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How to prevent systemic bank runs has been a central topic for policy
makers and researchers since the 2007−2008 financial crisis, with the focus
on the role of individual banks1 in initiating and amplifying systemic risk
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1 Our label “banks” should be interpreted broadly as financial institutions that are affected by and contribute to
the liquidity of the financial system, such as investment banks, mutual funds, and hedge funds. The disclosures
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through interbank linkages. To improve the stability of the whole financial
system, public disclosure of bank-specific information has subsequently
become a regular occurrence, as exemplified by stress tests. However, the
existing literature on regulatory disclosure either focuses on the disclosure of
aggregate states or abstracts from systemic risk and the consequent strategic
complementarity between investors of different banks. Thus, it does not
consider that optimal disclosure depends on the nature of bank-specific
information.

This paper fills this gap by studying how the disclosure of different kinds
of bank-specific information affects the stability of a banking system facing
systemic risk. Systemic risk stems from the interdependence of banks in
the system: runs on one bank will adversely affect other banks. We focus
on two important kinds of information: a bank’s exposure to systemic risk
(“systemic vulnerability” hereafter) and its idiosyncratic shortfall of funds
(“idiosyncratic shortfall” hereafter). In practice, the former may correspond to
the magnitude of interbank lending or to the positions of publicly traded assets,
and the latter may correspond to cash and cash equivalents or to nonperforming
loans of little systemic consequence. We find that the disclosure of banks’
systemic vulnerabilities can mitigate systemic bank runs, while the disclosure
of banks’ idiosyncratic shortfalls cannot. This is due to a novel channel that
we identify: the disclosure of banks’ systemic vulnerabilities shifts systemic
risk from the banks more vulnerable to it to those less vulnerable, and thus
reduces the adverse impact of systemic risk on the whole banking system.
But the disclosure of banks’ idiosyncratic shortfalls does not generate such
beneficial negative assortative matching, since it does not differentiate banks
by their systemic vulnerabilities. Based on this mechanism, we characterize the
properties of optimal disclosures for general policy objectives. Our analysis
provides insights into what and how bank-specific information should be
disclosed to enhance financial stability.

Theoretically, we explore information design on top of global games.
Consider a system of many banks, each with a representative investor.2

The probability of a bank surviving or failing depends on the macro state,

that we study are the most relevant to regulated banks, and regulated banks nowadays take over the historic role
of large investment banks as potential triggers of large positive spillover. In particular, many major investment
banks that triggered or were about to trigger large positive spillover during the 2007−2008 financial crisis, such as
Morgan Stanley, Goldman Sachs, Merrill Lynch, and Bear Stearns, became or were acquired by regulated banks.
Moreover, from a normative perspective, our analysis also sheds light on the regulation for financial institutions
other than regulated banks. Indeed, real-life regulators debate whether run-prevention regulations should be
extended to nonbank financial institutions. For example, in 2014, the Security and Exchange Commission (SEC)
strengthened the regulation for money market funds to address risks of investor runs (SEC 2014). While other
forms of regulations for nonbank financial institutions might better mitigate systemic risk, given the scope of
our model, we focus on public disclosure of firm-specific information.

2 Since we are focusing on the coordination problem at the level of the whole banking system, we intentionally
assume a representative investor to mute the coordination problem within each individual bank. In Section 5.4
we will show that adding the coordination problem at the level of individual banks does not change our main
results.
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bank-specific factors (i.e., the aforementioned systemic vulnerability and
idiosyncratic shortfall), and the total liquidity in the system. Each investor
observes a noisy signal about the macro state and then decides whether to run.
Runs reduce the liquidity in the system and adversely affect all banks, giving
rise to systemic risk. This also generates strategic complementarity between
investors: an investor is more willing to run if more of others run. Investors
perceive systemic risk differently because of the different information they
receive, both from the signal and from the regulator’s disclosure. The regulator
discloses information about bank-specific factors to mitigate systemic risk.

To understand the overall impact of disclosures on the banking system,
we can regard the disclosure of either kind of bank-specific information as
effectively reallocating two fixed “budgets” across banks that are otherwise
homogeneous to investors, and the stability of the banking system as a result of
a negative assortative matching between the two reallocated budgets. The first
fixed “budget” is the constant expected systemic vulnerability or the constant
expected idiosyncratic shortfall of the whole system, respectively. This
stems from an alternative interpretation of the standard Bayesian plausibility
constraint: disclosures effectively reallocate this fixed budget across banks by
differentiating them for their investors.

The second fixed “budget” is novel in the information design literature: we
show that the aggregate systemic risk perceived by all marginal investors (who
are indifferent between running and not) is constant regardless of disclosures.
However, investors whose banks are disclosed to be stronger (“informationally
stronger”) believe that other investors are less optimistic about the survival of
their banks and are thus more likely to run than themselves. Consequently,
when they are marginal, they perceive a greater mass of running investors
than others. In other words, disclosures reallocate more of this fixed budget
to informationally stronger banks.

Taken together, disclosures of systemic vulnerability differentiate investors
with respect to perceived systemic risk as well as vulnerability to systemic
risk, generating a beneficial negative assortative matching between them:
marginal investors of less-vulnerable banks perceive more systemic risk than
those of more-vulnerable banks. This improves the average likelihood to
be immune from runs (“robustness” henceforth) of all banks. In contrast,
disclosures of idiosyncratic shortfalls differentiate investors with respect to
perceived systemic risk but not vulnerability to it, and does not generate the
beneficial negative assortative matching. Therefore, disclosures of systemic
vulnerabilities can help mitigate systemic bank runs, but disclosures of
idiosyncratic shortfalls cannot.

To illustrate how this insight shapes the regulator’s information design,
suppose her objective is to maximize the possibility that all banks are immune
from runs. We find that regardless of which kind of bank-specific information
is revealed, an optimal disclosure always equalizes the robustness of all
banks. Given this premise, nondisclosure is always an optimal disclosure of

3

D
ow

nloaded from
 https://academ

ic.oup.com
/rfs/advance-article/doi/10.1093/rfs/hhad089/7457500 by Eastm

an D
ental Institute user on 06 M

arch 2024



[15:41 7/12/2023 RFS-op-revf230093.tex] Page: 4 1–53

The Review of Financial Studies / v 00 n 0 2023

idiosyncratic shortfalls, but to take advantage of beneficial negative assortative
matching, an optimal disclosure of systemic vulnerabilities maximizes the
informational heterogeneity of all banks.3 If the actual systemic vulnerabilities
of the banks do not differ very much from each other, such that they are
equally robust even if full disclosure is applied, then full disclosure is the
desired optimal disclosure. Otherwise, the optimal disclosure assigns as many
scores as possible, and maximizes informational heterogeneity between any
two scores, provided that all banks are equally robust. We further show that
as the number of scores allowed approaches infinity, the optimal disclosures
converge to a limiting disclosure. We characterize this limiting disclosure, and
show that the resultant common robustness of all banks is the supremum of
that resulting from all optimal disclosures with finite scores. This sets a limit
for the mitigation of systemic bank runs through the disclosure of systemic
vulnerabilities, and articulates how it is achieved.

To obtain general implications, instead of assuming a particular objective
function, we assume only a partial order that the regulator prefers a disclosure A
to a disclosure B if A always shields more banks from runs than B. Generically,
a disclosure can be viewed as a collection of subdisclosures, each of which is
imposed on a separate group of banks with resultant robustness similar within
the group but significantly different from that of the other groups.4 We find that
for a disclosure to be optimal, its subdisclosures must all be robust disclosures,
defined as those maximizing the robustness of the weakest constituent of the
corresponding group, taking as given the mass of banks facing runs outside
the group.5 Moreover, robust disclosures in each dimension have the same
qualitative features as the optimal disclosures in the corresponding dimensions
in the previous example.

Our results shed light on the public disclosure of stress-test results
in the presence of systemic risk. Suppose the regulator’s objective is to
maximize the mass of banks immune from runs in a hypothetical adverse
state of the economy. Then the subdisclosure of her optimal disclosure
for the bank group immune from runs must be its corresponding robust
disclosure. To maximize the robustness of this group, banks subject to
runs consist exclusively of physically weak banks (i.e., those that actually
have greater systemic vulnerabilities or idiosyncratic shortfalls), with full
disclosure applied. Consequently, two novel implications of systemic risk are

3 Our assumption that each bank has a representative investor informs this result. It also precludes the role of
disclosure of bank-specific information in mitigating miscoordination between investors of the same bank, which
has been well studied in the literature. Our results concerning how such disclosures affect the stability of the
banking system by reallocating systemic risk across banks persist even if this assumption is relaxed.

