 1(a). These 2D ar-
rays propagate along the [1,1,0] direction, Fig. 1(b), and
are staggered to maximize interlayer van der Waals con-
tacts. Molecular units of Ni(NCS)2(pyzdo)2 are shown in
Figs. 1(c)–1(e). Within each 2D layer, adjacent octahedra
adopt the same configuration and are tilted in accord with the
nonlinear Ni–O–N bond angles of 115.3(1)◦ and 120.9(1)°
for Ni1-O5-N6 and Ni-O1-N2, respectively. Also noticeable
is the interdigitation of the protruding NCS− anions which
themselves are nearly linear [178.8(2)◦]. Weak electrostatic
interactions comprised of N–O · · · H hydrogen bonds exist
and help hold the layers together.

B. Magnetic susceptibility

Magnetic susceptibility (χ ) for polycrystalline samples
is sensitive to magnetic interactions and less so to single-
ion anisotropy. This low-field magnetic response is sensitive

FIG. 2. Magnetic susceptibility of Ni(NCS)2(pyzdo)2 measured
in 0.1 T. (a) Data and Lines [29] model fit described in the text.
(b) Inverse susceptibility data and Curie-Weiss law fit described in
the text. (c) Product of susceptibility and temperature with derivative
inset.

to the onset of long-range magnetic order and to magnetic
correlations in the sample and allows comparison with quan-
titative models of the superexchange. The χ (T ) data for
Ni(NCS)2(pyzdo)2 as measured in a 0.1 T field are shown
in Fig. 2(a). A broad maximum is identified at Tmax = 28 K,
where χ (T ) takes the value of 0.013 emu/mol. Below Tmax,
χ (T ) decreases to reach a minimum value of 0.009 emu/mol
at a base temperature of 2 K. The broad maximum sig-
nifies the presence of short-range spin correlations, which
may be 2D, as suggested by the crystal structure. The Tmax

value was used to estimate the intralayer exchange constant
(HLines = J2d

∑
〈i, j〉 Si · S j) for a 2D AFM without single-ion

anisotropy from the equation developed by Lines [29] for
any value of S and J2d > 0, Tmax/J = 1.12S(S + 1) + 0.1,
which yields J2d ≈12 K (1.0 meV) for S = 1. The χ (T ) data
>30 K were fit to the Lines model of susceptibility, and the
resulting fit is shown as the solid line in Fig. 2(a). Excel-
lent agreement between the data and fit were obtained for
the parameters g = 2.091(1), J2d = 13.35(1) K (1.15 meV),
and TIP = 220(6)×10−6 emu/mol. Here, g is the Landé g
factor, and TIP is temperature-independent paramagnetism.
In accord with the Lines model, a positive J value indicates
an AFM interaction. Inclusion of an interlayer magnetic cou-
pling based on the mean-field approximation with z magnetic
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FIG. 3. Ni(NCS)2(pyzdo)2 heat capacity. Heat capacity divided
by temperature with the magnetic field dependence inset.

neighbors led to a small ferromagnetic (FM) zJ ′ value of
−0.009(1) K (−8×10−4 meV) which further supports a high
degree of isolation between the 2D magnetic layers.

The reciprocal magnetic susceptibility 1/χ vs T is shown
in Fig. 2(b), and these data were fitted to a Curie-Weiss law

(χ = Ng2μ2
B

3kB (T +θCW ) S[S + 1]) between 80 and 300 K, where kB

is Boltzmann’s constant, μB is the Bohr magneton, and θCW

is the Weiss temperature. Good agreement was achieved for
g = 2.121(1) and θCW = −49.78(1) K. The g factor is typical
of Ni(II), whereas the large and negative Weiss constants are
an indication for significant AFM interactions between S = 1
Ni(II) ions.

The temperature variation of χT is displayed in the main
plot of Fig. 2(c) with the low-T portion of dχT /dT vs T
highlighted in the inset. Upon cooling from room temperature,
χT decreases smoothly until ∼ 50 K, where it decreases more
quickly. An abrupt change in the curvature of χT occurs
∼ 18 K, which coincides with a peak in d(χT )/dT . We as-
cribe this anomaly to the transition to long-range AFM order
in Ni(NCS)2(pyzdo)2. In the molecular field approximation,
the Néel temperature TN = θCW, and the large discrepancy be-
tween the two supports the conjecture of Ni(NCS)2(pyzdo)2
as low dimensional. In general, deviations from TN = θCW

can be assigned to fluctuations beyond the molecular field
approximation, which may be due to low dimensionality (as
here) or magnetic frustration.

C. Heat capacity

Measuring heat capacity (Cp) as a function of temperature
provides direct insight into the thermodynamics of materi-
als. Here, for Ni(NCS)2(pyzdo)2, Cp is a direct probe of the
phase transition from a paramagnetic to long-range ordered
magnetic state. Application of external magnetic field fur-
ther allows the discernment of magnetic interactions, e.g., the
mean sign of the superexchanges. Polycrystalline measure-
ments are presented as a function of magnetic field, Fig. 3.
In zero field, data were collected from 2 to 100 K, and a sharp
peak is observed at TN = 18.5 K. Field-dependent data were
collected from 2 to 25 K, and the peak shifts to lower tem-
peratures and broadens with increasing applied magnetic field
due to dominant AFM interactions. The broadening of the
peak with increasing field is likely due to the polycrystalline

FIG. 4. Muon-spin relaxation of Ni(NCS)2(pyzdo)2. (a) Exam-
ple asymmetry spectra, A(t), measured at 9 K and 19 K. The 9 K data
are shown in percent; the 19 K data have been displaced upward by
4% for clarity. (b) Temperature dependence of the muon precession
frequency. (c) Relaxation rate as a function of temperature. In (c), the
line is a guide to the eye.

sample having all orientations of applied field with respect to
single-ion anisotropy.

D. Muon-spin relaxation

Muon-spin relaxation (μ+SR) measurements are sensitive
to local magnetic fields in a sample that provide informa-
tion about magnetic correlations. In the preceding text, the
paramagnetic-to-AFM phase transition in Ni(NCS)2(pyzdo)2
was identified, but muons probe the local correlations that
are more directly connected to the sublattice magnetization
and provide additional evidence to the evolving picture of
the phase transition. Zero-field μ+SR data were measured
for a Ni(NCS)2(pyzdo)2 polycrystalline sample. Typical spec-
tra measured above and below the transition temperature are
shown in Fig. 4(a). Data measured at 18.5 K and below were
fitted to an asymmetry function of the form:

A(t ) = A1 cos (2πνt + φ)e−λ1t + A2e−λ2t , (2)
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FIG. 5. Neutron diffraction of Ni(NCS)2(pyzdo)2 at T = 25 K
in the paramagnetic state. Data are red circles, the model is a black
line, vertical marks are Bragg peak positions, and residuals are an
offset blue line.

where the first and second terms represent a damped oscilla-
tion and a pure relaxation, respectively [2]. The oscillations
reflect the coherent precession of muon spins about a local
magnetic B field, consistent with this field being similar at
each muon stopping site, implying that the system is in an or-
dered magnetic state throughout the bulk. The purely relaxing
component represents those muons whose spins are parallel to
the local field and thus do not precess. The exponential relax-
ation is caused by the gradual depolarization of the muons
due to dynamic processes and field inhomogeneities. Data
measured at 19 K and above are purely relaxing and display
no visible oscillation, such that they are not well described by
(the first term of) Eq. (2).

The precession frequencies ν and relaxation rates λ2 ob-
tained from fitting are plotted against T , Fig. 4(b). The
observed trends are consistent with the phase transition in
Ni(NCS)2(pyzdo)2, with the relaxation rate diverging and the
frequency acting as an effective order parameter. To model
the transition, the muon precession frequency was fitted to
a simple phenomenological model ν(T ) = ν(0)[1 − ( T

TN
)
a1 ]

a2

[30] giving a critical temperature TN = 18.6 ± 0.1 K. This
critical temperature is identical, within uncertainty, to that
determined by magnetic susceptibility and heat capacity. In-
sufficient data are available for the a1 and a2 parameters to
provide quantitative information about the critical behavior.

