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Abstract

Background

Long Covid is a widely recognised consequence of COVID-19 infection, but little is known

about the burden of symptoms that patients present with in primary care, as these are typi-

cally recorded only in free text clinical notes.

Aims

To compare symptoms in patients with and without a history of COVID-19, and investigate

symptoms associated with a Long Covid diagnosis.

Methods

We used primary care electronic health record data until the end of December 2020 from

The Health Improvement Network (THIN), a Cegedim database. We included adults regis-

tered with participating practices in England, Scotland or Wales. We extracted information

about 89 symptoms and ‘Long Covid’ diagnoses from free text using natural language pro-

cessing. We calculated hazard ratios (adjusted for age, sex, baseline medical conditions

and prior symptoms) for each symptom from 12 weeks after the COVID-19 diagnosis.

Results

We compared 11,015 patients with confirmed COVID-19 and 18,098 unexposed controls.

Only 20% of symptom records were coded, with 80% in free text. A wide range of symptoms

were associated with COVID-19 at least 12 weeks post-infection, with strongest associa-

tions for fatigue (adjusted hazard ratio (aHR) 3.46, 95% confidence interval (CI) 2.87, 4.17),

shortness of breath (aHR 2.89, 95% CI 2.48, 3.36), palpitations (aHR 2.59, 95% CI 1.86,

3.60), and phlegm (aHR 2.43, 95% CI 1.65, 3.59). However, a limited subset of symptoms
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were recorded within 7 days prior to a Long Covid diagnosis in more than 20% of cases:

shortness of breath, chest pain, pain, fatigue, cough, and anxiety / depression.

Conclusions

Numerous symptoms are reported to primary care at least 12 weeks after COVID-19 infec-

tion, but only a subset are commonly associated with a GP diagnosis of Long Covid.

Introduction

Long-term symptoms are a well recognised consequence of COVID-19 infection [1–12], and

there is a need to better understand the condition in order to improve diagnosis and care [13,

14]. Previous studies on Long Covid symptoms have used a variety of methods, each with

strengths but also limitations. Studies based on patient reports [5, 7, 15] or symptom tracker

apps [16, 17] provide a detailed picture of symptom experiences, but are subject to selection

bias [18] and often lack a comparator group. Existing longitudinal cohort studies allow symp-

tom prevalence post COVID-19 to be compared with patients who have not had COVID-19,

but these have small numbers of patients [19].

Many patients with ongoing symptoms post COVID-19 present to their general practition-

ers (GPs), and there is currently little information on which symptoms patients attend with

[20], and the basis on which GPs assign a diagnostic label of ‘Long Covid’. There have been

numerous studies on clinical characteristics of Long Covid using electronic health record data

[6, 8–12], but few in the UK general practice setting [14]. Primary care data have already been

shown to be invaluable for understanding population risk, morbidity and mortality due to

COVID-19 [21, 22], and have been used to study coded Long Covid diagnoses [19, 23]. How-

ever, symptoms are typically not recorded in a structured way in primary care records [24, 25].

We aimed to address this gap using natural language processing to extract information

about symptoms recorded in primary care consultations [26], thus overcoming the limitation

of coded data [14, 27]. Our study is based on data to the end of December 2020, i.e. the first

wave of COVID-19 infections in a predominantly unvaccinated population. Our primary

objectives were to (1) describe the long term profile of symptoms as recorded in general prac-

tice for patients with COVID-19, (2) compare symptoms in patients with and without a history

of COVID-19 infection, (3) identify symptoms associated with a GP diagnosis of ‘Long Covid’.

We also conducted an exploratory analysis of clustering of Long Covid symptoms and risk fac-

tors for Long Covid.

Methods

Data source

We used primary care electronic health record data from patients in England, Scotland, or

Wales registered for at least 1 year with general practices contributing to The Health Improve-

ment Network (THIN), a Cegedim Database [28]. We used structured data (including diagno-

ses and symptoms coded using the Read Clinical Terminology), and unstructured data (free

text clinical notes in the primary care record). The study period was 1 December 2019 to 31

December 2020, and free text clinical notes from this time period were analysed. Structured

data up to and including 31 December 2020 were analysed in this study; this included data
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prior to the start of the study period (1 December 2019) such as historic diagnoses for baseline

characterisation of patients.

Study population

We defined four fixed, non-overlapping patient cohorts among adult patients registered with a

general practice contributing to THIN during the study period. Because of the need to use data

from free text to help classify patients, and restrictions on access to the full THIN database,

cohort selection was carried out in a stepwise manner (Fig 1). In the first step, exposed cohorts

(confirmed or suspected COVID-19) were selected based on Read codes for suspected or con-

firmed COVID-19 (list of Read terms in S1 Table). Each patient’s index date was defined as

Fig 1. CONSORT diagram showing selection of patients in each category.

https://doi.org/10.1371/journal.pone.0290583.g001
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the date of their earliest record of COVID-19. Unexposed patients were then selected using a

1:1 matching algorithm to patients with confirmed or suspected COVID-19, in order to assign

index dates to unexposed patients and ensure a similar distribution of key demographics

between the cohorts. The matching variables were practice, age (+/- 3 years) and sex. We also

defined a ‘possibly exposed’ cohort with Read terms for non-specific viral or respiratory illness

(S2 Table). These were patients who had symptoms compatible with COVID-19 but no formal

COVID-19 diagnosis. The index date for this cohort was defined as the earliest record of a

non-specific viral or respiratory illness within the study period.

