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Abstract 

Bac kgr ound: Mac hine learning (ML) approaches are a crucial component of modern data analysis in many fields, including epidemi- 
ology and medicine. Nonlinear ML methods often achieve accurate predictions, for instance, in personalized medicine, as they are 
capa b le of modeling complex relationships between features and the target. Problematically, ML models and their predictions can 

be biased by confounding information present in the features. To remove this spurious signal, resear c hers often employ featurewise 
linear confound r egr ession (CR). While this is consider ed a standard appr oach for dealing with confounding, possib le pitfalls of using 
CR in ML pipelines are not fully understood. 

Results: We provide new evidence that, contrary to general expectations, linear confound r egr ession can increase the risk of con- 
founding when combined with nonlinear ML approaches. Using a simple framework that uses the target as a confound, we show that 
information leaked via CR can increase null or moderate effects to near-perfect prediction. By shuffling the featur es, we pr ovide evi- 
dence that this increase is indeed due to confound-leakage and not due to revealing of information. We then demonstrate the danger 
of confound-leakage in a real-world clinical application where the accuracy of predicting attention-deficit/hyperactivity disorder is 
ov er estimated using speech-deri v ed featur es when using de pr ession as a confound. 

Conclusions: Mishandling or even amplifying confounding effects when building ML models due to confound-leakage, as shown, can 

lead to untrustworthy, biased, and unfair predictions. Our expose of the confound-leakage pitfall and provided guidelines for dealing 
with it can help create more robust and trustworthy ML models. 

Ke yw ords: confounding, data-leakage, machine-learning, clinical applications 
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Key Points: 

� Confound r emov al is essential for building insightful 
and trustworthy machine learning (ML) models. 

� Confound r emov al can incr ease performance when 

combined with nonlinear ML. 
� This can be due to confound information leaking into 

the features. 
� Possible reasons are skewed feature distributions and 

the feature of limited precision. 
� Confound r emov al should be a pplied with utmost car e 

in combination with nonlinear ML. 

Introduction 

Mac hine learning (ML) a ppr oac hes hav e r e volutionized biomedi- 
cal data analysis by providing po w erful tools, especially nonlin- 
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ar models, that can model complex featur e–tar get r elationships
 1 , 2 ]. Ho w e v er, the v ery po w er these nonlinear models bring to
ata anar models, that can model complex featur e–tar get r eal-
sis also leads to new challenges. Specifically, as we will detail,
hen a standard confound r emov al a ppr oac h is pair ed with non-

inear models, new and surprising issues arise as the unintended
s discov er ed and misinter pr eted as a true effect. 

Imagine building a diagnostic classifier for attention- 
eficit/hyperactivity disorder (ADHD) based on speech patterns.
his will be a useful clinical tool aiding objective diagnosis
 3 ]. Ho w e v er, like most disorders, ADHD has comorbidity, for
nstance, with depr ession. Ideall y, an ADHD dia gnostic classifier
hould only rely upon characteristics of ADHD and ignore that
f depression. This is an example of confounding, where it is
esirable that the confound depression is disregar ded b y the
lassifier. Another example of confounding is the effect of aging
nd neur odegener ativ e diseases on the brain. In a study to build
 neur oima ging-based dia gnostic classifier, the nonpathological 
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ging signal is confounding [ 4 ]. Confounding is ubiquitous, and
urther examples include batch effects in genomics [ 5–7 ], scanner
ffects in neur oima ging [ 8 ], patient and process information in
 adiogr a phs [ 9 ], and group differences like naturally different
rain sizes in investigation of brain size–independent sex differ-
nces [ 10 , 11 ]. Ignoring confounding effects in an ML application
an r ender pr edictions untrustworthy and insights questionable
 12 ] as this information can be exploited by learning algorithms
 13 ], leading to spurious featur e–tar get r elationships [ 14 ] (e.g.,
lassification based on depression instead of ADHD or age instead
f neuronal pathology). The benefits of big data in ML applications
r e ob vious, especiall y when modeling weak r elationships, but
ig data also lead to an increased risk of inducing confounded
odels [ 4 , 11 , 15 , 16 ]. Confounding, thus, is a crucial concern and,

f not pr operl y, tr eated can thr eaten r eal-world a pplicability of
L. 
When confounding masks the true featur e–tar get r elationship,

ts r emov al can clean the signal of inter est, leading to higher gen-
r alizability (e.g., r emov al of batch effects in genomics) [ 7 ]. On
he other hand, when confounding introduces artifactual rela-
ionships, the same pr ocedur e can r educe pr ediction accur acy [ 17 ,
8 ]. In either case , remo ving or adjusting for confounding effects is
rucial for obtaining unbiased results, as otherwise an ML model
ight mostl y r el y on confounds, r endering signals of inter est r e-

undant. Two methods for treating confounding ar e commonl y
mplo y ed in data analysis with the goal of building an accurate
L model that is not biased by the confounding information. Data

an be stratified based on the confounding variables, but it may
ntroduce confounding information [ 19 ], falsely increase test-set
erformance by removing harder-to-classify data points [ 20 ], and
an result in excessive data loss. As confounds share variation—
suall y pr esumed linear v ariance—with both the target and the

eatures, another common method is confound r egr ession (CR),
hic h r emov es the confounding v ariance, also called confounded

ignal, fr om eac h featur e separ atel y using a linear r egr ession
odel [ 4 , 20 ]. The resulting residualized features are considered

onfound free and used for subsequent analysis. CR has become
he default method to counter confounding in observational stud-
es, including in ML applications [ 16 , 20 , 21 ]. Typically, a 2-step
R–ML w orkflo w is constructed while avoiding risks associated
ith typical data leakage by applying CR in a cross-validation–

onsistent manner [ 20 , 22 ]. It is important to note that we use a
r actitioner-oriented oper ational definition of confounds as a set
f variables suspected to share an unwanted effect with both the
eatures and target, which does not imply causality as in more
ormal definitions [ 23 ]. 