E. Neutron diffraction

Neutron scattering has different radiation interactions with
materials than x-ray scattering, which provides greater sen-
sitivity to lighter elements (e.g., H, N, O), and magnetic
diffraction intensities are of a comparable order of mag-
nitude to those from nuclear scattering. Up to this point,
Ni(NCS)2(pyzdo)2 was shown to have AFM correlations from
the magnetic susceptibility and heat capacity. Magnetic neu-
tron diffraction allows quantitative extraction of the magnetic
structure, which is the first step in quantitatively modeling the
underlying magnetic Hamiltonian. Data collected at T = 25 K
above the onset of long-range magnetic order were used to fit
the nuclear crystal structure of Ni(NCS)2(pyzdo)2. The T =
25 K diffractogram shows sharp Bragg peaks, Fig. 5, which
are modeled well by the x-ray crystal structure and allowed
further refinement of the H and O positions as well as the
variation of the crystallographic unit cell parameters expected

TABLE I. Neutron diffraction model parameters for T = 25 K.

Lattice

Space group P-1

a (Å) 6.8533(1)
b (Å) 7.0173(2)
c (Å) 8.0189(2)
α (°) 82.720(3)
β (°) 67.077(2)
γ (°) 74.315(1)

Atomic fractional coordinates

H3 0.834(1), 0.329(1), 0.072(1)
H4 0.176(1), 0.496(1), 0.217(1)
H7 0.715(1), 0.088(2), 0.375(2)
H8 1.136(2), 0.276(1), 0.553(1)
O1 0.4622(9), 0.3244(9), 0.3224(9)
O5 0.829(1), 0.3802(8), 0.4271(8)

Refinement

Rw (%) 1.06
Rbragg (%) 1.92

on cooling, Table I. This nuclear structure is available as a CIF
in the Supplemental Material [28].

Deep within the magnetically ordered state at T = 1.5 K,
new Bragg peaks appear that are due to the magnetic or-
der, Fig. 6. Results of modeling the T = 1.5 K neutron
diffraction are summarized in Table II. The propagation vec-
tor k = ( 1

2 , 0, 1
2 ) corresponds to a magnetic structure in

which nearest-neighbor nickel ions connected by O-pyz-O

FIG. 6. Neutron diffraction of Ni(NCS)2(pyzdo)2 at T = 1.5 K
in the magnetically ordered state. Data are red circles, the model is a
black line, vertical marks are Bragg peak positions, and residuals are
an offset blue line. Data are shown over (a) a region of interest that
highlights the magnetic Bragg peaks and vertical marks for magnetic
Bragg peak locations and (b) a large range of d spacing with upper
vertical marks for structural Bragg peaks and lower vertical marks
for magnetic Bragg peaks.
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TABLE II. Neutron diffraction model parameters for T = 1.5 K.

Lattice

Space group P-1

a (Å) 6.8527(1)
b (Å) 7.0164(1)
c (Å) 8.0183(2)
α (◦) 82.734(2)
β (◦) 67.078(2)
γ (◦) 74.318(1)

Propagation vector

k ( 1
2 , 0, 1

2 )

Ni magnetic moment

|M| (μB) 1.8(1)
θ (◦) −41(10)
ϕ(◦) 67(12)

Refinement

Rw (%) 1.03
Rbragg (%) 2.11
Rmag (%) 2.70

ligands form a distorted AFM square lattice (Fig. 7) in a
plane containing direct lattice vectors [1,−1, 0] and [0, 0, 1].
Nearest-neighbor magnetic moments along a (6.8527 Å) are
antiparallel, and nearest-neighbor magnetic moments along
b (7.0164 Å) are parallel. By symmetry, the nickel moment
for a given unit cell may point along any direction and refines
to be approximately perpendicular to the NiO4 plane, i.e., the
moment direction is consistent with the NiN2O4 octahedra
having an easy-axis anisotropy. Quantitatively, the moment
orientation reported in spherical coordinates is θ = −41(10)◦
and ϕ = 67(12)◦, where x = sin θ cos ϕ, y = sin θ sin ϕ, and
z = cos θ , defined with x parallel to a, y perpendicular to a and
in the ab plane, and z = x×y. The surface normal to NiO4 has
θ = −43.5◦ and ϕ = 81.9◦, and the line parallel to the Ni-N
bond has θ = −46.1◦ and ϕ = 77.1◦. This magnetic structure
is available as an mCIF in the Supplemental Material [28].

The temperature dependence of the ordered moment
is shown in Fig. 8. These data are fit to the equation

FIG. 7. Visualization of magnetic structure from neutron diffrac-
tion of Ni(NCS)2(pyzdo)2. This image shows a section of one layer
of nickel ions bridged by pyzdo ligands overlayed with magnetic
moment vectors.

FIG. 8. Ordered magnetic moment vs temperature from neutron
diffraction for Ni(NCS)2(pyzdo)2. Uncertainties are from counting
statistics.

m(T ) = m(0)[1 − ( T
TN

)]
β

with the β exponent fixed to the 2D

Ising value of 1
8 [31], m(0) = 1.8(1) µB, and TN = 17.5 K,

which is where the magnetic diffraction intensities became
zero. The discrepancy between this transition temperature and
that of the other probes may be due to thermal gradients
between the thermometer and the sample. Thus, while there
is unquantifiable experimental uncertainty in this neutron-
diffraction-determined transition temperature, it is still useful
to show approximate agreement to the more finely sampled-
in-temperature measurements (e.g., the heat capacity).

F. Plane-wave DFT

Plane-wave DFT was used to calculate the relative energies
of different magnetic structures while using the experimen-
tally determined nuclear crystal structure. These DFT energies
can then be used to calculate the Heisenberg model superex-
changes. For insulators like Ni(NCS)2(pyzdo)2, plane-wave
DFT has been shown to capture the relative magnitude of
superexchanges and, with appropriate parameterization, can
provide quantitative descriptions of the magnetism. Looking
forward to modeling the magnetic correlations with neu-
tron spectroscopy, having a motivated starting point in the
model optimization for the superexchanges is invaluable in
achieving a good solution. Upon initial inspection of the
(magnetic) crystal structure, Ni(NCS)2(pyzdo)2 seems to be
a realization of an AFM square lattice, but these calculations
provide the first illustration of the highly spatially anisotropic
superexchanges present and the dominance of the in-plane
superexchanges.

While the primitive unit cell of Ni(NCS)2(pyzdo)2 has
one nickel ion, doubling along each crystallographic direc-
tion gives a supercell with eight nickel ions, Fig. 9(a). This
larger unit cell is useful for calculating magnetic interactions.
The five nearest nickel-nickel distances were considered as
potential superexchange pathways, Fig. 9(a). These superex-
change pathways were used to write down a Heisenberg
superexchange Hamiltonian (H = ∑

〈i, j〉 Ji jSi · S j) for nearest
neighbors. Eight different magnetic structures were consid-
ered, and the energies of the different configurations were
fit to the nearest-neighbor superexchange Hamiltonian model,
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FIG. 9. Superexchange pathways in Ni(NCS)2(pyzdo)2. (a) The 2×2×2 unit cell containing 8 nickel atoms as white circles with numbered
labels for the density functional theory (DFT) magnetic structure calculations. Views along (b) a axis, (c) b axis, and (d) c axis are shown with
only nickel atoms shown as white circles but with all atom-atom bonds shown. The thick blue solid line pyzdo connections are along the J5

superexchange, the medium thickness green solid line pyzdo connections are along the J3 superexchange, and the NCS bonds are thin gray
solid lines. For (b)–(d), individual unit cells within the 2×2×2 unit cell are shown.