We extracted free text notes for these initial cohorts and then refined the cohort selection

based on COVID-19 diagnoses or test results extracted from the free text. We amended the

index date if appropriate based on information in the free text; for example if a patient had a

free text diagnosis of COVID-19 prior to their coded entry their index date was brought for-

ward. If patients had a confirmed COVID-19 diagnosis they were included in the confirmed

COVID-19 cohort regardless of other diagnoses recorded, and if patients had a suspected

COVID-19 but not confirmed COVID-19 they were included in the suspected COVID-19

cohort whether or not they had a viral or respiratory illness recorded.

We excluded patients registered for less than 1 year prior to the index date, or with less than

4 weeks ongoing registration after the index date, or if there were no consultations recorded at

all (Fig 1).

Data extraction

For each patient, we extracted demographic details (age, sex, and ethnicity), lifestyle informa-

tion (smoking status) and clinical measurements (body mass index) from their primary care

record. Socioeconomic information was available at practice level (index of multiple depriva-

tion, IMD quintile). We extracted information about symptoms before and after COVID-19

diagnosis, whether the patient was hospitalised within 14 days prior to 28 days after their

index date, and the number of consultations in the year before the index date.

We extracted information from free text using a rule-based named entity recognition and

linking algorithm called the Freetext Matching Algorithm (FMA), which has previously been

validated on primary care free text [24, 27]. FMA maps information about symptoms, hospita-

lisation and diagnoses to Read terms, and includes rule-based methods for detecting negation,

uncertainty and relevance. We used FMA to supplement the structured data for classifying

cases and controls, ascertaining if a patient was hospitalised, and whether they reported spe-

cific symptoms. We manually validated a sample of texts containing extracted items of interest

(see Supplementary Methods in S1 Text). The authors did not have access to information that

could identify individual participants during or after data collection.

Recording of symptoms

We used similar definitions of symptoms to a recent study by Subramanian et al. using the

Clinical Practice Research Datalink (CPRD) Aurum database [14], who studied 115 symptoms

using coded clinical data. Given the smaller patient population in our study, we combined

some symptoms to produce a final list of 89 symptoms, and present the main results for the 30

most commonly recorded symptoms.

As an initial assessment of overall symptom burden, we calculated odds ratios for symptom

recording by patient category in 4-week periods after the index date compared to a reference

period 8–12 weeks before the index date.
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Comparison of symptoms in patients with and without COVID-19

We used Cox proportional hazards models to compare recording of symptoms (as clinical

codes or free text) in exposed patients (separately for those with confirmed COVID-19, sus-

pected COVID-19, or non-specific viral or respiratory illnesses), and unexposed controls. We

analysed data for each symptom separately. The primary analysis was for the time period start-

ing 12 weeks after the index date, i.e. the cut-off beyond which persistent symptoms may con-

tribute to a Long COVID diagnosis according to World Health Organization (WHO) criteria

[29]. Patients were followed up until their first occurrence of the symptom of interest, or cen-

sored on the earliest of end of study period, last collection date, date of death or transfer out of

the practice. Hazard ratios were adjusted for age, sex, age/sex interaction, number of consulta-

tions in the year before the index date, number of days on which any symptom was recorded

1–3 months before the index date, recording of the specific symptom 1–3 months before the

index date, ethnicity, smoking, body mass index and a generated propensity score for acquir-

ing COVID-19 infection which incorporates prior diagnoses according to the SNOMED CT

hierarchy [30] (see Supplementary Methods in S1 Text). We incorporated the propensity score

as an additional variable rather than using weighting methods to avoid issues with extreme

weights [31]. We stratified baseline hazard functions by general practice to account for varia-

tion between practices. Missing values of ethnicity, smoking and body mass index were classed

as a separate category for analysis.

We carried out subgroup analyses by time period, sex, age group and nation, and sensitivity

analyses using different levels of adjustment or limited to coded data only.

Symptoms associated with a GP diagnosis of Long Covid

We sought to investigate the basis on which GPs were suspecting or making a diagnosis of

Long Covid. For patients in the ‘confirmed COVID-19’ category with a GP diagnosis of con-

firmed or suspected Long Covid at least 12 weeks after the index date, we calculated the pro-

portion with each symptom recorded in the prior week.

Clustering and risk factors for Long Covid

For the latent class analysis (LCA) and risk factor analysis we operationalised ‘Long Covid’ as

the presence of at least one symptom included in the WHO case definition of post COVID-19

condition [29] at least 12 weeks after the index date, among patients with confirmed COVID-

19. We did not attempt to assign a ‘Long Covid’ diagnosis as this was not possible using the

available data, instead we aimed to identify a patient population with symptoms that may be

consistent with Long Covid for the purpose of the clustering analysis, similar to the approach

used by Subramanian et al. [14]. We characterised patients by the presence or absence of

symptoms recorded in the 3 months after the first WHO symptom, and excluded patients

without a full 3-month follow up period after this date (to avoid the influence of follow-up

duration on symptom recording). We used an elbow plot to identify the optimum number of

clusters.

We used Cox models to investigate associations of Long Covid with age, sex, number of

consultations, ethnicity, smoking, body mass index, hospitalisation, practice-level deprivation

quintile, and symptoms prior to the index date. We also carried out the risk factor analysis

using GP diagnosis of suspected or confirmed Long Covid as the outcome. We carried out

analyses using the R statistical system (version 4.1) [32], using the survival, poLCA, and glmnet

packages. Our analysis code is included in S1 File.
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Ethics

The THIN database has overarching Health Research Authority ethical approval for observa-

tional research (20/SC/0011, Jan 2020). Our study protocol was approved by the North East–

Tyne & Wear South Research Ethics Committee (20/NE/0209). The need for informed consent

was waived by the ethics committee. Use of identifiable patient data in England and Wales was

permitted by the Covid-19 –Notice under Regulation 3(4) of the Health Service (COPI, Con-

trol of Patient Information) Regulations 2002. We confirmed with the Scottish Patient and

Public Benefit Panel that free text data from primary care could be used for research with

appropriate data sharing agreements in place. The authors had access to only deidentified

patient information, and did not have access to information that could identify individual par-

ticipants during or after data collection.

