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Abstract
Time series are a critical component of ecological analysis, used to track changes in 
biotic and abiotic variables. Information can be extracted from the properties of time 
series for tasks such as classification (e.g., assigning species to individual bird calls); 
clustering (e.g., clustering similar responses in population dynamics to abrupt changes 
in the environment or management interventions); prediction (e.g., accuracy of model 
predictions to original time series data); and anomaly detection (e.g., detecting possi-
ble catastrophic events from population time series). These common tasks in ecologi-
cal research all rely on the notion of (dis-) similarity, which can be determined using 
distance measures. A plethora of distance measures have been described, predomi-
nantly in the computer and information sciences, but many have not been introduced 
to ecologists. Furthermore, little is known about how to select appropriate distance 
measures for time-series-related tasks. Therefore, many potential applications remain 
unexplored. Here, we describe 16 properties of distance measures that are likely to 
be of importance to a variety of ecological questions involving time series. We then 
test 42 distance measures for each property and use the results to develop an ob-
jective method to select appropriate distance measures for any task and ecological 
dataset. We demonstrate our selection method by applying it to a set of real-world 
data on breeding bird populations in the UK and discuss other potential applications 
for distance measures, along with associated technical issues common in ecology. Our 
real-world population trends exhibit a common challenge for time series comparisons: 
a high level of stochasticity. We demonstrate two different ways of overcoming this 
challenge, first by selecting distance measures with properties that make them well 
suited to comparing noisy time series and second by applying a smoothing algorithm 
before selecting appropriate distance measures. In both cases, the distance measures 
chosen through our selection method are not only fit-for-purpose but are consistent 
in their rankings of the population trends. The results of our study should lead to an 
improved understanding of, and greater scope for, the use of distance measures for 
comparing ecological time series and help us answer new ecological questions.
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1  |  INTRODUC TION

Time series are a critical component of ecological analysis: Ecologists 
use time series to track changes in biotic variables, such as popula-
tion sizes and mean growth rates of individuals, as well as abiotic 
variables, such as temperature and atmospheric carbon dioxide. 
Time series provide insights into food web and ecosystem function 
and the causes and effects of environmental change, and are vital 
to any scientific approach to environmental management (Boero 
et al., 2015). Ecologists can make inferences through time series com-
parisons, for example, looking for similarities (differences) in climate 
change response between populations within or across geographic 
or taxonomic groups. However, examining and analyzing each time 
series by hand is often unwieldy because comparisons may be across 
thousands or even millions of time series (e.g., BioTIME—Dornelas 
et al.,  2018; the Continuous Plankton Recorder Survey—Edwards 
et al., 2016; the British Trust for Ornithology Breeding Bird Survey—
Harris et al.,  2020; the North American Breeding Bird Survey—
Pardieck et al., 2020; and The Living Planet Index—WWF, 2020).

Data mining of time series is the process of extracting infor-
mation from the properties of time series for tasks such as classi-
fication, clustering, prediction, and anomaly detection (Esling & 
Agon, 2012). These tasks are common in ecology, for example, clus-
tering time series of parasite counts to identify infection patterns 
(Marques et al., 2018); predicting the emergence of fruiting bodies 
by classifying time series of environmental drivers (Capinha, 2019); 
identifying insect species by classifying wingbeat frequency signals 
(Potamitis et al., 2015); surveying bird population sizes by classifying 
recorded calls (Priyadarshani et al., 2020); and predicting species dis-
tributions based on time series of environmental variables (Capinha 
et al., 2020). These tasks all rely on the notion of (dis-) similarity. For 
example, clustering involves grouping similar time series together by 
maximizing the similarity within groups and minimizing the similar-
ity between groups (Aghabozorgi et al., 2015; Esling & Agon, 2012; 
Liao,  2005). Classification is like clustering, except labels are pre-
defined and new time series are assigned to existing clusters to 
which they are most similar (Keogh & Kasetti, 2003). For example, 
time series for individual song/call could be classified into known 
species. Prediction may rely on similarity to determine accuracy 
of a predictive model by comparing output time series against the 
original data (Capinha, 2019; Esling & Agon, 2012). Finally, anomaly 
detection involves comparing time series against an anomaly-free 

model to determine whether they fall outside of a similarity thresh-
old (Esling & Agon, 2012; Teng, 2010).

Similarity between time series can be determined by using dis-
tance measures to measure its inverse: dissimilarity. Dissimilarity 
is more intuitive as a measurement because a value of zero occurs 
when two time series are identical (while similarity has a scale-
dependent maximum value). Applications for distance measures 
typically fall into the four categories defined above. However, there 
are other less well-known applications, such as content queries, hy-
pothesis testing, accuracy assessment, and comparison of time se-
ries models (i.e., using comparison methods on model outputs to aid 
model selection). Distance measures can also be used for pattern 
matching against databases to identify animal species or biological 
or ecological events from recorded or streaming data sources, such 
as video, audio, photographs, motion capture, temperature moni-
tors, or other types of sensors. In addition, there are many other 
types of time series that one might wish to compare, such as activity 
patterns, biomass, nutrient uptake, growth rates, and entropy.

The choice of distance measure for any task should depend on 
the properties of the data to be analyzed and the nature of the task 
(Esling & Agon, 2012). In practice, choosing a distance measure often 
becomes a matter of convenience. For example, the well-known and 
easy-to-use Euclidean distance is among the most widely used dis-
tance measures, although there are often better choices (Paparrizos 
et al., 2020; Wang et al., 2013). When investigating the performance 
of five distance measures for comparing animal movement trajecto-
ries, Cleasby et al. (2019) found that the most used measure was the 
least appropriate choice. One problem for ecologists is that many 
distance measures originate within computer science, information 
science, systems science, and mathematics, and few are currently 
in common use within ecology. Another problem is that informa-
tion on the strengths, weaknesses, and appropriate uses of dis-
tance measures is limited and often difficult to find. Some reviews 
of distance measures have been published (Esling & Agon,  2012; 
Lhermitte et al.,  2011; Liao,  2005; Montero & Vilar,  2014; Mori 
et al., 2016a), but are not generally aimed at ecologists (but see Lher-
mitte et al., 2011); analysis of the properties of distance measures 
is limited, and guidance on how to choose an appropriate distance 
measure is either missing or very general and not within the context 
of ecological problems. Other studies have analyzed the classifica-
tion accuracy of multiple distance measures across a variety of data-
sets (Bagnall et al., 2017; Paparrizos et al., 2020; Pree et al., 2014; 
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Wang et al.,  2013), but pooled the results to give overall perfor-
mance scores. This ignores the fact that different distance measures 
perform better on different datasets and for different tasks. Kocher 
and Savoy (2017) tested 24 distance measures for six properties and 
then compared their effectiveness in classification on 13 real-world 
datasets. However, the study focused on a single task (author pro-
filing, i.e., determining demographic information about the author 
of a document based on the document itself), and did not present 
a general method for selecting distance measures for other tasks. 
Furthermore, the distance measures that demonstrated all pro-
posed properties did not perform best on real-world datasets. Mori 
et al. (2016b) developed an automated process for selecting distance 
measures based on nine quantifiable properties of datasets. How-
ever, their classifier is limited to clustering tasks, and only includes 
five common distance measures. We are not aware of any more gen-
eralized method of distance measure selection.

In this study, we present a generalized, objective, user-driven 
method of choosing fit-for-purpose distance measures for time se-
ries comparison tasks. We evaluate 42 distance measures for 16 
properties related to time series comparison, and use the results 
in combination with existing literature to develop our selection 
method. We then demonstrate the method by applying it to a set of 
real-world UK bird population trends from a study of the effective-
ness of conservation measures (Jellesmark et al., 2021). Finally, we 
discuss potential applications for using distance measures to com-
pare time series and describe how to use our selection method to 
choose an appropriate distance measure for any time series dataset 
and task.

2  |  METHODS

Distance measures can be broadly categorized into four different 
types: (1) shape-based, (2) feature-based, (3) model-based, and (4) 
compression-based. Shape-based distances compare the shapes of 
time series by measuring differences in the raw data values (Aghabo-
zorgi et al., 2015; Esling & Agon, 2012) and can be further divided 
into lock-step measures and elastic measures. Lock-step measures 
compare each time point of one time series to the corresponding 
time point of another time series, while elastic measures allow a 
single point to be matched with multiple points or no points (Wang 
et al., 2013). Elastic measures fall into two groups. The first, dynamic 
time warping (DTW), computes an optimal match between two time 
series by allowing single points to be matched with multiple points, 
thus allowing local distortion or “warping” of the time dimension 
(Esling & Agon, 2012). The second comprises edit distances, which 
compare the minimum number of “edits,” or changes, required to 
transform one time series into another (Esling & Agon, 2012). These 
are based on the concept of transforming one string into another 
by changing one letter at a time, with each “edit” being an inser-
tion, deletion, or substitution. Feature-based distances compute 
some feature of time series, such as discrete Fourier transforms or 
autocorrelation coefficients, and use either a specialized or common 

distance function (e.g., the Euclidean distance) to determine the dis-
tance between the computed features (Mori et al., 2016a). Model-
based distances compare the parameters of models fitted to the 
time series, such as autoregressive moving average (ARMA) models, 
with the advantage that they can incorporate knowledge about the 
process used to generate the time series data (Esling & Agon, 2012). 
Finally, compression-based distances assess the similarity of two 
digital objects according to how well they can be “compressed” 
when connected (Cilibrasi & Vitanyi, 2005; Esling & Agon, 2012); the 
more similar the objects, the better they compress when joined in 
series (Esling & Agon, 2012). Although there are comparatively few 
model-based and compression-based distance measures, there are 
many shape-based and feature-based measures available.

