
IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. *, NO. *, JAN. 2020 1

Enhanced Discrete Multi-modal Hashing:
More Constraints yet Less Time to Learn

Yong Chen, Hui Zhang, Zhibao Tian, Jun Wang, Dell Zhang, Senior Member, IEEE ,
and Xuelong Li, Fellow, IEEE

Abstract—Due to the exponential growth of multimedia data, multi-modal hashing as a promising technique to make cross-view retrieval
scalable is attracting more and more attention. However, most of the existing multi-modal hashing methods either divide the learning
process unnaturally into two separate stages or treat the discrete optimization problem simplistically as a continuous one, which leads to
suboptimal results. Recently, a few discrete multi-modal hashing methods that try to address such issues have emerged, but they still
ignore several important discrete constraints (such as the balance and decorrelation of hash bits). In this paper, we overcome those
limitations by proposing a novel method named “Enhanced Discrete Multi-modal Hashing (EDMH)” which learns binary codes and
hashing functions simultaneously from the pairwise similarity matrix of data, under the aforementioned discrete constraints. Although the
model of EDMH looks a lot more complex than the other models for multi-modal hashing, we are actually able to develop a fast iterative
learning algorithm for it, since the subproblems of its optimization all have closed-form solutions after introducing two auxiliary variables.
Our experimental results on three real-world datasets have revealed the usefulness of those previously ignored discrete constraints and
demonstrated that EDMH not only performs much better than state-of-the-art competitors according to several retrieval metrics but also
runs much faster than most of them.

Index Terms—Learning to Hash, Discrete Optimization, Semantics Alignment, Cross-View Retrieval.

F

1 INTRODUCTION

R ECENTLY, abundant multimedia data, e.g., images, texts, and
videos, have flooded people’s lives [1], [2], [3], [4], [5], [6],

[7], [8], which generates a huge demand for scalable cross-view
retrieval techniques. Specifically, given one view of a query (such as
a text query), users expect to find semantic related results not only
that original view but also in other different views (such as images
and videos). Multi-modal hashing (MH) for approximate nearest
neighbor search holds the potential to handle such cross-view
retrieval tasks on web-scale data, due to the binary codes which
merely require economical storage resources and greatly accelerate
the retrieval process with hardware-level XOR operations [9], [10],
[11], [12].

Roughly speaking, MH methods could be divided into two
categories: unsupervised and supervised.

Unsupervised MH methods usually focus on the intra- and
inter-relationships of data points just with features in different
modalities for hash codes and functions. Inter-Media Hashing
(IMH) [13] explores the intra-view and inter-view correlations
among multiple media types and transforms cross-modal instances

• Yong Chen is with the Key Lab of Machine Perception, School of Electronics
Engineering and Computer Science, Peking University, Beijing 100871,
China (E-mail: butterfly.chinese@pku.edu.cn).

• Hui Zhang and Zhibao Tian are with the Department of Computer Science
and Engineering, Beihang University, Beijing 100191, China.

• Jun Wang is a Professor at University College London, UK.

• Dell Zhang is the corresponding author (E-mail: dell.z@ieee.org). He is
currently on leave from Birkbeck, University of London and working for
Blue Prism AI Labs.

• Xuelong Li is with the School of Computer Science and Center for OPTical
IMagery Analysis and Learning (OPTIMAL), Northwestern Polytechnical
University, Xi’an 710072, China (E-mail: xuelong li@nwpu.edu.cn).

into one common Hamming space. However, IMH needs to
construct similarity matrix with a large computational complexity
O(n2) (n is the number of instances in dataset), which obviously
obstacles its applications on large-scale databases. Fusion Similarity
Hashing (FSH) [14], slightly different from IMH, learns unified
binary codes in consistence with the self-defined fusion similarities
across modalities, which still confronts the time-consuming cross-
modal similarities, especially for large datasets. Collective Matrix
Factorization Hashing (CMFH) [15] learns unified hash codes for
instances via matrix factorizations with latent factor models from
different modalities. Latent Semantic Sparse Hashing (LSSH) [16]
obtains latent semantic components for images and texts with
sparse coding and matrix factorization respectively, and then maps
the learned features into a joint abstraction space. Semantic Topic
Multi-modal Hashing (STMH) [17] first captures topics of texts
and concepts of images via clustering techniques and robust matrix
factorizations respectively, and then transforms the learned multi-
modal features into a common subspace by their correlations.
These three approaches (i.e., CMFH, LSSH and STMH) could be
quite efficient in hashing learning and achieve satisfactory cross-
view retrieval performances on scalable datasets. However, they
don’t fully utilize the supervised information, and relax the binary
hashing problems as continuous optimizations, which would lead to
sub-optimal solutions and therefore yield not the best binary codes
for cross-view retrieval tasks. In addition, it’s worth mentioning
that the Collective Reconstructive Embeddings for Cross-Modal
Hashing approach (CRE) [18], lately proposed, starts to explore
complex constraints, such as balance and decorrelation of the to-
be-learnt binary codes. Nevertheless, this method bridges the cross-
modal semantic gaps via image-text pairs instead of the pairwise
similarities across multi-modalities, which still exists a large space
to further leveraging the cross-modal semantics for better hashing.
Moreover, the binary constrained optimization problem, addressed

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. *, NO. *, JAN. 2020 2

with the iterative Minorization-Maximum algorithm [19], could be
transformed to a much simpler optimization problem with a faster
closed-form solution.

Supervised Multi-modal Hashing (SMH) often preserves the
pairwise similarities between different modalities in accordance
with semantic labels for cross-view hash codes. Cross-modality
Metric Learning using Similarity-Sensitive Hashing (CMSSH) [20]
models the mapping from the original instances with cross-
modalities into the shared Hamming space as binary classifiers,
and learns them efficiently via boosting algorithms. Cross-View
Similarity Search (CVH) [21] learns hash functions by minimizing
the weighted Hamming distances between the hash codes of
training samples. Semantic Correlation Maximization (SCM) [22]
seamlessly integrates marked labels into the hashing learning
procedure via maximizing semantic correlations for large-scale
multi-modal retrieval. Semantics-Preserving Hashing (SePH) [23]
first transforms the semantic affinities into a probability distribution
and approximates it with be-learnt hash codes in Hamming space,
and then learns the hash functions as a kernel logistic regression for
each view. Generalized Semantic Preserving Hashing (GSPH) [24],
[25] first learns the optimum hash codes for two modalities
simultaneously, and then learns the hash functions to map the
features to the hash codes. These supervised methods make full
use of the supervised information and often outperform the above
unsupervised approaches in cross-view retrieval missions. However,
they also share the similar problems with the unsupervised methods,
such as time-consuming similarity matrix construction and two-
stage learning procedure (e.g., SePH and GSPH), relaxation from
discrete to continuous (e.g., CMSSH, CVH, SCM, etc.), which
indeed simplify the complex discrete optimization problems for
binary codes and hash functions but meanwhile deteriorate the
cross-view retrieval performances.

Very recently, there emerges several discrete SMH methods.
Learning Discriminative Binary Codes for Cross-modal Hashing
(DCH) [26] pursues discriminative binary codes by leveraging
pointwise supervised class labels while keeping the discrete
constraints. Discrete Manifold-Embedded Hashing (SDMCH) [27]
first learns the local manifold structures via LLE [28], and
then combines it with class label supervised binary hashing.
Discrete Matrix Factorization Hashing (SCRATCH) [29] mainly
compromises the merits of CMFH [15] and DCH [26], and develops
a fast discrete hashing for cross-modal retrieval. Asymmetric
Discrete Cross-Modal Hashing (ADCH) [30] integrates collective
matrix factorization (CMF) with pairwise similarity supervised
hashing in an asymmetric way. Discrete Latent Factor Hashing
(DLFH) [31] tries to maximize the likelihood of the cross-modal
data with pairwise simialrity maintained, and then solves the
discrete constrained optimization by column-wise learning strategy.
Other examples of the discrete SMH family include Robust Discrete
Code Modeling (RDCM) [32] and Subspace Relation Learning
for Cross-modal Hashing (SRLCH) [33]. Those methods all just
utilize the simplest binary constraints for fast learning (usually
neglecting some important constraints, such as the balance and
decorrelation of hash codes), and thus it still exists great potentials
for improvements.

By the way, there also have sprung up some deep MH
models: Dual Deep Neural Networks Cross-Modal Hashing [34],
Pairwise Relationship Guided Deep Hashing for Cross-Modal
Retrieval [35], Deep Cross-Modal Hashing [36], Deep Binary
Reconstruction for Cross-Modal Hashing [37], Triplet-Based Deep
Hashing Network for Cross-Modal Retrieval [38], Deep Supervised

Table 1
The notations used in this paper.

Symbol Explanation

n a scalar
v a vector
M a matrix
vi a scalar: the (i)-th element of vector v
mi a vector: the (i)-th column of matrix M
mij a scalar: the (ij)-th element of matrix M
0n an n× 1 vector with all 0 elements
1n an n× 1 vector with all 1 elements
In an n×n identity matrix
O a matrix with all 0 elements

MT the transpose of matrix M
D−1 the inverse of square matrix D
tr(D) the trace of square matrix D:

∑
i dii

||v||2 the l2 norm of vector v:
√∑

i v
2
i

||M||F the Frobenius norm of M:
√∑

ij m
2
ij

sgn(·) the element-wise sign function

Cross-Modal Retrieval [39], Unsupervised Deep Hashing with
Similarity-Adaptive and Discrete Optimization [40], etc. Those
deep-learning based methods can usually achieve a high accuracy
for cross-modal retrieval, but they all require a very large amount
of data (e.g., ImageNet) and take long time to train even with
GPUs/TPUs. Quite the contrary, the focus of this paper is on low-
cost super-fast MH without relying on expensive computational
resources, which is still an open challenge in scalable cross-view
retrieval.

To further unleash the full potentials of low-cost non-deep-
learning techniques for fast MH, we propose a novel SMH method,
called “Enhanced Discrete Multi-modal Hashing (EDMH)”, which
seamlessly integrates semantic supervised hashing with complex
beneficial constraints for retrieval. The main contributions can be
listed as follows:

• Unlike the previous MH methods, a joint hashing learning
model with three discrete constraints (i.e., binary values,
balance codings and decorrelation of hash bits), which have
not been addressed in discrete MH before, is proposed here
for scalable cross-view retrieval tasks.