A CR–ML w orkflo w typically attenuates prediction perfor-
ance as it r emov es v ariance fr om the featur es that is informa-

ive of the target. If an increase in performance is observed after
R, it can be explained by either (i) information-reveal : CR r e v eals

nformation that was masked by confounding or (ii) confound-
eakage : leakage of confounding information into the features.
n the case of information-r e v eal, CR could suppr ess linear con-
ounding or noise, in turn enhancing the underlying (non)linear
ignal and making learning easier for a suitable ML algorithm
 13 ]. This would be a positive effect similar to removing simple
hortcuts in the data [ 24 , 25 ]. If this is the case, then the resulting
R–ML w orkflo w w ould be valuable for modeling nonlinear rela-

ionships. Alternativ el y, as CR is a univariate operation applied to
ac h featur e, m ultiv ariate confounding (acr oss featur es) could be
 e v ealed, whic h could help pr ediction albeit undesir abl y. On the
ther hand, confound-leakage would be an even more worrisome
utcome as it would leak confounding information into the fea-
ures instead of removing it. Confound-leakage would be detri-
ental to the validity and inter pr etability of the ensuing CR–ML
 orkflo w and in some cases could lead to dangerous outcomes. CR
as been reported to induce biases into statistical w orkflo ws, al-
eit not incor por ating ML, leading to incorr ectl y inflated group dif-
er ences infer ence in combined batc h effects r emov al and gr oup
iffer ence anal ysis [ 26 ]. It is important to note that CR is not
ithout other pitfalls; for instance, it might fail to completely re-
ove confounding information [ 21 , 27 ]. Still, CR is considered the

e facto method, and ther efor e anal yzing the hitherto unknown
itfall of leaking confounding information through CR is helpful.
urthermor e, ther e wer e speculations of confound-leaka ge in ML
 orkflo ws [ 18 ], but it has not yet been systematically shown, an-
lyzed, or explained. 

To disentangle the 2 possible explanations of performance in-
rease after CR, we systematically analyzed the 2-step CR–ML
 orkflo w. For anal ysis pur poses and to gain detailed knowledge,
e propose a framework that uses the target as a confound (TaCo),

n which we use a single confound that is the target. As a confound
eeds to shar e v ariation with both the target and the feature,
ny possible confound must share all confounded signal with the
ar get. Hence, the tar get can be seen as a “superconfound,” sub-
uming all possible confounding effects. Although it is unlikely
o encounter a confound equal to the target in real applications,
aCo provides a framework for systematic evaluation. It should be
oted that real confounds will fall on the continuum from weak

low confounded signal) to strong (TaCo) depending on their de-
ree of similarity with the target. Indeed, as we show, the TaCo
r ame work r e v eals str ong effects wher e the pr ediction accur acy
s boosted from moderate to perfect as well as weaker effects for
onfounds weakl y corr elated with the tar get. A pr e vious work has
sed TaCo for e v aluating the validity and reliability of confound
djustment methods [ 21 ]. 

To this end, we performed extensive empirical analyses on sev-
r al benc hmark datasets, pr oviding str ong e vidence for confound-
eakage. First, w e sho wcase confound-leakage in walk-through
nalyses . T hen, using the TaCo framew ork, w e systematically an-
wer whether the impr ov ement in pr ediction performance after
R is due to leakage . For this , we used benchmark datasets as well
s se v er al conceptuall y simple sim ulations cov ering both classifi-
ation and r egr ession pr oblems. Finall y, with a clinicall y r ele v ant
ask of ADHD diagnosis using speech-related features with de-
ression as a confound, we demonstrate the misleading impact
f confound-leakage. 

esults 

alk-through analysis 

he goal of this section is to introduce readers to our analysis
 ppr oac h with intuitiv e examples. We show 1 exemplary case of
aCo r emov al for a binary classification task and a CR scenario
ith a weaker confound in a r egr ession task. In both cases, we
 andoml y split the data into 70% train and 30% test parts . T he CR
nd prediction models were learned on the training data, and the
 esults ar e r eported on the test split. We will show that confound-
eakage can be concluded if performance increases after perform-
ng CR on shuffled features ( ̃  X CR ). 

aCo removal for binary classification 

e analyzed the “bank investment” data to predict whether a cus-
omer will subscribe to term de posit gi ven their financial and so-
ioeconomic information. We used a decision tree (DT) with lim-
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ited maximum depth of 2 for visualization ease . T his example 
is meant to demonstrate k e y aspects of our proposed analyses 
(Fig. 1 ). 

TaCo r emov al sho w ed a m uc h higher ar ea under the curv e for 
the r eceiv er oper ating c har acteristic curv e (AUCROC) of 0.98 com- 
pared to the baseline AUCROC of 0.75 without CR. Still, the TaCo- 
r emov ed featur es wer e highl y similar to the original features (me- 
dian Pearson’s correlation: 0.99, Fig. 1 A,B). The 2 ensuing DTs were,
ho w e v er, completel y differ ent and r elied on differ ent featur es. No- 
tabl y, these dr astic differ ences wer e induced by minute feature al- 
terations after CR that are hardly detectable by humans but are 
effectiv el y ca ptur ed by DT (Fig. 1 C,D). Suc h performance incr ease 
can be due to r e v ealed information or confound-leakage . T here- 
fore, we sought to gain evidence to distinguish between these 
2 scenarios using 2 complementary measurements: (i) destroy- 
ing the relationship between features and target and (ii) use of 
confound-pr edicted featur es. 

To destroy the feature–target relation, we shuffled each fea- 
tur e befor e CR ( ̃  X ) to cr eate ˜ X CR and r epeated the anal ysis. As 
there should be no predictive information in the shuffled features,
the only explanation for above chance-level performance is CR 

leaking information into the confound-r emov ed featur es X CR (i.e.,
confound-leaka ge). We a pplied the shuffling pr ocedur e to a train- 
test split in this walk-through analysis. But it should be noted that 
when combined with a (nested) cr oss-v alidation and Bayesian Re- 
gion of Practical Equivalence (ROPE) approach, this procedure can 

be used to compare models similarly as a permutation test (see 
section “Feature shuffling approach”). We observed chance-level 
performance without CR (AUCROC = 0.48) for the shuffled fea- 
tures. Ho w ever, a performance increase after TaCo removal was 
observed (AUCROC = 0.99). This analysis shows that performance 
increase after TaCo removal with shuffled features indicates the 
possibility of confound-leakage. 