We selected 42 distance measures from the literature (see 
Table A1 in Appendix A), choosing measures that had already been 
implemented in publicly accessible R packages, and that represented 
each of the types of measures defined above, as well as a variety of 
potential use cases. Of these, 18 are implemented in the R package 
“TSclust” (version 1.3.1) and have been studied for use in clustering 
time series (Montero & Vilar, 2014), and the remaining 24 are imple-
mented in the R package “philentropy” (version 0.5.0; Drost, 2018).

We defined a set of 16 properties of distance measures that may 
be of interest in time series comparison in ecological problems: four 
metric properties, six value-based properties, five time-based prop-
erties, and one uncategorized property. Metric properties define 
whether dissimilarity is measured in metric space (a space that has 
real physical meaning). Distance measures that do not demonstrate 
all the metric properties (semi-metrics and non-metrics; McCune & 
Grace, 2002) are useful, but less intuitive (e.g., negative distances, 
or non-zero distances between identical objects). Value-based prop-
erties focus on dissimilarities on the y-axis (differences in values), 
while time-based properties focus on dissimilarities on the x-axis 
(differences in time).

2.1  |  Metric properties (adapted from McCune & 
Grace, 2002)

•	 M1: Reflexivity: d(X,X) = 0. The dissimilarity value between a time 
series X and itself is zero.

•	 M2: Symmetry: d(X,Y) = d(Y,X). The dissimilarity value is the same 
regardless of the order in which time series are compared, X to 
Y or Y to X. A distance measure without symmetry might clus-
ter a collection of time series differently depending on how the 
time series are ordered. In the real world, distances within city 
road networks are often non-symmetric due to one-way streets. 
Animal migration times might be non-symmetric if they are mov-
ing uphill in one direction and downhill in the other.

•	 M3: Triangle inequality: d(X,Z) + d(Z,Y) ≥ d(X,Y). Given three time 
series, the distance between any pair of them is never larger than 
the sum of the distances between the other two pairs of time 
series. This property is related to Euclidean geometry (one side 
of a triangle cannot be longer than the other two combined). A 
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non-metric or semi-metric that does not satisfy the triangle in-
equality can cause errors for many clustering algorithms (Jacobs 
et al.,  2000). On the contrary, some time series classification 
problems require a distance measure that does not satisfy the 
triangle inequality, for example, when it is important to ignore 
outliers or whole subsets of observations (Weinshall et al., 1998). 
Matching many points to a single point, which allows for warping 
invariance (T3 below) would not be possible with a metric dis-
tance. Therefore, comparing animal calls or movement patterns or 
other time series that may have a similar pattern but with one time 
series stretched relative to the other may require a semi-metric 
(e.g., DTW) or non-metric for accurate classification.

•	 M4: Non-negativity: d(X,Y) ≥ 0. The dissimilarity value is never 
less than zero. Mathematically, this must be true if properties M1, 
M2, and M3 are true. However, some distance measures that do 
not satisfy the triangle inequality can return negative dissimilarity 
values.

2.2  |  Value-based properties

•	 V1: Translation sensitivity (Figure 1a; adapted from Batyrshin et 
al., 2016). Translation refers to increasing the value of all obser-
vations of one time series by the same amount. It may be desir-
able to have a distance measure that is invariant to translation 
(the dissimilarity value does not change when one time series is 
translated) when time series have different starting values, for ex-
ample, time series of carbon-14 with different background levels.

•	 V2: Amplitude sensitivity (Figure 1b). Translation sensitivity on a 
local scale (sensitivity to translation of a section of a time series) 
will be referred to as amplitude sensitivity. This could be import-
ant, for example, in determining deviations in the strength of sea-
sonal temperature patterns.

•	 V3: White noise sensitivity (sensitivity to random noise; Figure 1c; 
adapted from Lhermitte et al., 2011). Robustness against white 
noise (low sensitivity) might be desirable, for example, when com-
paring trends of stochastic processes such as population growth, 
where for example it could be assumed that sampling variation 
might be causing uncorrelated randomness in the time series.

•	 V4: Biased noise sensitivity (sensitivity to non-random noise, i.e., 
noise in a single direction; Figure 1d; adapted from Lhermitte et 
al., 2011). An invariance or low sensitivity to biased noise might 
be important, for example, if comparing time series of vegetation 
density calculated from satellite images biased by differential 
cloud cover.

•	 V5: Outlier sensitivity (Figure 1e). Sensitivity to outliers is useful 
for detecting anomalies or disruptive events such as drought or 
storms, but robustness may be preferred where outliers represent 
measurement errors or irrelevant anomalies (e.g., sharp drops in 
abundance at survey sites due to predator presence).

•	 V6: Antiparallelism bias (Figure  2). Antiparallelism refers to line 
segments or trends which have slopes with the same value but 
opposite signs, while parallelism refers to those which have 

identical slopes in both value and sign. A distance measure with 
positive antiparallelism bias ignores the sign of the slope and 
treats antiparallel and parallel trend curves the same. A distance 
measure with negative antiparallelism bias treats trend curves 
with opposite signs as more dissimilar than those with identical 
signs. Distance measures with no antiparallelism bias (neutral) 
measure absolute differences on the y-axis, without respect to 
slope or direction. Whether and which kind of antiparallelism bias 
is desirable depends on the application. For example, it might be 
important to differentiate between positive and negative fluctua-
tions from a baseline value of energy flow, which would require a 
distance measure with a positive or negative antiparallelism bias; 
conversely, if the only concern was the magnitude of fluctuation, 
a neutral distance measure might be preferred.

2.3  |  Time-based properties

•	 T1: Phase sensitivity (Figure  1f; adapted from Lhermitte et 
al., 2011). Phase sensitivity is the x-axis equivalent of translation 
sensitivity; it describes how a dissimilarity value is affected by 
temporal shifting of all values of a time series by the same amount. 
Phase invariance may be a desirable property to detect similari-
ties that occur separated in time. For example, when matching 
audio recordings of bird songs, it is likely that similar songs occur 
at different time points in different recordings. Conversely, when 
comparing population trends of different species within a com-
munity or geographical area to see which ones responded simi-
larly to a disruptive event occurring at time t, phase invariance is 
not a desirable property as responses should match in time.

•	 T2: Time scaling sensitivity (Figure  1g; adapted from Esling & 
Agon, 2012). Time scaling refers to the expansion or compression 
of a time series along its time axis. Invariance to time scaling is 
useful for certain applications, such as comparing animal behavior 
patterns occurring at different speeds.

•	 T3: Warping sensitivity (Figure  1h; adapted from Batista et 
al., 2011). Local time scaling, involving the expansion or compres-
sion of one or more sections of a time series, rather than the en-
tire series, will be referred to as warping. Invariance to warping is 
particularly useful when matching similar time series which have 
plateaus or valleys of uneven lengths. For example, recordings of 
bird calls may have pauses of different lengths but the same over-
all call pattern within species.

•	 T4: Frequency sensitivity (Figure 1i). If a distance measure is sen-
sitive to frequency, increasing the number of differences between 
two time series should increase the dissimilarity value. This could 
be important, for example, to rank a set of environmental time 
series according to the number of deviations from a normal range 
to determine levels of climate destabilization.

•	 T5: Duration sensitivity (Figure 1j). This property is a special case 
of frequency sensitivity. Distance measures which are sensitive to 
duration must be sensitive to frequency, but the converse is not 
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    |  5 of 32DOVE et al.

true. Continuing the example from T4, ranking a set of environ-
mental time series according to the number of deviations from a 
normal range without respect to the lengths of those deviations 
would require a distance measure sensitive to frequency but not 
duration.

See Appendix A for more precise and detailed descriptions of 
properties V1–V6 and T1–T5.

2.4  |  Other properties

•	 N1: Non-positive value handling. Some distance measures will not 
return results if the data contain negative values or zeros. This has 
implications for tasks such as classification, where it is common to 
first rescale time series values to [−1,1].

2.5  |  Properties tests

The metric properties of some distance measures are specified in 
the literature, but for others, it is unclear. Therefore, we devised a 
set of tests for metric properties (Appendix B). We confirmed the 
robustness of our tests by comparing our results to the literature for 
distance measures with known metric properties.

We performed two types of testing for non-metric properties in 
this study. Controlled testing was performed on sets of short, simple 
time series to clearly demonstrate specific properties. We then mea-
sured relative sensitivity for most properties and separated the re-
sulting values into five bins, which we designated as “very low,” “low,” 
“medium,” “high,” or “very high.” For phase, time scaling, and warping 
sensitivity tests, relative sensitivity results were not binned. Instead, 
distance measures were designated “sensitive” for a given property 
if the distance was directly dependent on the phase difference or 

F I G U R E  1 Illustration of time series distortions used to demonstrate sensitivities or invariances of distance measures to: (a) translation; 
(b) amplitude; (c) white noise; (d) biased noise; (e) outliers; (f) phase; (g) time scaling; (h) warping; (i) frequency; and (j) duration. A dissimilarity 
value of zero (or equivalent, for any distance measure not demonstrating reflexivity) between any of the illustrated pairs of time series would 
indicate an invariance to that type of distortion.
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degree of scaling or warping. For all sensitivities, distance measures 
were classified as “invariant” if they returned zero values for all time 
series pairs, “insensitive” if the same non-zero value was returned for 
all time series pairs, or “unpredictable” if distance values varied but 
did not show a clear relationship. All measures that were unable to 
handle unequal-length time series were designated “n/a” for uniform 
time scaling sensitivity and warping sensitivity.

Antiparallelism bias was tested by comparing pairs of time series 
that differed by the same relative amount in different directions. 
Distance measures were designated as “positive” biased if they 
gave a greater dissimilarity value to pairs of time series differing 
in opposite directions than to pairs differing in the same direction, 
“negative” biased if they gave a greater dissimilarity value to those 
differing in the same direction, or “neutral” if they assigned each pair 
of time series the same dissimilarity value.