Results

Study population

We included 11,015 confirmed COVID-19 cases, 15,841 suspected COVID-19 cases, 15,846

possibly exposed patients (with a viral or respiratory illness) and 18,098 unexposed controls.

The initial search criteria selected 30,612 patients with confirmed or suspected COVID-19,

and 3930 patients were reclassified based on information extracted from the free text (Fig 1).

63% of the study participants (38,407 / 60,800) were female, and the mean age was 52 years

(Table 1). Roughly equal number of patients were from each of Scotland (21,133), England

(19,123) and Wales (20,544). Almost 90% of those with ethnicity recorded (89.6%, 25,287 /

28,236) were of White ethnicity (Table 1). Only a small proportion of patients had received a

COVID-19 vaccination prior to the index date. Patients were followed up for a median 136

days (IQR 59, 246).

Recording of symptoms

The majority of symptom mentions in the general practice records (80%) were in the free text,

with only 20% in structured data, although this varied by symptom (S3 Table). Manual valida-

tion of text samples showed precision of 85–97% on the majority of information extraction

tasks, with no significant difference in precision between symptoms from COVID-19 cases

(261 / 294, 88.8%) and controls (246 / 289, 85.1%), p = 0.24 by proportion test (see Supplemen-

tary Results in S1 Text). Inter-rater reliability of the manual annotators was good for symp-

toms (unweighted kappa 0.75, 95% CI 0.66, 0.83) but moderate overall (weighted kappa 0.54,

95% CI 0.48, 0.61).

There was a persistently elevated level of symptom recording for at least 9 months after the

index date for confirmed and suspected COVID-19 cases (greater for confirmed cases) (Fig 2).

Comparison of symptoms in patients with and without COVID-19

A wide range of symptoms were associated with COVID-19 beyond 12 weeks from infection

(Fig 3 and S2 Fig), with the strongest associations for fatigue (adjusted hazard ratio (aHR)

3.46, 95% confidence interval (CI) 2.87, 4.17), shortness of breath (aHR 2.89, 95% CI 2.48,

3.36), palpitations (aHR 2.59, 95% CI 1.86, 3.60), and phlegm (aHR 2.43, 95% CI 1.65, 3.59).

Anosmia, fever and headache were more strongly associated with COVID at earlier time points

(Fig 4), fitting the expected clinical picture. Associations observed with coded data were similar to

those including free text, but the number of events was smaller so estimates were less precise (Fig

5). Associations of the majority of symptoms were stronger for patients with confirmed COVID-

19 than those with suspected COVID-19 or nonspecific viral illnesses (Fig 6). Crude associations
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were stronger than the adjusted estimates in the main analysis (S3 Fig). The majority of associa-

tions were similar across subgroups of age (S4 Fig), sex (S5 Fig) and nation (S6 Fig).

Symptoms associated with a GP diagnosis of Long Covid

No patients had a coded diagnosis of post COVID condition (Long Covid), but there were 818

records of suspected or confirmed Long Covid in the free text among the cohort (553 unique

Table 1. Baseline characteristics of patients by cohort.

Unexposed Confirmed

COVID

Suspected

COVID

Viral or respiratory

illness

Number of patients 18098 11015 15841 15846

Female, n (%) 11408

(63.0%)

6782 (61.6%) 10093 (63.7%) 10124 (63.9%)

Age in years, mean (SD) 53.6 (18.9) 50.5 (18.1) 52.1 (18.9) 51.5 (19.4)

Smoking status

Never 8269 (47.5%) 5545 (52.6%) 6424 (41.8%) 6460 (42.0%)

Past 5911 (33.9%) 3736 (35.4%) 5448 (35.5%) 5496 (35.7%)

Current 3239 (18.6%) 1266 (12.0%) 3479 (22.7%) 3421 (22.2%)

Missing smoking status 679 (3.8%) 468 (4.2%) 490 (3.1%) 469 (3.0%)

Ethnicity

White 7915 (89.9%) 4589 (89.5%) 6601 (88.9%) 6182 (89.9%)

Black 245 (2.8%) 116 (2.3%) 217 (2.9%) 139 (2.0%)

South Asian 350 (4.0%) 251 (4.9%) 374 (5.0%) 381 (5.5%)

Mixed 81 (0.9%) 46 (0.9%) 98 (1.3%) 51 (0.7%)

Other 214 (2.4%) 126 (2.5%) 138 (1.9%) 122 (1.8%)

Missing ethnicity 9293 (51.3%) 5887 (53.4%) 8413 (53.1%) 8971 (56.6%)

BMI category

<18.5 389 (2.5%) 211 (2.2%) 435 (3.1%) 411 (2.9%)

18.5–25 5190 (33.0%) 2584 (27.0%) 4115 (29.2%) 4190 (29.8%)

25–30 5280 (33.6%) 3189 (33.3%) 4324 (30.6%) 4534 (32.2%)

30–40 4117 (26.2%) 2910 (30.4%) 4230 (30.0%) 3990 (28.3%)

40+ 761 (4.8%) 686 (7.2%) 1010 (7.2%) 956 (6.8%)

Missing BMI 2361 (13.0%) 1435 (13.0%) 1727 (10.9%) 1765 (11.1%)

Most deprived quintile, n (%) 5319 (29.4%) 3602 (32.7%) 4111 (26.0%) 3962 (25.0%)