Conf ound r emoval f or r egr ession 

As an example of a weaker confound on a r egr ession task, we sim- 
ulated a binary confound and then sampled a feature from differ- 
ent distributions for each confound value (confound equal to 0 or 
1). Then we added the confound to a normally distributed target 
( M = 0 and SD = 0.50; Fig. 1 E,F). This creates a clear confound- 
ing situation, where the confound affects both the feature (point- 
biserial correlation = 0.71, P < 0.01) and the target (point-biserial 
correlation = 0.71, P < 0.01) and thus leads to a spurious relation- 
ship between the feature and the target (Pearson’s correlation = 

0.51, P < 0.01). Following the same pr ocedur e as in the pr e vious 
example, we observ ed incr eased performance after CR using a DT 

with limited depth of 2 ( R 

2 using X = 0.29, X CR = 0.42). As in these 
sim ulated data, onl y a spurious r elation (via confound) exists be- 
tween the feature and target, it is safe to assume that an increased 

performance after CR is due to confound-leaka ge. Furthermor e,
we found a pr obable mec hanism behind this confound-leakage to 
be the distribution of the features conditioned on the confound.
Mor e pr ecisel y, CR shifts the featur e v alues for confound = 1 in 

between most feature values for the confound = 0 (Fig. 1 E). This 
leaks the confounding information into the feature instead of re- 
moving it (Fig. 1 F). The shuffled features, ho w e v er, wer e not sen- 
sitive to confound-leakage ( X = 0, ˜ X = −0 . 01 ), which is expected 

considering the probable cause for suc h leaka ge depends on the 
joint distribution of the confound and the feature. When shuffling 
the features within each confound category to pr eserv e the joint 
distribution, we observed an increase in performance after CR ( M 

= 0.29 before to M = 0.42). This result indicates that shuffling the 
features might not be always sensitive to confound-leakage . We ,
e v ertheless, use independentl y shuffled featur es in our anal ysis
or pr acticality, particularl y in the context of continuous or m ul-
iple confounding factors. 

nalyses of benchmark data 

aCo removal increases performance of nonlinear methods 
ur systematic and cr oss-v alidation (CV)–consistent analysis 
omprised comparison between TaCo r emov al pipelines and no-
R pipelines on 10 UC Irvine (UCI) datasets. TaCo r emov al led to
 meaningful increase in out-of-sample scoring using all tested 

onlinear models, random forest (RF) (7/10 datasets), DT (8/10),
upport vector machine (SVM) with radial basis function (RBF) 
ernel (5/10), and multilayer perceptron (MLP) (7/10) (Fig. 2 , Sup-
lementary Fig. S1). This suggests that confound-leakage is a risk
ssociated with the usage of a CR–ML pipeline with nonlinear ML
odels . Furthermore , this suggests that the DT-based algorithms

DT and RF) ar e most susceptible to showing incr eased perfor-
ance. 

R using weaker confounds also increases performance 
s the target is the strongest possible confound, TaCo r epr esents
n extreme case. To test whether the potential leakage we found
ith TaCo extends to CR in general, using the UCI datasets, we

imulated confounds related to the target at different strengths 
easured by Pearson’s correlation ranging from 0.2 to 0.8. De-

ending on the dataset, different amounts of correlated con- 
ounds led to leakage after CR. We observed potential confound-
eakage for 5 of the 10 datasets with at least 1 of the confound-
ar get str engths. As expected, a higher tar get-confound corr e-
ation led to mor e leaka ge (i.e., higher performance after CR)
Fig. 2 C). 

ncr eased perf ormance after TaCo r emoval is due to
onfound-leakage 
s described in the walk-thr ough anal ysis (see “TaCo r emov al for
inary classification”), we measure the performance after first 
huffling the features to e v aluate whether the increased perfor-
ance after TaCo r emov al/CR is due to information r e v eal or

onfound-leakage. After shuffling the features, both pipelines, no 
R and TaCo r emov al, should perform close to c hance le v el if

he impr ov ed performance is due to r e v ealed information. Indeed,
he no-CR pipeline performed close to the chance level, while the
aCo-r emov al pipeline increased the performance (Fig. 2 , TaCo
R Shuffled). As there should be no predictive information in the
huffled features , abo ve chance-level performance could only be
btained if the CR leaks information. T hus , this r esult pr ovides
tr ong e vidence in favor of the confound-leaka ge. 

For the simulated weaker confounds, these r esults wer e less
trong, but we still found 5 of 10 datasets where X CR and 9 of 10
here ˜ X CR performed above chance level. 

 ossible mec hanisms f or conf ound-leakage 
s a multitude of mechanisms could lead to confound-leakage,
xhaustiv el y identifying all possible mechanisms is out of the
cope of this article. Rather, w e w ant to highlight 2 possible mech-
nisms leading to confound-leaka ge inspir ed by the walk-through
nal yses: (i) confound-leaka ge due to continuous features devi-
ting from normal distributions (see “Confound removal for re- 
ression”) and (ii) confound-leakage due to unbalanced features 
f limited precision (see “TaCo r emov al for binary classification”).
oth mechanisms could be summarized under the umbrella of 
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Figure 1: A walk-through analysis demonstrating our analysis pipeline and confound-leakage using DT. The results shown here are on the 30% test 
split. For the binary classification walk-through using the bank investment dataset, a subset of the features used is shown before CR (A) and after CR 
(B). Induced DTs and their performance before (C) or after CR (D). The DT after CR (D) is based on minute differences in only 2 features and still 
performs nearly perfectly and better compared to the DT on raw data (C). The r egr ession anal ysis walk-thr ough using sim ulated data is depicted as 
featur e–tar get r elationships with the dotted line showing the pr edicted v alues (E, F). The nonnormal distribution of the feature conditioned on the 
confound leaks information usable by the DT. Here, CR removes the linear relationship, as intended, but introduces a stronger nonlinear one by 
shifting the distribution of X CR given confound = 0 in between the 2 peaks of X CR given confound = 1 (F). 
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A B

C D

F igure 2: P erformance on the UCI benc hmark datasets when using r a w vs . CR featur es (A) and r a w vs . the pr edicted featur es giv en the 
confound/TaCo/ ̂ X (B). The 2 columns correspond to (i) TaCo r emov al with 4 ML algorithms (logistic r egr ession [LR], DT, RF, MLP) and (ii) CR with 
simulated confound with different correlations to the target (range 0.2–0.8) with RF. (A, B) Performance using the original features. (C, D) Performance 
on shuffled features. To check whether a difference between the performance of 2 models is meaningful, we used the Bayesian ROPE a ppr oac h to 
identify what is most probable: performance being higher before removal ( < ), being higher after removal ( > ), or equivalent ( = ) (see the Methods 
section for details). When using a linear model (LR), TaCo r emov al leads to reduction in prediction performance, as expected. In contrast, nonlinear 
models lead to a higher performance for all datasets . T his increase could be explained by confound removal revealing information already in the data 
(suppression) or confound removal leaking information into the features (confound-leakage). Shuffling the features destroys the association between 
features and the target; therefore, subsequent performance increase after TaCo removal indicates the possibility of confound-leakage (C, D). The 
simulated confounds show that an increase after CR is also possible for confounds weakly related to the target (B, D), and 1 dataset (Blood) shows 
str ong e vidence of confound-leaka ge. 
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small) differences of the conditional distributions of features
iven the confound inside of CV-folds. 