4 By “significantly different,” we mean that the robustness of the two banks is so different that, as investors are
almost certain about the macro state, when the investor of the less (more) robust bank is marginal, he is almost
sure that the investor of the more (less) robust bank is staying (running). By “similar,” we mean the opposite.

5 The bank group as a whole is immune from runs only if its weakest constituent is immune. A so-called
“robust disclosure” maximizes the robustness of the weakest constituent and thus of the whole group, to adverse
fundamental shocks.
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underscored. First, unlike that of idiosyncratic shortfalls, optimal disclosure
of systemic vulnerabilities entails further differentiation of banks immune
from runs, due to the aforementioned beneficial negative assortative matching.
Second, when the impact of systemic risk is large, under the optimal
disclosure of bank-specific information, as the quality of the banking system
deteriorates, a banking crisis unfolds as follows: first, a substantial mass of
banks are run simultaneously, and then the remaining banks are run gradually.
This is because, while the sacrifice of physically weak banks enhances the
informational strength of the rest, it also increases the mass of banks facing runs
and thus the systemic risk faced by the investors of unsacrificed banks. When
the second effect dominates, an infinitesimal sacrifice of weak banks would
worsen the robustness of the others, calling for further sacrifice, until the first
effect dominates. Moreover, more information should be disclosed at worse
states of the economy, in the sense that more physically weak banks should be
fully revealed and “sacrificed”, and that in the presence of systemic risk, more
banks with low systemic vulnerabilities also should be fully revealed.

Our paper is mainly related to two strands of the literature. The first strand is
the discussion of bank transparency and disclosures. A particularly prevalent
question is how to design bank stress tests. Goldstein and Sapra (2014)
comprehensively review the nature and the cost-benefit analysis of disclosing
the results of stress tests. Our paper centers around the two effects of stress
tests that they highlight: market discipline and coordination failure. Subsequent
work applies the framework of information design to study the design
of stress tests. Like us, Bouvard, Chaigneau, and Motta (2015), Williams
(2017), Goldstein and Leitner (2018) and Orlov, Zryumov, and Skrzypacz
(2023) study the optimal disclosure of bank-specific information, but they
do not consider the strategic interaction between investors of different
banks. Goldstein and Huang (2016) and Inostroza and Pavan (2022) consider
information design concerning the aggregate state of nature in bank-run
problems with homogeneous investors. Leitner and Williams (2023) study
whether regulators should reveal the models that they use to stress test banks,
facing the trade-off between gaming with banks under revelation and banks’
underinvestment under secrecy. Parlatore and Philippon (2022) explore how
a regulator learns the unknown risk exposures of a set of banks from the
estimated losses of these banks under different stress-test scenarios that she
picks. Instead, we focus on how the disclosure of bank-specific information
creates heterogeneous interests among the investors of different banks who
face coordination problems between each other due to endogenous systemic
risk, and on how the disclosure of different kinds of bank-specific information
affects the stability of banking systems.

The second strand is the literature on global games with heterogeneous
players. Frankel, Morris, and Pauzner (2003) prove equilibrium uniqueness for
a large class of these games; Corsetti et al. (2004) characterize the impact of
a large trader on a population of small ones; and Sákovics and Steiner (2012)
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provide a criterion that can be used to find the optimal targets for a variety
of interventions in regime-change games with heterogeneous agents. Based
on Sákovics and Steiner (2012), Drozd and Serrano-Padial (2018) discuss a
credit-enforcement cycle driven by the collective default of borrowers, and
Leister, Zenou, and Zhou (2022) study strategic interaction in networks, and
Serrano-Padial (2020) explore global games with heterogeneous agents based
on potential maximization. Invoking Morris and Yang (2021), Dai and Yang
(2022) study the role of organizations in coordinating the actions of individuals
with heterogeneous interests. Some papers also study systemic bank runs with
a global game setup. For instance, Choi (2014) studies whether weak or strong
financial institutions should be bolstered to ease financial contagion, and in
a model featuring the interaction between within- and cross-bank strategic
uncertainty among depositors, Liu (2023) studies the interaction between
bank runs and asset prices. In all these models, players’ preferences are
heterogeneous in only one dimension. But the information design that we
study can create two dimensions of heterogeneity in players’ preferences.
These dimensions differ in whether they interact with the aggregate strategic
profile, and our optimal design hinges on their qualitatively different roles in
shaping players’ equilibrium strategies. Moreover, the incorporation of global
games into an information-design problem allows the information designer to
endogenously determine the magnitude of strategic uncertainty between any
two players, as her means of minimizing the mass of bank runners, given
different states of nature.

Contemporaneously with us, Goldstein et al. (2022), using the global-game
technique and a Diamond-Dybvig style setup that features the interaction
between within- and cross-bank strategic uncertainty among depositors, find
that an increase in heterogeneity among banks makes all banks more stable,
provided that cross-bank strategic uncertainty remains. Instead, we consider
an information design problem, and explore what kind of informational
heterogeneity best mitigates systemic bank runs. Our setup accommodates the
design of informational heterogeneity in various dimensions to uncover the
qualitatively different impact of disclosures in these dimensions. We find that
although informational heterogeneity in systemic vulnerabilities enhances the
robustness of the banking system, that in idiosyncratic shortfalls does not. This
differential impact highlights the novel channel that we identify: disclosures
essentially reallocate the constant aggregate systemic risk perceived by
marginal investors, and it is its interaction with the reallocation of expected
systemic vulnerability and of expected idiosyncratic shortfall that results in the
different impact of disclosures. This result manifests an economic mechanism
different from that in Goldstein et al. (2022), since the representative-investor
setup in our baseline model precludes within-bank strategic uncertainty for a
better focus on the role of across-bank strategic uncertainty, which is more
important in designing macroprudential policies for modern financial systems.

6

D
ow

nloaded from
 https://academ

ic.oup.com
/rfs/advance-article/doi/10.1093/rfs/hhad089/7457500 by Eastm

an D
ental Institute user on 06 M

arch 2024



[15:41 7/12/2023 RFS-op-revf230093.tex] Page: 7 1–53

Disclosure of Bank-Specific Information

We show in Section 5.4 that our results are robust to the introduction of within-
bank strategic uncertainty. Moreover, we characterize the properties of optimal
disclosures for general policy objectives, and point out that a sudden run on
a huge mass of banks may be inevitable, even with optimal disclosures of
bank-specific information.

1. Model Setup

1.1 Agents
We consider a three-date economy consisting of a regulator (“she”), a
continuum of financial institutions (“banks”) and a continuum of investors.
Only the regulator and the investors are active players, all of whom are risk
neutral. Both the gross discount rate and the gross risk-free rate are normalized
to one. At date 0, the regulator designs rules for the disclosure of bank-specific
information from all banks to investors. The total mass of banks is normalized
to 1. Each bank i has a representative investor, henceforth called investor i.6

At date 1, each investor i (“he”) chooses to stay (li =1) or to run (li =0) based
on the information available to him by then. If he runs, he secures the one unit
of consumption good invested in bank i’s long-term project before date 0, and
bank i definitely fails at date 2. If he stays, then at date 2 he receives R units of
consumption good from the project if bank i survives, and nothing if it fails.

Remark 1. The term “investors” here refers to wholesale investors and large
depositors who are not fully insured through depositor insurance or collateral.
“Running” refers to reducing or ceasing liquidity provision, such as not rolling
over short-term debt, imposing higher margin requirements, and redeeming
shares in the context of mutual or hedge funds (see Brunnermeier 2009).