Median (IQR) number of GP consultations in year prior to index date (excluding

index consultation)

5 (2, 10) 6 (2, 12) 9 (4, 16) 8 (4, 15)

Number of days with symptom mentions 1–3 months before index date

0 13207

(73.0%)

7273 (66.0%) 8535 (53.9%) 9191 (58.0%)

1 1288 (7.1%) 826 (7.5%) 1382 (8.7%) 1273 (8.0%)

2 1035 (5.7%) 733 (6.7%) 1275 (8.0%) 1155 (7.3%)

3+ 2568 (14.2%) 2183 (19.8%) 4649 (29.3%) 4227 (26.7%)

Received at least one dose of COVID-19 vaccination before index date 35 (0.2%) 47 (0.4%) 15 (0.1%) 12 (0.1%)

Hospitalised within 28 days of index date 196 (1.1%) 1518 (13.8%) 1887 (11.9%) 902 (5.7%)

UK nation

England 5759 (31.8%) 2060 (18.7%) 6687 (42.2%) 4617 (29.1%)

Scotland 6600 (36.5%) 5163 (46.9%) 4407 (27.8%) 4963 (31.3%)

Wales 5739 (31.7%) 3792 (34.4%) 4747 (30.0%) 6266 (39.5%)

SD, standard deviation; BMI, body mass index; IQR, interquartile range

https://doi.org/10.1371/journal.pone.0290583.t001
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patients). Among patients with confirmed Covid at least 12 weeks prior, 103 individuals

(0.9%) had a free text entry for confirmed or suspected Long Covid. The most common symp-

toms recorded in the week prior to a Long Covid diagnosis were pain (68.3%; 95% CI 62.5%,

73.8%) shortness of breath (66.2%; 95% CI 60.3%, 71.7%) and fatigue (57.9%; 95% CI 51.9%,

63.8%) (Fig 3). Chest pain, cough, and anxiety / depression were also recorded in over 20% of

cases.

On the other hand, gastrointestinal symptoms were rarely recorded in the week prior to a

Long Covid diagnosis, despite being common (the total number of events for nausea / vomit-

ing was 588, almost as high as 606 for fatigue) and strongly associated with COVID-19 (aHR

1.76 for nausea / vomiting, 95% CI 1.45, 2.13) (Fig 3). Wheezing, limb swelling, palpitations /

tachycardia, phlegm, and muscle pain were also infrequently recorded in the week prior to a

Long Covid diagnosis, despite a strong association with COVID-19 (aHR> 1.8) (Fig 3).

Clustering and risk factors for Long Covid

Elbow plots of goodness of fit measures showed that a two class LCA model provided a best fit

to the data (S7 Fig), with the classes fitting descriptions of high or low symptom burden rather

than distinctly different sets of symptoms (S4 Table). We also present a three class model for

comparison with a previous study using CPRD Aurum [14] (S5 Table).

Fig 2. Timeline of symptom mentions. Odds ratio for record of any coded or free text symptom in a 4-week period, compared to 8–12 weeks prior to

index date, by cohort (confirmed or suspected COVID, viral/respiratory illness or control).

https://doi.org/10.1371/journal.pone.0290583.g002
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Fig 3. Association of symptoms with prior COVID-19 infection and GP diagnosis of Long Covid. Hazard ratios for association of symptoms with previous

COVID-19 infection after 12 weeks for 30 most common symptoms, and proportion of Long Covid patients (according to suspected or confirmed GP

diagnosis of Long Covid) with the symptom recorded in the preceding 7 days. Hazard ratios were adjusted for age, sex, age/sex interaction, number of

consultations in the year before the index date, number of symptom days 1–3 months before the index date, recording of the specific symptom 1–3 months

before the index date, ethnicity, smoking, body mass index and a generated propensity score for acquiring COVID-19 infection, and stratified by general

practice.

https://doi.org/10.1371/journal.pone.0290583.g003
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Fig 4. Association of symptoms with prior COVID-19 infection by time. Hazard ratios for association of symptoms with previous COVID infection by time.

Hazard ratios were adjusted for age, sex, age/sex interaction, number of consultations in the year before the index date, number of symptom days 1–3 months

before the index date, recording of the specific symptom 1–3 months before the index date, ethnicity, smoking, body mass index and a generated propensity

score for acquiring COVID-19 infection, with the baseline hazard function stratified by general practice.

https://doi.org/10.1371/journal.pone.0290583.g004

Fig 5. Association of symptoms with prior COVID-19 infection by source of symptom data. Hazard ratios for association of symptoms with previous

COVID infection after 12 weeks, by source of symptom data (free text or structured data). Hazard ratios were adjusted for age, sex, age/sex interaction, number

of consultations in the year before the index date, number of symptom days 1–3 months before the index date, recording of the specific symptom 1–3 months

before the index date, ethnicity, smoking, body mass index and a generated propensity score for acquiring COVID-19 infection, with the baseline hazard

function stratified by general practice.

https://doi.org/10.1371/journal.pone.0290583.g005
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The following variables were associated with increased risk of presence of a WHO Long

Covid symptom 12 or more weeks after COVID-19 infection in an unadjusted Cox model:

female sex (HR 1.24, 95% CI 1.09, 1.41), age (HR 1.21 per 10 years older, 95% CI 1.17, 1.25), ex

Fig 6. Association of symptoms with prior suspected or confirmed COVID-19, or prior viral or respiratory illness. Hazard

ratios for association of symptoms with previous infection after 12 weeks, by case category. Hazard ratios were adjusted for age,

sex, age/sex interaction, number of consultations in the year before the index date, number of symptom days 1–3 months

before the index date, recording of the specific symptom 1–3 months before the index date, ethnicity, smoking, body mass

index and a generated propensity score for acquiring COVID-19 infection, with the baseline hazard function stratified by

general practice.