As DT-based models ar e v ery popular ML algorithms [ 28 ] and
eem to be most susceptible to the described problems (see “TaCo
 emov al incr eases performance of nonlinear methods”), we will
ocus on them in our simulations to decrease the complexity of
ur r esults. Furthermor e, we will use a DT whene v er ther e is onl y
 features and RF when there are multiple features. 

onfound-leakage due to deviation from normal
istributions 
onsider simulating a standard normal feature not informative
f a binary target. Then consider adding a smaller distribution
round opposing extreme values separately for each class of a
inary target (Fig. 3 A). The resulting feature only differs system-
tically w.r.t. the classes at the extreme values. As CR with a bi-
ary confound is equivalent to subtracting the mean for each con-
ounding group from the respective feature, this operation is now
iased to w ar d the extreme parts of the feature distribution. Con-
equently, X CR exposes confounding information in terms of de-
rease in the overlap of the feature distributions conditioned on
he confound (Fig. 3 A,B). In other w or ds, confounding information
eaked via CR in turn increases the prediction performance (AU-
OC fr om 0.51 befor e to 0.58 after TaCo r emov al). To show that the

ncreased performance is not only due to better prediction of ex-
r eme v alues, we also tested the same model on a test set without
he extr eme v alues . T he r esults wer e in line with pr e vious obser-
ations, as the AUROC improved from 0.48 before to 0.57 after CR.

We also observed higher performance after similar decreased
v erla p due to TaCo r emov al in a simplified version of the “house
ricing” UCI benchmark dataset (Fig. 3 C,D), providing real-world
vidence for this phenomenon. 

Lastl y, we inv estigated whether suc h effects could also occur
hen r andoml y sampling nonnormal distributed featur es instead
f car efull y constructing the features conditioned on the con-
ound. To this end, we sampled an increasing number of features
1 to 100) either using a random normal or skewed ( χ2 , df = 3) dis-
ribution independent of a normally distributed target. 

Using RF, we observed increased performance after TaCo re-
ov al with ske wed featur es but not with normally distributed

eatures (e.g., R 

2 of M = 0.23 with SD = 0.06 compared to R 

2 of
 = −0.04 with SD = 0.04, r espectiv el y, with 100 featur es). Im-
ortantl y, this effect incr eased with the number of featur es (Fig.
 ). To further illustrate this point, we performed another simu-
ation depicting a typical confounding situation. Here, we sam-
led an increasing number of features (1 to 100) with different
2 distribution given a binary confound ( df = 3 (4) and scale =
.5 (1) for confound = 0 (1)). The target was sampled from a nor-
al distribution ( M = 0, SD = 0.2), and the confound was added

o it. Analysis of these data shows an increased performance af-
er confound r emov al fr om M = −0.52 ( SD = 0.02) to M = −0.50
 SD = 0.03) using 1 feature and from M = −0.02 ( SD = 0.01) to M =
.18 ( SD = 0.01) using 100 features . T hese results demonstrate that
he effect of confound-leakage increases with increasing number
f features . T hese sim ulations show that ske wed featur es and, by
xtension, potentially other nonnormal distributed features can
ead to confound-leaka ge. Inter estingl y, another consequence of
onnormal distributions is insufficient r emov al of confounding

nformation [ 21 ]. 

onfound-leakage due to limited precision features 
 similar effect was observed with binary featur es, wher e unbal-
nced feature distributions conditioned on the confound led to
eaka ge. Using sim ulations, first we confirmed that a binary fea-
ur e perfectl y balanced in respect to the TaCo did not lead to
onfound-leakage (AUCROC of M = 0.50, SD = 0). Then, we re-
eated similar simulations but now we swapped 2 randomly se-

ected distinct values of the feature within each CV-fold, preserv-
ng the marginal distribution of the feature but slightly changing
ts distribution conditional on the confound. This can be seen as
dding a small amount of noise to the featur e. Still, suc h a simple
anipulation led to dr astic leaka ge after TaCo r emov al with per-

ect AUCROC ( M = 1.00, SD = 0.00), compared to AUCROC without
R ( M = 0.52, SD = 0). 

To further demonstrate this effect, we analyzed a simple
emonstr ativ e classification task using DT and 2 binary features
eriv ed fr om the UCI “heart dataset” r epr esenting the r esting elec-
r ocardiogr a phic (Restecg) results. Without CR, the DT had 117
odes and ac hie v ed a moder ate AUCROC ( M = 0.74, SD = 0.06).

n stark contrast, after TaCo r emov al, the DT was extr emel y sim-
le with only 5 nodes and ac hie v ed near-perfect AUROC ( M = 0.99,
D = 0.01) (Fig. 3 E). Tellingly, this DT was able to make accurate
redictions based on n umerically min ute differences in feature
alues . T he reason for this becomes a ppar ent when r emember-
ng that CR with a binary confound is equivalent to subtracting
he mean of the corresponding confounding group from the re-
pectiv e featur e. When a pplied to a binary featur e, this r esults in
 distinct values for a residual feature (Fig 3 E). When taken to-
ether with the results on the benchmark UCI data (see “Anal-
ses of benchmark data”), we can see that such minute differ-
nces can be exploited by models such as DTs , RFs , and MLPs but
ikely not by linear models. It is important to note that leakage
hrough minute differences was observed for not only binary fea-
ures but also other features with a limited precision (values con-
aining only integers or with limited fractional parts). To demon-
trate this, we predicted a random continuous target using either
 normally distributed feature or the same feature rounded to the
rst dig it. The orig inal nonr ounded featur e performed at c hance

e v el both before ( R 

2 : M = −1.10, SD = 0.06) and after TaCo r emov al
 R 

2 : M = −1.03, SD = 0.07), while after rounding, it led to an im-
r ov ement fr om M = −0.08 ( SD = 0.01) to M = 0.70 ( SD = 0.16)
fter TaCo r emov al. Featur es with limited precision (i.e., with no
r r ounded fr actional part) ar e common, for instance, age in years,
uestionnair es in psyc hology and social sciences, and tr anscrip-
omic data. 