1.2 Banks’ survival probabilities
To focus on how the regulator’s information design affects investors’ actions,
we assume that the probability that bank i survives at date 2, P i , follows the
following reduced form, and abstract from the details of its microfoundation:7

P i =
1

R

[
θ −ri ·a(l)+1−ci

]
. (1)

The “fundamental” θ is an aggregate state of the economy capturing all
exogenous factors that simultaneously affect the survival probability of all

6 See footnote 2 for an explanation.

7 The setup is designed such that the net return to investor i’s investment follows the two-factor model in Equation
(2) analogous to those in the macro finance and asset pricing literature. The loading on the exogenous factor θ

is normalized to one, and that on the endogenous factor −a(l) is ri . The expected idiosyncratic shortfall −Ec

can be viewed as “alpha” and Ec−ci as the residual. Like a standard factor pricing model, Equation (2) can be
viewed as a decomposition of all factors affecting the survival of bank i, given its investor’s action. We adopt
such a factor model because it is technically convenient and easy to interpret. Our main results hold qualitatively
beyond this particular functional form.
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banks, such as macroeconomic conditions. We assume that θ is distributed over[
θ,θ̄

]⊂R.
The second term in Equation (1) is our key addition to capture the strategic

interaction among banks. In particular, l�
∫

lidi is the mass of all investors who
stay (“stayers”), which can be interpreted as total liquidity. The loss function
a, which is decreasing in l, captures the systemic risk faced by all banks.
Hereafter, we directly refer to a(l) as systemic risk. We allow for a generic
functional form of a, as long as it is positive and Lipschitz continuous almost
everywhere. The coefficient ri captures the vulnerability of bank i to systemic
risk (i.e., systemic vulnerability). This could be due to the heterogeneity in
banks’ magnitude of interbank lending or positions of publicly traded assets.
We assume that ri = r >0 with probability qr and ri = r̄ >r with probability
1−qr . Let Er =qrr +(1−qr )r̄ .

The idiosyncratic shortfall of funds ci (i.e., idiosyncratic shortfall) captures
all factors exogenous to our model that affect only the survival probability
of bank i regardless of the funding condition of the banking system, such
as its cash and cash equivalents, or nonperforming loans of little systemic
consequence. We assume that ci =c with probability qc and ci = c̄>c with
probability 1−qc. Let Ec=qcc+(1−qc)c̄.

The following parametric restriction is needed to guarantee that the survival
probability P i is always in [0,1]:

−1≤θ − r̄a(0)− c̄< θ̄ −ra(1)−c≤R−1.

Given the survival probability P i , the incremental payoff for investor i from
staying relative to running is

π �P iR−1=θ −ria(l)−ci . (2)

Remark 2. This paper focuses on the mitigation of systemic bank runs and
systemic risk; that is, positive spillover across banks due to systemic risk is the
major concern (Brunnermeier 2009).8 Systemic risk amplifies the impact of

8 Positive spillover across banks has been manifested in several systemic events. On one hand, the failure of
financial institutions may significantly affect the functioning of financial markets and asset values. For example,
in the years following the fall of Long-Term Capital Management, credit spreads, mortgage spreads, and the 10-
year-on-the-run swap spread became too high to be entirely credit-related, so that they must also have included
liquidity spreads attributed to the consequent diminishing number of liquidity providers (Scholes 2012). Also,
the problems with Bear Stearn’s hedge funds and BNP Paribas and the run on the Reserve Primary Fund due to its
exposure to the bankrupt Lehman Brothers triggered marketwide runs on asset-backed commercial paper (ABCP)
and drastically reduced the total value of ABCP outstanding (Kacperczyk and Schnabl 2010). On the other hand,
the malfunction of financial markets and decreases in asset values render banks less robust. In their analysis of
the repo market, Goldstein and Metrick (2012) concluded that concerns about the liquidity of markets for the
bonds used as collateral led to increases in repo haircuts, which, together with declining asset values, pushed the
US banking system to the edge of insolvency. Covitz, Liang, and Suarez (2013) found that uncertainties about
the interbank funding market and subprime mortgage values may have been important determinants of runs on
ABCP in the last five months of 2007. Concerns about positive spillovers also motivated regulators’ interventions.
For example, the Fed facilitated the negotiated takeover of Long-Term Capital Management in the 1998 hedge
fund crisis (Scholes 2012) and promptly bailed out AIG creditors in the Global Financial Crisis (Brunnermeier
2009).
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deteriorating aggregate fundamentals, and our regulator’s optimal disclosures
are designed to minimize such amplification. As pointed out by Choi (2014),
systemic risk may result from fire-sale externalities or information spillovers,
among other channels, or the contagion of financial distress via direct or
indirect exposures. To obtain general implications of systemic risk that are
robust to the fine details of these different channels, we base our analysis only
on their commonality that runs on more banks increase the threat to banks
not being run; that is, systemic risk is captured by a decreasing function a(·).
Admittedly, there are also factors that may generate negative spillover across
banks. In particular, as analyzed by Egan, Hortacsu, and Matvos (2017), severe
competition for deposits may undermine banks’ profitability and thus reduce
their robustness. Failure of some banks may weaken such competition for the
rest and thus generate negative spillover. But in the context of a financial crisis,
usually the aggregate impact of liquidity withdrawals is still a positive spillover
across banks.9

1.3 The regulator’s information design
The focus of this paper is on the regulator’s optimal design of disclosure rules
(“disclosures” hereafter) at date 0 about relevant bank-specific information
(i.e., ri or ci) to mitigate systemic bank runs caused by strategic uncertainty.
To highlight our main insights, we assume in our baseline model that investors
rely completely on the regulator’s disclosure to learn about ri and ci : without
her disclosure, investors know only their expected values, Er and Ec. In
Section 5.4 we show that our main insights are robust to the relaxation of
this assumption. To better contrast disclosures of bank-specific information in
different dimensions, we assume that ri and ci are independently distributed,
so that disclosures about ri do not reveal information about ci , and vice versa.
We discuss the case of correlated information in Section 5.4.

A disclosure specifies how scores are assigned to banks based on their ri and
ci , so that investors can distinguish only between banks with different scores,
but not between those with the same score. Without loss of generality, any
disclosure about ri and ci with n scores can be represented by the conditional
means of ri and ci for each score and the mass of banks receiving that score;
that is, with {(rk,ck,wk)}nk=1, where rk =E[ri |score k], ck =E[ci |score k], and
wk is the mass of banks receiving score k. By construction, wk ∈ [0,1] for all k,
and

∑n
k=1wk =1. As a well known result in the literature of information design,

a disclosure {(rk,ck,wk)}nk=1 is feasible if and only if it satisfies Bayesian

9 In the recent crisis triggered by the failure of Silicon Valley Bank (Jiang et al. 2023), while strong banks enjoyed
incoming deposits from weak banks, the banking system as a whole also lost deposits to money market funds,
and even the largest banks experienced a fall in their stock prices (Bhattarai 2023). Indeed, it is for fear of
systemic risk that the Treasury, Fed, and FDIC jointly decided to fully protect all depositors of Silicon Valley
Bank (U.S. Department of the Treasury 2023).
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plausibility; that is, rk ∈[r,r̄] and ck ∈[c,c̄] for all k,
∑n

k=1wkrk =Er , and∑n
k=1wkck =Ec. For both expositional convenience and practical consideration,

we focus on finite disclosures that assign no more than N scores to banks. In
Section 3.5, we present our results concerning the limiting case where infinitely
many scores are allowed.

Henceforth, superscripts represent exogenous objects, and subscripts repre-
sent conditional means given a disclosure and the resultant endogenous objects.
For ease of presentation, we refer directly to rk , ck , or (rk,ck) as a “score.”
Thus, investors perceive a bank with a lower score to be stronger. We refer to
such a bank as “informationally stronger,” and to the heterogeneity in scores
as “informational heterogeneity.” We also refer to rk as “perceived systemic
vulnerability” (PSV) and ck as “perceived idiosyncratic shortfall” (PIS) when
articulating economic mechanisms. In contrast to “scores,” we refer to ri ∈{
r,r̄
}
, ci ∈{c,c̄}, or

(
ri,ci

)∈{r,r̄}×{c,c̄} as a “type.” We refer to a bank
with a lower type as “physically stronger,” and to the heterogeneity in types
as “physical heterogeneity.” In addition, we use “a type-ri investor,” “a score-
rk investor,” and “a score-(rk,ck) investor” or simply “a score-k investor” to
denote the representative investor of a type-ri bank, that of a score-rk bank, and
that of a score-(rk,ck) bank, respectively. Moreover, we refer to disclosures that
potentially reveal something about banks’ systemic vulnerabilities but nothing
about their idiosyncratic shortfalls (i.e., with ck =Ec for all k) as “disclosures
in dimension r ,” and “disclosures in dimension c” are defined analogously.10

Remark 3. Equation (1) essentially assumes that the survival probability of
a bank is determined by its original type (ri,ci) regardless of the regulator’s
disclosure. Since the regulator’s disclosure changes only the investors’ beliefs
but involves no physical actions from the regulator (e.g., adjusting capital
requirements or injecting liquidity), it has no direct impact on the bank’s type.
Disclosure may have an indirect impact resulting from a bank’s endogenous
adjustment of its balance sheet. For example, it may sell assets exposed to
systemic risk. However, if a bank has little market power and its asset holdings
are fully marked to market, selling assets only converts publicly traded assets
approximately one-for-one to cash, with little impact on its net liquidation
value. Thus, the bank’s survival probability still largely depends on its original
type.11

10 We do not use “disclosures of ri (ci )” to avoid the confusion with the treatment of a specific bank.

11 As a concrete illustration, suppose that a bank’s survival probability depends on its net liquidation value (NLV):

NLV =ri (1−a (l))+(1−ri )+θ −ci −d =θ −ri ·a (l)+1−ci −d.