To ensure the demonstrated properties translate onto real-world 
datasets, we employed uncontrolled testing on two real-world time 
series (Figure  3) from the UCR Time Series Classification Archive 
(Dau et al., 2019). One time series was randomly selected from the 
Yoga dataset, and represents body movement during pose transi-
tions. Captured images of actors were converted to one-dimensional 
time series by calculating the distance between the outline and its 
center. The other time series was randomly selected from the Syn-
thetic Control dataset and is a synthetically generated pattern de-
signed to be quantifiably similar or dissimilar to other time series in 
the dataset. Neither of these are ecological time series, but it does 
not matter for the purpose of generalized testing. We created a 
function for each property to be tested, which applies a transfor-
mation to one or more time points of a real-world time series. For 

example, the translation function adds a real number q to every ob-
servation of a time series. The transformed time series is then com-
pared with its unaltered counterpart. We applied the functions over 
a range of parameters, then plotted the resulting curves to show 
how responses of distance measures vary with magnitude. We did 
not compare them against a reference or assign sensitivity ratings as 
they were intended only as a confirmatory check against the results 
of controlled testing.

For a more detailed and technical explanation of properties test-
ing, see Appendix B.

2.6  |  Correlation between distance measures

We used the relative sensitivity values (before binning) for prop-
erties V1–V5, T4, and T5 to test for correlations between distance 
measures, to determine how similarly related and unrelated distance 
measures responded to our properties tests. First, we calculated 
the Pearson correlation between each pair of distance measures. 
We then separated the results into pairwise correlations of distance 
measures within the same families and pairwise correlations of unre-
lated distance measures, and performed a Welch two-sample t-test 
to determine if distance measures within the same family or group 
are more closely correlated than unrelated distance measures.

2.7  |  Selection process

We devised a three-step selection process to guide researchers 
through determining the most appropriate distance measure(s) for 
their intended application. The selection process utilizes a set of 
purpose-built tools that we created by combining the results of our 
properties tests with existing knowledge from the literature (espe-
cially Esling & Agon, 2012). The first step is to use a decision tree 
(Figures 8 and 9) to select a general category of distance measures. 

F I G U R E  2 Illustration of antiparallelism bias. Time series X and 
Y are antiparallel (Y has the same slope as X, but in the opposite 
direction), while Z has a different slope than X, but in the same 
direction. The total difference in values between X and Z is the 
same as that between X and Y. Distance measures with positive 
antiparallelism bias rate time series X as more dissimilar to time 
series Z than to time series Y, while the opposite is true for those 
with negative antiparallelism bias. Distance measures with neutral 
antiparallelism bias rate the time series pairs as equally dissimilar.

F I G U R E  3 One time series from each of the Yoga (top) and 
Synthetic Control (bottom) datasets of the UCR Time Series 
Archive (Dau et al., 2019). Time series in the archive are z-
normalized. Therefore, we applied a translation shift before testing 
to ensure compatibility with distance measures that are unable to 
handle zeros or negative values.
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    |  7 of 32DOVE et al.

Step two is to use Table 1 to determine which pre-processing steps 
might be necessary to prepare the dataset and/or to further nar-
row the choice of distance measures. The final step is to determine 
which properties will be most important to achieve the desired out-
come and use Figures 4–6 to narrow the selection to the distance 
measure(s) that exhibit these properties.

2.8  |  Real-world example dataset

To demonstrate the selection process and add real-world context, 
we used a dataset from a study of conservation impact of wet grass-
land reserves on breeding birds in the UK (Jellesmark et al., 2021). 
The dataset consists of 25 years of breeding pair count data for 
five wading bird species, from within and outside of reserves. The 
within-reserves data came from 47 RSPB lowland wet grassland re-
serves, while the counterfactual (outside of reserves) data was se-
lected from the UK Breeding Bird Survey data. Data were matched 
to select sites that represent how reserve land would look in the 
absence of conservation measures. The reserve and counterfactual 
count data were aggregated into species trends and then converted 
to indices by dividing each annual species count total by the first-
year species count total. Thus, each of the five bird species was rep-
resented with a reserve trend index and a matched counterfactual 
trend index. Jellesmark et al.  (2021) compared each pair of indices 
to determine the effects of conservation efforts on each bird spe-
cies, by calculating the percentage improvement of reserve indices 
over counterfactual indices and performing t-tests to determine sig-
nificance and effect size of the difference. We ranked the results 
of Jellesmark et al.  (2021) according to both percentage improve-
ment and effect size. We then applied our selection method to se-
lect appropriate distance measures, ranked the dissimilarity results 

returned by each selected distance measure, and examined the 
rankings with respect to Jellesmark et al. (2021). We also ranked the 
results returned by unselected distance measures for comparison.

3  |  RESULTS

3.1  |  Metric test results

Fourteen out of 42 distance measures were identified as full metrics, 
meaning they passed the metric tests for reflexivity, symmetry, non-
negativity, and the triangle inequality (Figure 4). Sixteen distance 
measures were identified as semi-metrics (failed the triangle ine-
quality test but passed the other three tests) and 12 were identified 
as non-metrics (failed at least one of the tests for reflexivity, symme-
try, or non-negativity; Figure 4). However, in some cases results de-
pended on settings or input values (some distance measures passed 
the triangle inequality and/or non-negativity tests only when inputs 
were constrained to non-negative real numbers). All tested feature-
based and model-based distances were full metrics, while all tested 
compression-based distances were non-metrics. Shape-based meas-
ures showed mixed results, even within families and groups.

3.2  |  Sensitivity test results

Lock-step shape-based measures varied in the strength of re-
sponses to the sensitivity tests, but none tested as unpredict-
able and only two (the Chebyshev distance and the Short Time 
Series, or STS, distance) showed any invariances or insensitivities 
(Figure  5; also, see Figures  1 and 2 for illustrations of the time 
series distortions we used to test for sensitivities and invariances). 

TA B L E  1 Solutions to potential issues in the data.

Problem Pre-processing solution Properties-based solution

Missing data points Interpolate missing values Choose an elastic distance. They handle gaps through one-
to-none or one-to-many point matching

Different starting values but similar value 
scales

Apply a translation shift Choose a distance measure invariant (or sensitive) to 
translation

Different value scales Normalize or standardize data

Zeroes or negative values Transform data to obtain positive 
values

Choose a distance with non-positive value handling

Noise Apply a smoothing algorithm Choose a distance measure robust (or sensitive) to the type 
of noise that is of concern

Out of phase Choose a phase invariant (or phase sensitive) distance 
measure

Unequal lengths Cut all time series to the same 
length

Choose an elastic, model-based, or compression-based 
distance measure

Different time scales Choose a distance measure invariant (or sensitive) to 
uniform time scaling

Nonuniform sampling intervals Interpolate intermediate values Choose a distance measure that incorporates temporal 
information, such as the STS distance

Note: Choice of invariance or sensitivity as a solution should depend on whether the difference in question is important.
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8 of 32  |     DOVE et al.

The Welch two-sample t-test shows that correlations between 
distance measures within families or groups (mean Pearson cor-
relation = 0.48) are significantly stronger than between unre-
lated distance measures (mean Pearson correlation = 0.15; t = 5.5, 
df = 82.3, p < .001). However, not all related distance measures 
were closely correlated (see Figure C1), nor were there clear dif-
ferences between families of distance measures. Elastic, feature-
based, and model-based distances showed greater variation in 
responses, with insensitivities, invariances, and unpredictability 
being common. The two compression-based distances we tested 
responded unpredictably to all controlled tests except translation 
and outliers; They responded unpredictably to all uncontrolled 

tests without exception. See Appendix for more detailed results. 
Overall, these results imply that choice of measure for a particular 
application needs to go beyond family.

3.3  |  Time-based sensitivities and other test results

All distance measures except the Time Alignment Measurement 
(TAM) distance responded unpredictably to phase sensitivity test-
ing (Figure 6; also, see Figures 1 and 2 for illustrations of the time 
series distortions we used to test for sensitivities and invariances). 
TAM was sensitive to phase changes; however, the response curve 

F I G U R E  4 Metric test results for 42 distance measures. Results are arranged by family (for lock-step shape-based measures) or type. 
*These distances respond differently when inputs are constrained to non-negative real numbers. As we included negative values in our 
tests, our results for these measures may differ from others (e.g. Kocher and Savoy, 2017). †This distance is a full metric when the threshold 
value (epsilon) is set at 0.
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    |  9 of 32DOVE et al.

in uncontrolled testing was not smooth, suggesting some level of 
unpredictability. The Edit Distance with Real Penalty (ERP) distance 
was sensitive to uniform time scaling, while all other distances ei-
ther responded unpredictably or were unable to be tested due to an 
inability to handle unequal-length time series. Warping sensitivity 
was more common, occurring in three elastic distance measures. 
DTW tested as invariant to warping and was thus the only distance 
measure we tested with any time-based invariances. Elastic meas-
ures were the only group of distance measures that showed any 
predictable time-based sensitivities or time-based invariances.

Two distance measures in Shannon's entropy family were un-
able to deal with zeros, while the entire family was unable to deal 
with negative values. Three other lock-step shape-based measures 
also showed an inability to deal with negative values. Antiparallel-
ism bias showed no obvious group-based patterns, but negative 
antiparallelism bias was most common and positive bias was least 
common.

Uncontrolled test results were largely consistent with the con-
trolled test results in Figures  5 and 6 (see Appendix, especially 
Figures C2–C5).

F I G U R E  5 Sensitivity test results for 42 distance measures. Results are arranged by family (shape-based measures) or type, and color-
coded according to sensitivity value. Sensitivity ranges: very low: <0.2, low: 0.2–0.7, medium: 0.7–1.3, high:1.3–2.5, very high: >2.5. *The 
results for EDR strongly depended on the threshold setting, epsilon. Here it was set to 0.1.
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10 of 32  |     DOVE et al.