onfound-leakage poses danger in clinical 
pplications 

DHD is a common psychiatric disorder that is curr entl y dia g-
osed based on symptomatology, but objective computerized di-
 gnosis is desir able [ 29 ]. Ideall y, a pr edictiv e model for dia gnosing
DHD should not be biased by comorbid conditions (e.g., depres-
ion) [ 30 ]. To this end, comorbidity can be treated as a confound.
o w e v er, a confound-leaka ge affected model, albeit with appeal-

ng performance, could lead to misleading diagnosis and treat-
ent. To highlight the danger of confound-leakage on this clin-

call y r ele v ant task, we analyzed a dataset with speec h-deriv ed
eatures with the task to distinguish individuals with ADHD from
ontr ols. Our v ersion of the dataset is a balanced subsample of
he dataset described by von Polier et al. [ 3 ]. 

The baseline RF model without CR provided mean AUROC ( M =
.71, SD = 0.02). We then r emov ed 4 confounds commonly consid-
red for this task—age, sex, education level, and depression score
Bec k’s Depr ession Inv entory, BDI)—via featur e wise CR in a CV-
onsistent manner. This resulted in a much higher AUCROC ( M =
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F igure 3: Tw o mec hanisms for confound-leaka ge. First mec hanism wher e nonnormal distributions get shifted a part thr ough CR. (A, B) An example 
using a simulation with extreme values on opposing sides for 1 feature conditioned on the TaCo. (C, D) A simplified version (binary target for 
visualization purposes) of the house price UCI benchmark dataset. Here, the distributions of the feature conditional on the TaCo are different (C): a 
narrow distribution (TaCo = 1) and a distribution with 2 peaks (TaCo = 0). TaCo r emov al shifts the narrow distribution in between the two peaks (D), 
leaking information usable by nonlinear ML algorithms . T he second mec hanism, leaka ge thr ough minute differ ences in the featur e after CR, is 
highlighted through the visualization of the DT trained on the heart dataset after CR (E). Distribution plots visualize the data at each decision node. 
The decision boundary is shown as a dotted line. For decision nodes before leaf nodes, the side of the decision node leading into a prediction is colored 
to r epr esent the pr edicted label as dia gnosed (gr een) or not (pur ple). The minute differ ences in the 2 used featur es that perfectl y separ ate the data into 
the 2 classes can be seen. 
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A

B

C

Figure 4: Prediction performance of an RF trained with (blue) or without (red) confound removal on an increasing number of features. Each feature 
was sampled from a random standard normal distribution ( M = 0, SD = 1), a random χ2 distribution with df = 3, or a χ2 distribution with a df = 3, scale 
= 0.5 or df = 4, scale = 1 for the confound being equal to 0 and 1, r espectiv el y. (A) The RF trained on the normally distributed features did not achieve 
performance above the chance level ( R 2 < 0) irrespective of confound removal. (B, C) When training the RF on either of the χ2 distributed features, 
confound r emov al r esulted in abov e c hance-le v el performance ( R 2 > 0). This effect incr eased with an incr easing number of featur es and can onl y be 
explained by confound r emov al leaking information into the features. 
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.86, SD = 0.02). This model would be v ery attr activ e for real-world
pplication if its performance is true (i.e., not impacted by leak-
ge). Ho w ever, as w e have sho wn with our analyses, confound-
eakage can lead to such performance impr ov ement. If confound-
eakage is indeed driving the performance, then this model could

isclassify individuals as having ADHD because of confounding
ffects (e.g., their sex or depression), leading to misdiagnosis and
r ong ther a peutic interv entions. To disentangle the effect of eac h

onfound, we looked at the performance after CR for each con-
ound separ atel y. Performing CR with BDI led to a high AUCROC
ith original features after CR ( M = 0.91, SD = 0.01) and shuf-
ed features ( M = 0.84, SD = 0.01) (Fig. 5 A,B). This result revealed
hat BDI is driving the potential leakage, owing to its strong re-
ation to the target (point-biserial correlation, r = 0.61, P < 0.01).
urthermor e, a perm utation test also led to the same conclusion
see Methods and Supplementary Fig. S2). Training CR models only
n healthy individuals can be helpful in clinical applications [ 4 ].
e investigated this variant of CR, and again the AUCROC in-

reased for original features after CR M = 0.83 ( SD = 0.02) and
n increase with shuffled features from M = 0.51 ( SD = 0.05) to
 = 0.79 ( SD = 0.02), suggesting that confound leakage is also a

oncern for variants of CR. Lastly, we wanted to e v aluate why we
bserv e confound-leaka ge on this dataset. The limited pr ecision
f features cannot be the reason here as all features are contin-
ous . T her efor e, we hypothesized that the confound leaked due
o some features deviating from normal distributions. To this end,
e first compared the feature importance between the RF after
R and using the original featur es. Her e, we observ ed the RFs’ 10
 t  
ost important features were completely different (Fig. 5 C,D), in-
icating that the 2 RF models r el y on differ ent r elationships in
he data. Next we visualized the distributions of the 2 most im-
ortant features of the RF after CR for both models . T his visual-

zation (Fig. 5 E,F) clearly shows that CR has shifted the distribu-
ions due to deviations from normal distributions leaking infor-

ation in their joint distribution. Furthermore, we trained new
Ts using only these 2 features before or after CR. This led to an

ncr ease of AUCROC fr om 0.61 to 0.70 after CR onl y using these
eatures . T hese analyses clearly demonstrate that real-world ap-
lications could suffer fr om confound-leaka ge and users should
xercise care when implementing and validating a CR–ML work-
ow. 