Table III. The EVASP parameters are taken directly from the
VASP optimizer, with energies relative to the ↑↑↓↓↑↑↓↓ con-
figuration. Using the Heisenberg superexchange Hamiltonian,
a configuration energy may be generated as a function of the
considered superexchanges (J1, J2, J3, J4, and J5), which nu-
merically evaluates to Efit. Then a least-squares optimization
of the superexchanges is performed by comparing EVASP and
Efit for all configurations calculated. These superexchange en-
ergies associated with the plane-wave DFT Heisenberg model
are shown in Table IV. The two largest superexchange val-
ues (J3 and J5) are along the bridging pyzdo molecules, as
illustrated in Figs. 9(b)–9(d). The J3 superexchange is more
than five times greater than the J5 superexchange, and the
strength of the interaction anticorrelates to the nickel-to-nickel
distance of 8.08 vs 8.38 Å. While the total distance for the J3

vs J5 pathway changes substantially by 0.3 Å, the changes in
interatomic distances for the bridge are 100 times less (rela-
tively almost no change). Therefore, the constituent molecules
are well approximated as rigid bodies, and the bridge distance
change is accommodated by the Ni-O-N angle that increases
from 115.25° to 120.91°. Relating these calculations back to
the spatially anisotropic square lattice of Eq. (1), J3 = Jy and
J5 = Jx. While these calculations do not consider the on-site
direction of the magnetic moments, the sign changes from
site to site for the ground-state configuration are consistent
with the experimentally determined magnetic structure from
the neutron diffraction experiments.

TABLE III. DFT energies and nearest-neighbor model energies
for Ni(NCS)2(pyzdo)2. The list of up and down arrows defines the
relative magnetic configurations, with the ordered mapping as in
Fig. 9(a).

Configuration Efit (meV) EVASP (meV) EVASP − Efit (meV)

↑↑↓↓↑↑↓↓ – 0 –
↑↑↑↑↑↑↑↑ 78.388 78.568 −0.180
↑↓↑↓↑↓↑↓ 66.319 66.147 0.172
↑↑↑↑↓↓↓↓ 78.028 78.199 −0.172
↑↓↓↑↑↓↓↑ 11.934 11.755 0.179
↑↓↓↑↓↑↑↓ 11.708 11.537 0.171
↑↑↓↓↓↓↑↑ 0.606 0.785 −0.179
↑↓↑↓↓↑↓↑ 67.060 66.880 0.180

G. Neutron spectroscopy

The differential scattering cross-section of inelastic neu-
tron scattering is directly related to time and space pair
correlation functions, such as those due to magnons in a
long-range ordered magnet. Practically, neutron spectroscopy
allows for extraction of Hamiltonian parameters. With the
stage set for Ni(NCS)2(pyzdo)2 by the observations of the
magnetic phase transition, knowledge of the magnetic struc-
ture, and DFT estimates of the superexchanges, the neutron
spectroscopy problem is well posed. The correlations in
Ni(NCS)2(pyzdo)2 are compared for temperatures above and
below the onset of long-range magnetic order. Spectra at
temperatures of T = 2 K (below TN ) and T = 22 K (above
TN ) were measured with incident energies (Ei’s) of 1.55,
3.32, 6.59, 12, and 25 meV. The preponderance of magnetic
scattering was found to be contained in the Ei = 12 meV
data, as shown by subtracting the T = 22 K spectrum from
the T = 2 K spectrum, as in Fig. 10. The feature ∼ 2 meV
is an instrumental artifact from multiple scattering. The other
inflections in the T = 22 K data are associated with lattice
vibrations in the sample. The oversubtraction giving rise to
negative intensity in the I (2 K)–I (22 K) data is due to (pre-
sumably short-range) magnetic correlations persisting above
the Néel temperature.

The Hamiltonian used to analyze these data is

H =
∑
〈i, j〉

Ji jSi · S j + D
∑

i

S2
iz, (3)

where the exchange energies (J) are positive for AFM, the
local easy axis (z coordinate) is along the direction determined
from neutron diffraction, and the single-ion anisotropy energy
(D) is negative for an easy axis.

Using LSWT, four models of the observed spin waves
in Ni(NCS)2(pyzdo)2 were refined, Fig. 10. Although pow-
der data, there are clear observables that may be related to
a LSWT model. For example, in a 2D AFM with D/J2d

small, the bandwidth is ≈2|J2d |, and the gap in the excita-
tion spectrum is ≈4

√|J2d ||D|. Visually, the powder spectrum
ranges from ≈4 to ≈6.5 meV, so quickly one may estimate
|J2d | ≈1.25 meV, and single-ion anisotropy must be easy axis
to create the large gap, so |D|≈0.9 meV. The presented mod-
els have three extrinsic parameters: a constant background,
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TABLE IV. Model superexchange values and definitions from plane-wave DFT for Ni(NCS)2(pyzdo)2. (positive J is AFM).

Index Distance (Å) Direction vector Lattice direction Orientation from magnetic structure JVASP (meV)

J1 6.87 1,0,0 a AFM 0.031
J2 7.04 0,1,0 b FM −0.013
J3 8.08 0,0,1 c AFM 4.150
J4 8.29 −1, 0, 1 −a, c FM 0.005
J5 8.38 1, −1, 0 a, −b AFM 0.719

a linear background, and an overall scale factor. In model 1,
there are two intrinsic parameters: the single-ion anisotropy
(D) and a scaling factor of the superexchange values from
DFT in Table IV. Model 1 captures all the qualitative fea-
tures of the data, and the Hamiltonian parameters are shown
in Table V. However, the ratio of J3 to J5 seems off, as it
dictates the distance between the peaks in the magnon density
of states at ≈5 and ≈6 meV, which also looks to underes-
timate the gap and D due to most weight of the fit being
to the ≈6 meV peak. Therefore, a second model (model 2)
was refined with three intrinsic parameters (D, J3, and J5)
and with J1 = J2 = J4 = 0, corresponding to the titular spa-
tially anisotropic square lattice (0 < α < 1) with single-ion
anisotropy. This second model shows a 50% reduction in the
residuals of the fit, with small modifications to the superex-
change parameters. A third model (model 3) with two intrinsic
parameters (D and J) that forces J3 = J5 as in a formally
square lattice (α = 1) was refined to give a poorer fit due to a
lack of the van Hove singularity to give a peak in the magnon
density of states at ≈5 meV. Finally, a fourth model (model 4)
in which the interchain interactions are infinitesimally small
(α = 0, as a spin chain) also has two intrinsic parameters
(D and J), where J = J3, and all other exchanges are zero.
The spin-chain model 4 performs better than the square-lattice
model but not as well as the spatially anisotropic square-lattice
model 2. For LSWT, the single-ion anisotropy acts identically
to a staggered field, and comparing models 2 and 4 shows how

FIG. 10. Neutron spectroscopy of Ni(NCS)2(pyzdo)2. These
polycrystalline data are averaged from momentum transfers of 1 to
3 Å−1. Models are as described in the text. The model 1 dashed red
line is barely visible >5.7 meV, as it is nearly identical to models 2
and 4 in that region.

this spatially anisotropic square-lattice may be approximated
by a spin chain for the dominant exchange in a static mean
field of the weaker exchange: |D(model 4)|≈|D(model 3)| +
|J5(model 3)| and J3(model 4)≈J3(model 3). The LSWT pa-
rameters of these models are shown in Table V.

To better illustrate the LSWT models, a plot without pow-
der averaging is shown in Fig. 11. This plot uses the 2×2×2
unit cell of Fig. 9(a). All models are gapped due to the
single-ion anisotropy breaking the rotational symmetry of
the ground state. For the isotropic square lattice of model 3
with only one superexchange, there is intensity piling up at
≈6 meV when powder averaging due to many states being
present at the top of the band. For the spatially anisotropic
square lattices of models 1 and 2, there is a second component
causing the intensity to also pile up at ≈5 meV. The addi-
tional exchanges of model 1 vs model 2 cause the additional
inflections apparent in Fig. 10 due to further mode modulation
of the model magnons. The spin chain of model 4 only has
a dispersion along the chain axis, and the minimum energy
is seen to be an average of the dispersive mode of model 2
for the interchain exchanges within the magnetic plane. Then
these neutron spectroscopy models show Ni(NCS)2(pyzdo)2
to be well modeled by LSWT with model 2 to give J3 = Jy =
2.014 meV, J5 = Jx = 0.235 meV, and D = −0.811 meV,
such that α = 0.12. This neutron-spectroscopy-determined
spatial anisotropy of exchange is like α = 0.17 for the plane-
wave DFT calculation.