Here, ri is its holdings of publicly traded assets with market price 1−a(l), 1−ri is the value of its secured
lending, θ −ci captures bank i’s profit from banking service, and d is the bank’s liability. Because of its holdings
of public traded assets, the bank gets exposed to systemic risk. While the (infinitesimal) bank can adjust the
holdings ri to ri′, its trading does not move the market price 1−a(l), but only converts such assets of value

10

D
ow

nloaded from
 https://academ

ic.oup.com
/rfs/advance-article/doi/10.1093/rfs/hhad089/7457500 by Eastm

an D
ental Institute user on 06 M

arch 2024



[15:41 7/12/2023 RFS-op-revf230093.tex] Page: 11 1–53

Disclosure of Bank-Specific Information

For simplicity, we assume that systemic risk a(·) is invariant to the
regulator’s disclosures. This is largely innocuous if disclosures have little
impact on the determinants of a(·) outside our model. For example, suppose
a(·) is microfounded by the market price of publicly traded assets as in footnote
11. In this case, the function a(·) is determined by the total supply of the
asset, which varies little over time, and by its demand from investors other
than the banks in the model. If these investors care mainly about long-run asset
fundamentals, but little about short-run price fluctuations and thus the survival
of the banks,12 then the regulator’s disclosures have little impact on the demand
from these investors, and consequently on a(·). For a similar consideration,
existing literature, such as Stein (2012), Liu (2023), and Goldstein et al. (2022),
also assumes invariant demand functions for investors other than the banks in
the model.

1.4 Information about the fundamental
At date 0, the regulator and all investors share a common prior of the
fundamental θ , represented by a probability density function (pdf) h(·). At date
1, the investor of each bank i observes a private signal about θ , xi =θ +σ ·εi ,
where εi is independent and identically distributed according to a probability
density function φ(·), with corresponding cumulative distribution function
(cdf) �(·), and the parameter σ determines the magnitude of the signal noise,
which captures the magnitude of fundamental uncertainty (about θ ) faced by
investors. An investor’s signal can be understood as his private information
or opinion about the macroeconomy. The pdf’s h(·) and φ(·) are continuous,
bounded, and fully supported over

[
θ,θ̄

]
and (−∞,+∞), respectively.13 As is

common in the global games literature, we assume the existence of dominance
regions. That is, when θ is sufficiently low (high), it is the dominant strategy
of any investor to run (to stay), regardless of the actions of other investors;
that is,

θ −ra(1)−c<0<θ̄ − r̄a(0)− c̄. (3)

Note that a stayer’s payoff (2) is strictly increasing in the total mass of
stayers. This creates motives for an investor to coordinate his decision with
others in the game at date 1. However, the idiosyncrasy of signal noise
prevents investors from perfectly knowing others’ signal realizations and
thereby inferring their actions. As highlighted by the global games literature,
strategic uncertainty (about others’ actions) as such could persist and thus lead

(
ri −ri′)(1−a (l)) to cash of the same value, and thus does not change its NLV . As such, the bank’s survival

probability essentially depends on its original type (ri , ci ).

12 Real-life examples of such investors include insurance companies and pension funds.

13 Unbounded support of φ(·) provides convenience of exposition. Our results remain valid for bounded support
with minor modification.

11
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to miscoordination among investors, even if fundamental uncertainty vanishes
(i.e., σ →0). To explore the impact of the regulator’s information design on
strategic uncertainty and to sharpen its implication on the stability of the
banking system, we follow the convention of the global games literature and
focus on the limit of σ →0.14 This also guarantees equilibrium uniqueness. As
is well known in this literature, it is without loss of generality in this limit to
focus on symmetric equilibria with switching strategies. That is, an investor
stays if and only if he observes xi above a switching cutoff x̂ (rk,ck), which
depends on the score (rk,ck) assigned to his bank by the regulator. Therefore,
we say a bank is immune from runs given the fundamental θ if x̂ (rk,ck)≤θ and
is subject to runs if x̂ (rk,ck)>θ .15

1.5 The regulator’s objective
Finally, we introduce the regulator’s objective. A disclosure {(rk,ck,wk)}nk=1
results in a set of limiting switching cutoffs

{
x̂k

}n

k=1, such that all banks with the
kth score are subject to runs if θ <x̂k and immune from runs if θ ≥ x̂k. Suppose{
x̂k

}n

k=1, the set of the cutoffs, has T distinct elements ranked as θ1 <θ2 <

...<θT . Note that T ≤n by definition. For i ∈{1,· · ·,T }, let Ki =
∑

{k|x̂k≤θi }wk

denote the mass of banks whose cutoffs are no greater than θi . For ease of
notation, define θT +1 = θ̄ . Then, the mass of banks immune from runs given the
fundamental θ is essentially

K
(
θ;{Kj,θj }Tj=1

)
�

T∑
i=1

Ki ·1{θi≤θ<θi+1}.

We refer to K
(
·;{Kj,θj }Tj=1

)
as a stability scheme.

Stability schemes can be partially ordered according to first-order stochastic
dominance (FOSD). A stability scheme that is first-order stochastically
dominated by another has a greater mass of banks immune from runs than
does the latter under any circumstance (i.e., any value of θ ). Therefore, the
regulator prefers disclosure A to disclosure B if the stability scheme resulting
from A (the blue solid line in Figure 1) is first-order stochastically dominated
by that resulting from B (the red dashed line in Figure 1).

On the other hand, if neither disclosure A nor B is first-order stochastically
dominated by the other, it is difficult to determine which is preferred by the
regulator without knowing the fine details of her preferences. Specifically,

14 See Corsetti et al. (2004), Goldstein and Pauzner (2005), and He, Krishnamurthy, and Milbradt (2019) for
examples.

15 Formally, x̂
(
rk,ck

)
is the limiting switching cutoff at vanishing fundamental uncertainty σ . Thus, given θ , a

score-k bank is almost surely immune from runs if x̂
(
rk,ck

)
<θ and subject to runs if x̂

(
rk,ck

)
>θ . Since the

probability that θ = x̂
(
rk,ck

)
is zero, whether the bank is immune from runs in that case is immaterial in our

analysis. For expositional convenience, we assume that in that case the bank is also immune from runs.

12
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Figure 1
Partial order of stability schemes

since disclosure A leads to a greater mass of banks immune from runs
than disclosure B for some fundamentals and a smaller mass for others,
the regulator’s preference depends on the weight that she attaches to each
fundamental. To obtain results robust to such fine details, in our baseline
analysis we characterize the general properties of the optimal disclosure under
this minimum requirement of FOSD. As an application in stress tests, Section
4 illustrates the central role of the results of our baseline analysis in the
construction of the regulator’s optimal disclosure given a practical objective
function.

2. An Intuitive Illustration

This section illustrates the main idea of the paper using an example of
binary-score disclosures, {(rk,ck,wk)}2

k=1, with fixed masses w1 and w2. By
construction, w1 +w2 =1. In this context, disclosures in dimension r refer to
those with r1 ≤Er ≤r2 but c1 =Ec=c2, and disclosures in dimension c refer to
those with r1 =Er =r2 but c1 ≤Ec≤c2. For concreteness of illustration, in this
section, the regulator is assumed to maximize the probability that all banks are
immune from runs.