https://doi.org/10.1371/journal.pone.0290583.g006
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smoker (HR 1.20, 95% CI 1.05, 1.37), number of days with symptom recorded in 1–3 months

prior to the index date (HR 1.06 per day of symptoms, 95% CI 1.05, 1.07), prior consultation

frequency per year (HR 1.03, 95% CI 1.03, 1.04), and hospitalisation during the acute COVID-

19 illness (HR 3.55, 95% CI 3.12, 4.03) (Table 2). Some factors were associated with reduced

incidence of Long Covid as defined by WHO symptoms: practice-level deprivation (HR 0.69

for most compared to least deprived IMD quintile, 95% CI 0.58, 0.82) and residence in Scot-

land (HR 0.63, 95% CI 0.53, 0.74). On mutual adjustment, most of these associations remained

statistically significant except being an ex smoker (Table 2). Using the GP diagnosis of sus-

pected or confirmed Long Covid, the unadjusted hazard ratios for these variables were similar

but the confidence intervals were wider (Table 2).

Table 2. Factors associated with Long Covid as defined by WHO symptoms or GP diagnosis of confirmed or suspected Long Covid.

Presence of WHO Long Covid symptom at

least 12 weeks after COVID-19 infection

GP diagnosis of Long Covid

Variable Crude Adjusted Crude Adjusted

Female sex 1.24 (1.09, 1.41) ** 1.31 (1.15, 1.50) *** 1.41 (0.92, 2.15) 1.53 (0.98, 2.37)

Age (per 10 years) 1.21 (1.17, 1.25) *** 1.07 (1.03, 1.11) *** 1.06 (0.95, 1.18) 0.98 (0.87, 1.12)

Ethnicity (White as reference)

Black 1.57 (0.94, 2.63) 1.45 (0.86, 2.45) 1.11 (0.15, 8.06) 0.81 (0.11, 6.01)

South Asian 0.94 (0.61, 1.46) 0.94 (0.60, 1.47) - -

Mixed or Other 0.65 (0.35, 1.21) 0.60 (0.32, 1.12) 1.47 (0.36, 6.08) 1.12 (0.27, 4.73)

Missing ethnicity 1.09 (0.96, 1.23) 1.01 (0.88, 1.15) 1.22 (0.82, 1.82) 1.10 (0.71, 1.69)

Practice level deprivation quintile (least deprived as reference)

2nd 0.74 (0.59, 0.94) * 0.89 (0.70, 1.13) 0.60 (0.27, 1.35) 0.74 (0.33, 1.69)

3rd 0.74 (0.60, 0.91) ** 0.82 (0.67, 1.01) 0.65 (0.33, 1.27) 0.67 (0.34, 1.33)

4th 0.91 (0.76, 1.09) 0.99 (0.83, 1.18) 1.09 (0.64, 1.86) 1.21 (0.70, 2.07)

5th (most deprived) 0.69 (0.58, 0.82) *** 0.71 (0.59, 0.84) *** 0.62 (0.35, 1.08) 0.64 (0.36, 1.12)

Nation (England as reference)

Scotland 0.63 (0.53, 0.74) *** 0.77 (0.65, 0.92) ** 0.60 (0.36, 1.02) 0.64 (0.38, 1.11)

Wales 0.83 (0.71, 0.98) * 0.95 (0.80, 1.12) 0.96 (0.57, 1.60) 0.94 (0.55, 1.61)

Smoking status (never smoked as reference)

Ex smoker 1.20 (1.05, 1.37) ** 0.99 (0.87, 1.14) 1.18 (0.79, 1.76) 1.12 (0.74, 1.70)

Current smoker 0.91 (0.74, 1.13) 0.88 (0.71, 1.08) 0.49 (0.21, 1.13) 0.49 (0.21, 1.15)

Missing smoking status 0.85 (0.61, 1.20) 1.13 (0.79, 1.62) 0.24 (0.03, 1.74) 0.35 (0.05, 2.62)

BMI <18.5 1.09 (0.70, 1.71) 0.88 (0.56, 1.37) 0.50 (0.07, 3.67) 0.49 (0.07, 3.63)

BMI 18.5–25 (reference)

BMI 25–30 1.00 (0.84, 1.19) 0.94 (0.79, 1.12) 0.74 (0.42, 1.29) 0.70 (0.40, 1.23)

BMI 30–40 1.09 (0.92, 1.29) 1.01 (0.85, 1.20) 1.29 (0.78, 2.12) 1.22 (0.73, 2.03)

BMI 40+ 1.20 (0.93, 1.54) 1.01 (0.79, 1.30) 0.90 (0.39, 2.08) 0.75 (0.32, 1.76)

Missing BMI 0.63 (0.49, 0.81) *** 0.76 (0.59, 0.99) * 0.45 (0.18, 1.09) 0.52 (0.21, 1.30)

Number of days with symptom mention 1–3 months before COVID-19 1.06 (1.05, 1.07) *** 1.03 (1.02, 1.04) *** 1.04 (1.01, 1.08) ** 1.05 (1.01, 1.09) **
Number of consultations in previous year 1.03 (1.03, 1.04) *** 1.02 (1.01, 1.02) *** 1.00 (0.98, 1.02) 0.97 (0.95, 1.00) *
Hospitalised during acute COVID-19 illness 3.55 (3.12, 4.03) *** 2.75 (2.39, 3.16) *** 2.98 (1.99, 4.46) *** 3.11 (1.99, 4.84) ***

‘Adjusted’ hazard ratios are from a multivariable Cox model including all variables in this table. P values:

*** p < 0.001

** p < 0.01

* p < 0.05.

https://doi.org/10.1371/journal.pone.0290583.t002
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Discussion

Summary of main findings

By analysing primary care records including unstructured text from 60,800 patients across

three UK nations during the early, pre-vaccination COVID-19 era, we demonstrate that a

broad range of symptoms are associated with a history of COVID-19. However, some symp-

toms (e.g. gastrointestinal symptoms and anxiety) were common post COVID-19 but rarely

associated with a Long Covid diagnosis. Patients were more likely to report symptoms of Long

Covid or receive a Long Covid diagnosis if they were older, female, or hospitalised during their

COVID-19 illness. The majority of symptom records were only available in the free text.