H. Beyond LSWT

The neutron spectroscopy data were well reproduced by
a LSWT model, but there is one pitfall with that analysis
we consider. Moreover, there is the opportunity to compare
the observed inelastic neutron scattering with a DMRG the-
ory. Aside from the magnons, there are other observables
available from a LSWT framework. Using the LSWT cal-
culated ordered moment allows a cross-check of the model

TABLE V. Neutron-scattering-derived spin-wave parameters for
Ni(NCS)2(pyzdo)2. These values were used to generate the curves in
Fig. 10 (negative D is easy-axis, and positive J is AFM).

Model 1 Model 2 Model 3 Model 4

J1 (meV) 0.015 0 0 0
J2 (meV) −0.006 0 0 0
J3 (meV) 1.964 2.014 1.125 1.992
J4 (meV) 0.002 0 0 0
J5 (meV) 0.340 0.235 1.125 0
D (meV) −0.737 −0.811 −0.811 −1.068
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FIG. 11. Comparison of linear spin-wave theory (LSWT) models
for Ni(NCS)2(pyzdo)2. The momentum dependence of (a) energy
transfer and (b) intensity are shown for the models described in the
text.

with the measured magnetic neutron diffraction ordered mo-
ment. Thus, LSWT here refers to the Taylor expansion of the
operator containing square roots in the Holstein-Primakoff
(HP) transformation, keeping only the leading terms in the
1/S Taylor expansion that are bilinear in the HP boson ladder
operators. As such, LSWT is only exact for certain cases, such
as simple FMs at zero temperature and the limit of S → ∞.
Here, we consider two approximations beyond LSWT: (1)
higher order in 1/S than LSWT and (2) DMRG theory of a
spin chain in a static mean field that accounts for interchain
interactions [32].

The magnon dispersion of a spatially anisotropic square
lattice is

h̄ω = 2S(Jx + Jy + |D|)
√

1 − [Jx cos(qx ) + Jy cos(qy)]2

(Jx + Jy + |D|)2 .

(4)

Recalling that the HP transformation takes Sz = S − a†a
(the a operator annihilates an HP boson) [33], the first correc-
tion to the ordered moment (order 1/S0) may be written as

S = −1

2
+ 1

N

∑
q∈BZ

(
nq + 1

2

)
1√

1 − [Jx cos(qx )+Jy cos(qy )]2

(Jx+Jy+|D|)2

,

(5)

where the summation of momentum (q) is over the Brillouin
zone (BZ), N is the number of momenta used, and nq can be
taken as a Bose population. Here, we consider the limit of
temperature much less than the Hamiltonian parameter ener-
gies that are satisfied experimentally in the T = 2 K neutron
spectroscopy data. The summation of Eq. (5) was found to
converge when q � 3×10−3 r.l.u. The limiting case of D �
Jx or Jy reproduces the known result that S = 0.197 or for
S = 1 that 〈Sz〉 = 0.803 [34]. Conversely, as the anisotropy
field (or a magnetic field) becomes much larger than Jx or Jy,
S → 0. Using the neutron-spectroscopy-derived parameters

TABLE VI. Hamiltonian parameters from fitting
Ni(NCS)2(pyzdo)2 neutron spectra beyond LSWT.

DMRG RSWT model 4 DMRG RSWT model 2

α 0 0 0.1 0.12
Jx (meV) 0 0 0.18 0.235
Jy (meV) 1.742 1.992 1.750 2.014
D (meV) −3.011 −2.136 −2.415 −1.622
D/Jy −1.729 −1.072 −1.380 −0.805
〈Sz〉 0.947 0.929 0.933 0.924

of model 2, S = 0.076 and 〈Sz〉 = 0.924 or mz = 1.848 μB,
which quantitatively reproduces the neutron diffraction value
of mz = 1.8 μB. Also, while an AFM spin chain without
anisotropy does not support magnetic order even at zero tem-
perature, the introduction of finite anisotropy quenches the
fluctuations such that the neutron spectroscopy model 4 has
S = 0.071.

Formally, there are an infinite number of terms to consider
in the operator square root expansion, and the bookkeeping of
these terms is nontrivial. The next order after LSWT contains
four HP boson operator terms that include magnon-magnon
interactions. For the Hartree-Fock-like decoupling of the next
order diagrams of the magnon-magnon interactions, the ex-
pectation value of the number of HP bosons (i.e., S) is an
important quantity. We simply note that S

2S is ≈4% in the low-
temperature limit for this material, so the real parameters of
a renormalized spin-wave theory (RSWT) are to be similarly
close to the reported LSWT parameters. Historically, there are
many renormalized parameter spin-wave theories, of which
Oguchi’s work is an important early example [35].

Even in the absence of magnon-magnon interactions,
LSWT single-ion anisotropy must be renormalized. This point
may be illustrated by considering a system without exchange
where the exact HP transformed Hamiltonian is

H = D
∑

i

(S − a†
i ai )

2 = D
∑

i

S2 − 2Sa†
i ai + a†

i aia
†
i ai.

(6)

The LSWT keeps only bilinear operators (2Sa†
i ai), snf

the level spacing is D2S and independent of the number of
magnons. The exact solution has levels that are dependent on
the number of magnons, and the spacing from the ground
state to the first excited state is correctly D(2S−1). In the
low-temperature limit, a RSWT can be considered where the
LSWT single-ion anisotropy is scaled by (1− 1

2S ), Table VI.
This rescaling of LSWT parameters is not specific to this
system and should be included for any four HP term opera-
tors. A more detailed discussion of this anisotropy rescaling
for SU(2) models in the context of classical magnetization
theories can be found in Ref. [36].

The spin correlations of a spin chain in a static mean field
may also be calculated with DMRG, and additional details
are in the Appendix. The weaker Jx term is accounted as
a staggered field, with α = 0.1 from the LSWT best fit of
the neutron spectroscopy and α = 0 as for an isolated spin
chain. Reproducing a single mode with no dispersion between
chains as in the LSWT model 2, the DMRG Hamiltonian
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parameters are shown in Table VI. While similar, the
DMRG has lesser values for exchange and greater values for
anisotropy than LSWT, with differences of 10% and more.
The DMRG ordered moment of 0.933 is within a few percent
of the spin-wave-adjusted [Eq. (5)] ordered moment.

I. Isothermal magnetization

The field dependence of magnetization gives further
information about the Hamiltonian of the system. Here, ex-
perimental magnetization data are compared with calculated
magnetizations for the best-fit results of the two frameworks
for magnetic correlations: DMRG and LSWT. For LSWT,
the calculation of the magnetic structure is done with the
mean-field approximation, and LSWT is the next order cor-
rection in the 1/S expansion of the Hamiltonian. A mean-field
model was generated using the anisotropy-renormalized best-
fit parameters of model 2 in Table VI from the neutron
spectroscopy along with the g factor from the magnetic sus-
ceptibility. The observation of finite single-ion anisotropy
implies there is also g-factor anisotropy parallel and per-
pendicular to the unique axis as D = λ

2 (g|| − g⊥), where the
free-ion spin-orbit parameter for Ni(II) is λ = 906.4 K =
78.1 meV [37]. In the coordination polymer, λ will be de-
creased compared with the free-ion value, so g|| − g⊥ = 0.02
is an upper limit, and these negligible effects will not be
included in magnetization models here.

In the context of magnetization measurements, casting the
interactions as field strengths provides some insight [38]. It
is typical to consider an exchange field HE and an anisotropy
field HA, and in definitions and comparisons, the explicit form
of the Hamiltonian is important, as different conventions use
different signs and different prefactors. Here, we use HE =
4J2d S
gμB

and HA = DS
gμB

to give the numerical values of HE =
37.2 T and HAμ0 = −13.4 T . Applying a field along the easy
axis B‖D, there will be a flop transition at HE and saturation at
2HE − HAμ0 = 61.0 T. Along the hard axis B⊥D, saturation
occurs at 2HE + HAμ0 = 87.8 T. Lower symmetry directions
of the applied field require a model.