• Although such constraints make EDMH more complex
and challenging to handle, two intermediate variables are
introduced to convert EDMH into a simpler optimization
problem, which contributes to the closed-form solutions for
its subproblems and surprisingly makes the whole learning
much faster than many baseline models.

• Experiments on three benchmark datasets exhibit that EDMH
can not only outperform many state-of-the-art competitors in
cross-view retrieval tasks, but also be fast-efficient on scalable
scenarios, e.g., NUS-WIDE. In addition, a comparative
experiment is carefully designed to demonstrate the obvious
performance gain by adding “balance and decorrelation”
constraints into the only-binary-values constrained MH.

2 PROBLEM STATEMENT

Multi-modal hashing aims to build up the connections between
different modalities, and then benefits cross-view retrievals. For
easier presentation, we describe the SMH problem with only two
modalities (e.g., images and texts), because it could be easily

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. *, NO. *, JAN. 2020 3

extended to multiple modalities. For more details about the general
extensions, please refer to Section 5.

Given m images and n texts associated with shared tags, they
can be represented as X = [x1,x2, · · · ,xm]T ∈ Rm×dx and
Y = [y1,y2, · · · ,yn]T ∈ Rn×dy respectively, where dx and dy
correspond to the dimensions of their feature spaces. Set Gx ∈
{0, 1}m×l and Gy ∈ {0, 1}n×l to be the label matrices of images
X and texts Y respectively, where 1(0) denotes that the image/text
has(not) the tag, and l is the number of shared labels. Note that
the pairwise similarity Sxy between images and texts could be
calculated in some function with GxGT

y as parameter. The goal
of SMH is to learn two hashing functions: Hx(x) : Rdx →
{−1,+1}q and Hy(y) : Rdy → {−1,+1}q , where q is the
length of binary hash codes. Most importantly, the hash functions
could map the original feature vectors in each modality into a
common Hamming space which should preserve the pairwise
semantics in accordance with marked tags, i.e., if xi and yj share
more common labels, then the Hamming distance between their
binary codes should be smaller; and vice versa. Here, we adopt the
simplest linear projections for hash functions, which are defined as
follows:

Bx = Hx(X) = sgn(XWx) , (1)

By = Hy(Y) = sgn(YWy) , (2)

where sgn(·) is an element-wise sign function that outputs +1 if
the input value is non-negative and −1 otherwise. Wx ∈ Rdx×q

and Wy ∈ Rdy×q correspond to the projections for hash functions
Hx and Hy , Bx ∈ {−1,+1}m×q and By ∈ {−1,+1}n×q are
the binary codes for images and texts respectively. Therefore, the
SMH problem is formally to learn Bx, By , Wx and Wy from
the data matrices X and Y, and the label matrices Gx and Gy .
Note that although SMH is described with general forms, we would
mainly focus on the paired image-text instances (i.e., m = n and
Gx = Gy) because they could be easily obtained in the real-world
scenarios, such as Wikipedia (images surrounded by texts) and
Flickr (images with marked tags).

As a convention, we use boldface uppercase letters like M
to denote matrices, and boldface lowercase letters like v to mark
vectors. The (ij)-th element of matrix M is mij and the Frobenius
norm is then defined as ||M||F =

√∑
ij m

2
ij . The boldface 1n

and 0n correspond to vectors sized by n× 1 with all 1-elements
and 0-elements, respectively. Similarly, the boldface O is a matrix
with all 0-elements. Id is an identity matrix sized by d×d. Besides,
for a square matrix D = (dij)m×m ∈ Rm×m, the trace function
is defined as tr(D) =

∑m
i=1 dii. To the end, Table 1 gives a brief

summary of the adopted notations in this paper.

3 PROPOSED METHOD

Here we describe in detail EDMH, an enhanced supervised discrete
multi-modal hashing method in the joint learning framework which
simultaneously obtains binary codes and hash functions.

3.1 Similarity Matrix Construction
The semantics between different modalities are crucial for efficient
and effective SMH approaches. Here, we construct the pairwise
similarity matrix with two steps: (1) building up the label matrices
Gx/Gy and normalizing them with each row’s l2-norm to be
1; (2) aligning Sxy to [−1,+1]m×n. More specifically, for the
first step, we create the label space with all the shared tags,

and then code each sample’s labels as a {0, 1}l vector, where
1(0) denotes that the image/text has(not) the tag, and l is the
dimension of the label space, after which we could obtain the
label matrices Gx ∈ {0, 1}m×l and Gy ∈ {0, 1}n×l; then we
normalize each row vector of Gx/Gy with l2-norm and achieve
the label matrices G̃x ∈ [0, 1]m×l and G̃y ∈ [0, 1]n×l for images
and texts respectively. Regarding the second step, we conduct the
following operation:

Sxy = 2G̃xG̃T
y − 1m1T

n , (3)

which makes each element of the semantic matrix Sxy be a real
value in the range [−1,+1]. Note that, using Eq. (3) with the right
side instead of Sxy directly will not only save the storage resources,
but also reduce the computational costs in the follow-up learning
process. Besides, the reason why we align Sxy to [−1,+1]m×n

is that the label similarity matrix Sxy could be consistent with the
binary-codes based similarity matrix 1

qBxBT
y , which is the heart

of the similarity preserved multi-modal hashing model built in the
subsequent section.

3.2 Joint Learning for Hash Codes and Functions
We wish the learned binary codes Bx and By would well match the
semantics Sxy , and simultaneously to find out the corresponding
hash functions Wx and Wy . Therefore, a joint learning model is
built as below:

min
Bx,By,Wx,Wy

||Sxy −
1

q
BxBT

y ||2F

+λ{||sgn(XWx)−Bx||2F + ||sgn(YWy)−By||2F }
+β{||Wx||2F + ||Wy||2F }

(4)

s.t.


Bx ∈ {−1,+1}m×q;
By ∈ {−1,+1}n×q;
BT

x 1m = 0q,B
T
x Bx = mIq;

BT
y 1n = 0q,B

T
y By = nIq.,

where λ is a positive hyper-parameter that balances the importance
between semantic matches and hash functions learning, and β is a
non-negative smooth factor that avoids overfitting and irreversibility.
The discrete constraints are drawn here accompanied by extra
balance codings (e.g., BT

x 1m = 0q) and decorrelation of hash
bits (e.g., BT

x Bx = mIq), which would maximize the coding
abilities with fixed code lengths [41]. Note that this is distinctive
from the current discrete MH methods which only consider the
binary-values constraint (e.g., Bx ∈ {−1,+1}m×q).

Regarding the optimization problem (4), we remove the sgn(·)
function for continuous relaxations, keep the binary constraints,
introduce intermediate variables, and finally convert it into:

min
Bx,By,Wx,Wy,Zx,Zy

||Sxy −
1

q
BxBT

y ||2F

+λ{||XWx−Bx||2F + ||YWy −By||2F }
+β{||Wx||2F + ||Wy||2F }

(5)

s.t.


Bx ∈ {−1,+1}m×q,By ∈ {−1,+1}n×q;
Bx = Zx,By = Zy;
Zx ∈ Rm×q,ZT

x 1m = 0q,Z
T
x Zx = mIq;

Zy ∈ Rn×q,ZT
y 1n = 0q,Z

T
y Zy = nIq.,

with which the binary codes for training instances can be directly
achieved and the hash functions for unseen samples can also be
obtained. Here, one should notice that Bx,y and Zx,y are different

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. *, NO. *, JAN. 2020 4

in variable scopes, but they are correspondingly equal in values;
therefore the constraints in optimization problem (5) essentially
still keep the same as the constraints in optimization problem (4).
It’s worth noting that the intended adaption from the optimization
problem (4) to (5) is a special trick in the field of optimization [42],
which aims to transform the difficult discrete optimization into a
simpler one.

3.3 Overall Objective Function

Firstly, we equivalently replace the pairwise semantic matches
||Sxy− 1

qBxBT
y ||2F in Eq. (5) with the sum of two terms 1

2 ||Sxy−
1
qZxBT

y ||2F and 1
2 ||Sxy− 1

qBxZT
y ||2F 1, and then relax the equality

constraints Bx = Zx and By = Zy into the following problem:

min
Bx,By,Wx,Wy,Zx,Zy

1

2
||Sxy −

1

q
ZxBT

y ||2F +
1

2
||Sxy

−1

q
BxZT

y ||2F +λ{||XWx −Bx||2F + ||YWy

−By||2F }+ β{||Wx||2F + ||Wy||2F }
+α{||Zx −Bx||2F + ||Zy −By||2F }

(6)

s.t.


Bx ∈ {−1,+1}m×q,By ∈ {−1,+1}n×q;
Zx ∈ Rm×q,ZT

x 1m = 0q,Z
T
x Zx = mIq;

Zy ∈ Rn×q,ZT
y 1n = 0q,Z

T
y Zy = nIq.,

where α is a non-negative hyper-parameter to adjust the closeness
between Bx(By) and Zx(Zy). Since the philosophy of this method
is supervised discrete MH with more useful constraints for efficient
cross-view retrieval, we call it “Enhanced Discrete Multi-modal
Hashing”, EDMH for short.

3.4 Out-of-Sample Extension

In practice, we often come across a new image query or a new
text query, which could be denoted as x̃ ∈ Rdx or ỹ ∈ Rdy

respectively. Their corresponding hash codes are:

bx̃ = Hx(x̃) = sgn(WT
x x̃) ; (7)

bỹ = Hy(ỹ) = sgn(WT
y ỹ) . (8)

Obviously, the time complexity for coding a new query is quite
economical, and the hash functions can be executed in parallel
for binarizing large-scale out-of-samples. Since data points from
different modalities are efficiently mapped into the shared semantic
Hamming space, cross-view retrieval tasks, i.e., image-query-text
and text-query-image, could be conducted like a uni-modal retrieval
mission.

4 OPTIMIZATION ALGORITHM

The optimization problem (6) is not convex in all the six variables
together; therefore, we utilize the polular iterative algorithm [15],
[18], [26], [31], [42], i.e., alternately optimizing each variable while
holding the other five ones fixed, to achieve a local minimum for
practical cross-view retrievals.

1Note that this step is reasonable because Bx = Zx and By = Zy .