Symptoms following COVID-19 diagnosis

Similar to previous studies using coded GP patient records [14] and longitudinal cohort stud-

ies [5, 6, 19], we found increased incidence of a wide range of symptoms in patients with a his-

tory of COVID-19. We found that fatigue was most strongly associated with a history of

COVID-19 infection, consistent with previous studies [4]. The time period of our study

(March to December 2020) meant that our study population was predominantly unvaccinated

and the infections that occurred were with early variants of COVID-19. This should be taken

into account when comparing our findings with those from more recent time periods.

The variety of clinical manifestations of Long Covid has led to the suggestion that there

may be distinct subtypes of the disease, possibly with differing immunological mechanisms or

other aspects of pathophysiology [33]. Our latent class analysis found that a two class model

had the best fit with the data, consistent with longitudinal cohort analyses [34] and symptom

tracker apps [17]. However, other clustering analysis have found different numbers of clusters

[6–8, 14], but they have been carried out using different sets of clinical features (e.g., symptoms

alone, or symptoms and diagnoses) and different cohorts (EHR cohorts, bespoke cohort stud-

ies, all patients with COVID-19 or only patients with a diagnosis of Long Covid). The UK pri-

mary care EHR study by Subramanian et al. [14] found three latent classes among non-

hospitalised patients with a history of COVID-19. This may have been because this study was

based solely on structured data (unlike ours), with fewer symptom records per patient, so the

clusters may have been based on the most prominent symptom per patient.

Diagnosis and risk factors for Long Covid

Consistent with prior literature, we found that increasing age, female sex [12, 16] and severity

of acute COVID-19 [1] were associated with developing Long Covid. However, contrary to

other studies, we found that socioeconomic deprivation was associated with a lower likelihood

of a long Covid symptom or diagnosis being recorded. This may be due to inequality in access

to care; perhaps patients registered in practices in more deprived areas were less able to access

a GP, or the GP was less likely to record their symptoms or think about a Long Covid diagno-

sis. It is known that patients with long term somatic conditions with little evidence for under-

lying pathology may experience difficulty in obtaining a diagnosis [35], and it is probable that

some patients with chronic symptoms following COVID-19 experienced similar difficulties.

Although a consensus definition of Long Covid exists, it is unknown how consistently it is

applied in general practice, and associations need to be interpreted with caution. Variation in

the diagnostic process means that the association between a condition and a Long Covid diag-

nosis may not be the same as the association with Long Covid itself.

Associations of patient characteristics with Long Covid will be determined most accurately

from bespoke cohort studies; however such studies are typically not population based and
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therefore cannot study symptomatology post Covid more broadly. Data linkages with second-

ary care, or a better means of sharing primary and secondary care diagnoses [36] may help.

In our study we found that no Long Covid diagnoses recorded using diagnosis codes. This

was because the relevant SNOMED CT concepts (and linked Read terms used within GP sys-

tems) were not available for most of the study period. The UK SNOMED CT concept “Post

COVID-19 syndrome” was released at the end of November 2020, and the International

SNOMED CT concept “Chronic post-COVID-19 syndrome” was released at the end of Janu-

ary 2021. The ICD-10 code U09.9 “Post COVID-19 condition” was released in September

2020 [29]. Terminology updates in other coding systems were even more delayed; the US

ICD-10-CM code for Long Covid was not available until October 2021 [9]. This shows the

need for terminology systems to be updated in a timely manner to enable emerging conditions

to be recorded faithfully.

More recent data does show that GPs are using clinical codes but the rate of coding is low,

and varies between practices [23], so studies limited to coded data may still underestimate the

incidence of GP diagnosed Long Covid.

Limitations

The major strengths of our study were its population base, meaning that the results are likely

to be generalisable, and the use of free text information to gather information about symptoms

much more completely than coded data alone. However, our study has a number of

limitations.

First, there was some uncertainty about the COVID-19 diagnosis itself and exposed or

unexposed status of patients. This is because testing was not carried out systematically at the

time of the study (before December 2020), so some patients diagnosed with COVID-19 might

actually have had another diagnosis, and some ’unexposed’ patients might have had asymp-

tomatic COVID-19 infection, or not have sought healthcare for a COVID-like illness. To

address this, we investigated associations among patients with different levels of certainty of

COVID-19 (confirmed, suspected or possible), and verified that associations were stronger in

groups that were more likely to have COVID-19 based on our definitions (Fig 6).

Second, free text analysis is always subject to error, because no computer algorithm can

interpret the nuances of human language correctly all the time. Thus there may have been false

negatives and false positives in reporting of symptoms, with a potential risk of bias due to mis-

classification. However, our manual review found that precision was over 85% with no signifi-

cant difference between cases and controls. Therefore there may be some bias of hazard ratios

towards the null, but there is unlikely to be any significant over-estimation of hazard ratios

due to differential misclassification.