2.1 Equilibrium switching cutoffs
We start with an intuitive derivation of equilibrium switching cutoffs (6) given
a disclosure.16 For a given magnitude of fundamental uncertainty σ , let x̂σ

i

16 See the proof of Proposition 1 in the appendix for a rigorous derivation.

13
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denote a score-(ri,ci) investor’s switching cutoff. Conditional on fundamental
θ , the probability that he stays is

mσ
i (θ )�Pr(xi >x̂σ

i |θ )=1−�

(
x̂σ

i −θ

σ

)
, (4)

and the total mass of stayers is17

Mσ (θ )�
∑

i

wim
σ
i (θ ). (5)

Call an investor marginal if his signal realization equals his switching cutoff.
Observe from (4) that when σ is small, mσ

i (θ ) is also a marginal investor i’s
posterior cdf of θ (up to O (σ )). A marginal investor i should be indifferent
between staying and running:

0=Eθ [P iR−1|xi = x̂σ
i ]

=
∫ θ̄

θ

[
θ −ria(Mσ (θ ))−ci

](
mσ

i

)′
(θ )dθ +O (σ );

that is,

x̂σ
i −ri

∫ θ̄

θ=θ

a(Mσ (θ ))dmσ
i (θ )−ci =O (σ ). (6)

The system of equations (6) characterizes the equilibrium cutoffs x̂σ
1 and x̂σ

2
with small fundamental uncertainty σ. In (6), x̂σ

i = E[θ |xi = x̂σ
i ]+O (σ ); that is,

x̂σ
i is (up to O (σ )) investor i’s expectation of the fundamental θ conditional

on himself being marginal; and
∫ θ̄

θ=θ
a(Mσ (θ ))dmσ

i (θ ) is (up to O (σ )) a
marginal score-(ri,ci) investor’s perception of systemic risk (PSR). From (6),
an investor’s switching cutoff x̂σ

i equals the product of his perception of
systemic vulnerability (PSV; i.e., ri) and PSR when he is marginal, plus his
perceived idiosyncratic shortfall (PIS; i.e., ci). Thus, he is more reluctant to
stay if his PSV, PSR when marginal, or PIS is higher.

2.2 Perception of systemic risk
This subsection establishes two properties of the perception of systemic risk
(PSR). First, regardless of disclosures, the aggregate PSR of all marginal
investors is constant. Second, disclosures in either dimension differentiate
banks in that dimension, and reallocate more of the constant aggregate PSR
to informationally stronger banks (i.e., banks with better scores), and more so
if disclosures entail more such differentiation.

17 The law of large numbers is not well defined for a continuum of random variables (Sun 2006). Our law of large
numbers convention is equivalent to assuming that opponents’ play is the limit of play of finite selections from
the population.
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2.2.1 Constant aggregate PSR Observe that regardless of disclosures, the
aggregate PSR of all marginal investors is always given by

∑
i

wi

∫ θ̄

θ=θ

a(Mσ (θ ))dmσ
i (θ )=

∫ θ̄

θ=θ

a(Mσ (θ ))dMσ (θ )

=
∫ 1

0
a(Mσ )dMσ +O (σ ), (7)

where the first equality in (7) is due to (5), and the second is due to
assumption (3). While derived from our specific setup, the constant-aggregate-
PSR condition (7) echoes the belief constraint in alternative settings in
Sákovics and Steiner (2012) and Serrano-Padial (2020); that is, the weighted
average strategic belief is the uniform belief on [0,1].

2.2.2 Reallocation of PSR Let

�σ
i,j � (x̂σ

j − x̂σ
i )/σ (8)

be the relative distance between the switching cutoffs of score-j and score-
i investors. Disclosures in either dimension r or c increase informational
heterogeneity in that dimension, and thus increase �σ

1,2 from zero.18 Observe
that a marginal score-1 investor’s PSR

∫ θ̄

θ=θ

a
(
Mσ (θ )

)
dmσ

1 (θ )

=
∫ θ̄

θ=θ

a
(
w1m

σ
1 (θ )+w2m

σ
2 (θ )

)
dmσ

1 (θ )

=
∫ 1

0
a
(
w1m

σ
1 +w2

[
1−�

(
�−1(1−mσ

1 )+�σ
1,2

)])
dmσ

1 +O (σ ) (9)

increases with �σ
1,2. Thus, disclosures reallocate more of the constant aggregate

PSR to score-1 investors, who are informationally stronger, and more so with
a greater �σ

1,2.
To understand this, note that a marginal score-1 investor believes that the

fundamental θ is around x̂σ
1 with high probability. A larger �σ

1,2 makes him
believe that θ is more likely to be below x̂σ

2 , and thus makes him more
pessimistic about the chance that score-2 investors stay. This reduces the mass
of score-2 stayers that he perceives. However, since �σ

1,1 =0 by definition, he
perceives roughly the same mass of score-1 stayers regardless of disclosures.
Therefore, the total mass of stayers perceived by this marginal score-1 investor

18 Since score-1 banks are informationally stronger, we must have x̂σ
1 ≤ x̂σ

2 . We show this more rigorously in
Section 3.1.

15

D
ow

nloaded from
 https://academ

ic.oup.com
/rfs/advance-article/doi/10.1093/rfs/hhad089/7457500 by Eastm

an D
ental Institute user on 06 M

arch 2024



[15:41 7/12/2023 RFS-op-revf230093.tex] Page: 16 1–53

The Review of Financial Studies / v 00 n 0 2023

decreases with �σ
1,2, resulting in a greater PSR. A symmetric argument and an

opposite conclusion hold for a marginal score-2 investor.19

Such reallocation of PSR happens only before �σ
1,2 reaches infinity, for

which the reallocation regions in Figure 2 are named. In this case, the
limiting switching cutoffs, x̂1 and x̂2, must coincide. Once �σ

1,2 approaches
infinity, a marginal score-1 investor believes that score-2 investors are almost
surely running, and thus that stayers come only from score-1 investors. His
PSR reaches its maximum,

∫ 1
0 a(w1m

σ
1 )dmσ

1 , and stays there as the limiting
switching cutoffs diverge (as in the separation regions in Figure 2). In this case,
disclosures affect switching cutoffs only through the direct impact of scores.

2.3 Only disclosures in dimension r are beneficial
We now explain why only disclosures in dimension r can improve the stability
of all banks, which is captured by a reduction in the average cutoff (11) derived
from (6):

∑
i

wi x̂
σ
i =
∑

i

wiri

∫ θ̄

θ=θ

a(Mσ (θ ))dmσ
i (θ )+Ec+O (σ ), (11)

whose limit as σ →0 gives rise to the common switching cutoffs in
the reallocation regions in Figure 2. Besides the aforementioned constant-
aggregate-PSR condition (7), as in a standard information-design problem,
Bayesian plausibility constraints∑

i

wiri =Er , (12)

and ∑
i

wici =Ec. (13)

also must be satisfied.
Disclosures in dimension r reduce the average cutoff (11), due to negative

assortative matching between investors’ perception of systemic vulnerability

(PSV), ri , and their perception of systemic risk (PSR),
∫ θ̄

θ=θ
a(Mσ (θ ))dmσ

i (θ ).
Given their respective aggregates (12) and (7), low PSV r1 is matched with high

PSR
∫ θ̄

θ=θ
a(Mσ (θ ))dmσ

1 (θ ), which reduces the first term of Equation (11); that
is, marginal score-r1 investors, whose banks are known to be less vulnerable to
systemic risk, bear more of the constant aggregate systemic risk. This improves

19 The argument can be rigorously obtained from a marginal score-i investor’s belief about the proportion mj of
stayers out of all score-j investors

Pr
[
mj ≤m̃j |xi = x̂σ

i

]
=1−�

(
−�σ

i,j +�−1 (1−m̃j

))
+O (σ ). (10)

This is induced by his belief (4) about the fundamental θ .
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A B

Figure 2
Switching cutoffs resulting from binary-score disclosure rules

the stability of all banks, and more so with a greater r2/r1. But disclosures in
dimension c fail to achieve this, since they do not reallocate PSV (i.e., r1 =Er =
r2). Indeed, Equation (11) becomes

∑
i

wi x̂
σ
i =Er ·

∫ 1

0
a(Mσ )dMσ +Ec+O (σ ), (14)

which is independent of the distribution of scores in dimension c.

2.4 Summary
Figure 2 summarizes the impact of disclosures on investors’ switching cutoffs
under vanishing fundamental uncertainty σ . First, all investors have the same
limiting cutoff if and only if r2/r1 or c2 −c1 is not large. Second, disclosures
in dimension r can reduce the switching cutoffs of all investors. Thus, the
regulator should disclose as much information in that dimension as possible,
provided that all investors have the same limiting cutoff. Third, disclosures in
dimension c cannot reduce the average cutoff of all investors. Thus, it is optimal
for the regulator not to disclose information in that dimension.