3.4  |  Selection process and applications

The distance measure selection process we describe and demon-
strate here was developed using the results from this study in com-
bination with existing literature and is intended to be useful for any 
dataset and task the user might have in mind. The first step in the 
selection process should be to determine the task to be performed. 
Both the dataset and the intended task are important in selecting 
an appropriate distance measure. For example, in classification, 

generally the entire shape of the time series is important, while 
anomaly detection might work best with distance measures that are 
especially sensitive to outliers. Classifying bird species according to 
their songs may require flexibility on the time axis (e.g., warping in-
variance), while clustering fish populations according to changes in 
biomass over a set time period does not.

We demonstrate the process of selecting an appropriate dis-
tance measure using a real-life example dataset from a study that 
used trends from wading birds inside and outside of reserves to 

F I G U R E  6 Test results for antiparallelism bias, non-positive value handling, and time-related sensitivities for 42 distance measures. 
Results of “n/a” for uniform time scaling sensitivity and warping sensitivity mean that the distance measure in question is unable to handle 
unequal-length time series and therefore could not be tested for those properties. sens = Sensitive, Ins = Insensitive, Inv = Invariant, 
Unp = Unpredictable. *For this distance measure, results differ depending on the threshold value, epsilon. Here, epsilon was set to 0.1.
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    |  11 of 32DOVE et al.

determine the conservation impact of reserves (Figure 7; see de-
tailed description in section 2.8; also Jellesmark et al.,  2021). A 
greater difference between the trend within reserves and the cor-
responding counterfactual trend outside of reserves means greater 
conservation impact on a given wading bird species. We chose this 
example because it is a type of application that many readers will be 
unfamiliar with in the context of distance measures, and because the 
results can be compared with other methods.

We began by examining our wading bird dataset in context of 
the decision trees in Figures 8 and 9. The dataset consisted exclu-
sively of short (25 data points), non-stationary time series. Follow-
ing Figure 8, we focused on shape-based distance measures, which 
compare raw data values. As the time series were of equal length, 

in phase, using the same time scale, and without any missing data 
points, both lock-step and elastic measures would be appropriate 
(Figure 9).

Next, we worked through Table 1. As our wading bird trends 
were indexed to a starting value of one (Figure 7), they had the 
same starting value and the same value scale. There were no 
negative values because the trends were indexed and based on 
wetland bird counts; nor were there any zeroes. However, we did 
notice that some of our time series were noisy (Figure 7), which 
could obscure the trends. Noise is a common characteristic of 
population data, largely due to the stochasticity of population 
dynamics and the environmental variables they depend on (Vas-
seur & Yodzis,  2004). While this noise is often white (random, 

F I G U R E  7 Reserve and counterfactual trends for five wading bird species that breed on RSPB lowland wet grassland reserves in the UK. 
Left: Unsmoothed trends based on original data presented in Jellesmark et al. (2021). Right: LOESS smoothed trends with a span setting of 0.75.
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12 of 32  |     DOVE et al.

uncorrelated), biased “red” noise (positively autocorrelated, tend-
ing toward a single direction) is also common, for example, when 
environmental conditions are above or below average for an ex-
tended period (van de Pol et al., 2011; Vasseur & Yodzis, 2004). 
Biased noise is therefore more likely to represent a legitimate 
difference in trends. There are multiple ways to deal with noisy 
time series (Table  1). We first tried the properties-based solu-
tion (Table  1; see below for the pre-processing solution). Using 

Figure 5, we filtered out all shape-based distance measures with 
a white noise sensitivity category of medium or higher (a sensi-
tivity value of 0.7 or more). Next, we required biased noise to 
be at least two categories higher in sensitivity than white noise 
(Figure  5, e.g., if white noise sensitivity was very low, biased 
noise sensitivity must be at least medium). Our choices here were 
based on practicality; sensitivity categories are arbitrary (we cat-
egorized them for convenience), so we wanted to avoid being too 

F I G U R E  8 Decision tree to aid in choosing a distance measure category. *Structure refers to trends, repeated patterns, spikes, etc.
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    |  13 of 32DOVE et al.

specific while ensuring that any chosen distance measure exhib-
ited a non-trivial difference in sensitivity between white noise 
and biased noise.

Finally, we considered the remaining properties in the context 
of our intended task and desired outcome. We deemed amplitude 
sensitivity to be important, as we were interested in the overall di-
vergence between population indices within and outside reserves. 
Duration sensitivity was also important, as we would consider 

population indices which diverge more steeply or for a longer pe-
riod to be more different, that is, that conservation measures had 
a stronger effect on these species. Therefore, both amplitude and 
duration sensitivity had to be at least low (a sensitivity value of 0.2 
or higher; Figure 5). Again, we could have chosen a different (higher) 
category, but we were more concerned with making sure the dis-
tance measures exhibited some sensitivity to these properties than 
the exact degree of sensitivity. We did not filter for antiparallelism 

F I G U R E  9 Decision tree to aid in choosing a sub-category of shape-based distance measures.
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14 of 32  |     DOVE et al.

bias, as the high stochasticity in some of our time series (Figure 7) 
would dilute the signal too much for it to matter.

This selection process left us with two distance measures: the K 
Divergence (KDiv) and the Kullback–Leibler distance (Kullback), both 
of which returned the same rankings that Jellesmark et al.  (2021) 
obtained using percent improvement (Figure  10). Only two of the 
40 unselected distance measures, the Edit Distance for Real Se-
quences (EDR) and TAM, returned the same rankings (see Figure D1 
in Appendix D).

Another way of dealing with noisy time series is by applying a 
smoothing algorithm (Table 1). We applied a LOESS smoothing al-
gorithm (span = 0.75) to all time series in the dataset to remove the 
noise and reveal the trends (Figure 7). We then re-ran the selection 

process using the same settings, except that we did not filter for 
noise sensitivity, and we added a filter for antiparallelism bias. Anti-
parallelism bias is not very important when dealing with highly sto-
chastic time series because the signals for slope and direction are 
muddied by noise; however, smoothing introduces strong positive 
autocorrelation, making the slope and direction signals clear. We se-
lected neutral for antiparallelism bias (Figure  5) because we were 
more interested in relative differences in the population indices than 
the direction of change.

We were left with seven distance measures: ERP, the Euclid-
ean distance, the Manhattan distance, the Gower distance, the 
Lorentzian distance (Lorentz), the Average distance (AVG), and 
the Squared Euclidean distance (Sq. Euclid). All seven selected 

F I G U R E  1 0 Comparative rankings of conservation impact on five wading bird species. Values on the y-axis represent the distance 
between unsmoothed (top) or LOESS smoothed (bottom) reserve and counterfactual trends for each species. Results are from the distance 
measures chosen by our selection process, as well as the percent improvement and t-test methods (top) used by Jellesmark et al. (2021). 
Percent improvement is the difference (multiplied by 100) between the final year index values of the two trends (within and outside of 
reserves) for a given bird species, while the t-test represents the results of a Welch two-sample t-test between the two trends.
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distance measures agreed on the following order: Redshank, 
Snipe, Lapwing, Curlew, Yellow Wagtail (Figure  10). Four of the 
35 unselected distance measures returned the same results (see 
Figure D2 in Appendix D).

4  |  DISCUSSION

The aim of this study was to provide enough information to make 
informed, objective decisions about which distance measures to 
use to compare ecological time series data. We tested 42 distance 
measures for 16 properties and presented an objective method of 
selecting distance measures for any task based on those properties. 
We demonstrated the viability of the method on a real-world dataset 
by selecting distance measures to rank differences between pairs 
of wading bird population trends (within and outside of reserves) 
and showing that the distance measures we selected were fit-for-
purpose and consistent in their rankings. Importantly, we found that 
different conclusions would be reached when choosing a measure 
at random, or based upon different criteria. The method is user-
directed; therefore, success depends on an understanding of the 
dataset, the task to be performed, and the hoped-for outcome.

Time series length and stationarity inform what category of dis-
tance measures the user should focus on (Figure 8). Shape-based 
distances are best for short time series with differences that are 
easy to visualize, while longer, stationary time series may be bet-
ter suited to feature-based, model-based, or compression-based 
distance measures (Esling & Agon,  2012). Most times series for 
abundances or biomass are relatively short, meaning shape-based 
measures are probably most suitable, but other applications may 
have more data points, although the choice will depend on other 
aspects of the question (discussed more below).

Most distance measures we tested are lock-step measures. 
While we have categorized many of them by family, it is not evident 
from our testing that there is enough similarity between distance 
measures within families for this categorization to be of much use. 
While there are clear differences in sensitivities between lock-step 
measures, they share a rigidity in their treatment of time, comparing 
all point pairs 1-to-1, and most lack invariances. This makes them 
best-suited to applications where sampling is repetitive (e.g., yearly) 
and standardized in time, such as long-term population trends. Elas-
tic measures, such as DTW, have tremendous flexibility due to their 
ability to match multiple time points to a single time point and are 
therefore best used when time series have different time structures, 
such as recordings of animal calls or movements.

The broadest difference in use cases occurs between shape-
based and non-shape-based distance measures. Feature-based 
and model-based measures are typically used to compare station-
ary time series, which are time series whose parameters (e.g., mean 
and variance) are not time-dependent, as well as non-stationary 
time series that are characterized by repeating patterns rather than 
stochasticity. Model-based and feature-based measures identify 
particular aspects of these time series; thus, their uses tend to be 

more specific than shape-based measures. They are especially use-
ful for prediction, as repeating patterns can be forecast into the 
future. For example, they might be used to classify or predict time 
series of environmental parameters (temperature, pollution, etc.), or 
events or changes that fluctuate or reoccur seasonally or diurnally. 
Compression-based measures are designed to be extremely general 
and can theoretically be applied to any kind of time series. However, 
in practice we did not find them to be of any use on the time series 
we used for testing. They were unpredictable and did not demon-
strate their purported metric properties. They are better suited to 
much longer time series (many thousands or even millions of time 
points), but these are very rare in ecological surveys.