iscussion 

ere, we exposed a hitherto unexplained pitfall in CR–ML work-
ows that use featur e wise linear confound r emov al—a method
opular in epidemiological and clinical a pplications. Specificall y,
e have shown this method can counterintuitiv el y intr oduce con-

ounding, which can be exploited by some nonlinear ML algo-
ithms . T hus , in addition to the already known pitfalls of residual
onfounding [ 21 ], our results show that CR may actually intro-
uce confounding information. We pr ovide e vidence of confound-

eakage using a range of systematic controlled experiments on
eal and simulated data comprising both classification and re-
ression tasks. First, to establish confound-leakage as opposed
o information-r e v eal (of possibl y nonlinear information) as the
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A B

C D

E F

Figur e 5: T he r eal-world ADHD speec h dataset. The performance when using differ ent confounds (A, B), most important features of RF when using 
Bec k’s Depr ession Inv entory (BDI) as confound (C, D), and visualization of confound-leaka ge due to de viation fr om normal distributions (E, F). (A) The 
performance of an RF predicting ADHD vs. healthy controls using the original features. To check whether a difference is meaningful, we used the 
Bay esian R OPE a ppr oac h to identify what is most pr obable: performance being higher befor e r emov al ( < ), being higher after r emov al ( > ), or equiv alent 
( = ) (see Methods section). An increased performance can be observed when using all confounds, BDI as a confound, or the TaCo. The same pattern 
appears when the features were shuffled (B). This shows that the increase in performance is due to confound-leakage, and BDI is a driving factor for 
this leakage as it leaks information when used as a confound. (C, D) The 10 most important features for using X and X CR as features . T he feature 
ranking is shown as a white label on top of each cell. The most important features are different for X and X CR . Furthermore, the most important 
features of 1 model ranked as very unimportant in the other. (E, F) Decision boundaries of DT trained on the 2 most important features after CR. The 
bac kgr ound colors indicate the prediction of the model, and the points show the true target value and the x-axis the 2 most important features . T he 
distribution of each feature conditioned on the target is shown as the density plots. One can see that CR leaks information by cleanly separating the 
blue and red points. 
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 eason behind incr eased performance after CR, we pr oposed the
aCo fr ame work (i.e., using the tar get as “superconfound”). This
xtreme case of confounding allo w ed us to establish the exis-
ence, the extent, and possible mechanisms of confound-leakage.
pecifically, by comparing the without CR baseline performance
ith CR after feature shuffling ( ̃  X CR ), this framework can iden-

ify confound-leakage as the cause of increased predictive per-
ormance. We then extended the same fr ame work to the more
ealistic scenario of weaker confounds showing that also there
onfound-leakage can occur. 

To identify risk factors of confound-leakage, we performed sev-
r al anal yses. First, we demonstr ated a mec hanism by whic h
onfound-leaka ge can occur: differ ences of the conditional dis-
ributions of features given the confound. In the case of continu-
us features, nonnormal distributions (e.g., skewed distributions)
nd in the case of discrete features, frequency imbalances can
ause leakage, although other mechanisms could exist. Addition-
lly, w e sho w that features of limited pr ecision (e.g., a ge in years
nd counts) also sho w ed susceptibility due to this mechanism.
astl y, our r esults sho w ed that the risk of confound-leakage in-
reases with the number of featur es, whic h is especiall y pr oblem-
tic in the era of “big data,” where tens of thousands of features
re a norm. 

Still, w e w ould like to highlight that we do not claim to have
ound all possible ways confound-leakage can happen. For in-
tance, it is possible that other modeling a ppr oac hes, e v en linear
nes, could be susceptible to confound-leakage, although we did
ot find evidence for it in our analyses . Nonetheless , confound-

eakage can bias the data and may negativ el y impact subsequent
tatistical analysis [ 21 ]. 

It is important to note that although similar, confound-leakage
s not equal to collider bias. Colliders are variables causally in-
uenced by both the features and target [ 19 ]. Both collider bias
nd confound-leakage describe situations where variable adjust-
ent can lead to spurious relationships between features and tar-

et. Ho w e v er, the collider bias assumes that the r emov ed v ariable
as to be caused by both the features and the tar get, whic h is
ot shared by confound-leakage. One cannot exclude the possi-
ility of collider r emov al using CR for many of our experiments as
ur operational definition of confounds does not include any as-
umption of causality. Still, we observ e confound-leaka ge thr ough
R for at least 1 causally defined confound (see “Walk-through
nal ysis”) and v ariables showing r elationship onl y with the tar-
et. Such associations are not covered by the causal relation-
hips described by a collider. In other w or ds, the mechanisms
f confound-leakage can lead to leaked information due to any
 ariable r elated to the tar get and not onl y colliders or causal
onfounds. 

Taken together, our extensive results show that the commonly
sed data types and settings of nonlinear ML pipelines are sus-
eptible to confound-leakage when using featur e wise linear CR.
her efor e, this method should be applied with care, and the
nsuing models should be closel y inspected, especiall y in criti-
al decision domains. We concr etel y demonstr ated this using an
pplication scenario from precision medicine by building mod-
ls for diagnosis of ADHD. We found that the attempt to con-
rol for comorbidity with depression using CR led to confound-
eaka ge. As man y disorders often exhibit se v er e comorbidity
e.g., AHDH and depression, as we demonstr ated her e, but also
eur odegener ativ e disorders ar e str ongl y confounded by aging-
elated factors [ 31 ] as well as comorbidity in mental disorders
 32 , 33 ]), the issue of confound-leakage should be car efull y as-
essed in all such applications. We recommend the following
est practices when applying CR together with nonlinear ML
lgorithms: 

1) Assess confounding str ength: Chec k the confounds’ r ela-
tion to each feature and the target. In general, confounds
str ongl y r elated to the tar get pose a gr eater danger of
leaking pr edictiv e information. Her e, we used a str aightfor-
w ar d a ppr oac h of measuring the correlations between the
confound and tar get/featur e. Other methods can be em-
plo y ed (e.g., proposed by Spisak [ 27 ]). Furthermore, mea-
suring how dependent the predictions of a model are on
the confound by permutation testing [ 34 , 35 ] or the ap-
pr oac h pr oposed by Dinga et al. [ 21 ] can be helpful. To
gain additional information, the reader might be inter-
ested in methods to estimate the variance in the target ex-
plained by ML predictions that confounds cannot explain
[ 21 , 27 ]. 

2) Compare performance with and without CR: If the perfor-
mance increases after CR, one should investigate the reason
behind the increase. 