For expositional convenience, this section has focused on binary disclosures
with fixed w1 and w2. In Section 3, where such restrictions are lifted,
nondisclosure is still optimal in dimension c, but optimal disclosures in
dimension r exploit the insight of our intuitive illustration to the extreme: the
regulator assigns as many scores as possible, such that for any two scores ri

and rj , we have x̂i = x̂j while �i,j � limσ→0�
σ
i,j =+∞, unless such practice is

restricted by physical heterogeneity r̄/r , where full disclosure is optimal.

3. Optimal Disclosures beyond Binary Scores

Based on the key messages from Section 2, this section goes beyond binary-
score disclosures and studies disclosures that meet the minimum optimality
requirement introduced in Section 1.5: they yield stability schemes not
first-order stochastically dominating those resulting from any other feasible
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disclosures. Section 3.1 solves the equilibrium given a finite disclosure,
and introduces the concepts of entanglement, separation, and adjacency
that characterize the strategic relationship between the investors of banks
that receive different scores. Section 3.2 introduces the building blocks of
optimal disclosures: robust disclosures of bank groups. Section 3.3 shows
that nondisclosure is a robust disclosure in dimension c for any bank group.
Section 3.4 shows that if the physical heterogeneity of a bank group is weak,
its robust disclosure in dimension r is full disclosure. Otherwise, its robust
disclosure assigns as many adjacent scores as possible, and we construct
a limiting disclosure with infinitely many scores in Section 3.5, showing
that this outperforms all finite disclosures, and that the sequence of robust
disclosures converges to the limiting disclosure as the number of scores allowed
approaches infinity. Lastly, we confirm in Section 3.6 that essentially, any
optimal disclosure must be a combination of robust disclosures.

3.1 Equilibrium given a disclosure
Consider a disclosure {(ri,ci;wi)}ni=1 with n different scores and associated
mass w1,w2,...,wn, respectively. Again, without loss of generality, we can
focus on symmetric equilibria in which all investors are playing switching
strategies. Let x̂σ

i be the switching cutoff of score-(ri,ci) investors for σ >0,
and �σ

i,j be given by Equation (8). Then, the probability that a score-(ri,ci)
investor chooses to stay if the fundamental is θ , mσ

i (θ ), is still given by Equation
(4); the total mass of stayers, Mσ (θ ), is still given by Equation (5); and x̂σ

i still
satisfies Equation (6). Proposition 1 characterizes the equilibrium given any
finite disclosure in the limit σ →0.

Proposition 1. As σ →0, ∀i,j ∈{1,2,...,n}, x̂σ
i → x̂i and �σ

i,j →�i,j , where
{x̂i ,�i,j }ni,j=1 satisfies the system of equations

x̂i =ci +ri

∫ 1

0
a

⎛
⎝ n∑

j=1

wj

[
1−�

(
�−1(1−mi)+�i,j

)]⎞⎠dmi , (15)

with

�i,j

⎧⎨
⎩

=+∞, if x̂j >x̂i

=−∞, if x̂j <x̂i

∈ [−∞,+∞], if x̂j = x̂i

, (16)

and

−�i,j =�j,i =
i∑

k=j+1

�k−1,k . (17)

Conversely, if
{
x̂i ,�i,j

}n

i,j=1 satisfies this system of equations, then investors’

switching cutoffs converge to
{
x̂i

}n

i=1 under the disclosure {(ri,ci;wi)}ni=1 as
σ →0.
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Equations (16) and (17) follow the definition of �σ
i,j . As a generalization of

Equations (6) and (9), Equation (15) characterizes investors’ limiting cutoffs.
Notably, these conditions are not only necessary but also sufficient for {x̂i}ni=1
to be the limiting cutoffs. This guarantees that the disclosure derived from these
conditions can surely induce the desired equilibrium.

Why does the equilibrium operate in this manner? We exemplify the
rationale with binary-score disclosures in dimension c (i.e., r1 =Er =r2 but
c1 <Ec<c2) for expositional convenience. A similar argument applies to
disclosures in dimension r . By Equation (9) and its counterpart for score-c2

investors, the indifference condition (6) becomes

x̂σ
1 −Er ·

∫ 1

0
a
(
w1m

σ
1 +w2

[
1−�

(
�−1(1−mσ

1 )+�σ
1,2

)])
dmσ

1 −c1 =O (σ )

(18)
and

x̂σ
2 −Er ·

∫ 1

0
a
(
w1
[
1−�

(
�−1(1−mσ

2 )−�σ
1,2

)]
+w2m

σ
2

)
dmσ

2 −c2 =O (σ ).

(19)
Recall that the difference between the first terms in Equations (18) and
(19), x̂σ

2 − x̂σ
1 =E[θ |xi = x̂σ

2 ]−E[θ |xi = x̂σ
1 ]+O (σ ), and that the difference

between the second terms in Equations (18) and (19) is (up to O (σ )) that
between marginal investors’ PSRs, which is of magnitude �σ

1,2� (x̂σ
2 − x̂σ

1 )/σ ,
multiplied by their common PSV,Er . To make marginal investors of banks with
both scores indifferent, we must have x̂σ

1 <x̂σ
2 : marginal score-c1 investors,

whose banks are informationally stronger, must be less optimistic about the
fundamental θ and perceive more systemic risk.

When σ is small, �σ
1,2 and thus the difference in PSRs can be substantial

even if xσ
2 − x̂σ

1 is small. If c2 −c1 is not too large (as in the reallocation region
in Figure 2), it can be made up with x̂σ

2 − x̂σ
1 =O (σ ) but �σ

1,2 >0, so that the
limiting switching cutoff x̂2 = x̂1 and �1,2 is finite. But the difference in PSRs
is at most

∫ 1
0 a
(
w1m

σ
1

)
dmσ

1 −∫ 1
0 a
(
w1 +w2m

σ
2

)
dmσ

2 , so if c2 −c1 is large (as in
the separation region in Figure 2), investors must have substantially different
cutoffs: x̂σ

2 − x̂σ
1 >0 and �σ

1,2 →∞ at vanishing σ , so that x̂2 >x̂1 and �1,2 =
+∞.

Hereafter, without loss of generality, we reorder the scores such that �i−1,i ≥
0 for all i. Based on Proposition 1, we define the concepts of entanglement,
separation and adjacency. Figure 3 illustrates these concepts with a disclosure
only in dimension r; that is, with ci =Ec for all i.

Definition 1. For a pair of scores (ri,ci) and
(
rj ,cj

)
with i <j ,

• if �i,j <+∞, then we must have x̂i = x̂j , and we say scores (ri,ci) and(
rj ,cj

)
are entangled;

• if x̂j >x̂i , then we say scores (ri,ci) and
(
rj ,cj

)
are separate;

• if �i,j =+∞ and x̂i = x̂j , then we say scores (ri,ci) and
(
rj ,cj

)
are

adjacent.
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A B

Figure 3
Switching cutoffs given a finite disclosure rule

Entanglement refers to the situation in which the investors of two banks that
receive different scores face strategic uncertainty from each other, as for r1

and r6 in Figure 3, panel B: a marginal score-r1 (-r6) investor is uncertain
whether a score-r6 (-r1) investor is running (staying).20 Separation refers to
the situation in which the investors of the two banks with different scores have
distinct cutoffs. Necessarily, there is no strategic uncertainty between them,
as for r1 and r10 in Figure 3, panel B. Adjacency refers to the knife-edge
situation in which the investors of the two banks with different scores have
the same limiting cutoff but no strategic uncertainty, as for r1 and r9 in Figure
3, panel B. In the binary-score example in Figure 2, entanglement, separation
and adjacency correspond to the interior of the reallocation regions, that of the
separation regions, and the vertical boundaries between them, respectively.

Moreover, entanglement defines an equivalence relation on scores, and
divides all investors into several partition cells: there is strategic uncertainty
between the investors of banks with scores in the same cell, but not between
those of banks with scores in different cells. As illustrated in Figure 3, panel
B, investors in different partition cells share the same switching cutoff if they
are adjacent (as cell 1 and cell 2), and have different switching cutoffs if they
are separate (as cell 1 and cell 3). Proposition 2 shows that given the partition
defined by entanglement, we can obtain explicit expressions for the switching
cutoffs in the limiting case.