The results of our properties tests showed a variation in strength 
of sensitivity to different properties in different distance measures, 
although most distance measures were highly sensitive to outli-
ers. Invariances were uncommon among the distance measures we 
tested, although several distance measures did demonstrate invari-
ance to translation. Some distance measures, such as EDR and ERP, 
have tuning parameters that may affect their behavior. In the case of 
ERP, these parameters can determine whether and how sensitive it 
is to missing values; in the case of EDR, the threshold setting deter-
mines how far apart values must be to be considered different and 
therefore serves to toggle responses to multiple properties between 
invariance and sensitivity.

When dealing with time series of unequal-length or missing data 
points, distance measures that allow unequal matching (e.g., match-
ing multiple points to one point), such as DTW, or that allow gaps, 
such as ERP, may be the solution. Alternatively, pre-processing of 
data may remove such concerns. For example, missing data points 
can be filled in by interpolation, or longer time series can be cut to 
the same length as shorter ones (only attempt such solutions if they 
make sense for the data).

Elastic measures, such as DTW, EDR, and ERP, are the most ver-
satile distance measures, able to handle many common complica-
tions of datasets with little or no pre-processing. For general tasks, 
they are often a good option (see our decision tree: Figures 8 and 9). 
However, for tasks involving large datasets containing thousands of 
time series, some elastic measures may be impractical due to pro-
cessing speed. Much of the research into speeding up time series 
comparisons for large datasets has focused on a select few distance 
measures, especially the Euclidean distance and DTW. While the Eu-
clidean distance is faster, better known, and still widely used in some 
fields, an extensive body of research has shown DTW to be more ac-
curate (Dau et al., 2019; Paparrizos et al., 2020; Zhu et al., 2012), and 
it is considered the de facto standard for accuracy in classification 
(note that it is still important to consider the properties of DTW in 
relation to the data, as it does not perform well in every case). De-
spite this, it is rarely used in ecology (Hegg & Kennedy, 2021). Note, 
however, that DTW is computationally expensive and therefore can 
be slow for large datasets (for discussion on ways to speed up DTW, 
see Appendix E).

For many analyses involving distance measures, researchers 
may first want to normalize or standardize their data or translate 
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it along the y-axis. This may be an important step if the time series 
use different scales or have different starting values. For exam-
ple, when performing classification or clustering tasks, it is com-
mon to apply z-normalization to rescale time series to a mean of 
zero and standard deviation of one (Rakthanmanon et al., 2013). 
Min–max normalization to a scale of [0,1] or [−1,1] is also common 
for datasets that are not normally distributed. Be aware, however, 
that these transformations may affect the subsequent choice of 
distance measures, as some cannot handle zeros or negative values 
and some metrics are non-metric when there are negative values 
present (see Figure 4).

Although we ignored the metric properties of distance measures 
for our real-world example, they are very important for some tasks. 
For example, many algorithms for classification and clustering are 
designed to work only in metric space and may return unexpected 
results for non-metric distances, while some classification and clus-
tering problems require a semi- or non-metric to get meaningful re-
sults (Weinshall et al., 1998). Another thing to be aware of is that 
output values (distances) returned by distance measures can be on 
dramatically different scales. Some, such as the Jaccard distance, are 
confined to [0,1], while others go to positive infinity [0,∞) (e.g., the 
Euclidean distance), or even include negative values (any distance 
that does not satisfy non-negativity, e.g., the Canberra distance). 
Depending on the intended application, the output scale could af-
fect analysis, so may be worth considering.

Noise is a common aspect of ecological time series, as environ-
mental and population dynamics are stochastic. There are several 
potential ways to deal with noisy time series. Some distance mea-
sures, such as EDR, have threshold settings; any difference between 
time series that falls below the threshold will be ignored. If the noise 
is relatively uniform in amplitude, this may be a simple solution if the 
distance measure in question meets all other requirements. Other 
distance measures, such as KDiv, are relatively robust against white 
noise although they lack a sensitivity setting, and may be more ap-
propriate if the noise is less uniform. A more drastic solution is to 
apply a smoothing algorithm as a pre-processing step, though this 
should be approached with caution. Smoothing will remove noise 
and outliers but may distort the time series and increase bias in the 
process. Therefore, it is important to avoid over-smoothing. Smooth-
ing time series that have sudden and/or drastic value changes may 
also be problematic, particularly if these changes are an important 
aspect of differentiation between time series.

Our demonstration using wading bird trends from Jellesmark 
et al. (2021) served to illustrate both the potential benefits and com-
plications introduced by smoothing. When we filtered by noise sen-
sitivity, we were left with two distance measures; both returned the 
same results as the percentage difference calculations by Jellesmark 
et al.  (2021). When we ran the method after applying a smooth-
ing algorithm, we were left with a larger choice of seven distance 
measures. Although the ordering differed slightly from Jellesmark 
et al.  (2021), all seven distance measures agreed with each other. 
The slight difference in ordering (Snipe vs Lapwing, ambiguous from 
visual inspection of the trends; Figure 7) is unsurprising given that 

the smoothing algorithm removed all noise from the trends, while 
the distance measures we selected using noise filtering, although 
demonstrating very low sensitivity to white noise, were not invari-
ant to it. Smoothing in this case gave us more distance measures 
to choose from, but with the added complication of not knowing 
whether we had improved or distorted our results.

While in both cases (smoothed and unsmoothed trends), there 
were distance measures that gave the same rankings as Jelles-
mark et al.  (2021) despite not matching our selection criteria (see 
Figures D1 and D2 in Appendix D), and the distance measures we 
selected were all in agreement. Had we been less specific when 
choosing important properties, we would have risked including mea-
sures that were not fit for purpose. A single suitable distance mea-
sure is better than any number of ill-suited measures, and as with 
other statistics it is better to choose the measure up front, based 
upon justified criteria, rather than risk returning multiple results by 
choosing multiple measures and then cherry-picking the result that 
is most convenient.

5  |  CONCLUSION

Our work should lead to an improved understanding of, and greater 
scope for, the use of distance measures for comparing time series 
within the field of ecology. Nonetheless, it is up to the user to think 
their way through the process. There are many scenarios/questions 
that would require the use of distance measures to compare time 
series in ecology, and we discuss only some of them here and can-
not cover all potential issues that may arise in the process of met-
ric selection. However, we hope to have opened the door for more 
ecologists to consider new questions where time series comparison 
is an important tool. Our framework can easily be adapted to incor-
porate other properties to select a distance measure that is appro-
priate for the task in question. There is not always a right choice of 
distance measure, but there are wrong ones, and our main goal is to 
help avoid those.
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APPENDIX A

DISTANCE MEASURES

TABLE OF ALL TESTED DISTANCE MEASURES

DESCRIPTIONS AND FORMULAS FOR SELECTED DISTANCE 
MEASURES
The Euclidean distance (Euclidean), also known as the L2 distance, is 
the straight-line distance between a pair of points. It also forms the 
basis for some of the more complicated transformation-based and 
model-based metrics presented here. It is defined as:

where P and Q are (time series) vectors and d is the length of the 
vectors.

The Manhattan distance (Manhattan), or L1 distance, is the short-
est distance between two points on a grid. Because it is not based 
on Euclidean geometry, there can be multiple paths with the same 
shortest distance. It is defined as:

The Chebyshev distance (Chebyshev), or L∞ distance, is the great-
est of the differences between two points or vectors along any coor-
dinate dimension. For example, if two points had the x, y coordinates 
(0,0) and (3,5), the Chebyshev distance would be 5, the difference 
between the y coordinates of the two points, as this is greater than 
3, the difference between the x coordinates. The Chebyshev dis-
tance is defined as:

The Complexity-Invariant Distance (CID) applies a complexity correc-
tion factor to the Euclidean distance to increase the dissimilarity value 
between time series with different complexities (where complexity is 
the length of a time series if stretched into a straight line—more and 
greater peaks and valleys means more complexity). It is defined as:

where d is the Euclidean distance and CF is a complexity correction 
factor.

where CE is a complexity estimator.

The Dynamic Time Warping distance (DTW) computes a warp-
ing path between two time series to align them in time. It can be 
defined as a "dog-man" distance (a distance that determines the 
shortest leash length between a person and their dog walking sep-
arate paths), but instead of the shortest leash length, it measures 
the average leash length. This makes it more robust, as it is less 
sensitive to outliers and short divergences. The DTW distance is 
defined as:

The Time Alignment Measurement distance (TAM) is a derivative 
of the DTW distance that measures how well two time series align 
in time. Segments not in phase are penalized, while amplitude dif-
ferences are not. A dissimilarity value of zero can occur for non-
identical series that are perfectly aligned in time.

The Normalized Compression Distance (NCD) is based on the con-
cept of Kolmogorov complexity, which is the minimum information 
needed to generate a string using an algorithm. The Kolmogorov 
complexity is a measure of randomness of the string. The smaller 
the value, the less randomness. The NCD applies the concept to a 
relationship between objects (time series) when a compression algo-
rithm is applied. The greater the advantage in compression (reduc-
tion in randomness) gained by multiplying two time series together, 
the more closely they are related, and therefore the smaller the dis-
similarity between them. NCD is defined as:

where C represents the compressed size.
The Compression-based Dissimilarity Measure (CDM) is a simplified 

version of the NCD, defined as:

The Edit Distance with Real Penalty (ERP) is an edit distance, mean-
ing it quantifies the number of insert, delete, or replace operations 
required to turn one string (time series) into another. ERP includes 
a penalty for gaps between matched substrings based on the gap 
length.

The Edit Distance for Real Sequences (EDR) is an edit distance re-
fined for trajectories. It includes a quantization feature as well as the 
length-based gap penalty of ERP.