3) Gain evidence against or in favor of the confound-leakage:
The pr ocedur e of shuffling the featur es follo w ed b y CR as w e
defined in the TaCo fr ame work can provide clues regarding
confound-leaka ge. Our shuffling a ppr oac h can be seen as a
single iteration of permutation testing. As our experiments
suggest this is sufficient to obtain an indication of confound-
leakage. Ho w ever, a permutation test-based null distribution
can quantify the variability and provide additional informa-
tion. It is important to note, ho w e v er, that while this can
pr ovide e vidence for confound-leaka ge, we ar e not awar e of
a pr ocedur e to definitiv el y exclude confound-leaka ge as an
explanation. 

4) Car efull y c hoose alternativ es: If confound-leaka ge seems
probable, then consider alternative confound adjustment
methods. Stratification [ 20 , 36 ] is commonly in conventional
ML or unlearning of confounding effects [ 37 ], which is com-
mon in deep learning and further general approaches that
promote fairness [ 12 , 38 ]. Note, ho w ever, that these proce-
dures may also entail pitfalls. Hence, we caution r esearc hers
to exercise care when applying any confound adjustment
protocol and to carefully consider limitations of the mod-
eling a ppr oac h used. 

onclusions and future directions 

mportant societal questions involving health and economic pol-
cy can be informed by a ppl ying powerful nonlinear ML mod-
ls to large datasets. To draw appropriate conclusions, confounds
ust be removed without introducing new issues that cloud the

esults. In the present study, we performed extensive numeri-
al experiments to gather evidence for confound-leakage. Using
eature shuffling and predictions due to confound predicted fea-
ures as proposed here , in vestigators can get an initial indication
f whether their pipeline and data are susceptible to confound-
eakage. We highlighted the conditions most likely to lead to leak-
ge. Although we made progress on understanding these issues,
here is no full-proof method for detecting and eliminating leak-
ge. We hope our results prompt others to push further, perhaps
xpanding on the standard definition we adopted for confounds
y introducing causal analyses. We hope our and allied efforts

nform both r esearc hers and pr actitioners who incor por ate ML
odels into their data analyses. As a starting point, we suggest

ollowing the guidelines we provide to mitigate against confound-
eakage. 
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Methods 

Data 

We analyzed several ML benchmark datasets from diverse do- 
mains to draw generalizable conclusions. To ensure reproducibil- 
ity, most datasets come from the openly accessible UCI repository 
[ 39 ]. We included 5 classification tasks and 5 r egr ession tasks with 

different sample sizes and numbers of features. All classification 

pr oblems wer e binary or wer e binarized, and class labels wer e bal- 
anced to exclude biases due to class imbalance [ 40 ]. 

We also used one clinical dataset, a balanced subsample of 
the ADHD speech dataset described by von Polier et al. [3]. This 
data includes 126 individuals with 6,016 speec h-r elated featur es,
a binary target describing ADHD status (ADHD or control) and 

contains 4 confounds: gender, education le v el, a ge, and depr es- 
sion score measured using the BDI. For more information on the 
datasets, see Supplementary Table S1. 

Confound remo v al 
Confound r emov al w as performed follo wing the standar d w ay of 
using linear r egr ession models. Following the common practice,
we applied CR to all the features. Specifically, for each feature, a 
linear r egr ession model was fit with the feature as the dependent 
variable and the confounds as independent variables . T he residu- 
als of these models, that is, original feature minus the fitted values 
were used as confound-free features ( X CR = X − ˆ X ). This procedure 
was performed in a CV-consistent fashion (i.e., the confound re- 
moval models were fitted on the training folds and applied to the 
training and test folds) [ 20 , 22 ]. 

Target as a confound (TaCo) 
The TaCo fr ame w ork allo ws systematic analysis of confound re- 
mo val effects . Confounding is a 3-wa y relationship between fea- 
tures , confounds , and the target. T his means that a confound 

needs to share variance with both the feature and the target. Mea- 
suring or simulating such relationships can be hard, especially 
if linear univariate relationships cannot be assumed. Further- 
more, effects of confound removal should increase with the actual 
strength of the confound. The target itself explains all the shared 

variance and thus is the strongest possible confound. Ther efor e,
using the target as a confound (i.e., TaCo) measures the most pos- 
sible extent of confounding. In addition, using the TaCo simplifies 
the analysis to a 2-way relationship. Lastly, the TaCo approach is 
applicable to any dataset and can help to measure the strongest 
possible extent of confound-leaka ge e v en without knowing the 
confounds. 

Machine learning pipeline 

To study the effect of CR on both linear and nonlinear ML al- 
gorithms, w e emplo y ed a variety of algorithms: linear/LR, linear 
k ernel SVM, RBF k ernel SVM, DT, RF, and MLP with a single hid- 
den layer (r elu). Additionall y, we used dummy models to e v aluate 
c hance-le v el performance. 

In the pr epr ocessing ste ps, we normalized the contin uous fea- 
tures and continuous confounds to have a mean of zero and unit 
v ariance, a gain in a CV-consistent fashion. Any categorical fea- 
tur es wer e one-hot encoded follo wing standar d practice. 

Ev alua tion 

We compared the performance of ML pipelines with and without 
CR. To this end, we computed the out-of-sample AUCROC for clas- 
sification and pr edictiv e R 

2 fr om scikit-learn [ 41 ] for r egr ession 
roblems in a 10 times repeated 5-fold nested CV. We emplo y ed
he Bay esian R OPE a ppr oac h [ 42 ] to determine whether the re-
ults for a given dataset and algorithm with and without CR were
eaningfully higher, lo w er, or not meaningfully different. 

he Ba y esian ROPE for model comparison 

n this study, we used the Bay esian R OPE [ 42 ] a ppr oac h to qualify
ifferences between K-fold cross-validation results coming from 

 models . T his a ppr oac h uses the Bayesian fr ame work to com-
ute probabilities of the metric falling into a defined region of
r actical equiv alence or of 1 ML pipeline scoring higher than the
ther. This is ac hie v ed by defining a region of equivalence (here
e used 0.05). Consequently, the Bayesian ROPE a ppr oac h allows
s to make probabilistic statements regarding whether and, if so,
hich of the ML pipelines score higher. We summarize these dif-

erences using the following symbols: = (highest probability of 
ipelines scoring pr acticall y equiv alent), < (highest pr obability of
ight pipeline scoring higher), and > (highest probability of left
ipeline scoring higher). Other possibilities, such as the signifi- 
ance test correcting for the dependency structure in K-fold CV
 43 ] or permutation testing by shuffling the target or features, can
e emplo y ed when suitable. 