Proposition 2. Given a finite disclosure, the limiting Bayes Nash
equilibrium is characterized by a consecutive Z−partition of {1,...,n},
{{i :pz ≤ i <pz+1}|z=1,2,...,Z}, with 1=p1 < · · ·<pz < · · ·<pZ+1 =n+1,
such that

• Scores in the same partition cell are all entangled with each other;
• Scores in different partition cells are adjacent or separate; and

20 This can be seen from (10) in footnote 19.

20

D
ow

nloaded from
 https://academ

ic.oup.com
/rfs/advance-article/doi/10.1093/rfs/hhad089/7457500 by Eastm

an D
ental Institute user on 06 M

arch 2024



[15:41 7/12/2023 RFS-op-revf230093.tex] Page: 21 1–53

Disclosure of Bank-Specific Information

• If i ∈{pz,pz +1,···,pz+1 −1}, then

x̂i =

⎛
⎝pz+1−1∑

j=pz

wj

rj

⎞
⎠

−1⎡
⎣pz+1−1∑

j=pz

cj

rj
wj +A

⎛
⎝pz+1−1∑

j=1

wj

⎞
⎠−A

⎛
⎝pz−1∑

j=1

wj

⎞
⎠
⎤
⎦, (20)

where

A(l)�
∫ l

0
a
(
l̃
)
dl̃. (21)

Moreover,
{
x̂i

}n
i=1 is a weakly increasing sequence.

Hereafter, we focus on limiting switching cutoffs (20) and suppress the
adjective “limiting” unless otherwise specified.

3.2 Robust disclosures of bank groups
In the next three subsections, we focus on robust disclosures of an arbitrary
bank group, formally defined as follows:

Definition 2. A bank group (W,Qr,Qc) refers to a mass W of banks,
mass Qr of which are type-r banks and mass Qc of which are type-c
banks.

Definition 3. A robust disclosure in dimension r or c of a bank group is
a disclosure in that dimension for this group that minimizes the maximum
switching cutoffs of its investors, given that all banks outside this group are
almost surely subject to runs.

Several remarks are in order. First, the bank group as a whole is immune
from runs only if its weakest constituent is immune; that is, the bank whose
investor’s switching cutoff is the maximum among the whole group. By
minimizing this maximum cutoff, a robust disclosure maximizes the robustness
of the weakest constituent, and thus that of the whole group, to adverse
fundamental shocks, for which it is so named. Second, if the regulator
wants to maximize the probability that all banks are immune from runs, as
in Section 2, then her optimal disclosure(s) is the robust disclosure(s) for
the whole banking system; that is, for bank group (1,qr ,qc). Lastly, recall
from Section 1.5 that our minimum requirement for an optimal disclosure
is that it yields a stability scheme that does not first-order stochastically
dominate those resulting from any other feasible disclosures. We establish
in Section 3.6 that such an optimal disclosure must be a combination of
generalized robust disclosures, where the generalization allows the mass of
stayers outside the corresponding bank group to be constants other than
zero.

21

D
ow

nloaded from
 https://academ

ic.oup.com
/rfs/advance-article/doi/10.1093/rfs/hhad089/7457500 by Eastm

an D
ental Institute user on 06 M

arch 2024



[15:41 7/12/2023 RFS-op-revf230093.tex] Page: 22 1–53

The Review of Financial Studies / v 00 n 0 2023

3.3 Robust disclosures in dimension c

First, we consider disclosures in dimension c, where ri =Er for all i. Since they
do not reallocate PSV, as discussed in Section 2.3 and implied by Equation (20),
such disclosures are not conducive to mitigating systemic bank runs.

Proposition 3. Nondisclosure is a robust disclosure in dimension c for any
bank group (W,Qr,Qc), in which all investors share the switching cutoff

x̂c

(
W,Qc,A(·))=

[
Qc ·c+(W −Qc) · c̄]

W
+Er · A(W )

W
. (22)

Equation (22) generalizes Equation (14), where [Qc ·c+(W−Qc)·c̄]
W

is the expected
idiosyncratic shortfall of the bank group (W,Qr,Qc).

3.4 Robust disclosures in dimension r

Now we consider disclosures in dimension r , where ci =Ec for all i. As
discussed in Section 3.1, if the heterogeneity between two bank scores is
sufficiently large, their investors will have different switching cutoffs. Then,
as indicated in Figure 2, reducing the heterogeneity can always lower the
maximum of the switching cutoffs until they become equal:

Proposition 4. In a robust disclosure in dimension r , all scores must be either
entangled or adjacent to each other.

By Equation (20), the common switching cutoff of all investors is

x̂ =Ec+

⎛
⎝∑

j

wj

rj

⎞
⎠

−1

·A
⎛
⎝∑

j

wj

⎞
⎠.

As an integral over a(·)>0, A
(∑

j wj

)
>0 and thus x̂ is strictly increasing

in
(∑

j

wj

rj

)−1
. Lemma 1 establishes that when two scores are entangled,

marginally increasing informational heterogeneity in dimension r with a mean-

preserving spread of scores reduces
(∑

j

wj

rj

)−1
and thus x̂. This captures the

essence of the beneficial negative assortative matching discussed in Section
2.3.

Lemma 1. Suppose r ′
i ≤ri ≤rj ≤r ′

j , wiri +wjrj =w′
i r

′
i +w′

j r
′
j , and wi +wj =

w′
i +w′

j . Then we have

wi

ri

+
wj

rj

≤ w′
i

r ′
i

+
w′

j

r ′
j

,

and the equality holds if and only if r ′
i =ri and r ′

j =rj .
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Proof. The proof is straightforward from the convexity of f (r)=1/r in
(0,+∞). �
Hence, a robust disclosure should maximize the heterogeneity in dimension r ,
provided that all investors have the same switching cutoff. But the extent of
such maximization is restricted by the original physical heterogeneity among
banks, as captured by r̄/r .

Proposition 5. Consider a bank group (W,Qr,Qc).

• If r/r ≤ A(Qr )
Qr

W−Qr

A(W )−A(Qr ) , then its robust disclosure in dimension r is full
disclosure.

• If r/r > A(Qr )
Qr

W−Qr

A(W )−A(Qr ) , under its robust disclosure in dimension r ,
all scores must be adjacent to each other, and the resultant common
switching cutoff is strictly decreasing in the number of scores allowed.

That is, if r/r ≤ A(Qr )
Qr

W−Qr

A(W )−A(Qr ) , then the physical heterogeneity of the bank
group is so weak that all its investors share the same switching cutoff even
under full disclosure, so full disclosure is its robust disclosure. Otherwise,
robust disclosures assign adjacent scores, and allowing for more scores always
reduces the common switching cutoff induced by a robust disclosure. To see
this, note that for any such disclosure, we can regard one of its scores as two
scores with the same mass but forced to coincide by the constraint on the total
number of scores. If one more score is allowed, the regulator can at least make
these two scores also adjacent, which further reduces the common switching
cutoff.

3.5 Limiting robust disclosures of bank groups with strong physical
heterogeneity

By Proposition 5, for a bank group with strong physical heterogeneity, the
regulator would prefer to implement a disclosure with as many scores as
possible to lower the common cutoff. What if she is allowed to assign as
many scores as she likes? In this subsection, we construct the limiting robust
disclosure and study its properties. We write this candidate as the function

Ω(·;W,Qr,A(·)) :
[
r,r
]→ [0,W ],

where Ω(r;W,Qr,A(·)) represents the mass of banks whose scores are less
than or equal to r . Figure 4 illustrates its structure.

The essence of adjacency is the maximization of informational heterogeneity
under the constraint of a common switching cutoff. First, consider the situation
in which r is so low and r̄ is so high that they do not restrain the regulator
through Bayesian plausibility from pushing such maximization to the extreme,
as illustrated in Figure 4, panel A. Such maximization reduces the mass of
banks sharing the same score to zero, so that Ω(·;W,Qr,A(·)) is continuous.
Otherwise, further reduction of the common switching cutoff is feasible by

23

D
ow

nloaded from
 https://academ

ic.oup.com
/rfs/advance-article/doi/10.1093/rfs/hhad089/7457500 by Eastm

an D
ental Institute user on 06 M

arch 2024



[15:41 7/12/2023 RFS-op-revf230093.tex] Page: 24 1–53

The Review of Financial Studies / v 00 n 0 2023

1 1.5 2 2.5 3 3.5 4 1 1.5 2 2.5 3 3.5 4

1 1.5 2 2.5 3 3.5 4 1 1.5 2 2.5 3 3.5 4

A B

C D

Figure 4
Limiting robust disclosures in dimension r

This figure illustrates the structure of limiting robust disclosures in dimension r when r/r >
A(Qr )

Qr
W−Qr

A(W )−A(Qr ) .