4.1 Bx-Subproblem
If we optimize Bx with By , W{x,y}, and Z{x,y} fixed, then the
whole optimization problem is transformed into:

min
Bx

O =
1

2
||Sxy −

1

q
BxZT

y ||2F + α||Zx −Bx||2F

+ λ||XWx −Bx||2F
(9)

s.t. Bx ∈ {−1,+1}m×q.

Unfolding the objective function (9), we can achieve:

O =
1

2
tr(SxyS

T
xy −

2

q
SxyZyB

T
x +

1

q2
BxZT

y ZyB
T
x)

+ α · tr(ZxZT
x − 2ZxBT

x + BxBT
x)

+ λ · tr(XWxWT
x XT − 2XWxBT

x + BxBT
x)

∝ −1

q
tr(SxyZyB

T
x) +

1

2q2
tr(BxnIqB

T
x)

− 2α · tr(ZxBT
x) + α · ||Bx||2F

− 2λ · tr(XWxBT
x) + λ · ||Bx||2F

∝ −tr{(1

q
SxyZy + 2αZx + 2λXWx)BT

x },

based on which the optimization (9) is equivalent to:

max
Bx

tr{(1

q
SxyZy + 2αZx + 2λXWx)BT

x } (10)

s.t. Bx ∈ {−1,+1}m×q.

Although the problem (10) is a discrete optimization problem,
we could directly work it out as follows:

Bx = sgn(
1

q
SxyZy + 2αZx + 2λXWx). (11)

4.2 By-Subproblem
It’s easy to find that the optimization of By is almost the same with
Bx-Subproblem; therefore, the optimal solution of By-Subproblem
could be written into:

By = sgn(
1

q
ST
xyZx + 2αZy + 2λYWy). (12)

4.3 Wx-Subproblem
With B{x,y}, Wy , and Z{x,y} fixed, the optimization w.r.t. Wx

is simplified as:

min
Wx

O = λ||XWx −Bx||2F + β||Wx||2F . (13)

Unfolding the objective function (13) and setting the derivative
of Wx to zero matrix, we could arrive at:

∂O
∂Wx

= 2λ(XTX +
β

λ
Idx

)Wx − 2λXTBx = O; (14)

then the optimal Wx for the problem (13) is:

Wx = (XTX +
β

λ
Idx)−1XTBx. (15)

4.4 Wy-Subproblem
Similar as the Wx-Subproblem, the optimum of Wy-Subproblem
is exhibited as:

Wy = (YTY +
β

λ
Idy

)−1YTBy. (16)

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. *, NO. *, JAN. 2020 5

Algorithm 1: EDMH
Input: Data matrices X and Y; Label matrices Gx and

Gy; Hyper-parameters α, β, and λ; Length of
binary codes q; Maximum iterations maxIter.

Output: Bx, By , Wx, Wy , Zx, and Zy .
1 randomly initialize Wx, Wy , Zx with each element be a

real value between −1 and +1; and Zy = Zx;
2 Bx = sgn(Zx), By = sgn(Zy);
3 for index=1:maxIter do
4 update Bx according to Eq. (11);
5 update By according to Eq. (12);
6 update Wx according to Eq. (15);
7 update Wy according to Eq. (16);
8 update Zx according to Eq. (19);
9 update Zy using the similar solution as Eq. (19)

according to Lemma 1;
10 end
11 return Bx, By , Wx, Wy , Zx, and Zy .

4.5 Zx-Subproblem
When fixing the variables B{x,y}, W{x,y} and Zy , and optimizing
Zx, the optimization problem is reduced to:

min
Zx

O =
1

2
||Sxy −

1

q
ZxBT

y ||2F + α||Zx −Bx||2F (17)

s.t. Zx ∈ Rm×q,ZT
x 1m = 0q,Z

T
x Zx = mIq,

which could be further simplified as:

max
Zx

tr(ExZT
x) (18)

s.t. Zx ∈ Rm×q,ZT
x 1m = 0q,Z

T
x Zx = mIq,

where Ex = 1
qSxyBy+2αBx. Set the centering matrix J = Im−

1
m1m1T

m and then do singular value decomposition (SVD) of JEx

as JEx = UΣVT =
∑r′

k=1 σkukvT
k , where r′ ≤ q is the rank

of JEx, σ1 ≥ σ2 ≥ · · · ≥ σr′ are the positive singular values,
and U = [u1,u2, · · ·ur′] and V = [v1,v2, · · ·vr′]. Next, by
employing the Gram-Schmidt process, we can obtain matrices
Ū ∈ Rm×(q−r′) and V̄ ∈ Rq×(q−r′) such that ŪT Ū = Iq−r′ ,
[U,1m]T Ū = O and V̄T V̄ = Iq−r′ , VT V̄ = O2. To solve the
optimization (18), we could borrow the following lemma:

Lemma 1. Zx =
√
m[U, Ū][V, V̄]T is the optimal solution to

the maximization problem (18).

Proof. Please refer to [43].

Therefore, we can re-write the final optimal solution as:

Zx =
√
m[U, Ū][V, V̄]T . (19)

4.6 Zy-Subproblem
Imitating the above Zx-Subproblem, we could also find the
equivalent optimization as below:

max
Zy

tr(EyZ
T
y) (20)

s.t. Zy ∈ Rn×q,ZT
y 1n = 0q,Z

T
y Zy = nIq,

2if r′ = q, then Ū and V̄ will be nothing.

where Ey = 1
qST

xyBx + 2αBy . Obviously, the optimization
problem (20) is in the same form with optimization problem (18);
thus, we could utilize the result in Lemma 1 for Zy-Subproblem.

Based on the above six subproblems, we could conclude the
iterative learning process in Algorithm 1. Since each subproblem
has an efficient closed-form solution, the whole algorithm is quite
fast and its time complexity is liner to the size of dataset whose
specific details are provided in the following.

4.7 Complexity Analysis
Although there are six variables to be optimized in Algorithm 1,
we just need to concentrate on three ones w.r.t. the computational
complexities because of the model parameters’ symmetry. Let’s
take Bx, Wx and Zx into considerations.

First, the time complexity of Eq. (11) for solving Bx is O((m+
n)lq+mdxq). Here one should notice “Sxy = 2GxGT

y −1m1T
n ”,

which reduces the complexity of O(mnq) to O((m+ n)lq).
Second, in terms of the Eq. (15), it will cost O(md2x + d3x +

mqdx + qd2x). Typically, dx, q will be much less than m; then this
step’s time complexity will be linear to the number of samples.

Last, let’s take an analysis for the Eq. (19). The main time-
consuming steps would be the SVD of JEx = Ex − 1

m1m1T
mEx

and its time complexity is O((m+ n)lq +mq2).
Obviously, the above analysis reveals that the time complexity

for each iteration in Algorithm 1 is linear to the size of datasets.
In addition, the updating times for convergence are usually within
10 iterations (please refer to Fig. 3), which means the liner time
complexity of the whole EDMH algorithm.

5 MORE MODALITIES

The proposed EDMH could be extended straightforwadly to the
scenario of more than two modalities. In practice, there are two
commom strategies to accompolish this which are described as
follows. (1) The first is to repeat the EDMH algorithm for each
combination of two modalities, e.g., there are

(4
2

)
= 4×3

2×1 = 6
combinations for four modalities, such as (image, text, video,
audio) [1], [44]. (2) The second is to build a new joint model based
on the principle of EDMH, which takes the pairwise similarities
between any two modalities into considerations. Details of this
strategy are specified in the following paragraph.

Suppose that there are data instances X consisting of t (t ≥ 2)
modalities’ matrices, denoted by Xi (i = 1, 2 · · · , t), and the
matrices Sij represents the pairwise similarities between the i-th
and the j-th modality. Then the extension of EDMH can be written
into:

min
{Bi,Wi,Zi}i=1,2··· ,t

1

2

t∑
1≤i<j≤t

||Sij −
1

q
ZiB

T
j ||2F

+
1

2

t∑
1≤i<j≤t

||Sij −
1

q
BiZ

T
j ||2F

+λ
t∑

i=1

||XiWi −Bi||2F + β
t∑

i=1

||Wi||2F

+α
t∑

i=1

||Zi −Bi||2F

(21)

s.t.


Bi ∈ {−1,+1}ni×q;
Zi ∈ Rni×q;
ZT

i 1ni = 0q,Z
T
i Zi = niIq.,

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. *, NO. *, JAN. 2020 6

Table 2
Statistics of three benchmark datasets.

Wiki MIRFlickr NUS-WIDE

#Labels 10 24 10
#Training Set 2,173 15,902 184,711
#Testing Set 693 836 1,866

where Bi, Wi, and Zi corresponds to the i-th modality’s binary
codes, hash function and intermediate variable, and α, β and λ
are non-negative hyper-parameters to balance the contributions
of different items. Here n = ni denotes the number of training
instances in dataset X. In light of the solutions for Bi, Wi and Zi,
it is not difficult to find that they could be straightforward borrowed
from the above optimization in EDMH. Since the essences of
EDMH and its extension are the same, we would mainly testify
the high performance of the bi-modal version (i.e., EDMH) in the
sequel for simplicity.

6 EXPERIMENTS

We have conducted extensive experiments to evaluate EDMH’s
effectiveness and efficiency, using a commodity PC with
Intel®CoreTM i7-4790 CPU@3.60GHz 4-Cores and 32GB RAM.

6.1 Datasets

Three public benchmarks, i.e., a single-labeled Wiki [45] dataset
and two multiple-labeled datasets MIRFLickr [46] and NUS-
WIDE [47] with different scales, are adopted for evaluating the
multi-modal retrieval performance.

Wiki originates from Wikipedia’s featured articles, and it
consists of 2, 866 image-text pairs annotated with 10 semantic
labels. For each pair, the image is coded as a 128-dimensional SIFT
feature vector and the text is represented as a 10-dimensional topic
vector generated by Latent Dirichlet Allocation (LDA) [48]. The
dataset is divided into two parts: 2, 173 image-text pairs and 693
image-text pairs for training and testing sets respectively.

MIRFlickr is crawled from Flickr with 25, 000 instances,
each being an image with some associated textual tags. In our
experiments, we only keep those image-text pairs that contain
textual tags appearing at least 20 times, and then achieve a 16, 738-
scale collection. For each instance, the image is vectorized with
150-dimensional edge histograms and the text is represented by a
500-dimensional vector derived from PCA on the binary textual
tags. 5% of the dataset are randomly selected as the testing set, and
the others come to the training set.