The Fourier Coefficient-based distance (Fourier) calculates the 
Euclidean distance between discrete Fourier transforms of a pair 
of time series. Fourier transforms extract frequency information 
by decomposing a signal (time series) into its frequency compo-
nents (sine and cosine functions). While a time series is visualized 
as a single graph of amplitude vs time, its Fourier transform con-
sists of multiple sinusoidal waves, each with a specific, constant 
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amplitude and frequency. Time information is lost. The Fourier 
transform works well for stationary time series, as they have peri-
odic repeating signals. However, the loss of time information pre-
sents problems for deconstructing non-stationary series, as they 
change randomly over time.

The Autocorrelation-based dissimilarity (ACF) calculates the Euclid-
ean distance between estimated autocorrelation functions of time 
series. An autocorrelation function of a time series describes the 
correlation between two values of the time series at different times 
with a specified lag (delay between the two values). In other words, 
it describes the correlation of a time series with a time-offset version 
of itself. It is defined as:

where Ω is a matrix of weights and ρ-hat refers to estimated autocor-
relation vectors.

The Partial Autocorrelation-based dissimilarity (PACF) is identical 
to the ACF except that it uses the partial autocorrelation functions.

The Periodogram-based dissimilarity (Per) calculates the Euclidean 
distance between the periodograms of time series. A periodogram is 
a method of estimating the power spectrum of a time series, which is 
equivalent to the Fourier transform of the autocorrelation function. 
It describes how power is distributed over the frequency compo-
nents of a time series.

The Piccolo distance (Piccolo) calculates the Euclidean distance 
between the AR(∞) operators, or autoregressive expansions, of in-
vertible ARIMA models of time series. ARIMA is a time series fore-
casting method. ARIMA models work by describing autoregressive 
(AR) and moving average (MA) parameters. An autoregressive model 
explains a value in a time series by one or more previous values plus 
random error. It is generally written as AR(p), where p is the order of 
the model. An autoregressive expansion, AR(∞), is thus an AR model 
of infinite order. A moving average model—written as MA(q), where q 
is the order—explains a value in a time series by one or more past ran-
dom errors as well as its own random error term. Invertible ARIMA 
models are those which can be written simply as autoregressive 
(AR) models. This is a necessary property to be able to forecast the 
dependent variable and is important for the Piccolo distance, since 
only the AR aspect is used. ARIMA models can be applied to non-
stationary time series, but they must first be converted to stationary 
time series by one or more differencing operations (subtracting each 
value from the one before it to remove stochastic trends).

The Short Time Series distance (STS) measures the difference be-
tween the slopes of time series defined as piecewise linear func-
tions. It is intended to incorporate temporal information while 
ignoring absolute values, to overcome a weakness of many other 
distances, including the Euclidean distance, which ignore the tem-
poral order of points and the length of sampling intervals. The STS 
distance is defined as:

Equations  A1 through A3 are copied from Cha  (2007), equa-
tions A4 through A10 are copied from Montero and Vilar (2014), and 
equation A11 is copied from Mori et al. (2016a, 2016b).

DISTANCE MEASURE PROPERTIES
Here, we have included additional explanation for some properties 
of distance measures.

Translation sensitivity: Translation sensitivity is adapted from 
translation invariance, d(X + q, Y ) = d(X, Y ), where q is any real num-
ber. Translation invariance is a shape-preserving property, mean-
ing that a distance measure with this property would treat two 
time series with identical shapes as equal, even if the mean values 
were different. However, we can also define translation sensitiv-
ity, where the dissimilarity between X and Y increases relative to 
the value of q, and translation insensitivity, where the dissimilarity 
between X and Y increases by an amount that is independent of 
q. Translation invariance is a special case of translation insensitiv-
ity, where d(X + q, Y ) is independent of q. Translation sensitivity 
can be measured in relative terms, allowing comparison between 
distance measures.
The effect of translation invariance can be achieved by a verti-

cal shift transformation. For example, time series X can be trans-
formed by adding the same real number q to each observation, 
f(X) = X + q, such that time series X and Y have the same starting 
value (if they already have the same starting value there is no need 
for transformation). It is a simple matter to apply this transforma-
tion to thousands of time series. Note, however, that translation 
invariance can be problematic. Consider two populations, with 
population A having a starting size of 100 and population B a start-
ing size of 10,000. If both populations increase by 10 every year 
for 10 years, population A would now be 200, which means it dou-
bled to twice its original size, while population B would be 10,100, 
an increase of only 1%. A distance measure with the property of 
translation invariance (or any distance measure after applying a 
vertical shift transformation to equalize the starting values) would 
treat these trends as equal.
An alternative way to deal with such comparisons would be a scale 

transformation, f(X) = X × q, multiplying each observation of time se-
ries x by the same real number q, such that time series X and Y have 
the same starting value. A scale transformation allows for shape de-
formation while preserving percentage change. If populations A and 
B both doubled by increasing linearly for 10 years from 100 to 200 
and 10,000 to 20,000 respectively, a scale transformation would 
result in identical trends, although they did not originally have the 
same shape. Likewise, in the previous example where two popula-
tions of different sizes increase by the same amount but different 
percentages, a scale transformation would result in trends with 
very different shapes (slopes). Scale invariance, which is defined as 
d(X × q, Y) = d(X, Y), with q greater than 0 (Batyrshin et al., 2016), is a 
rare property of distance measures.

Amplitude sensitivity: If a vertical shift transformation, f(t) = t + q, is 
applied to one or more observations t of time series X to form time 
series Y, d(X, Y) > d(X, X) and d(X, Y) increases with q (sensitivity). 
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Amplitude sensitivity is particularly relevant when comparing time 
series which have been scale transformed or vertical shift trans-
formed to have the same starting value. But some distance meas-
ures, especially among edit distances, are insensitive to amplitude. 
For example, the Edit Distance for Real Sequences (EDR) has a 
threshold value that can be set. Only differences that exceed the 
threshold are counted.

White noise sensitivity: White noise sensitivity is adapted 
from white noise invariance (invariance against random noise), 
d(X + f(X), Y ) ≈ d(X, Y ), where f(X) is a function that adds a small 
pseudo-random value from a normal distribution with a mean of 
zero and standard deviation q to each observation of time series 
X (adapted from Lhermitte et al., 2011). Adding a random noise 
term to one time series from a pair should have an inconsequential 
effect on the dissimilarity value between them. A distance meas-
ure sensitive to white noise will show an increase in dissimilarity 
values relative to q, allowing us to obtain a relative measure of 
robustness against white noise.

Biased noise sensitivity: Biased noise sensitivity is adapted from 
biased noise invariance (invariance against non-random noise, i.e., 
noise in a single direction), d(X + f(X), Y) ≈ d(X, Y), where f(X) is a func-
tion that adds a small non-random value q to some of the observa-
tions (randomly chosen) of time series X (adapted from Lhermitte 
et al., 2011).

Outlier sensitivity: Outlier sensitivity is adapted from outlier invar-
iance, d(X + f(X), Y) ≈ d(X, Y), where f(X) is a function that adds a large 
pseudo-random value q to a single randomly chosen observation of 
time series X. Outlier sensitivity is thus defined as the dissimilarity 
value increasing with q, and is a specific case of amplitude sensitivity 
limited to a single time point.

Antiparallelism bias: Mathematically, if Y = f(X), where f(X) is a func-
tion that reflects X across the axis of t0 (for all t in X, Yti = 2Xt0 − Xti), 
and Z = g(X), where g(X) is a function that applies a scale transforma-
tion to X relative to t0 such that the absolute difference in summed 
values between Z and X is the same as that between Y and X (for all 
t in X, Zti = 3Xti − 2Xt0), then d(X,Z) > d(X,Y) for positively biased dis-
tance measures; d(X,Z) < d(X,Y) for negatively biased measures; and 
d(X,Z) = d(X,Y) for neutral measures.

Phase sensitivity: Phase sensitivity is adapted from phase invari-
ance, d(Xi + p, Yi) = d(Xi, Yi) (adapted from Lhermitte et al., 2011).

Time scaling sensitivity: Time scaling sensitivity is adapted from 
time scaling invariance, d(Xpi, Yi) = d(Xi, Yi) (adapted from Esling & 
Agon, 2012). If one time series is expanded or compressed along its 
time axis, the dissimilarity value should not change.

Warping sensitivity: Time scaling invariance can be defined lo-
cally, that is, involving the expansion or compression of one or 
more sections of a time series, rather than the entire series (Batista 
et al.,  2011). If a function f(Si) = Spi is applied to expand or com-
press S, where S is any subset of X, S ⊆ X, to form time series Y, then 
d(X,X) = d(X,Y). Warping sensitivity thus occurs when the dissimilar-
ity value increases with p.

Frequency sensitivity: If time series Y is obtained by applying the 
same transformation f(t) to one or more observations t of time series 

X, such that d(X, Y) > d(X, X), then the dissimilarity value will depend 
on the number of observations to which the transformation f(t) is 
applied.

Duration sensitivity: If time series Y is obtained by applying the 
same transformation f(t) to one or more consecutive observations of 
time series X, such that d(X, Y) > d(X, X), then the dissimilarity value 
will depend on the number of consecutive observations to which 
the transformation f(t) is applied. This property is a special case of 
frequency sensitivity. Distance measures which are sensitive to du-
ration must be sensitive to frequency, but the converse is not true. 
Some distance measures, such as Dynamic Time Warping (DTW) 
or the Short Time Series Distance (STS), may rank time series with 
more differences as more dissimilar only if those differences are sepa-
rated by similarities. Consider a time series A, with five points, t0, t1,…, 
t4. Some transformation f(t) is applied only to point t1 to form time 
series B (B thus differs from A by a single point), to both t1 and t2 to 
form time series C, and to both t1 and t3 to form time series D (thus 
C and D each differ from A by the same value at two points, but in C 
those points are consecutive while in D they are not). For distance 
measures which are sensitive to both frequency and duration, d(D, 
A) > d(C, A) > d(B, A), but for distance measures which are sensitive 
to frequency but not duration, d(D, A) > d(B, A), while d(C, A) = d(B, 
A). This is because a distance that is invariant to duration will treat 
a difference that occurs over multiple consecutive time points as a 
single difference.