Third, there is likely to be variability in patients reporting symptoms to the GP, and the GP

recording them in the clinical notes, and this may vary between COVID-19 and other illnesses.

However, it should be noted that analyses limited to structured data have an additional risk of

bias due to the GP’s choice of which symptom(s) to record using clinical codes.

Fourth, we were unable to assess the severity of symptoms, and were therefore unable to

fully apply the WHO diagnostic criteria for post COVID-19 condition [29]. Information on

the functional level of patients, such as ability to work or perform daily activities of living, was

not available.

Fifth, the time period of the study was limited, which means that we were unable to assess

the effect of vaccination or different COVID-19 variants, and hazard ratio estimates for less

common symptoms were imprecise. This was because of the governance requirements for ana-

lysing free text and the time limitation of the COPI notice, which expired on 30 June 2022.
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Sixth, our data on social deprivation was at the practice rather than the patient level, so our

estimates may have been affected by residual confounding by socio-economic factors, and we

were unable to investigate whether patient-level deprivation affected the recording of symp-

toms and diagnoses by GPs.

Recommendations for clinical care

We have identified a number of symptoms that are associated with a prior COVID infection

but are less likely to be associated with a Long COVID diagnosis (e.g. gastrointestinal symp-

toms and anxiety). We suggest that clinicians bear in mind that such symptoms may constitute

part of a Long Covid symptom cluster.

We recommend the accurate recording of symptom data, preferably in a structured way, in

order to record and track a patient’s disease over time and to facilitate research. While it is pos-

sible to analyse free text post hoc, as carried out in this study, it is difficult for algorithms to

interpret complex contextual indicators. Semi-structured data entry systems (e.g. a ‘history’

box for patient symptoms) may help, and it is also important to improve the way that diagnosis

information can be shared between healthcare settings [36].

Recommendations for research

This study adds to the growing evidence of the value of free text analysis for healthcare

research. Previous work on free text from primary care has demonstrated that symptoms are

frequently not recorded in a structured way [24, 37]. Access to free text for clinical research in

the UK is currently limited, even though it was vital for early work to validate coded GP diag-

noses on which subsequent research depends [38]. This study had time-limited approvals, and

a follow up study using more recent data could investigate the differences between COVID-19

variants and the impact of vaccination on post-Covid symptomatology. It would also be of

interest to investigate the process of recording of diagnoses among GPs using structured and

unstructured data.

Some large NHS trusts are building in-house infrastructure (such as the CogStack platform

[39]) to analyse text in patient records. However, this is not feasible for general practices,

which are too small to host such expertise and infrastructure themselves. There is a need for

robust data governance arrangements to enable free text in medical records to be used for

research in a safe, secure and timely manner [40]. A ‘code to data’ approach, as currently used

for structured data in OpenSafely [23], may enable free text to be analysed securely with pri-

vacy protection. However, there will always be a need for samples of free text to be manually

annotated to develop and validate the algorithms.

Conclusion

Many symptoms are more common after COVID-19 infection, but only a few are commonly

associated with a Long Covid diagnosis. There is a lack of structured recording of symptoms

and Long Covid diagnoses in GP records, showing the importance of analysing free text in

health records to study these topics.
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S1 Table. Read terms for suspected or confirmed COVID-19.

(CSV)

S2 Table. Read terms for viral or respiratory illnesses.

(CSV)

S3 Table. Recording of symptoms in free text and coded data. List of 98 symptoms investi-

gated in this study, showing which symptoms are included in the WHO Long Covid case defi-

nition, which are used in the clustering analysis, and the percentage of days with either a free

text or coded symptom record that the symptom is recorded using a coded entry.

(PDF)

S4 Table. Two class latent class model for symptoms among patients with Long Covid.

‘Long Covid’ was defined as either (a) presence of any symptom included in the WHO case

definition of post COVID condition at least 12 weeks after the initial COVID-19 diagnosis, or

(b) a symptom included in the secondary outcome of the study by Subramanian et al. (Nat

Med 2022, doi: 10.1038/s41591-022-01909-w, S3 Table), for comparison with that study. For

(a), symptoms in the 3 months after the WHO symptom were used in the latent class analysis;

for (b) symptom records at any time were used. Cluster descriptions for (a): Class 1 (81.2%):

Shortness of breath (30%), Fatigue / asthenia (23%), Anxiety / depression (23%), Cough (18%),

Joint pain (11%). Class 2 (18.8%): Shortness of breath (51%), Nausea / vomiting (45%), Anxi-

ety / depression (41%), Cough (39%), Abdominal pain (36%), Chest pain (32%), Fatigue /

asthenia (30%), Diarrhoea (25%), Constipation (25%), Chills and fever (23%), Purpura / rash

(21%), Wheezing (19%), Headache (17%), Phlegm (16%), Palpitations / tachycardia (16%),

Gastric reflux (13%), Limb swelling (13%), Presyncope / dizziness (13%), Paraesthesia (12%),

Weight loss (12%), Bloating (11%), Joint pain (10%). Cluster descriptions for (b): Class 1

(78.2%): Shortness of breath (18%), Anxiety / depression (17%), Purpura / rash (14%), Fatigue

/ asthenia (14%). Class 2 (21.7%): Shortness of breath (63%), Cough (55%), Fatigue / asthenia

(40%), Anxiety / depression (40%), Nausea / vomiting (34%), Chest pain (33%), Abdominal

pain (27%), Wheezing (23%), Diarrhoea (21%), Constipation (20%), Phlegm (20%), Purpura /

rash (20%), Chills and fever (19%), Headache (19%), Palpitations / tachycardia (16%), Limb

swelling (15%), Presyncope / dizziness (15%), Joint pain (14%), Paraesthesia (14%), Gastric

reflux (13%), Weight loss (12%).