NUS-WIDE is a real-world web database originally containing
269, 648 instances, with each being an image and associated textual
tags. In accordance with the protocol in [23], we also choose those
instances that cover the top 10 most frequent semantic concepts and
finally obtain 186, 577 image-text pairs. Regarding such instances,
the images are expressed by 500-dimensional bag-of-visual-word
features and texts are coded as 1000-dimensional vectors of the
most frequent tags. Here we take 1% of the dataset as the testing
set and the remaining as the training set.

For all the datasets, the key statistics are summarized in Table 2.
Note that two instances sharing at least one tag are considered to
be relevant in the retrieval experiments.

6.2 Evaluation
Considering the existing comparable approaches whose codes are
publicly available, we select some representative and state-of-the-
art MH methods as baselines: CMFH3 [15], [49], LSSH4 [16],
STMH5 [17], FSH6 [14], CRE7 [18], CMSSH8 [20], SCM9 [22],
SePH10 [23], GSPH11 [24], DCH12 [26], DLFH/KDLFH13 [31].
With respect to our proposed EDMH method, the code will be
published online. Since all the methods are in Matlab codes, we
could further record the time cost for each approach and compare
their fastness. Note that the first five are unsupervised MH baselines,
and the rest are supervised MH approaches.

The proposed MH method is evaluated by different measure-
ments, i.e., Precision, Recall, Mean Average Precision (MAP),
Precision-Recall curves and the time cost, which are widely used in
the field of hashing such as in Refs. [45], [50], [51], [52], [53], [54].
Precision/Recall@topN measure the precision and recall at fixed
levels of retrieved results, and they don’t take into account the rank
order within the topN retrieved items; MAP and Precision-Recall
curves are both to evaluate the overall performance of the retrieval
systems; and the time expenditure is recorded to assess how fast
the MH methods will be.

6.3 Settings
To guarantee a fair comparison, we first make the inputs (i.e., the
data and label matrices) for all the competing methods identical.
Then in terms of the baseline methods, we conduct initializations
according to the corresponding papers and tune them on different
datasets for the most competitive performances.

With respect to our EDMH method, the maxIter is configured
as 10 because the EDMH algorithm could converge fast (please
see Fig. 3). Regarding the other hyper-parameters α, β and λ, we
empirically settle a fixed group with (α, β, λ)=(0.1, 1.0, 10), and
then vary each one ranging from 0, 10−9 to 109 and choose the
best while keeping the other two unchanged; finally, we arrive
at (α=0.1, β=0.1, λ=1.0), which would yield most competitive
retrieval performances on all datasets.

6.4 Results
Fig. 1 exhibits the Precision and Recall for the topN returned
results with 64 bits14, Fig. 2 plots the Precision-Recall curves
with 64 bits14, and Table 3 displays the MAP values with various
code lengths on the three benchmark datasets. Clearly, we can
see that whether it’s Precision/Recall@topN, Precision-Recall
curves or MAP, EDMH consistently outperforms all the baseline
methods for all the various settings, which testifies its effectiveness
in cross-view retrieval tasks. Particularly, even compared with
most competitive KDLFH, EDMH still exhibits clear advantages.
It’s worth mentioning that KDLFH is a nonlinear/kernel learning

3http://ise.thss.tsinghua.edu.cn/MIG/code data cmfh.zip
4http://ise.thss.tsinghua.edu.cn/MIG/LSSH code.rar
5The matlab code is kindly provided by the author.
6https://github.com/LynnHongLiu/FSH
7We implement the algorithm with Matlab.
8http://www.cs.technion.ac.il/∼mbron/publications conference.html
9http://cs.nju.edu.cn/lwj/code/SCMHash Release.zip

10https://sites.google.com/site/linzijia72/
11https://github.com/devraj89/Generalized-Semantic-Preserving-Hashing-

for-N-Label-Cross-Modal-Retrieval
12http://cfm.uestc.edu.cn/∼fshen/pub.html
13https://github.com/jiangqy/DLFH-TIP2019
14The results with other number of bits are similar to those with 64 bits.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. *, NO. *, JAN. 2020 7

(a) Precision: Image-query-Text (b) Precision: Text-query-Image

0.8

�LSSH
－崛－CMFH

0.7�·－φ－STMH
－喃』FSH
－毛←CRE
－啕』CMSSH

o.6H
�SCM-Seq
－嗨』田SePHkm

�GSPHknn

－喻－OCH
的 0.5

..0

寸
<O

⑤0.4

ro
(.)
ω
口二

0.3

0.2

0.1

－φ－DLFH
�KDLFH
－令－EDMH

Wiki (Image-query-Text)

。 100 200 300 400 500 600 700 800

The number of retrieved samples

900 1000

(c) Recall: Image-query-Text (d) Recall: Text-query-Image

0.8
MIRFlickr (Image-query-Text)

0.8

0.75

2
3

3

＠
 c

。

－� 0.65

�

0.6

0.5

0

�LSSH
－崛－圃CMFH

－φ－STMH
E喃－ FSH
－毛←回CRE
-E如－CMSSH
�SCM-Seq

－嗨』田SePH km

�GSPHknn
－喻－ OCH
－φ－DLFH
�KDLFH

－令－EDMH

100 1000 200 300 400 500 600 700 800

The number of retrieved samples

900

(e) Precision: Image-query-Text (f) Precision: Text-query-Image (g) Recall: Image-query-Text (h) Recall: Text-query-Image

(i) Precision: Image-query-Text (j) Precision: Text-query-Image (k) Recall: Image-query-Text (l) Recall: Text-query-Image

Figure 1. Precision and Recall curves of cross-view retrieval tasks on three datasets with 64 bits (best viewed in color).

method, while our EDMH is just a linear approach. Such superior
performance can attribute to EDMH’s capabilities to well preserve
cross-modalities’ semantics in the Hamming space as well as the
joint learning for hash functions.

Besides, we also record the time costs of all the methods and
report them in Table 4. Obviously, the fastest approach is SCM-Seq
which mainly benefits from its sequential bit-wise optimizations;
however, its retrieval performance is very limited. SePHkm and
GSPHknn are well-performed MH methods (Table 3), but they
are so resource-consuming that they can’t proceed successfully
on the large NUS-WIDE dataset. Regarding our EDMH, its time
cost is much less than that of most baseline approaches; even
compared with the unsupervised competitors (e.g., LSSH, STMH,
FSH and CRE), EDMH still performs faster especially on larger
databases. This merit probably owes the efficient similarity matrix
constructions and the carefully designed algorithm.

To sum up, the high retrieval performance and the economical
time expenditures endow the EDMH model with more capabilities
to handle large-scale cross-modal retrieval.

6.5 Convergence Analysis

The updating rules for minimizing the objective function of EDMH
are essentially iterative, and it’s easy to verify that these rules will
converge to a local minimum. Here, we would mainly investigate
how fast EDMH can converge.

Fig. 3 displays the convergence curves of EDMH on all the
three datasets with 32/64-bit code lengths. For this figure, the y-
axis is the normalized objective function value15 and the x-axis
denotes the iteration number. We can clearly see that the designed
Algorithm 1 converges quite fast, usually within 10 iterations,
which probably benefits from the efficient closed-form solutions of
the subproblems.

6.6 Parameter Sensitivity Analysis

Further experiments are conducted to analyze the influence of
parameters (α, β and λ) on the cross-modal retrieval performance.

15Each iteration’s loss is divided by the first iteration’s loss.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. *, NO. *, JAN. 2020 8

Table 3
The MAP results of all methods on three datasets with various hash code lengths. Note that “—” represents that the approaches can’t be executed

successfully on large training set (NUS-WIDE) because of their high space and computational complexities.

Tasks/Methods Wiki MIRFlickr NUS-WIDE
16 bits 32 bits 64 bits 128 bits 16 bits 32 bits 64 bits 128 bits 16 bits 32 bits 64 bits 128 bits

Image
Query

v.s.
Text

Database

LSSH 0.2130 0.2201 0.2227 0.2241 0.5784 0.5835 0.5866 0.5876 0.4115 0.4115 0.4080 0.4012
CMFH 0.1960 0.2061 0.2119 0.2184 0.5867 0.5865 0.5843 0.5842 0.3830 0.3857 0.3871 0.3877
STMH 0.2165 0.2334 0.2532 0.2617 0.5740 0.5738 0.5754 0.5632 0.4276 0.4524 0.4512 0.4504
FSH 0.2344 0.2475 0.2540 0.2654 0.6254 0.6267 0.6328 0.6307 0.4907 0.5104 0.5090 0.5161
CRE 0.2474 0.2544 0.2668 0.2672 0.6128 0.6183 0.6238 0.6288 0.5007 0.5191 0.5231 0.5266
CMSSH 0.1742 0.1735 0.1608 0.1509 0.5973 0.5846 0.5863 0.5839 0.4226 0.4191 0.4055 0.4042
SCM-Seq 0.2341 0.2410 0.2453 0.2566 0.6280 0.6345 0.6385 0.6490 0.5125 0.5418 0.5513 0.5476
SePHkm 0.2735 0.2853 0.3070 0.3135 0.6331 0.6349 0.6368 0.6389 — — — —
GSPHknn 0.2743 0.2960 0.2967 0.3055 0.6713 0.6792 0.6853 0.6837 — — — —
DCH 0.3350 0.3523 0.3701 0.3737 0.6545 0.6842 0.6989 0.6965 0.5730 0.5916 0.5993 0.6175
DLFH 0.2991 0.3075 0.3529 0.3672 0.6858 0.7012 0.7119 0.7337 0.6025 0.6457 0.6576 0.6588
KDLFH 0.3187 0.3575 0.3665 0.3686 0.7048 0.7194 0.7388 0.7414 0.6281 0.6479 0.6621 0.6683
EDMH 0.3420 0.3684 0.3756 0.3781 0.7393 0.7444 0.7578 0.7606 0.6462 0.6690 0.6780 0.6811