The mean-field model for Ni(NCS)2(pyzdo)2 uses the
same Hamiltonian as Eq. (3) with the addition of Zeeman en-
ergy (−gμB

∑
i Si · B). Expectation values of magnetization

along the field direction were found by generating a two-spin
(S1 and S2) sublattice system and substituting expectation
values (〈S1〉 and 〈S2〉) for the effect of the neighboring lattice
due to superexchange using Hamiltonians H1 and H2 given by:

H1 = DS2
1,z − gμBS1 · B + 4J2d〈S2〉 · S1, (7)

H2 = DS2
2,z − gμBS2 · B + 4J2d〈S1〉 · S2. (8)

These four equations (S1,x, S1,z, S2,x, and S2,z ) are self-
consistently solved numerically using S = 1 quantum spins
and statistical mechanics. Ten field-direction orientations in
the x-z plane between B‖D and B⊥D uniformly spaced in
angle (B̂ = [sin η, cos η]) were calculated, Fig. 12. The spin-
flop transition for B‖D is seen to round out and go to zero as
the orientation approaches B⊥D. For the limit of B⊥D, there
is no remnant of the spin flop, and the magnetizing process
is simply a continuous rotation toward the field direction with
increasing field until saturation.

FIG. 12. Mean-field model of magnetization vs field for
T = 0.5 K using neutron spectroscopy and magnetic susceptibility
derived parameters for Ni(NCS)2(pyzdo)2. Ten different orientations
of the applied field with respect to the anisotropy axis are shown.
(inset) Directions of magnetic fields for magnetization calculations
are shown. The anisotropy axis is along the z direction, and the dash
spacings of the unit vectors correspond to the dash spacings of the
lines for the expectation value of the magnetization along the field
axis, 〈SNi ‖ B〉, shown in the main plot. The solid line is nearly B||D,
while the dashed line with the largest spacing is nearly B⊥D.

The polycrystalline Ni(NCS)2(pyzdo)2 was measured in
a pulsed field up to 90 T, with the measurement propor-
tional to dM/dH and numerical integration performed to
extract M(H ), Fig. 13. These data are compared with DMRG
and a mean-field model with RSWT parameters of model
2, and semiquantitative agreement is found in both cases.
Models and data show the characteristic S shape for a

FIG. 13. Isothermal pulsed-field magnetization of
Ni(NCS)2(pyzdo)2 at T = 0.5 K and models. Models are as
described in the text. The (a) derivative of magnetization with
respect to field and (b) the magnetization normalized to the
saturation magnetization are shown.
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FIG. 14. Dimer models of Ni(NCS)2(pyzdo)2. (a) Along the J5

a, −b direction. (b) Along the J3 c direction. (c) and (d) Views of the
spin density distribution for the broken symmetry state of the dimer
models. Isosurface value ±0.001.

powder-averaged spin, with features lining up in field. Powder
averaging the model is done by weighting each configuration
to be ∝ sin η. Scaling of magnetization took the largest ex-
perimental value to be saturation, but the shape agreement
illustrated by dM/dH shows better agreement at lower field
with a different scaling.

J. Dimer-cluster DFT calculations

The exchange couplings along the bridging ligands
were also investigated with a local basis-set DFT cal-
culation. This local basis-set allows for a natural visu-
alization and understanding of the magnetic orbitals in
Ni(NCS)2(pyzdo)2 and provides an independent calculation
(to compare with the experimental observations and the
plane-wave DFT) of the spatial anisotropy of the superex-
changes in the plane. This cluster approach approximates
Ni(NCS)2(pyzdo)2 by the molecular building blocks for

the superexchange constituents. Two nickel dimer clusters
[(pyzdo)3Ni(NCS)2(μ-pyzdo)Ni(NCS)2(pyzdo)3] were con-
sidered to investigate J3 (Jy) interactions along the c direction
and J5 (Jx) interactions along the a, −b direction. Atomic
positions were taken from the experimentally determined
structure. These bond angle changes are accompanied by
torsion angle differences of 47.55◦(a, −b) vs 8.04◦ (c),
which effectively decouples the pyzdo π system along a, −b,
Figs. 14(a) and 14(b). The spin densities are larger for c-
direction dimers (J3) than a, −b dimers (J5), Figs. 14(c)
and 14(d). Spin densities on the oxygen ions that bridge be-
tween nickel and pyzdo are 0.025 vs 0.044, for a, −b and c
directions, respectively. The superexchange energies for the
dimers are listed in Table VII and are consistent with the
plane-wave DFT and the neutron spectroscopy findings that
the c-direction interactions are significantly stronger than the
a, −b direction. This calculation has α = 0.29.

III. ADDITIONAL CONSIDERATIONS

In the preceding section, Ni(NCS)2(pyzdo)2 was shown to
be well described as a spatially anisotropic S = 1 AFM with
easy-axis single-ion anisotropy, spanning a variety of experi-
mental and theoretical techniques. In this section, we report
energies in meV (typical for neutron scattering) and report
energies scaled by the Boltzmann constant to Kelvin (more
common in some chemistry literature). Thus, the neutron
spectroscopy parameters of the best fit are Jx = 0.235 meV
(2.727 K), Jy = 2.014 meV (23.372 K), and an easy-axis
single-ion anisotropy D = −1.622 meV (−18.823 K) after
renormalization. The magnetic susceptibility data fit to the
Lines model yielded a value for J2d = 1.15 meV (13.35 K),
which is strikingly like the J2d value of 1.125 meV (13.06 K)
from the neutron spectroscopy. The AFM ordering transition
in zero magnetic field was similar in magnetic susceptibility
(18 K), heat capacity (18.5 K), muon-spin relaxation (18.6 K),
and neutron diffraction (17.5 K). The two different flavors of
DFT calculations, cluster and plane-wave, were able to pre-
dict the spatial anisotropy of the magnetic interactions. Both
cluster and plane-wave DFT, as parameterized here, predict
the correct order of magnitude for the magnetic interactions.
While the DFT parameters could in principle be further re-
fined against the neutron spectroscopy values for the magnetic
interactions, this is beyond the scope of this paper, the main
point of which is to demonstrate the relative magnitudes of
the exchanges that show a high degree of spatial anisotropy.
The neutron spectroscopy experimentally shows the require-
ment of spatial anisotropy to reproduce the observed spin-spin
correlations. While five interactions were used in the plane-
wave DFT model, only the dominant two were included in
the neutron spectroscopy fits, as the polycrystalline data con-
tain insufficient features to constrain a more detailed model.

TABLE VII. Model superexchange values and definitions from DFT for Ni(NCS)2(pyzdo)2.

Index Distance (Å) Direction vector Lattice direction Orientation from magnetic structure JORCA (meV)

J3 8.08 0,0,1 C AFM 3.66
J5 8.38 1,−1,0 a, −b AFM 1.07
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FIG. 15. Comparison of different models for the
Ni(NCS)2(pyzdo)2 thermal phase transition, details described
in the text. (inset) Temperature dependence of the linear spin-wave
theory (LSWT) correction to the ordered moment.

If sufficiently large single crystals of Ni(NCS)2(pyzdo)2 are
made, the additional neutron spectroscopy of a single crys-
tal (or oriented array) will allow for a more detailed model
refinement. The isothermal magnetization deep within the
ordered state was modeled with a high degree of accuracy
using neutron-spectroscopy-derived parameters, whether with
RSWT connected to mean-field theory or with DMRG, al-
though there are subtle disagreements between the models
and the data. The origin of the difference between DMRG
and RSWT parameters is not totally clear and merits further
investigation. For one-dimensional (1D) problems, DMRG
has been shown to excellently reproduce experimental obser-
vations, and LSWT is expected to perform well for magnetic
systems deep in the ordered state with a small number of
magnons. For this Ni(NCS)2(pyzdo)2 system that is quasi-1D,
both RSWT (plus mean-field theory) and DMRG provide
valuable information about the ground state, and it is not
clear which is entirely better for the magnetic-field-dependent
low-temperature data, but the neutron spectroscopy data are
better reproduced by the 2D model (not DMRG).