APPENDIX B

TESTING METHODOLOGY

METRIC TESTING
The test for reflexivity was conducted by comparing a time series 
first to itself, and then to a similar time series with a value differ-
ence at a single point. For distance measures with threshold set-
tings (e.g., EDR), we set the threshold to zero to ensure they would 
recognize the difference. Any distance measure that returned a 
value of zero when comparing the time series against itself, and 
any non-zero value when comparing it against a time series with a 
value difference at a single point, was considered to demonstrate 
reflexivity.
Symmetry was tested by comparing a pair of different time series, 

X and Y, in both forward order, d(X, Y), and reverse order, d(Y, X). If 
the two values returned were identical, the distance measure was 
considered to demonstrate symmetry. We ensured that the time se-
ries were different enough that no distance measure returned 0 for 
both forward and reverse order.
The triangle inequality and non-negativity properties were 

tested by comparing thousands of short, randomized time se-
ries generated by a stochastic exponential model. We found that 
shorter time series were better at detecting violations, so we set 
the length to five. We generated 300,000 time series and divided 
them into 100,000 sets of three. Within each set of three, we con-
sidered each time series to represent one corner of a triangle and 
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compared them pairwise, with the resulting distances representing 
the sides of the triangle. We then subtracted the two shorter sides 
from the longest side. If the difference was greater than zero for 
any of the 100,000 sets, then the distance measure was considered 
to violate the triangle inequality. Additionally, if any of the 300,000 
time series comparisons produced a negative value, the distance 
measure was considered to violate non-negativity. We set the time 
series generator such that zeros and negative values were included 
in some time series, as some distance measures satisfy the trian-
gle inequality and/or non-negativity only when all input values are 
positive or non-negative.
Distance measures were classified as “full” for full metric if they 

passed all metric tests, “semi” for semi-metric if they passed all tests 
except the triangle inequality, or “non” for non-metric if they failed 
one or more of the other tests.
Settings for adaptive distance measures (distance measures with 

settings that can be changed to alter their behavior) were set at 
defaults given in examples from the documentation of the TSdist 
R package (Mori et al.,  2016a, 2016b). For triangle inequality and 
non-negativity tests, we kept the same settings for initial testing. If 
they passed the tests at those settings, we tested them over a range 
of settings. If they failed at default settings, there was no need for 
further testing.

CONTROLLED TESTING
We used the Manhattan distance as a basis for devising controlled 
sensitivity tests for translation, amplitude, duration, frequency, 
white noise, biased noise, and outliers. The Manhattan distance is 
the summed absolute difference between each pair of points in a 
time series. It is a simple-to-calculate metric and demonstrates all 
the sensitivities we tested for. Furthermore, it responds to sensitiv-
ity tests in a linear manner. These properties make the Manhattan 
distance an ideal basis for comparison of other distance measures.
For each sensitivity test, we constructed a series of n time se-

ries with linearly increasing differences, T1, T2,…, Tn, such that the 
differences in absolute value between point pairs of any consecu-
tive pair of time series summed to 1. Thus, the Manhattan dis-
tance between any pair of consecutive time series, Ti and Ti + 1, 
was 1, and between any non-consecutive pair of time series, Ti 
and Ti + j, is j. For example, the Manhattan distance between T1 
and T2 would be 1, between T2 and T3 would be 1, and between T1 
and T5 would be 4.
Sensitivity tests were conducted for each distance measure by 

comparing each time series Ti in the set T1, T2,…, Tn, to T1. Any dis-
tance measure returning a dissimilarity value of 0 for every pair of 
time series for a given sensitivity test would be considered as invari-
ant for that property, while a distance measure returning the same 
non-zero value for every time series pair would be considered as in-
sensitive (note that invariance implies insensitivity, but insensitivity 
is not the same as invariance. Distance measures that demonstrate 
insensitivity to a property register differences as binary—different 
or not different—while those demonstrating invariance do not regis-
ter differences at all).

Sensitivity is calculated as the mean of all distances between con-
secutive time series,

where s is sensitivity, d(Ti, Ti + 1) is the distance between a pair of con-
secutive time series Ti and Ti + 1, and n is the total number of time series 
being compared.

Given that s is an absolute sensitivity value, its interpretation is de-
pendent on the scale of the distance measure. A scale-independent 
relative sensitivity is obtained by

where rsx is the relative sensitivity to property x, sx is the absolute sen-
sitivity to that property, and sμ is the mean of absolute sensitivities to 
all tested properties.
The sensitivity values for all distance measures are separated into 

five bins and designated as “very low,” “low,” “medium,” “high,” or 
“very high.” The sensitivity value for the Manhattan distance is 1 for 
every property and serves as the median value for the bins, which 
are: less than 0.2, 0.2 to 0.75, 0.75 to 1.25, 1.25 to 2.5, and greater 
than 2.5, respectively. Note, however, that the equation for sensitiv-
ity is derived from the linear slope equation, but the sensitivity for 
many distance measures is non-linear. The calculated sensitivity is a 
linear approximation along the tested range.
Phase sensitivity testing was conducted in a similar way to sensitiv-

ity testing, with T1, T2,…, Tn representing a set of time series, with the 
difference in phase increasing with i in Ti. However, the Manhattan 
distance could not be used as a basis for comparison. This is because 
lock-step distance measures (those that match every time point 1-to-
1), including the Manhattan distance, do not respond to time transla-
tion in a way that can be interpreted by a function. Distance measures 
were designated as “inv” (meaning they demonstrated phase invari-
ance) when the dissimilarity between every pair of time series was 0, 
“ins” (insensitive) when every pair of time series returned the same 
non-zero dissimilarity value, “sens” (sensitive) when the dissimilarity 
value was dependent on i, or “unp” (unpredictable) when dissimilar-
ity values differed but did not depend on i. For those distances with 
window size settings (e.g., some distance measures that act stepwise 
along time series have a setting to control how many time points are 
considered in each step), we set the window large enough to cover the 
maximum difference in phase (that between T1 and Tn).
Time scaling sensitivity was tested using a set of time series in 

which Ti + 1 was stretched compared with Ti. This involved lengthen-
ing the time series Ti, keeping the first and last time points the same 
while altering the values at each time point in between to fit the 
shape change. Warping was tested by stretching only one horizontal 
section of a time series, such that a set was formed, with Ti + 1 longer 
than Ti. As with phase sensitivity, results for time scaling sensitivity 
and warping sensitivity were not compared against the Manhattan 
distance, as the Manhattan distance and other lock-step distance 
measures are unable to handle time series with different lengths. 

(B1)s =

∑n−1

i=1
d
�
Ti , Ti+1

�

n
,

(B2)rsx =
sx

sμ
,
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Elastic distance measures were tested and designated as either “inv” 
(invariant) if all returned dissimilarities were zero, “ins” (insensitive) if 
all returned dissimilarities were identical and non-zero, “sens” (sensi-
tive) if the returned value depended on the degree of time scaling or 
warping, or “unp” (unpredictable) if returned values differed but did 
not depend on the degree of time scaling or warping. All lock-step 
distance measures were designated as “n/a.”
Antiparallelism bias was tested by comparing pairs of time series 

that differed by the same relative amount in different directions. 
Distance measures were designated as having “positive” bias if they 
gave a greater dissimilarity value to pairs of time series differing in 
opposite directions than to pairs differing in the same direction, 
“negative” bias if they gave a greater dissimilarity value to those dif-
fering in the same direction, or “neutral” if they assigned each pair of 
time series the same dissimilarity value.

UNCONTROLLED TESTING
We created a function for each property to be tested, which applies 
a transformation to one or more time points of a real-world time 
series given as input. Each function accepts a value q, the purpose 
of which varies depending on the function (see below for details). 
For example, the translation function adds a real number q to every 
value ti of a time series T. The transformed time series is returned 
as output and compared against its unaltered counterpart. We ap-
plied the functions to a range of q in increments, then graphed the 
results as response curves (see Figures S5–S8). We did not compare 
them against a reference or assign sensitivity ratings, as they were 
intended only as a confirmatory check against the results of con-
trolled testing.

Functions
Translation sensitivity: Add q to every data point of a time series T.
White noise sensitivity: Create a normal distribution with mean q 

and standard deviation 0.3 times q (the latter is arbitrary). Randomly 
select half of the data points of a time series T and add randomly 
selected values from the normal distribution to the selected points. 
Finally, subtract randomly selected values from the normal distribu-
tion from the points that were not selected. This function scales q by 

q

max(q)
 to avoid the noise being too large.

Biased noise sensitivity: Proceed exactly as with white noise sen-
sitivity but skip the final step (the points that were not selected re-
main untransformed). This function scales q by q

0.5×max(q)
 (the 0.5 is 

because the function is only applied to half of the time points).
Outlier sensitivity: Add q to one randomly selected point of a time 

series T (excluding the first and final points, which can cause unin-
tended behavior in some distance measures).
Phase invariance: Shift the first q time points of a time series T to 

the end of the time series.
Warping sensitivity: Randomly select a single value from a time 

series T and extend the time series by repeating the chosen value 
q times.

Uniform time scaling sensitivity: Stretch a time series T along the 
x-axis by a factor of q. The y-axis values of the first and final points 
remain unchanged, but the final point is shifted along the x-axis and 
all points in between are recomputed. For this function, q is scaled: 

q

max(q)
+ 1. Thus, time series T will be stretched to a maximum of twice 

its original length.