Text
Query

v.s.
Image

Database

LSSH 0.5008 0.5243 0.5311 0.5386 0.5882 0.5940 0.5968 0.5959 0.4419 0.4443 0.4291 0.4141
CMFH 0.4816 0.5120 0.5235 0.5427 0.5965 0.5949 0.5944 0.5915 0.4164 0.4213 0.4150 0.4051
STMH 0.5253 0.5400 0.5451 0.5581 0.5945 0.5952 0.5987 0.5980 0.4341 0.4417 0.4260 0.4102
FSH 0.4994 0.5199 0.5136 0.5694 0.6167 0.6155 0.6212 0.6194 0.4670 0.4837 0.4839 0.4906
CRE 0.4933 0.5148 0.5153 0.5219 0.6072 0.6182 0.6191 0.6296 0.4719 0.4756 0.4783 0.4818
CMSSH 0.1629 0.1670 0.1638 0.1576 0.5945 0.5937 0.5833 0.5834 0.3944 0.3872 0.3732 0.3675
SCM-Seq 0.2257 0.2459 0.2490 0.2524 0.6176 0.6234 0.6285 0.6369 0.4777 0.5000 0.5102 0.5068
SePHkm 0.6431 0.6512 0.6692 0.6693 0.6623 0.6620 0.6658 0.6679 — — — —
GSPHknn 0.6512 0.6640 0.6675 0.6758 0.7216 0.7366 0.7424 0.7427 — — — —
DCH 0.6996 0.7088 0.7018 0.7065 0.7311 0.7608 0.7919 0.8136 0.7187 0.7314 0.7343 0.7590
DLFH 0.6589 0.6738 0.6852 0.6896 0.7799 0.8170 0.8189 0.8262 0.7580 0.7764 0.7861 0.7874
KDLFH 0.6825 0.7053 0.7065 0.7101 0.8096 0.8223 0.8287 0.8345 0.7693 0.7982 0.8061 0.8074
EDMH 0.7078 0.7195 0.7211 0.7118 0.8190 0.8298 0.8392 0.8413 0.7862 0.8001 0.8093 0.8139

Table 4
Time cost (in seconds) of the training stage on benchmark datasets for different approaches with different hash code lengths.

Methods/
Time Cost
(Seconds)

Wiki MIRFlickr NUS-WIDE

16 bits 32 bits 64 bits 128 bits 16 bits 32 bits 64 bits 128 bits 16 bits 32 bits 64 bits 128 bits

LSSH 295.78 329.28 377.69 436.67 241.02 262.86 266.36 270.28 378.79 391.19 412.46 523.62
CMFH 0.09 0.14 0.19 0.36 4.22 4.90 6.24 9.50 468.57 489.78 545.16 665.06
STMH 1.15 1.81 3.89 8.74 14.77 26.42 52.76 137.11 3842.81 3996.06 4111.73 4861.19
FSH 1.17 1.23 2.76 3.68 72.91 73.52 74.90 80.42 4735.30 4827.79 4859.79 4914.77
CRE 0.76 1.06 1.47 2.43 34.04 44.51 57.63 89.63 459.04 488.73 551.62 733.42
CMSSH 65.76 131.16 260.98 517.15 57.61 97.81 177.36 336.54 118.67 215.78 427.93 1285.32
SCM-Seq 0.23 0.34 0.53 0.66 0.64 0.56 1.14 2.97 19.42 36.77 52.58 96.57
SePHkm 54.84 87.53 155.15 285.64 635.73 676.27 773.82 947.97 — — — —
GSPHknn 260.95 674.01 1034.34 2701.94 6359.66 18418.07 24541.24 46207.58 — — — —
DCH 0.37 0.73 3.35 8.47 6.17 13.71 36.44 130.29 155.40 175.04 344.29 1063.88
DLFH 1.29 1.60 11.90 52.22 5.59 24.12 95.21 389.01 80.16 279.93 1048.69 3291.28
KDLFH 122.51 255.93 377.59 596.51 413.68 815.43 1648.17 2405.33 5317.67 7965.39 13105.91 17124.71
EDMH 0.55 0.88 2.11 3.02 5.56 7.10 8.51 16.58 127.38 145.14 187.67 284.18

In particular, the MAP curves of EDMH on different datasets with
64 bits are drawn in Fig. 416. From this figure, we could observe
that EDMH generates good retrieval performances with a large
wide range of values regarding parameters α and β; while it’s
a little different in terms of parameter λ. Even so, it’s probably
showing the trend (from Fig. 4(g) to Fig. 4(i)) that with larger-
scale datasets, EDMH is not that sensitive to parameter λ over a
wider range. Finally, we arrive at a group of configurations, i.e.,
(α, β, λ) = (0.1, 0.1, 1.0), for competitive performances.

Noticeably, from Fig. 4(a) to Fig. 4(c), the MAP values are
almost the same when α = 0 and 0 < α < 0.1, which indicates
that this regularizer almost makes no effect. Recall that when

16The MAP curves with other code lengths are similar to Fig. 4.

we build the overall objective function in EDMH, the following
replacement is conducted:

||Sxy −
1

q
BxBT

y ||2F

=
1

2
||Sxy −

1

q
ZxBT

y ||2F +
1

2
||Sxy −

1

q
BxZT

y ||2F ,
(22)

which essentially implies that Bx = Zx and By = Zy , i.e., it
equivalently contains the regularizer:

||Zx −Bx||2F + ||Zy −By||2F . (23)

Besides, compared with Eq. (22), Eq. (23) just accounts for a very
small proportion in the whole objection function; thus Eq. (23)
could be seen as being absorbed by Eq. (22) when α < 0.1, which

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. *, NO. *, JAN. 2020 9

(a) Wiki: Image-query-Text (b) Wiki: Text-query-Image

(c) MIRFlickr: Image-query-Text (d) MIRFlickr: Text-query-Image

(e) NUS-WIDE: Image-query-Text (f) NUS-WIDE: Text-query-Image

Figure 2. Precision-Recall curves on different datasets with 64 bits.

probably explains why there is no obvious differences between
α = 0 and 0 < α < 0.1 in terms of EDMH’s performance.

In regard to the parameter β, it functions as a smooth factor in
case of overfitting and irreversibility; therefore it’s quite common to
see that when β = 0, EDMH stills performs almost the same with
β < 0.1 (from Fig. 4(d) to Fig. 4(f)) in complex real-world datasets
(i.e., in the selected datasets, there doesn’t exist the phenomenon
of overfitting and irreversibility).

To conclude, we here set α = 0.1 and β = 0.1 instead of
zeros for generalizations to other datasets.

6.7 Ablation Study

To investigate the contributions of such “BT1 = 0,BTB = nIq”
constraints in discrete MH, we deliberately remove one or two from
EDMH and get three weaker models called EDMHW , EDMHW+B

and EDMHW+D , corresponding to the optimization problem (24),

(25) and (26) respectively as below:

min
Bx,By,Wx,Wy,Zx,Zy

||Sxy −
1

q
BxBT

y ||2F

+λ{||XWx−Bx||2F + ||YWy −By||2F }
+β{||Wx||2F + ||Wy||2F }

(24)

s.t. Bx ∈ {−1,+1}m×q,By ∈ {−1,+1}n×q;

min
Bx,By,Wx,Wy,Zx,Zy

||Sxy −
1

q
BxBT

y ||2F

+λ{||XWx−Bx||2F + ||YWy −By||2F }
+β{||Wx||2F + ||Wy||2F }

(25)

s.t.

{
Bx ∈ {−1,+1}m×q,By ∈ {−1,+1}n×q;
BT

x 1m = 0q,B
T
y 1n = 0q;

min
Bx,By,Wx,Wy,Zx,Zy

||Sxy −
1

q
BxBT

y ||2F

+λ{||XWx−Bx||2F + ||YWy −By||2F }
+β{||Wx||2F + ||Wy||2F }

(26)

s.t.

{
Bx ∈ {−1,+1}m×q,By ∈ {−1,+1}n×q;
BT

x Bx = mIq,B
T
y By = nIq.

Regarding the discrete optimization techniques to address the
above discrete hashing problems, there are two popular paradigms,
namely, the discrete cyclic coordinate descent (DCC) method [56]
and the dciscrete proximal linearized minimization (DPLM) [55].
However, in this paper, we employed the DPLM with the following
reasons: (1) DCC adopts the bit-wise optimization strategy which
could only solves the binary constrained problem (i.e., EDMHW),
and at the same time is usually time-consuming when the hash code
length is long (e.g., 128 bits) [57], [58]. (2) In contrast, DPLM
is a fast optimization method for general binary code learning,
which could tackle the above three adapted models (EDMHW ,
EDMHW+B and EDMHW+D) in a unified form, and is faster
than DCC as discussed in Ref. [55].

To ensure a fair competition between EDMH and its variants,
we solve EDMH, EDMHW , EDMHW+B and EDMHW+D with
DPLM, trying best to tune the involved parameters according to the
proposals in Ref. [55] for the best performance. Specifically, the
model parameters are configured with (β = 0.01, λ = 10), and
the DLPM algorithm’s parameters are set the same with those in
Ref. [55]. In what follows, the MAP results of EDMH with/without
“BT1 = 0” or “BTB = nIq” constraints on three various datasets
are collected and displayed in Table 5.

From Table 5, we could draw several critical discoveries: (1)
Compared with EDMHW , EDMHW+B and EDMHW+D both
yield much higher MAP scores on all the selected datasets with
different hash code lengths, which validates the “balance codings”
and the “decorrelation of hash bits” can both make contributions
to multi-modal hashing for better cross-view retrievals. (2) Be-
sides, “EDMH+DPLM” further shows superior performance to
EDMHW+B and EDMHW+D , which testifies the great benefits of
the integrated constraints “BT1 = 0, BTB = nIq”. (3) What’s
more, take “EDMH+DPLM” and “EDMH” into account, it’s easy
to conclude that the proposed Algorithm 1 owns more advantages
than DPLM in solving the EDMH model.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. *, NO. *, JAN. 2020 10

(a) 32bits (b) 64bits

Figure 3. Convergence curves of EDMH on various datasets with 32 and 64 bits (Notice: other bit-settings hold similar results).

Table 5
The MAP results of EDMH with/without “BT 1 = 0” or “BT B = nIq” constraints on various benchmark datasets. Note that “EDMH+DPLM”

represents that the EDMH model is solved with the “Discrete Proximal Linearized Minimization (DPLM)” algorithm [55], which is distinctive from our
Algorithm 1.