Here, we further consider the thermal phase transition in
zero magnetic field. While mean-field theory of magnetiza-
tion performs well for highly three-dimensional magnetically
ordered systems in the low-temperature limit, it fails at
finite temperatures and lower dimensions. Using the neutron-
spectroscopy-derived parameters with a renormalized D,
mean-field theory yields a phase transition in the sublattice
magnetization at TN = 40 K, Fig. 15, overestimating the TN =
18.5 K from heat capacity data by a factor of 2.2. Note that,
in mean-field theory, the sublattice magnetization saturates to
the full spin value. In the low-temperature limit, quantum and
thermal fluctuations can be included with LSWT by using the
Bose factor for the magnon number, reproducing well the ob-
served ordered moment at low temperature and zero magnetic
field, but a quantitative prediction of the ordered temperature
cannot be made, only that 1D models fluctuate more than
2D (Fig. 15 inset) and the LSWT Taylor expansion of the

TABLE VIII. Fits of Fig. 15 data to 〈S1,Z (T )〉 = [1 − ( T
TN

)]
β
.

TN β

Classical (α = 0) 15.0 0.13
Classical (α = 0.12) 18.0 0.16
Classical (α = 1) 21.6 0.19
Mean-field 38.5 0.18

operator square roots is violated before the system achieves
the experimentally determined region of criticality. Due to the
abundant experimental characterization of Ni(NCS)2(pyzdo)2
here, it is edifying to consider a classical spin-dynamics ap-
proach [39–41] of the thermal phase transition. Using the
same parameters as for the mean-field temperature scan, three
simulations were performed with α = 0 (spin chain), α =
0.12 (spatially anisotropic square lattice), and α = 1 (spatially
isotropic square lattice), and details are in the Appendix. The
temperature dependences of the sublattice magnetizations are
shown in Fig. 15. These classical simulations can account
for the spatial anisotropy of the interactions, and the quan-
titative agreement of the α = 0.12 result (Table VIII) to the
experimental results suggests this approximation to extract
TC will be of good quality for similar systems. The classical
simulations all saturate to the full S = 1 magnetization at low
temperature, not capturing the quantum fluctuations. Insofar
as the neutron-spectroscopy-derived parameters quantitatively
reproduce the observed magnetic ordering temperature in
the classical simulation, these data also illustrate the relative
smallness of any interplane interactions and support the 2D
magnetism model of Ni(NCS)2(pyzdo)2.

It is informative to consider the phase diagram in mag-
netic field and temperature of Ni(NCS)2(pyzdo)2 as a spatial
anisotropy square-lattice AFM with single-ion anisotropy. In
Fig. 16, the mean-field results for B⊥D and B‖D are shown,
with a temperature axis that was scaled linearly to overlay the
experimental and mean-field TN . For B⊥D, there is an arc that
connects the zero-temperature saturation critical field to the
zero-field critical temperature. For B‖D, there are two lines:
the saturation field and the flop field. Plotting the heat capacity
data points from Fig. 3 for the polycrystalline sample, the
trend of the phase line is reproduced, but there is a quantitative
disagreement with the scaled mean-field critical line. There is
scatter between the DMRG and mean-field models as com-
pared with the experimental low-temperature (polycrystalline)
saturating field. For the isothermal magnetization, transitions
were estimated from visual inflections in the data. First, there
is the steep rise seen ∼24 T, then the field at which the
gradient begins to decrease ∼ 41 T, and finally the kink at
80 T. Any further analysis of data in a magnetic field really
needs single-crystalline samples.

IV. SUMMARY AND CONCLUSIONS

In summary, we have thoroughly characterized the mag-
netic Hamiltonian of the Ni(NCS)2(pyzdo)2 coordination
polymer, which is found by x-ray diffraction to consist of
Ni-pyzdo layers held apart by N-O · · · H hydrogen bonds.
The magnetometry, heat capacity, and muon-spin relaxation
data clearly show that the material orders AFM < 18.5 K.
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FIG. 16. Ni(NCS)2(pyzdo)2 phase diagram.

Analysis of elastic and inelastic neutron scattering results
provide estimates for the in-plane exchange and anisotropy
energies and confirms that the material is a highly anisotropic
square-lattice AFM with easy-axis single-ion anisotropy, in
keeping with the DFT predictions. We also discuss the re-
sults of DMRG theory considering the experimental findings.
The detection of a collinearly ordered magnet ground state is
in line with the phase diagram of anisotropy and interchain
interactions for a quasi-1D system [19]. From a materials
discovery standpoint, the pyrazine dioxide ligand (pyzdo)
shows a markedly greater superexchange than the pyrazine
ligand [5], lighting a pathway for further engineered mag-
netic interactions in these coordination polymers. Mean-field
theory using parameters from neutron spectroscopy model-
ing with RSWT semiquantitatively reproduces the measured
magnetization, as do DMRG parameters derived from neu-
tron spectroscopy. Looking forward to possible extensions
of this work, synthesis of large single crystals or a ligand
modification to reduce the saturation field will provide ad-
ditional information on the present system. In addition, the
chosen combination of magnetic and structural probes has
been shown here to provide a complete description of the
magnetism in this class of highly tunable molecular system
at the level of a low-energy Hamiltonian. This same approach
will prove useful in the characterization of similar magnetic
systems in terms of low-dimensional magnetic models.
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APPENDIX: EXPERIMENTAL
AND NUMERICAL DETAILS

1. Synthesis

In a typical synthesis, 0.2709 g of Ni(NO3)2.6H2O (0.93
mmol) and 0.1489 g (1.96 mmol) of NH4NCS were dissolved
separately in 10 mL of H2O and then slowly mixed. To this
solution was added 0.2089 g (1.86 mmol) of pyrazine-n, n′-
dioxide to give a green colored solution. The solution was
covered with parafilm and perforated with a few holes to allow
slow solvent evaporation. Upon standing at room temperature
for ∼ 1 week, brown colored crystals formed in the flask. Af-
ter the second week, more crystals emerged from solution, and
the combined mass was collected by suction filtration, washed
with 2×5 mL aliquots of fresh H2O and dried in vacuo. The
yield, though not optimized, was 76% (0.2820 g). A scaled-
up synthesis was carried out to produce the neutron sample;
3.0907 g of brown crystals were obtained (86% yield).

2. X-ray diffraction

A crystal of Ni(NCS)2(pyzdo)2 was removed from
the flask, a suitable crystal was selected, attached to a
glass fiber, and data were collected at 90(2) K using a
Bruker/Siemens SMART APEX instrument (Mo Kα radi-
ation, λ = 0.71073 Å) equipped with a Cryocool NeverIce
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TABLE IX. Crystal data and structure refinement for Ni(NCS)2(pyzdo)2.

Empirical formula C10 H8 N6 Ni O4 S2

Formula weight 399.05
Temperature 90(2) K
Wavelength 0.71073 Å
Crystal system Triclinic
Space group P-1
Unit cell dimensions a = 6.8727(4) Å a = 82.7230(13)◦.

b = 7.0431(4) Å b = 66.8030(12)◦.
c = 8.0772(4) Å g = 74.0820(13)◦.

Volume 345.51(3) Å3

Z 1
Density (calculated) 1.918 Mg/m3

Absorption coefficient 1.737 mm−1

F (000) 202
Crystal size 0.25×0.20×0.04 mm3

Crystal color and habit Orange plate
Diffractometer Bruker/Siemens SMART APEX
θ range for data collection 2.74–25.25◦

Index ranges −7 � h � 8, −8 � k � 8, 0 � l � 9
Reflections collected 9020
Independent reflections 1251 [Rint = 0.0000]
Completeness to θ = 25.25◦ 100.0%
Absorption correction Semiempirical from equivalents
Max and min transmission 0.9338 and 0.6706
Solution method Bruker, 2003; XS, SHELXTL v. 6.14
Refinement method Full-matrix least-squares on F 2

Data/restraints/parameters 1251/0/107
Goodness-of-fit on F 2 1.088
Final R indices [I > 2σ (I )] R1 = 0.0227, wR2 = 0.0621
R indices (all data) R1 = 0.0242, wR2 = 0.0629
Largest diff. peak and hole 0.367 and −0.271 e Å−3

low-temperature device. Data were measured using ω scans
of 0.3° per frame for 10 s, and a partial sphere of data
was collected. A total of 2100 frames were collected with
a final resolution of 0.83 Å. Cell parameters were retrieved
using SMART [43] software. The data were rotationally
twinned and were deconvoluted using CELL_NOW [44] giving
a two-component twin relationship: 179.8° rotation about the
reciprocal axis 1.000, 0.000, 0.002, with a refined twinning
ratio of 0.277(5). The matrix used to relate the second orien-
tation to the first domain is⎡

⎣−0.765 −0.231 −0.236
−0.824 −0.184 0.816
−0.953 0.950 −0.051

⎤
⎦.