(PDF)

S5 Table. Three class latent class model for symptoms among patients with Long Covid.

‘Long Covid’ was defined as either (a) presence of any symptom included in the WHO case

definition of post COVID condition at least 12 weeks after the initial COVID-19 diagnosis, or

(b) a symptom included in the secondary outcome of the study by Subramanian et al. (Nat

Med 2022, doi: 10.1038/s41591-022-01909-w, S3 Table), for comparison with that study. For

(a), symptoms in the 3 months after the WHO symptom were used in the latent class analysis;

for (b) symptom records at any time were used. Cluster descriptions for (a): Class 1 (50.8%):

Anxiety / depression (26%), Fatigue / asthenia (19%), Abdominal pain (17%), Headache

(13%), Nausea / vomiting (12%), Joint pain (11%), Diarrhoea (10%), Constipation (10%).

Class 2 (35.2%): Shortness of breath (67%), Cough (34%), Fatigue / asthenia (28%), Chest pain

(20%), Anxiety / depression (17%), Wheezing (13%). Class 3 (13.9%): Shortness of breath

(64%), Anxiety / depression (49%), Nausea / vomiting (47%), Cough (42%), Chest pain (37%),

Fatigue / asthenia (34%), Abdominal pain (34%), Constipation (28%), Diarrhoea (25%), Pur-

pura / rash (24%), Wheezing (24%), Palpitations / tachycardia (22%), Chills and fever (21%),

Headache (18%), Limb swelling (17%), Presyncope / dizziness (16%), Phlegm (16%), Gastric
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reflux (14%), Weight loss (14%), Paraesthesia (13%), Joint pain (13%), Bloating (12%), Aller-

gies / angioedema (11%). Cluster descriptions for (b): Class 1 (68.8%): Anxiety / depression

(17%), Purpura / rash (15%), Fatigue / asthenia (12%), Nausea / vomiting (10%), Shortness of

breath (10%). Class 2 (19.0%): Shortness of breath (74%), Cough (56%), Chest pain (29%),

Fatigue / asthenia (27%), Wheezing (27%), Anxiety / depression (21%), Phlegm (16%). Class 3

(12.3%): Shortness of breath (53%), Nausea / vomiting (53%), Anxiety / depression (50%),

Fatigue / asthenia (47%), Abdominal pain (43%), Cough (41%), Diarrhoea (32%), Constipa-

tion (31%), Chest pain (30%), Purpura / rash (29%), Headache (26%), Chills and fever (24%),

Presyncope / dizziness (22%), Palpitations / tachycardia (21%), Paraesthesia (20%), Joint pain

(18%), Weight loss (18%), Limb swelling (18%), Gastric reflux (18%), Bloating (15%), Wheez-

ing (14%), Phlegm (12%).

(PDF)

S1 Fig. Data flow diagram.

(PDF)

S2 Fig. Hazard ratios for all 89 symptoms. Association of symptoms with previous COVID

infection after 12 weeks. Hazard ratios were adjusted for age, sex, age/sex interaction, number

of consultations in the year before the index date, number of symptom days 1–3 months before

the index date, recording of the specific symptom 1–3 months before the index date, ethnicity,

smoking, body mass index and a generated propensity score for acquiring COVID-19 infec-

tion, and stratified by general practice.

(PDF)

S3 Fig. Hazard ratios by level of adjustment. Association of symptoms with previous

COVID infection after 12 weeks, by level of adjustment. ‘Fully adjusted hazard ratios’ were

adjusted for age, sex, age/sex interaction, number of consultations in the year before the index

date, number of symptom days 1–3 months before the index date, recording of the specific

symptom 1–3 months before the index date, ethnicity, smoking, body mass index and a gener-

ated propensity score for acquiring COVID-19 infection, and stratified by general practice.

(PDF)

S4 Fig. Hazard ratios by age. Association of symptoms with previous infection after 12 weeks,

by age. Hazard ratios were adjusted for age, sex, age/sex interaction, number of consultations

in the year before the index date, number of symptom days 1–3 months before the index date,

recording of the specific symptom 1–3 months before the index date, ethnicity, smoking, body

mass index and a generated propensity score for acquiring COVID-19 infection, and stratified

by general practice.

(PDF)

S5 Fig. Hazard ratios by sex. Association of symptoms with previous infection after 12 weeks,

by sex. Hazard ratios were adjusted for age, sex, age/sex interaction, number of consultations

in the year before the index date, number of symptom days 1–3 months before the index date,

recording of the specific symptom 1–3 months before the index date, ethnicity, smoking, body

mass index and a generated propensity score for acquiring COVID-19 infection, and stratified

by general practice.

(PDF)

S6 Fig. Hazard ratios by nation. Association of symptoms with previous infection after 12

weeks, by UK nation. Hazard ratios were adjusted for age, sex, age/sex interaction, number of

consultations in the year before the index date, number of symptom days 1–3 months before

the index date, recording of the specific symptom 1–3 months before the index date, ethnicity,
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smoking, body mass index and a generated propensity score for acquiring COVID-19 infec-

tion, and stratified by general practice.
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S7 Fig. Elbow plot for latent class analysis. Elbow plot from latent class analysis for symp-

toms occurring within 3 months of a WHO Long Covid symptom, among patients at least 12

weeks after a COVID infection. The inflexion point at 2 classes shows that additional classes

do not improve the fit of the model. AIC, Akaike Information Criterion; BIC, Bayesian Infor-

mation Criterion; SABIC, sample size adjusted Bayesian Information Criterion; CAIC, Cor-

rected Akaike Information Criterion.
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