Tasks/Methods Wiki MIRFlickr NUS-WIDE
16 bits 32 bits 64 bits 128 bits 16 bits 32 bits 64 bits 128 bits 16 bits 32 bits 64 bits 128 bits

Image
Query

v.s.
Text

Database

EDMHW 0.2905 0.3240 0.3355 0.3395 0.6449 0.6524 0.6549 0.6585 0.5859 0.5972 0.6029 0.6162
EDMHW+B 0.3123 0.3327 0.3461 0.3598 0.6573 0.6676 0.6716 0.6786 0.6020 0.6117 0.6133 0.6249
EDMHW+D 0.3214 0.3361 0.3519 0.3567 0.6549 0.6747 0.6762 0.6764 0.6023 0.6138 0.6188 0.6229
EDMH+DPLM 0.3278 0.3441 0.3603 0.3651 0.6659 0.6798 0.6825 0.6928 0.6174 0.6266 0.6320 0.6447
EDMH 0.3420 0.3684 0.3756 0.3781 0.7393 0.7444 0.7578 0.7606 0.6462 0.6690 0.6780 0.6811

Text
Query

v.s.
Image

Database

EDMHW 0.6326 0.6543 0.6577 0.6580 0.6844 0.6961 0.7219 0.7279 0.6432 0.6535 0.6547 0.6561
EDMHW+B 0.6485 0.6564 0.6667 0.6694 0.6920 0.7182 0.7441 0.7593 0.6657 0.6687 0.6718 0.6764
EDMHW+D 0.6508 0.6614 0.6637 0.6686 0.7007 0.7265 0.7532 0.7553 0.6551 0.6710 0.6785 0.6787
EDMH+DPLM 0.6625 0.6745 0.6759 0.6777 0.7174 0.7346 0.7606 0.7645 0.6686 0.6877 0.7091 0.7203
EDMH 0.7078 0.7195 0.7211 0.7118 0.8190 0.8298 0.8392 0.8413 0.7862 0.8001 0.8093 0.8139

Table 6
Time cost (in seconds) of the training stage on benchmark datasets for

EDMH with different optimization algorithms.

Datasets/Methods 16 bits 32 bits 64 bits 128 bits

Wiki EDMH+DPLM 1.52 3.711 8.10 17.72
EDMH 0.55 0.88 2.11 3.02

MIRFlickr EDMH+DPLM 14.423 22.32 47.43 79.22
EDMH 5.56 7.10 8.51 16.58

NUS-WIDE EDMH+DPLM 155.53 189.65 292.75 495.69
EDMH 127.38 145.14 187.67 284.18

By the way, we have also recorded the time cost of the training
stage on three benchmark datasets for EDMH and “EDMH+DPLM”
in Table 6. Clearly, no matter how long the hash code is set, EDMH
runs much faster than “EDMH+DPLM”, which exhibits that our
algorithm is quite fast efficient.

Overall, more constraints, indeed make the EDMH model
more complex and challenging, but meanwhile they make it more
effective and efficient, unleashing its potential for scalable cross-
view retrieval.

7 UNPAIRED MULTI-MODAL DATA

The above has investigated the EDMH’s performance on common
scenarios with one-to-one correspondence between images and
texts (e.g., Wiki [45], Flickr [46] and NUS-WIDE [47]). In what
follows, we further explored its cross-model retrieval behaviors

on more general application scenerios, i.e., with mixed paired and
unpaired image-text couples.

7.1 Re-constructed Datasets

To testify EDMH’s abilities on unpaired scenarios, we should re-
construct the benchmark datasets. In fact, we could continue to
maintain the testing set of Section 6, and just remove some images
or/and texts from the training set of Section 6. Fig. 5 illustrates
how to reshape the training datasets. Specifically, the first subfigure
in Fig. 5 completely contains the one-to-one image-text pairs (i.e.,
paired : unpaired = 100% : 0) as a reference, based on which
two different unpaired scenarios are built. The second subfigure
in Fig. 5 wipes off 10% samples from both images and texts, i.e.,
paired : unpaired = 80% : 20%. Similarly, the third subfigure
in Fig. 5 forms a case with paired : unpaired = 40% : 60%.
Here, we call the latter two cases “unpaired scenarios”, which
highly simulate the more general practical retrieval systems with
both paired and unpaired image-text couples.

Hence, based on the above criterias, six unpaired training sets
could be re-constructed in two groups, i.e., {Wiki (8:2), MIRFlickr
(8:2), NUS-WIDE (8:2)} and {Wiki (4:6), MIRFlickr (4:6), NUS-
WIDE (4:6)}.

7.2 Settings

Section 6 has employed more than 10 baseline approaches to hold
a cross-retrieval competition on the “paired” scenario. However,
when talkig about the more general “unpaired” scenario, only

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. *, NO. *, JAN. 2020 11

0 1e−9 1e−7 1e−5 1e−3 1e−2 1e−1 1 10 100 1e3 1e5 1e7 1e9
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

α

M
A

P

Wiki

Text−query−Image
Image−query−Text

(a)

0 1e−9 1e−7 1e−5 1e−3 1e−2 1e−1 1 10 100 1e3 1e5 1e7 1e9
0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

α

M
A

P

MIRFlickr

Text−query−Image
Image−query−Text

(b)

0 1e−9 1e−7 1e−5 1e−3 1e−2 1e−1 1 10 100 1e3 1e5 1e7 1e9

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

α

M
A

P

NUS−WIDE

Text−query−Image
Image−query−Text

(c)

0 1e−9 1e−7 1e−5 1e−3 1e−2 1e−1 1 10 100 1e3 1e5 1e7 1e9
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

β

M
A

P

Wiki

Text−query−Image
Image−query−Text

(d)

0 1e−9 1e−7 1e−5 1e−3 1e−2 1e−1 1 10 100 1e3 1e5 1e7 1e9
0.7

0.72

0.74

0.76

0.78

0.8

0.82

0.84

β

M
A

P

MIRFlickr

Text−query−Image
Image−query−Text

(e)

0 1e−9 1e−7 1e−5 1e−3 1e−2 1e−1 1 10 100 1e3 1e5 1e7 1e9
0.55

0.6

0.65

0.7

0.75

0.8

β

M
A

P

NUS−WIDE

Text−query−Image
Image−query−Text

(f)

0 1e−9 1e−7 1e−5 1e−3 1e−2 1e−1 1 10 100 1e3 1e5 1e7 1e9
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

λ

M
A

P

Wiki

Text−query−Image
Image−query−Text

(g)

0 1e−9 1e−7 1e−5 1e−3 1e−2 1e−1 1 10 100 1e3 1e5 1e7 1e9
0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

λ

M
A

P

MIRFlickr

Text−query−Image
Image−query−Text

(h)

0 1e−9 1e−7 1e−5 1e−3 1e−2 1e−1 1 10 100 1e3 1e5 1e7 1e9

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

λ

M
A

P

NUS−WIDE

Text−query−Image
Image−query−Text

(i)

Figure 4. Parameter sensitivity analysis of (α, β, and λ) on different datasets with 64 bits.

image text

paired : unpaired = 100% : 0

…
…

(1)

image text

paired : unpaired =80% : 20%

…
…

(2)

X

X

10%

10%

80%
image text

paired : unpaired =40% : 60%

…
…

(3)

X

X

30%

30%

40%

Figure 5. Datasets re-constructions: mixed paired and unpaired image-
text couples with different ratios.

two, i.e., CMSSH [20] and GSPH [24], [25], are left. Note that,
to the best of our knowledge, GSPH is most competitive in
cross-modal retrievals with unpaired settings. Thus, we mainly
compare our EDMH with them (CMSSH/GSPHknn) on the re-
constructed datasets. With respect to other setups, such as the codes,
configurations and measurements, they are the same with those in
Section 6.

7.3 Results

Table 7 collects the MAP values of selected methods with various
code lengths on the three unpaired benchmark datasets. Note that
the best results are in bold, and clearly we can find that EDMH
defeats the other two competitors almost in all the different settings
(even on the very minor cases, EDMH is quite close to the best
GSPHknn), which overall validates its high-performace in cross-
view retrieval tasks.

Besides, the competitors’ time cost (in seconds) of the training
stage on the three unpaired benchmark datasets with different hash
code lengths are also recorded in Table 8. Undoubtedly, EDMH
exhibits evident advantages over other methods. Particularly, on the
10k+-scale dataset MIRFlickr, GSPHknn took as high as several
hours in sharp contrast to about 10 seconds in EDMH. In addition,
on a larger-scale NUS-WIDE dataset, the current most competitive
method GSPHknn failed because of its high space and computing
expenditures. Nevertheless, EDMH runs successfully in just two or
three minutes, which actually reveals our proposed method’s great
potentials in real-world retrieval systems.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. *, NO. *, JAN. 2020 12

Table 7
The MAP results of selected methods on three Unpaired datasets with various hash code lengths. Note that “—” represents that the approaches

can’t be executed successfully on large training set (NUS-WIDE) because of their high space and computational complexities.

Tasks/Methods Wiki MIRFlickr NUS-WIDE
16 bits 32 bits 64 bits 128 bits 16 bits 32 bits 64 bits 128 bits 16 bits 32 bits 64 bits 128 bits

Image
Query

v.s.
Text

Database

CMSSH (8:2) 0.1614 0.1615 0.1676 0.1685 0.5539 0.5688 0.5697 0.5704 0.4016 0.4122 0.4144 0.4172
GSPHknn (8:2) 0.2544 0.3008 0.3045 0.3165 0.6562 0.6577 0.6767 0.6877 — — — —
EDMH (8:2) 0.3260 0.3387 0.3440 0.3690 0.6537 0.6865 0.6916 0.7183 0.6376 0.6399 0.6451 0.6604

CMSSH (4:6) 0.1517 0.1592 0.1680 0.1694 0.5985 0.5935 0.5947 0.5985 0.3878 0.4052 0.4131 0.4176
GSPHknn (4:6) 0.2517 0.3034 0.3194 0.3164 0.6512 0.6829 0.6861 0.6906 — — — —
EDMH (4:6) 0.3018 0.3087 0.3124 0.3210 0.6591 0.7094 0.7425 0.7458 0.5946 0.6117 0.6358 0.6373

Text
Query

v.s.
Image

Database

CMSSH (8:2) 0.1553 0.1508 0.1666 0.1637 0.5666 0.5698 0.5710 0.5786 0.3749 0.3787 0.3795 0.3848
GSPHknn (8:2) 0.6404 0.6626 0.6639 0.6743 0.6979 0.7307 0.7428 0.7481 — — — —
EDMH (8:2) 0.6960 0.7105 0.7130 0.7200 0.7050 0.7221 0.7442 0.8046 0.7365 0.7391 0.7412 0.7521

CMSSH (4:6) 0.1515 0.1531 0.1535 0.1633 0.5782 0.5758 0.5813 0.5866 0.3614 0.3728 0.3767 0.3825
GSPHknn (4:6) 0.6352 0.6723 0.6738 0.6879 0.6974 0.7212 0.7556 0.7603 — — — —
EDMH (4:6) 0.6492 0.6792 0.6856 0.6962 0.7089 0.8018 0.8149 0.8234 0.6487 0.7003 0.7392 0.7541

Table 8
Time cost (in seconds) of the training stage on three Unpaired benchmark datasets for different approaches with different hash code lengths.