Each cell component was refined using SAINTPLUS [45]
on all observed reflections. Data reduction and correction
for Lp and decay were performed using SAINTPLUS software.
Absorption corrections were applied using TWINABS [46]. The
structure was solved by direct methods and refined by least
squares method on F2 using the SHELXTL program package
[47]. The structure was solved in the space group P -1 (#2)
by analysis of systematic absences. All nonhydrogen atoms
were refined anisotropically. No decomposition was observed
during data collection. Details of the data collection and re-
finement are given in Table IX. Atomic coordinates, select
bond lengths and angles, and anisotropic displace parameters

are given in Tables X–XII, respectively. Further details are
provided in the Supplemental Material [28].

3. Magnetic susceptibility

Magnetic susceptibility was performed with a vibrating
sample magnetometer.

TABLE X. Atomic coordinates (×104) and equivalent isotropic
displacement parameters (Å2×103) for Ni(NCS)2(pyzdo)2. U (eq) is
defined as one third of the trace of the orthogonalized U i j tensor.

x y z U(eq)

C(3) 6830(3) 4093(3) 336(3) 13(1)
C(4) 3027(3) 4978(3) 1295(2) 12(1)
C(7) 8415(3) 445(3) 4297(2) 13(1)
C(8) 10739(3) 1471(3) 5302(2) 13(1)
C(10) 6580(3) 7967(3) 1831(3) 12(1)
N(2) 4851(3) 4095(2) 1626(2) 11(1)
N(6) 9156(3) 1917(2) 4600(2) 12(1)
N(9) 5718(3) 7133(2) 3144(2) 14(1)
Ni(1) 5000 5000 5000 11(1)
O(1) 4706(2) 3262(2) 3221(2) 13(1)
O(5) 8383(2) 3777(2) 4207(2) 15(1)
S(1) 7835(1) 9106(1) –5(1) 17(1)
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TABLE XI. Bond lengths (Å) and angles (deg) for
Ni(NCS)2(pyzdo)2.

C(3)-N(2) 1.349(2)
C(3)-C(4)#1a 1.374(3)
C(3)-H(3) 0.9500
C(4)-N(2) 1.351(3)
C(4)-C(3)#1a 1.374(3)
C(4)-H(4) 0.9500
C(7)-N(6) 1.359(2)
C(7)-C(8)#2a 1.368(3)
C(7)-H(7) 0.9500
C(8)-N(6) 1.362(3)
C(8)-C(7)#2a 1.368(3)
C(8)-H(8) 0.9500
C(10)-N(9) 1.166(3)
C(10)-S(1) 1.630(2)
N(2)-O(1) 1.3246(19)
N(6)-O(5) 1.321(2)
N(9)-Ni(1) 2.0004(16)
Ni(1)-N(9)#3a 2.0004(16)
Ni(1)-O(1) 2.1006(12)
Ni(1)-O(1)#3a 2.1006(12)
Ni(1)-O(5) 2.1038(13)
Ni(1)-O(5)#3a 2.1038(13)
N(2)-C(3)-C(4)#1a 119.65(18)
N(2)-C(3)-H(3) 120.2
C(4)#1-C(3)-H(3)a 120.2
N(2)-C(4)-C(3)#1a 120.50(18)
N(2)-C(4)-H(4) 119.7
C(3)#1-C(4)-H(4)a 119.7
N(6)-C(7)-C(8)#2a 119.87(18)
N(6)-C(7)-H(7) 120.1
C(8)#2-C(7)-H(7)a 120.1
N(6)-C(8)-C(7)#2a 120.50(17)
N(6)-C(8)-H(8) 119.8
C(7)#2-C(8)-H(8)a 119.8
N(9)-C(10)-S(1) 178.79(19)
O(1)-N(2)-C(3) 119.80(16)
O(1)-N(2)-C(4) 120.36(15)
C(3)-N(2)-C(4) 119.84(16)
O(5)-N(6)-C(7) 121.07(16)
O(5)-N(6)-C(8) 119.30(15)
C(7)-N(6)-C(8) 119.63(16)
C(10)-N(9)-Ni(1) 162.12(15)
N(9)#3-Ni(1)-N(9)a 180.000(1)
N(9)#3-Ni(1)-O(1)a 86.81(6)
N(9)-Ni(1)-O(1) 93.19(6)
N(9)#3-Ni(1)-O(1)#3a 93.19(6)
N(9)-Ni(1)-O(1)#3a 86.81(6)
O(1)-Ni(1)-O(1)#3a 180.00(4)
N(9)#3-Ni(1)-O(5)a 92.71(6)
N(9)-Ni(1)-O(5) 87.29(6)
O(1)-Ni(1)-O(5) 93.08(5)
O(1)#3-Ni(1)-O(5)a 86.92(5)
N(9)#3-Ni(1)-O(5)#3a 87.29(6)
N(9)-Ni(1)-O(5)#3a 92.71(6)
O(1)-Ni(1)-O(5)#3a 86.92(5)
O(1)#3-Ni(1)-O(5)#3a 93.08(5)

TABLE XI. (Continued.)

O(5)-Ni(1)-O(5)#3a 180.0
N(2)-O(1)-Ni(1) 115.25(10)
N(6)-O(5)-Ni(1) 120.93(11)

aSymmetry transformations used to generate equivalent atoms: #1 :
–x + 1, –y + 1, –z; #2 : –x + 2, –y, –z + 1; and #3 : –x + 1, –y +
1, –z + 1.

4. Heat capacity

Heat capacity (Cp) measurements were carried out using a
14 T Quantum Design PPMS, with a 2.1 mg polycrystalline
sample secured to an alumina stage sample platform using
a thin layer of Apiezon-N grease to ensure good thermal
contact. This platform also houses a Cernox thermometer and
an electric heater that is connected to the temperature bath
using gold wires. The sample was cooled in zero magnetic
field under high vacuum to the base temperature of 1.8 K
and the data collected upon heating up to 100 K. More scans
were taken between 1.8 and 25 K at zero field as well as 4,
8, and 12 T. The Cp was measured using a standard thermal
relaxation technique [48]. For this technique, a heat pulse
(≈2% of the thermal bath temperature) was applied to the
stage and Cp evaluated by measuring the time constant of the
thermal decay curve. The heat capacities of the Apiezon-N
grease and sample platform were measured separately and
subtracted from the total to obtain the heat capacity of the
sample.

5. Muon-spin relaxation

Zero-field muon-spin relaxation (μ+SR) measurements
were performed on Ni(NCS)2(pyzdo)2 using the GPS spec-
trometer at the Swiss Muon Source, Paul Scherrer Institut,
Villigen, Switzerland. For the measurement, the sample was
packed in an Ag foil packet and suspended in the muon beam
inside a 4He cryostat. In the measurement, spin-polarized
positive muons are implanted into the sample. The posi-
tive muons stop in the material, usually in sites with high
electron density, and their polarized magnetic moments

TABLE XII. Anisotropic displacement parameters (Å2×103) for
Ni(NCS)2(pyzdo)2. The anisotropic displacement factor exponent
takes the form: –2π 2(h2a∗2U 11 + · · · + 2hka∗b∗U 12 ).