APPENDIX C

TEST RESULTS

METRIC TEST RESULTS
In some cases, results depended on input values or settings. Eight 
of the lock-step shape-based distance measures passed the triangle 
inequality test and/or non-negativity test when inputs were con-
strained to non-negative real numbers, but failed when negative 
numbers were included. EDR behaved as a metric when the thresh-
old setting, ε, was set near zero, but failed the triangle inequality 
test when ε was set at five. The Normalized Compression Distance 
(NCD) and the Compression-based Dissimilarity Measure (CDM) 
both failed our reflexivity and symmetry tests and thus qualified as 
non-metrics, although NCD is stated by its authors to be a metric 
(Cilibrasi & Vitányi, 2005). However, this is qualified with respect 
to the compression algorithm paired with it, with none quite reach-
ing the definition the metric behavior depends on. NCD should 
approach closer to true metric behavior the longer the time series 
(Cilibrasi & Vitányi, 2005). We tested it here with very short time 
series, and therefore it would not be expected to behave as a metric. 
Additional testing (not included) showed NCD came closer to pass-
ing the reflexivity and symmetry tests, although as the time series 
reached a length of 1 million, it was still failing. Beyond that length, 
running the tests was too slow to be practical. CDM, on the other 
hand, is not considered to be a metric (Keogh et al., 2004), nor did 
it approach closer to metric behavior when tested with longer time 
series.

CONTROLLED TEST RESULTS
Sensitivity tests
Results for EDR depended on the value of the threshold setting, 
ε. We reported the results with ε at 0.1. However, when ε was set 
high, EDR was invariant to all seven of these properties. When 
ε was set within the range of the input values, results were less 
predictable.
The two compression-based distances we tested, the Normalized 

Compression Distance (NCD) and the Compression-based Dissimi-
larity Measure (CDM), showed insensitivity to translation and out-
liers. However, our uncontrolled test results did not confirm this. 
It is not clear why this difference occurred, but keep in mind that 
compression-based distances may behave differently for short time 
series than for long ones (e.g., they do not behave as metrics when 
comparing short time series).
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Pairwise correlations between distance measures

Time-based sensitivities and other tests
Again, results for EDR depended on the value of ε. We reported the 
results with ε at 0.1, but when ε was set high, EDR was invariant 
to phase, and sensitive to both warping and time scaling. When ε 
was set within the range of the input values, it responded unpredict-
ably to phase shift, but remained sensitive to both warping and time 
scaling.
The results for the Autocorrelation-based dissimilarity (ACF) and 

the Partial Autocorrelation-based dissimilarity (PACF) were “n/a” for 
both warping and time scaling, suggesting that these distance meas-
ures are unable to deal with unequal-length time series. However, 
this is not the case. The problem is that these measures require an 

equal number of autocorrelation coefficients, which the short time 
series we used for controlled testing did not satisfy. However, ACF 
and PACF did provide results for warping and time scaling in uncon-
trolled testing (Figures C2 and C3).

UNCONTROLLED TEST RESULTS
Figures C2–C5 show the results of uncontrolled testing of distance 
measure properties using two real-world time series (Figure 3) from 
the UCR Time Series Classification Archive (Dau et al., 2019), an ar-
chive of 128 time series datasets intended for testing of classifica-
tion algorithms. All dissimilarity values in the test results have been 
rescaled to a range of [0,1] using Min–Max scaling. This was done to 
facilitate placing response curves for different types of transforma-
tions on the same plot while still allowing the shape of each response 

F I G U R E  C 1 Pairwise Pearson correlation of all tested distance measures, based on the unbinned results of controlled sensitivities 
testing for translation, amplitude, duration, frequency, white noise, biased noise, and outliers. Distance measures are organized by family 
on the plot.
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curve to be seen regardless of the strength of the response. For con-
trolled testing, time series were carefully constructed to allow com-
parison of response strength across different properties. That is a 
far more difficult problem when working with real-world time series, 
so we opted instead to exchange strength information for better 
shape resolution.

For those distance measures that are sensitive to a tested prop-
erty, the dissimilarity value shows a response curve as the size 
of the transformation value q increases. The sensitivity response 
curve may be linear or not but should be described by a function. 
Invariances show as horizontal lines at a dissimilarity value of zero, 
while insensitivities show as horizontal lines at some non-zero 
value. The response curves for some properties differ in shape 
between time series, especially for elastic distance measures and 
those designed for stationary time series. Despite this, results 
are largely consistent with the controlled testing results shown in 
Figures 5 and 6.

There are a few exceptions, however. Both compression-based 
distances we tested, NCD and CDM, registered as insensitive to 
translation and outliers in controlled testing, while showing unpre-
dictability in uncontrolled testing. Two feature-based distances, 
ACF and PACF, showed unpredictability for warping sensitivity and 
uniform time scaling sensitivity in uncontrolled testing but failed to 
give results in controlled testing. This was because these distance 
measures require the time series being compared with have an equal 
number of autocorrelation coefficients, a requirement which was 
met when extending the real-world time series, but not when ex-
tending the short time series that we created for controlled testing. 
Finally, the Time Alignment Measurement distance, TAM, showed 
unpredictability to outliers in controlled testing, but was insensitive 
in uncontrolled testing. The raw dissimilarity values from the con-
trolled testing showed a sudden increase from a dissimilarity value 
of 0 to 0.33 as the value of q increased from 2 to 3. Given that we 
used the same starting value of q (1) and the same increment size 

F I G U R E  C 2 Dissimilarity 
measurements from 17 distance measures 
of the TSdist package after applying 
transformations to a randomly selected 
time series from the Yoga dataset of the 
UCR Time Series Archive. The x-axis 
depicts the transformation value q across 
a range of 1–200 in increments of 10. 
Dissimilarity values were rescaled using 
Min–Max scaling to a range of [0,1] to 
ensure that the shape of each response 
curve would be visible regardless of the 
strength of the response.
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(also 1) for both controlled and uncontrolled testing, the threshold is 
presumably not determined simply by the value of the outlier, q, but 
by a more complex calculation.

APPENDIX D

EXAMPLE DATASET RESULTS
When comparing unsmoothed time series, the two selected dis-
tance measures gave identical results to percent improvement 
from Jellesmark et al. (2021) (Figure D1). Among the 40 unselected 
distance measures, only two, EDR and TAM, gave the same rank-
ings as the selected distance measures and percent improvement 
(Figure D1). Another 30 agreed with Jellesmark et al. (2021) in rank-
ing Redshank first, but beyond that the results differed strongly, 
with 28 ranking Yellow Wagtail second and 23 ranking Curlew last 
(Figure D1). None of the distance measures returned the same re-
sults as the t-test.

In the smoothed time series comparison, all seven of the selected 
distance measures agreed with each other but differed slightly 
from the percent improvement results of Jellesmark et al. (2021) by 
placing Snipe ahead of Lapwing (Figure D2). Of the 35 unselected 
distance measure, four gave the same rankings as the selected dis-
tance measures, while 11 agreed with percent improvement and five 
agreed with the t-test (Figure D2).

APPENDIX E

SPEEDING UP DTW
For matching problems, such as content queries and classification, 
the slowness of DTW can be avoided by indexing, which severely 
reduces the number of time series that need to be compared with 
find the best match. For the Euclidean distance, indexing is relatively 
straightforward to accomplish. However, as DTW does not satisfy 
the triangle inequality (Figure 4), it presents more of a challenge. 

F I G U R E  C 3 Dissimilarity 
measurements from 24 distance measures 
of the philentropy package after applying 
transformations to a randomly selected 
time series from the Yoga dataset of the 
UCR Time Series Archive. The x-axis 
depicts the transformation value q across 
a range of 1–200 in increments of 10. 
Dissimilarity values were rescaled using 
Min-Max scaling to a range of [0,1] to 
ensure that the shape of each response 
curve would be visible regardless of the 
strength of the response.

 20457758, 2023, 10, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/ece3.10520 by T

est, W
iley O

nline L
ibrary on [11/10/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



    |  29 of 32DOVE et al.

Keogh and Ratanamahatana (2005) solved this problem using a tight 
“lower-bounding” measure, which is included in the TSdist package 
(Mori et al., 2016a, 2016b) as LBKeoghDistance. For an explanation 
of lower bounding and the indexing process with respect to DTW, 
refer to Keogh and Ratanamahatana  (2005). The lower-bounding 
technique does not apply to clustering, where some real-world 

problems can take weeks or even months (Zhu et al., 2012). However, 
Zhu et al.  (2012) solved this problem for clustering by creating an 
interactive “anytime algorithm”, which uses a fast approximation 
of DTW to give a best available answer that improves over time as 
exact DTW calculations are performed, and can be paused or termi-
nated at any time.

F I G U R E  C 4 Dissimilarity 
measurements from 17 distance measures 
of the TSdist package after applying 
transformations to a randomly selected 
time series from the Synthetic Control 
dataset of the UCR Time-Series Archive. 
The x-axis depicts the transformation 
value q across a range of 1–20 in 
increments of 1. Dissimilarity values 
were rescaled using Min–Max scaling to 
a range of [0,1] to ensure that the shape 
of each response curve would be visible 
regardless of the strength of the response.
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F I G U R E  C 5 Dissimilarity 
measurements from 24 distance measures 
of the philentropy package after applying 
transformations to a randomly selected 
time series from the Synthetic Control 
dataset of the UCR Time Series Archive. 
The x-axis depicts the transformation 
value q across a range of 1–20 in 
increments of 1. Dissimilarity values 
were rescaled using Min-Max scaling to 
a range of [0,1] to ensure that the shape 
of each response curve would be visible 
regardless of the strength of the response.
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F I G U R E  D 1 Comparative rankings 
of conservation impact on unsmoothed 
trends of five wading bird species 
according to percent improvement, t-test, 
and distance measures. Species ranked 
first had the greatest difference between 
trends. *Starred distance measures 
were chosen by our selection process. 
†Daggered distance measures were not 
chosen, but returned the same results as 
the chosen measures.
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F I G U R E  D 2 Comparative rankings of 
conservation impact on smoothed trends 
of five wading bird species according to 
percent improvement, t-test, and distance 
measures. Species ranked first had the 
greatest difference between trends. 
*Starred distance measures were chosen 
by our selection process. †Daggered 
distance measures were not chosen, but 
returned the same results as the chosen 
measures.
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