Methods/
Time Cost
(Seconds)

Wiki MIRFlickr NUS-WIDE

16 bits 32 bits 64 bits 128 bits 16 bits 32 bits 64 bits 128 bits 16 bits 32 bits 64 bits 128 bits

CMSSH (8:2) 55.69 117.44 241.02 412.87 44.42 87.58 168.73 293.51 102.07 186.18 396.89 1186.35
GSPHknn (8:2) 234.24 576.02 954.86 2315.37 5590.41 15772.07 21293.00 39966.74 — — — —
EDMH (8:2) 0.49 0.54 1.56 2.77 4.41 6.38 7.37 14.31 116.23 124.99 172.69 267.87

CMSSH (4:6) 46.03 86.04 171.89 286.26 34.88 76.23 122.85 204.73 74.73 141.80 295.43 718.34
GSPHknn (4:6) 202.44 493.19 799.08 2012.61 4733.78 13619.97 17954.80 32910.61 — — — —
EDMH (4:6) 0.20 0.25 0.44 2.21 3.63 5.41 6.70 12.88 89.27 105.51 145.28 183.28

In short, the EDMH’s talent in cross-view retrievals is further
unveiled in more general scenarios with mixed paired and unparied
image-text couples.

8 CONCLUSIONS

This paper mainly tries to tackle the discrete MH with more
constraints (i.e., balance codings and decorrelation), and then puts
forward a novel pairwise semantics preserved MH method in the
joint learning framework. Regarding the proposed complex and
challenging EDMH model, two auxiliary variables are introduced to
simplify the optimization, which triggers an effective and efficient
solution. Noticeably, EDMH has linear time complexity and thus is
very suitable for large-scale cross-view retrieval. Experiments on
three image-text collections (with both paired and unpaired settings)
show that EDMH can achieve better retrieval performances than
many state-of-the-art methods.

For future work, we would like to examine multi-modal
hashing on bigger multi-modal datasets, with more and diverse
class labels. In partciular, it would be interesting to see how
different multi-modal hashing methods work on the recent open
long-tailed datasets17 [59] where we must deal with significant
data imbalance and probably need to incorporate few-/zero-shot
learning techniques. Furthermore, tapping into the full power of
deep learning is certainly attractive for multi-modal hashing [40],
epscially because different types of data could be processed end-
to-end by a unified neural network architecture. As mentioned
before, the major difficulty for a widespread usage of deep learning
in multi-modal hashing has been the lack of massive labelled

17https://github.com/zhmiao/OpenLongTailRecognition-OLTR

data. Utilizing adversarial learning [60], [61] or self-supervised
learning [62], [63] to generate pseudo-labels looks a very promising
way to overcome this obstacle and further improve the performance
of multi-modal hashing.

ACKNOWLEDGMENTS

This work is supported in part by the China Postdoctoral Science
Foundation (grant No. 8206300295) and the National Key Research
and Development Program of China (grant No. 2017YFB1400200).
Besides, we also thank the Network Information Center of Beihang
University (BUAA) for providing high-performance servers.

REFERENCES

[1] H. Li, J. Zhu, C. Ma, J. Zhang, and C. Zong, “Read, watch, listen, and
summarize: Multi-modal summarization for asynchronous text, image,
audio and video,” IEEE Trans. Knowl. Data Eng., pp. 996–1009, 2019. 1,
5

[2] Y. Cao, M. Long, J. Wang, Q. Yang, and P. S. Yu, “Deep visual-semantic
hashing for cross-modal retrieval,” in KDD, 2016, pp. 1445–1454. 1

[3] K. Barnard and D. A. Forsyth, “Learning the semantics of words and
pictures,” in ICCV, 2001, pp. 408–415. 1

[4] J.-Y. Pan, H.-J. Yang, C. Faloutsos, and P. Duygulu, “Automatic multi-
media cross-modal correlation discovery,” in KDD, 2004, pp. 653–658.
1

[5] N. Chen, J. Zhu, F. Sun, and E. P. Xing, “Large-margin predictive latent
subspace learning for multiview data analysis,” IEEE Trans. on Pattern
Anal. Mach. Intell., pp. 2365–2378, 2012. 1

[6] J. Song, Y. Yang, Z. Huang, H. T. Shen, and R. Hong, “Multiple feature
hashing for real-time large scale near-duplicate video retrieval,” in ACM
Multimedia, 2011, pp. 423–432. 1

[7] F. Wu, Z. Yu, Y. Yang, S. Tang, Y. Zhang, and Y. Zhuang, “Sparse
multi-modal hashing,” IEEE Trans. on Multimedia, pp. 427–439, 2014. 1

https://github.com/zhmiao/OpenLongTailRecognition-OLTR

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. *, NO. *, JAN. 2020 13

[8] P. Wu, S. C. H. Hoi, P. Zhao, C. Miao, and Z. Liu, “Online multi-modal
distance metric learning with application to image retrieval,” IEEE Trans.
Knowl. Data Eng., pp. 454–467, 2016. 1

[9] B. Wu, Q. Yang, W.-S. Zheng, Y. Wang, and J. Wang, “Quantized
correlation hashing for fast cross-modal search,” in IJCAI, 2015, pp.
3946–3952. 1

[10] A. Gionis, P. Indyk, and R. Motwani, “Similarity search in high
dimensions via hashing,” in VLDB, 1999, pp. 518–529. 1

[11] A. Dasgupta, R. Kumar, and T. Sarlós, “Fast locality-sensitive hashing,”
in KDD, 2011, pp. 1073–1081. 1

[12] Q. Huang, J. Feng, Q. Fang, and W. Ng, “Two efficient hashing schemes
for high-dimensional furthest neighbor search,” IEEE Trans. Knowl. Data
Eng., pp. 2772–2785, 2017. 1

[13] J. Song, Y. Yang, Y. Yang, Z. Huang, and H. T. Shen, “Inter-media hashing
for large-scale retrieval from heterogeneous data sources,” in SIGMOD,
2013, pp. 785–796. 1

[14] H. Liu, R. Ji, Y. Wu, F. Huang, and B. Zhang, “Cross-modality binary code
learning via fusion similarity hashing,” in CVPR, 2017, pp. 6345–6353. 1,
6

[15] G. Ding, Y. Guo, and J. Zhou, “Collective matrix factorization hashing
for multimodal data,” in CVPR, 2014, pp. 2083–2090. 1, 2, 4, 6

[16] J. Zhou, G. Ding, and Y. Guo, “Latent semantic sparse hashing for
cross-modal similarity search,” in SIGIR, 2014, pp. 415–424. 1, 6

[17] D. Wang, X. Gao, X. Wang, and L. He, “Semantic topic multimodal
hashing for cross-media retrieval,” in IJCAI, 2015, pp. 3890–3896. 1, 6

[18] M. Hu, Y. Yang, F. Shen, N. Xie, R. Hong, and H. T. Shen, “Collective
reconstructive embeddings for cross-modal hashing,” IEEE Trans. Image
Processing, pp. 2770–2784, 2019. 1, 4, 6

[19] D. R. Hunter and K. Lange, “A tutorial on MM algorithms,” The American
Statistician, pp. 30–37, 2004. 2

[20] M. M. Bronstein, A. M. Bronstein, F. Michel, and N. Paragios, “Data
fusion through cross-modality metric learning using similarity-sensitive
hashing,” in CVPR, 2010, pp. 3594–3601. 2, 6, 11

[21] S. Kumar and R. Udupa, “Learning hash functions for cross-view
similarity search,” in IJCAI, 2011, pp. 1360–1365. 2

[22] D. Zhang and W.-J. Li, “Large-scale supervised multimodal hashing with
semantic correlation maximization,” in AAAI, 2014, pp. 2177–2183. 2, 6

[23] Z. Lin, G. Ding, M. Hu, and J. Wang, “Semantics-preserving hashing for
cross-view retrieval,” in CVPR, 2015, pp. 3864–3872. 2, 6

[24] D. Mandal, K. N. Chaudhury, and S. Biswas, “Generalized semantic
preserving hashing for n-label cross-modal retrieval,” in CVPR, 2017, pp.
2633–2641. 2, 6, 11

[25] ——, “Generalized semantic preserving hashing for cross-modal retrieval,”
IEEE Trans. Image Processing, pp. 102–112, 2019. 2, 11

[26] X. Xu, F. Shen, Y. Yang, H. T. Shen, and X. Li, “Learning discriminative
binary codes for large-scale cross-modal retrieval,” IEEE Trans. Image
Processing, pp. 2494–2507, 2017. 2, 4, 6

[27] X. Luo, X.-Y. Yin, L. Nie, X. Song, Y. Wang, and X.-S. Xu, “SDMCH:
Supervised discrete manifold-embedded cross-modal hashing,” in IJCAI,
2018, pp. 2518–2524. 2

[28] S. T. Roweis and L. K. Saul, “Nonlinear dimensionality reduction by
locally linear embedding,” Science, pp. 2323–2326, 2000. 2

[29] C.-X. Li, Z.-D. Chen, P.-F. Zhang, X. Luo, L. Nie, W. Zhang, and X.-S.
Xu, “SCRATCH: A scalable discrete matrix factorization hashing for
cross-modal retrieval,” in ACM Multimedia, 2018, pp. 1–9. 2

[30] X. Luo, P.-F. Zhang, Y. Wu, Z.-D. Chen, H.-J. Huang, and X.-S. Xu,
“Asymmetric discrete cross-modal hashing,” in ICMR, 2018, pp. 204–212.
2

[31] Q.-Y. Jiang and W.-J. Li, “Discrete latent factor model for cross-modal
hashing,” IEEE Trans. Image Processing, pp. 3490–3501, 2019. 2, 4, 6

[32] Y. Luo, Y. Yang, F. Shen, Z. Huang, P. Zhou, and H. T. Shen, “Robust
discrete code modeling for supervised hashing,” Pattern Recognition, pp.
128–135, 2018. 2