U 11 U 22 U 33 U 23 U 13 U 12

C(3) 13(1) 11(1) 15(1) −3(1) −6(1) −2(1)
C(4) 12(1) 11(1) 13(1) −3(1) −4(1) −2(1)
C(7) 12(1) 15(1) 12(1) −1(1) −5(1) −3(1)
C(8) 12(1) 15(1) 12(1) −2(1) −4(1) −4(1)
C(10) 12(1) 11(1) 17(1) −5(1) −8(1) 0(1)
N(2) 16(1) 9(1) 11(1) −1(1) −6(1) −4(1)
N(6) 11(1) 11(1) 11(1) 0(1) −2(1) −1(1)
N(9) 16(1) 12(1) 13(1) 0(1) −6(1) −3(1)
Ni(1) 12(1) 10(1) 10(1) 1(1) −5(1) −3(1)
O(1) 19(1) 12(1) 8(1) 2(1) −7(1) −5(1)
O(5) 14(1) 9(1) 19(1) 3(1) −7(1) −1(1)
S(1) 17(1) 16(1) 17(1) 3(1) −3(1) −6(1)
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FIG. 17. Intensity maps of Ni(NCS)2(pyzdo)2 experimental neutron spectroscopy data. (a) Ei = 12 meV, T = 2 K − T = 22 K data. (b)
Ei = 6.59 meV, T = 2 K − T = 22 K data. (c) Ei = 3.32 meV, T = 2 K data. (d) Ei = 1.55 meV, T = 2 K data. White regions are where
the scattering condition is not satisfied by the spectrometer.

precess around the direction of the local magnetic field with
frequency ν = γμB/2π , where the muon gyromagnetic ratio
2π×135.5 MHzT−1. Muons are unstable with mean lifetime
2.2 μs and decay into a positron and two neutrinos, the for-
mer being preferentially emitted along the direction of muon
spin. Detectors record the direction of positron emission,
whose time dependence tracks the average spin polarization
of the muon ensemble. The detectors are divided into forward
(F) and backward (B) detector banks, and the direction of
preferential positron emission is represented by the asym-
metry between NF(t) and NB(t), the number of positrons
detected in each detector bank as a function of time. The
asymmetry function, which is proportional to the average
spin polarization of the muon ensemble, is defined as A(t ) =
NF (t )−εNB(t )
NF (t )+εNB(t ) , where ε is an experimentally determined param-
eter dependent on apparatus geometry and detector efficiency
[30,49].

6. Neutron diffraction

Neutron diffraction was performed at the time-of-flight
Wish diffractometer of the ISIS Neutron Source [50]. Rietveld
refinements were performed using the FULLPROF program
[51].

7. Plane-wave DFT

For plane-wave DFT, VASP software [52,53] was used with
the generalized gradient approximation functional of Perdew-
Burke-Ernzerhof as PBE [54]. The projector augmented-wave
method [55,56] was used for valence electrons with the in-
cluded pseudopotentials applied via the PBE.54 files. The
on-site Coulomb interaction was included with the rota-
tionally invariant approach having UNi = 5 eV and JNi =
1 eV. A �-centered mesh was generated with (4×2×4) k-
points, and plane waves were cut above a kinetic energy of
500 eV.

8. Neutron spectroscopy

Inelastic neutron scattering of polycrystalline
Ni(NCS)2(pyzdo)2 was performed on the cold chopper
neutron spectrometer [57,58] using the high-flux mode at the
Spallation Neutron Source of Oak Ridge National Laboratory.

Models were fit to integrations over momentum described in
the main text, as no clear momentum-dependent features were
seen, Fig. 17. No magnetic inelastic scattering was observed
<≈4 meV.

9. LSWT for neutron spectroscopy

The LSWT SpinWaveGenie library was used to generate
neutron scattering intensities from spin models [59]. Powder
averages in momentum were done by taking a set of mo-
mentum from 1 to 3 Å−1 with 0.1 Å−1 steps and for each
momentum sampling all orientations equally by approximat-
ing the surface tiling of a sphere with a golden spiral. The
energy resolution of the spectrometer was used in generating
model spectra.

10. DMRG theory

Calculations were performed for D/Jy = [−0.5,−1.0,

−1.5] using L = 64 sites on a 1D system with open
boundary conditions. The effect of coupling to z⊥ = 2
nearest-neighbor chains is treated within self-consistent
mean-field approximation [32,60] with interchain coupling
α = Jx/Jy = z⊥J5/J3 of model 2 in Table V (here, we have
used the notation as in Ref. [61]). The latter results in
mz = [0.851, 0.909, 0.938] staggered magnetic moment, for
D/Jy = [−0.5, −1.0, −1.5], respectively. Throughout the
DMRG [62–65] procedure, up to M≈2048 states are kept
and ≈15 full sweeps are performed in the finite-sized al-
gorithm, maintaining the truncation error < 10−6. We have
chosen δω/Jy = 0.04 as the frequency resolution [66] with
broadening η = 2ω.

The spin-spin correlation functions from DMRG are domi-
nated by a single mode in the 〈S+S−〉 channel, Fig. 18. The
effect of changing D/Jy and the mean-field interactions is
illustrated by the change in the energy of the mode position
at the BZ center and edge, Fig. 19. The D/Jy dependences
of the mode parameters were fit with a quadratic equation
to interpolate and extract parameters from the experimental
data. The result of this extraction is in Table VI. These DMRG
spectra are well parameterized by fitting to an effective LSWT,
also in Fig. 18, which capture the dominant mode.
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FIG. 18. Spin-spin correlations from density matrix renormalization group (DMRG) for (a)–(c) isolated chains and (g)–(i) chains interact-
ing via a mean-field as described in the text. For (a)–(c), the region > 4J was not calculated. Fits of the DMRG to linear spin-wave theory
(LSWT) are shown to the right of the respective spectra, with the LSWT parameters plotted in Fig. 20.

The dominant transverse mode of DMRG was fit using
LSWT to compare the parameters from each model,

FIG. 19. Comparison of the dominant transverse density matrix
renormalization group (DMRG) mode at (a) the Brillouin zone (BZ)
center, (b) the BZ edge, and (c) their ratio as a function of D/Jy.

Fig. 20. All three DDMRG/Jy,DMRG ratios are in a long-range
magnetically ordered ground state. The effect of numerical
values for single-ion anisotropy and exchange are consistently
different between DMRG and RSWT. The RSWT parameters
may be extracted by scaling these LSWT anisotropy values
by a factor of 2.

11. Pulse-field magnetization

Experimental data from the 60 and 100 T magnets were
stitched together at 45 T. Pulsed-field measurements were
made up to 60 T using a 1.5 mm bore, 1.5 mm long, 1500
turn compensated-coil susceptometer constructed from a 50
gauge high-purity copper wire. When the sample is within the
coil, the signal voltage V is proportional to dM/dt , where t is
time. Numerical integration of V is used to evaluate M. The
sample is mounted within a 1.3-mm-diameter ampoule that
can be moved in and out of the coil [67]. Accurate values of
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FIG. 20. Comparison of density matrix renormalization group
(DMRG) and linear spin-wave theory (LSWT) parameterizations of
a spin-chain mode.

M were obtained by subtracting empty-coil data from those
measured under identical conditions with the sample present.
The susceptometer was placed inside a 3He cryostat providing
a base temperature of 0.5 K. The magnetic field was measured
by integrating V induced in a 10 turn coil calibrated by observ-
ing the de Haas–van Alphen oscillations of the belly orbits of

the copper wires in the susceptometer coil [68]. The dM/dH
were generated by a numerical derivative followed by a 1 T
FWHM Gaussian smoothing.

12. Local basis-set DFT

For evaluation of the exchange couplings along the bridg-
ing pyzdo ligands, the broken-symmetry (BS) approach
of Noodleman [69] as implemented in the ORCA ver. 4.2
suite of programs [70–72] was employed. The formalism of
Yamaguchi et al. [73], which employs calculated expectation
values 〈S2〉 for both high-spin and BS states was used [74].
Calculations related to magnetic interactions have been per-
formed using the PBE0 functional. The Ahlrichs-VTZ basis
function set was used [75]. Spin densities were visualized
using the UCSF Chimera program ver. 1.8.

13. Classical magnetization model

These simulations used the Langevin method of the
Sunny.jl package [41]. The input parameters of nsamples =
1×106, λ = 0.1, thermdur = 10, decorrdur = 0.5, and t =
5×10−3 were used. Periodic boundary conditions and 64 sites
were used, with 8×8 for the 2D models and 1×64 for the spin
chain.
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