eature shuffling approach 

huffling the features while k ee ping the confounds and target in-
act destroys the feature–target and feature–confound relation- 
hips while preserving the confound–target relationship. There- 
or e, after featur e shuffling, an y confound adjustment method
annot r e v eal the featur e–tar get r elationship, but it can still leak
nformation. In other w or ds, any performance above the chance
e v el after CR on shuffled features is an indication of confound-
eakage . F eature shuffling is also used in other a ppr oac hes suc h
s permutation testing (see section “T he Ba y esian R OPE for model
omparison”) to test effectiveness of confound adjustment meth- 
ds [ 21 ]. Permutation testing can be computationally expensive
nd, like other frequentist tests, it cannot accept the null hypoth-
sis to establish equivalence . We , therefore , adopted a computa-
ionally feasible methodology. We shuffle the features, perform re- 
eated nested cr oss-v alidation, and then a ppl y the Bayesian ROPE.
or completeness, we show that both permutation testing and the
ay esian R OPE detect confound leakage in the clinical dataset. In
ome cases, feature shuffling approaches might need further con- 
ideration, for instance, shuffling features within confound cate- 
ories to pr eserv e their joint distribution (see “Walk-thr ough anal-
sis”) and the possibility of suppression and leakage happening 
im ultaneousl y. Ne v ertheless, they serv e as a useful tool for de-
ecting confound leakage, as shown in this work. 

vailability of Source Code and 

equirements 

� Project name: Confound-leakage 
� Pr oject homepa ge: https://github.com/juaml/ConfoundLeaka g
� Operating system(s): GNU/Linux 
� Pr ogr amming langua ge Python 3.10.8 [ 43 ] 
� Other r equir ements: scikit-learn 0.24.2, baycomp 1.0.2, mat- 

plotlib 3.5.1, seaborn 0.11.2, dtr ee viz 1.3.5, numpy 1.22.3, pan-
das 1.2.5 

� License: GNU Affero General Public License v3.0 
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a ta Av ailability 

ll 10 UCI benchmark datasets can be accessed freely at the UCI
achine learning repository [ 39 ]. Together with our simulated

ata (available under [ 44 ]), the UCI benchmark datasets com-
ose minimal data sets to r epr oduce our key findings. Addition-
ll y, we anal yzed 1 r eal-world clinical dataset [ 3 ]. These sensi-
ive data are available from PeakProfiling GmbH with certain re-
trictions. Restrictions a ppl y to the av ailability of the data, which
ere used under license for this study. Please contact Jörg Langner,

he cofounder and CTO of PeakPr ofiling GmbH, with r equests. An
rc hiv al copy of the code and supporting data is also available via
he GigaScience database, GigaDB [ 45 ]. 

dditional Files 

upplementary Fig. S1. Performance on the UCI benchmark
atasets when using raw vs. CR features (A) and ra w vs . the pre-
icted features given the confound/TaCo/X ˆ (B). The 2 columns cor-
espond to (i) TaCo removal with 6 ML algorithms (LR, DT, RF, MLP,
in SVM, RBF SVM) and (ii) CR with simulated confound with dif-
er ent corr elation to the tar get (r ange 0.2–0.8) with RF. (A, B) Per-
ormance using the original features. (C, D) Performance on shuf-
ed features. When using a linear model (LR), TaCo removal leads
o reduction in prediction performance, as expected. In contrast,
onlinear models lead to a higher performance for all datasets.
his increase could be explained by confound r emov al r e v eal-

ng information already in the data (suppression) or confound re-
oval leaking information into the features (confound-leakage).

huffling the features destroys the association between features
nd the target; therefore, subsequent performance increase after
aCo r emov al indicates the possibility of confound-leaka ge (C, D).
he simulated confounds show that an increase after CR is also
ossible for confounds weakl y r elated to the target (B, D), and 1
ataset (Blood) shows strong evidence of confound-leakage. 
upplementary Fig. S2. We performed permutation testing with
,000 iterations. After shuffling the features, a significantly lo w er
erformance was observed compared to the original features X .
o significant difference between raw and shuffled features was
bserved when using the X CR features . T his result is in line with
he leakage hypothesis as the higher accuracy after shuffling and
R indicates leaking tar get-r elated confounding information into
he features. 
upplementary Table S1. Ov ervie w of all the datasets used.
hows each dataset with their associated problem type, sample
ize, feature number, and source. Our datasets cover a big range
f features and sample sizes. All datasets with the exception of the
peech ADHD one are freely accessible through the UCI machine
earning repository. 
upplementary Table S2. Ov ervie w of all the simulations used.
ncluding pseudo-code to create the features (X), target (y), and
onfounds (c). Variables were sampled from normal distributions
 N ), with different means ( M ) and standard deviations ( SD ) or bi-
ary distributions (binary). repeat(list, number) indicates the repeti-
ion of a list of values ([value , value ,...]) are repeated for a number
f times. concat means the concatenation of m ultiple arr a ys , and
 here condition → oper ation means that the oper ation is executed

or where the condition is met. 

bbreviations 

DHD: attention-deficit/hyperactivity disor der; AUCR OC: r eceiv er
per ating c har acteristic curv e; BDI: Bec k’s Depr ession Inv entory;
R: confound r egr ession; CV: cr oss-v alidation; DT: decision tree;
R: logistic r egr ession; ML: mac hine learning; MLP: m ultilayer per-
eptr on; RBF: r adial basis function; RF: r andom for est; SVM: sup-
ort vector machine; TaCo: target as a confound; UCI: UC Irvine. 

thical Appr o v al 
ll pr ocedur es contributing to this work comply with the eth-

cal standards of the r ele v ant national and institutional com-
ittees on human experimentation and with the Declaration of
elsinki of 1975, as r e vised in 2008. The ADHD data collection
nd use involving human subjects/patients were approved by
he ethics committee of the Charite Universitatsmedizin Berlin,
erlin, German y; the a ppr ov al number is EA4/014/10. All neces-
ary patient/participant consent has been obtained and the ap-
ropriate institutional forms have been archived by the data col-

ectors . T he ethics protocols for analyses of these data were ap-
r ov ed by the Heinrich Heine University Düsseldorf ethics com-
ittee (No. 4039, 4096). 
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