[33] H. T. Shen, L. Liu, Y. Yang, X. Xu, Z. Huang, F. Shen, and R. Hong,
“Exploiting subspace relation in semantic labels for cross-modal hashing,”
IEEE Trans. Knowledge and Data Engineering, 2020. 2

[34] Z.-D. Chen, W.-J. Yu, C.-X. Li, L. Nie, and X.-S. Xu, “Dual deep neural
networks cross-modal hashing,” in AAAI, 2018, pp. 274–281. 2

[35] E. Yang, C. Deng, W. Liu, X. Liu, D. Tao, and X. Gao, “Pairwise
relationship guided deep hashing for cross-modal retrieval,” in AAAI,
2017, pp. 1618–1625. 2

[36] Q.-Y. Jiang and W.-J. Li, “Deep cross-modal hashing,” in CVPR, 2017,
pp. 3270–3278. 2

[37] X. Li, D. Hu, and F. Nie, “Deep binary reconstruction for cross-modal
hashing,” in ACM Multimedia, 2017, pp. 1398–1406. 2

[38] C. Deng, Z. Chen, X. Liu, X. Gao, and D. Tao, “Triplet-based deep hashing
network for cross-modal retrieval,” IEEE Trans. Image Processing, pp.
3893–3903, 2018. 2

[39] L. Zhen, P. Hu, X. Wang, and D. Peng, “Deep supervised cross-modal
retrieval,” in CVPR, 2019, pp. 10 394–10 403. 2

[40] F. Shen, Y. Xu, L. Liu, Y. Yang, Z. Huang, and H. T. Shen, “Unsupervised
deep hashing with similarity-adaptive and discrete optimization,” IEEE
Trans. Pattern Analysis and Machine Intelligence, pp. 3034–3044, 2018.
2, 12

[41] Y. Weiss, A. Torralba, and R. Fergus, “Spectral hashing,” in NIPS, 2008,
pp. 1753–1760. 3

[42] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed
optimization and statistical learning via the alternating direction method
of multipliers,” Foundations and Trends in Machine Learning, pp. 1–122,
2011. 4

[43] W. Liu, C. Mu, S. Kumar, and S.-F. Chang, “Discrete graph hashing,” in
NIPS, 2014, pp. 3419–3427. 5

[44] X. He, Y. Peng, and L. Xie, “A new benchmark and approach for fine-
grained cross-media retrieval,” in ACM Multimedia, 2019, pp. 1740–1748.
5

[45] N. Rasiwasia, J. C. Pereira, E. Coviello, G. Doyle, G. R. G. Lanckriet,
R. Levy, and N. Vasconcelos, “A new approach to cross-modal multimedia
retrieval,” in ACM Multimedia, 2010, pp. 251–260. 6, 10

[46] M. J. Huiskes and M. S. Lew, “The MIR Flickr retrieval evaluation,” in
MIR, 2008, pp. 39–43. 6, 10

[47] T.-S. Chua, J. Tang, R. Hong, H. Li, Z. Luo, and Y. Zheng, “NUS-WIDE:
A real-world Web image database from National University of Singapore,”
in CIVR, 2009. 6, 10

[48] D. M. Blei, A. Y. Ng, and M. I. Jordan, “Latent dirichlet allocation,” in
NIPS, 2001, pp. 601–608. 6

[49] G. Ding, Y. Guo, J. Zhou, and Y. Gao, “Large-scale cross-modality
search via collective matrix factorization hashing,” IEEE Trans. on Image
Processing, pp. 5427–5440, 2016. 6

[50] Y. Gong, Q. Ke, M. Isard, and S. Lazebnik, “A multi-view embedding
space for modeling Internet images, tags, and their semantics,” Interna-
tional Journal of Computer Vision, pp. 210–233, 2014. 6

[51] A. Sharma, A. Kumar, H. D. III, and D. W. Jacobs, “Generalized multiview
analysis: A discriminative latent space,” in CVPR, 2012, pp. 2160–2167.
6

[52] N. Rasiwasia, D. Mahajan, V. Mahadevan, and G. Aggarwal, “Cluster
canonical correlation analysis,” in AISTATS, 2014, pp. 823–831. 6

[53] K. Wang, R. He, W. Wang, L. Wang, and T. Tan, “Learning coupled
feature spaces for cross-modal matching,” in ICCV, 2013, pp. 2088–2095.
6

[54] C. Kang, S. Xiang, S. Liao, C. Xu, and C. Pan, “Learning consistent
feature representation for cross-modal multimedia retrieval,” IEEE Trans.
on Multimedia, pp. 370–381, 2015. 6

[55] F. Shen, X. Zhou, Y. Yang, J. Song, H. T. Shen, and D. Tao, “A fast
optimization method for general binary code learning,” IEEE Trans.
Image Processing, pp. 5610–5621, 2016. 9, 10

[56] F. Shen, C. Shen, W. Liu, and H. T. Shen, “Supervised discrete hashing,”
in CVPR, 2015, pp. 37–45. 9

[57] W.-C. Kang, W.-J. Li, and Z.-H. Zhou, “Column sampling based discrete
supervised hashing,” in AAAI, 2016, pp. 1230–1236. 9

[58] J. Gui, T. Liu, Z. Sun, D. Tao, and T. Tan, “Fast supervised discrete
hashing,” IEEE Trans. Pattern Anal. Mach. Intell., pp. 490–496, 2018. 9

[59] Z. Liu, Z. Miao, X. Zhan, J. Wang, B. Gong, and S. X. Yu, “Large-scale
long-tailed recognition in an open world,” in CVPR, 2019, pp. 2537–2546.
12

[60] B. Wang, Y. Yang, X. Xu, A. Hanjalic, and H. T. Shen, “Adversarial
cross-modal retrieval,” in ACM Multimedia, 2017, pp. 154–162. 12

[61] J. Song, T. He, L. Gao, X. Xu, A. Hanjalic, and H. T. Shen, “Binary
generative adversarial networks for image retrieval,” in AAAI, 2018, pp.
394–401. 12

[62] C. Li, C. Deng, N. Li, W. Liu, X. Gao, and D. Tao, “Self-supervised
adversarial hashing networks for cross-modal retrieval,” in CVPR, 2018,
pp. 4242–4251. 12

[63] G. Wu, J. Han, Z. Lin, G. Ding, B. Zhang, and Q. Ni, “Joint image-text
hashing for fast large-scale cross-media retrieval using self-supervised
deep learning,” IEEE Trans. Industrial Electronics, pp. 9868–9877, 2019.
12

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. *, NO. *, JAN. 2020 14

Yong Chen received his Ph.D. in Computer Sci-
ence and Engineering from Beihang University
(BUAA), Beijing, China, in 2019. He is currently
working as a “Boya” Postdoc in the Key Lab of
Machine Perception, School of EECS, Peking
University, Beijing, China. He has been funded
as a visiting Ph.D. student at Birkbeck and UCL
from January 2018 to January 2019. His research
interests include machine learning, data mining
and numerical optimization. For more informa-
tion, please refer to https://scholar.google.com/

citations?user=bakW4s4AAAAJ&hl=zh-CN.

Hui Zhang received the M.S. and Ph.D. degrees
in computer science from Beihang University,
Beijing, China, in 1994 and 2009, respectively.
He is a Professor and also the Deputy Director at
State Key Laboratory of Software Development
Environment (SKLSDE), School of Computer
Science and Engineering, Beihang University. He
had been working in the University of Chicago
and Argonne National Laboratory, Chicago, IL,
USA, from 2007 to 2008 as a Guest Researcher.
His main research interests include e-science

archives management, data mining, and information retrieval.

Zhibao Tian received B.Sc. degree from com-
puter science and technology, China University
of Geosciences, Beijing, PR China, in 2017. Now
he is a master student in the State Key Lab
of Software Development Environment, School
of Computer Science and Engineering, Beihang
University, Beijing, China. He received gold award
at the 40th ACM/ICPC International College Stu-
dent Programming Contest, Asia Changchun
Station during his undergraduate period. His main
research interests include machine learning, data

mining, and big data, especially information retrieval and recommender
system for large-scale S&T resources.

Jun Wang is Chair Professor, Computer Science,
University College London, and Founding Direc-
tor of MSc Web Science and Big Data Analytics.
Prof. Jun Wang’s main research interests are in
the areas of AI and intelligent systems, including
(multiagent) reinforcement learning, deep gener-
ative models, and their diverse applications on
information retrieval, recommender systems and
personalization, data mining, smart cities, bot
planning, computational advertising etc. His team
won the first global real-time bidding algorithm

contest with 80+ participants worldwide. Jun has published over 100
research papers and is a winner of multiple “Best Paper” awards. He was
a recipient of the Beyond Search - Semantic Computing and Internet
Economics award by Microsoft Research and also received Yahoo! FREP
Faculty award. He has served as an Area Chair in ACM CIKM and
ACM SIGIR. His recent service includes co-chair of Artificial Intelligence,
Semantics, and Dialog in ACM SIGIR 2018. For more information, please
refer to http://www0.cs.ucl.ac.uk/staff/Jun.Wang/bio.html.

Dell Zhang is a Reader in Computer Science at
Birkbeck, University of London (UoL), a Senior
Member of ACM, a Senior Member of IEEE,
and a Fellow of RSS. He is currently on leave
from Birkbeck and working for Blue Prism AI
Labs. He got his PhD from Southeast University,
Nanjing, China, and then worked as a Research
Fellow at the Singapore-MIT Alliance (SMA) un-
til he moved to the UK in 2005. His research
interests include Natural Language Processing,
Information Retrieval, and Machine Learning. He

has received multiple best paper awards, and won prizes from sev-
eral data science competitions. For more information, please refer to
http://www.dcs.bbk.ac.uk/∼dell/.

Xuelong Li (M’02-SM’07-F’12) is a full professor with the School
of Computer Science and Center for OPTical IMagery Analysis
and Learning (OPTIMAL), Northwestern Polytechnical University,
Xi’an 710072, China.

https://scholar.google.com/citations?user=bakW4s4AAAAJ&hl=zh-CN
https://scholar.google.com/citations?user=bakW4s4AAAAJ&hl=zh-CN
http://www0.cs.ucl.ac.uk/staff/Jun.Wang/bio.html
http://www.dcs.bbk.ac.uk/~dell/