For all panels, W =1, Er =2.5, Ec=0, and a(l)=2− l. In panel A, neither r̄ nor r restricts the design of limiting
robust disclosures; in panel B, only r̄ is restrictive; in panel C, only r is restrictive; in panel D, both r̄ and r are
restrictive.

replacing a score of positive mass with its mean-preserving spread. Such
maximization also eliminates the strategic uncertainty faced by all investors:
a marginal score-r investor believes that investors with scores r ′ <r , whose
mass is Ω(r;W,Qr,A(·)), almost surely stays, and the others almost surely
run, so that his switching cutoff, which he shares with all investors because of
adjacency of scores, is

x̂r

(
W,Qr,A(·))≡Ec+r ·a(Ω(r;W,Qr,A(·))). (23)

In this situation, the right-hand side of Equation (23) must be constant over all
r in the support of Ω(·;W,Qr,A(·)),21 and we refer to Equation (23) as the
common-switching-cutoff constraint. Lastly, the total mass of banks and the
mass of type-r banks given by Ω(·;W,Qr,A(·)) must be consistent with the
group; that is, Ω(r;W,Qr,A(·))=W and

∫ r̄

r=r
r ·dΩ(r;W,Qr,A(·))=r ·Qr + r̄ ·

[W −Qr ]. A unique Ω(·;W,Qr,A(·)) satisfies all these properties. To avoid
distracting readers with technicalities, we relegate its detailed construction to
Section A of the appendix.

Now consider the situation in which r̄ is so low that it restrains the
regulator from further spreading scores beyond it, as illustrated in Figure 4,
panel B. In this situation, a positive mass has to be “piled” at r̄ . Note that
there is a gap between r̄ and the supremum of the continuous component

21 In general, Equation (23) holds for all scores of mass zero in limiting robust disclosures.
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of the distribution, r+. Strategic complementarity between all investors and
the strategic uncertainty among investors of these score-r̄ banks leads to the
isolation of these banks from the rest. To see this, while both a marginal score-
r+ investor and a marginal score-r̄ investor believe that investors with scores
other than r̄ are almost surely staying, the marginal score-r+ investor believes
that all score-r̄ investors are almost surely running, while the marginal score-
r̄ investor believes that only some of them are running.22 Thus, as long as the
mass piled at r̄ is positive, there is a noninfinitesimal difference in the systemic
risk that they expect, and the common-switching-cutoff constraint (23) requires
a gap between r+ and r̄ . Similar phenomena occur when only r is restrictive, as
in Figure 4, panel C, and when both r and r̄ are restrictive, as in Figure 4, panel
D. When r and r̄ become so restrictive that the bank group has weak physical
heterogeneity (i.e., r/r ≤ A(Qr )

Qr
W−Qr

A(W )−A(Qr ) ), the continuous component of the
distribution vanishes, consistent with Proposition 5 that full disclosure is its
robust disclosure in dimension r .

Proposition 6. Consider robust disclosures with at most t ≥1 scores in
dimension r for any bank group (W,Qr,Qc) with r/r > A(Qr )

Qr
W−Qr

A(W )−A(Qr ) .

• x̂r (W,Qr,A(·)) is the infimum of the switching cutoffs of all such
disclosures.

• Such disclosures converge to Ω(·;W,Qr,A(·)) as t →∞, in the sense
that the distance between their quantile functions converges to 0 in the
L1-norm.

Proposition 6 provides two pieces of important information. First, as the
number of scores t goes to infinity, the common cutoff of robust disclosures
converges downward to x̂r (W,Qr,A(·)). Hence, x̂r (W,Qr,A(·)) can be
considered as the (asymptotically) lowest cutoff that the regulator can achieve
with sufficient scores. Second, Ω(·;W,Qr,A(·)) is indeed the limit of robust
disclosures as the number of scores t goes to infinity.

Although Ω(·;W,Qr,A(·)) involves infinitely many scores and thus is
not feasible in a practical design problem, it still provides a meaningful
benchmark. First, robust disclosures with sufficient scores are arbitrarily close
to Ω(·;W,Qr,A(·)). Second, Ω(·;W,Qr,A(·)) can be explicitly characterized,
and thus serves as a tractable tool for studying the nature of optimal disclosures
with many scores. In addition, the notion of Ω(·;W,Qr,A(·)) also can be
extended to disclosures in dimension c (which is nondisclosure, by Proposition
3), and to those in dimension r of bank groups with r/r ≤ A(Qr )

Qr
W−Qr

A(W )−A(Qr )
(which is full disclosure, by Proposition 5). Later in the application in Section
4, we characterize optimal disclosures based on robust disclosures in this notion
in all these cases.

22 More precisely, they believe that the proportion of score-r̄ investors who stay is uniformly distributed in [0,1].
This can be seen from Equation (10) in footnote (19) with �σ

i,j
=0, since they all share the same score.
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3.6 Robust disclosures given general objective functions
Recall from Section 1.5 that our ultimate goal is to characterize the general
properties of disclosures that meet the minimum optimality requirement of
yielding stability schemes that do not first-order stochastically dominate
those resulting from any other feasible disclosures. In this subsection, we
show that any optimal disclosure in this sense must be a combination of a
generalized version of the robust disclosures just studied, which maintain the
same qualitative properties.

Formally, consider disclosures with no more than n≥2 scores.23 Since the
set of n-score disclosures is closed and bounded, optimal disclosures exist.
Now suppose an optimal disclosure induces T ≤n distinct switching cutoffs
in equilibrium, ranked as θ1 <θ2 <...<θT . We can then regard a disclosure
as a collection of subdisclosures, each of which is imposed on a group of
banks whose investors share the same switching cutoff. We define (κ,t)-robust
disclosures of a bank group as follows, and show in Proposition 7 that any
subdisclosure of an optimal disclosure must be a certain (κ,t)-robust disclosure
of the bank group.

Definition 4. A (κ,t)-robust disclosure in dimension r or c of a bank group
(W,Qr,Qc) is a disclosure with no more than t scores in that dimension for this
group and one that minimizes the maximum switching cutoffs of its investors,
given that among all banks (of mass 1−W ) outside this group, mass κ are
almost surely immune from runs and the rest are almost surely subject to runs.

Proposition 7. Suppose K
(·;{Ki,θi}Ti=1

)
is a stability scheme resulting from

an n-score optimal disclosure. Let ti denote the number of scores whose
corresponding investors share the switching cutoff θi . Then for any i, the
subdisclosure of the bank group consisting of all the banks whose investors
share the switching cutoff θi must be the (Ki−1,ti)-robust disclosure of the
group.

To see the intuition of Proposition 7, consider an optimal disclosure and the
resultant stability scheme K

(·;{Ki,θi}Ti=1

)
. Consider the bank group consisting

of all the banks whose investors share the switching cutoff θi and whose mass is
Ki −Ki−1. As long as their signal realizations are in (θi−1,θi+1), which includes
θi , these investors think that among investors outside this bank group, whose
mass is 1−(Ki −Ki−1), those with cutoffs no greater than θi−1, whose mass is
Ki−1, almost surely stay, and the rest almost surely run. This is precisely the
condition on the outsiders of this bank group for its (Ki−1,ti)-robust disclosure.
We write the maximum switching cutoffs under the (Ki−1,ti)-robust disclosure
as θ ′

i . By definition, we have θ ′
i ≤θi . But the optimality of the original disclosure

23 Note that n=1 means nondisclosure.

26

D
ow

nloaded from
 https://academ

ic.oup.com
/rfs/advance-article/doi/10.1093/rfs/hhad089/7457500 by Eastm

an D
ental Institute user on 06 M

arch 2024



[15:41 7/12/2023 RFS-op-revf230093.tex] Page: 27 1–53

Disclosure of Bank-Specific Information

implies that θ ′
i =θi . Otherwise, we can replace the original subdisclosure for this

bank group with its (Ki−1,ti)-robust disclosure, without changing the original
subdisclosures for its outsiders. It can be shown that under this alternative
disclosure, investors of this bank group would have switching cutoffs no
more than θ ′

i , while other investors’ switching cutoffs do not increase relative
to their original levels. This results in a stability scheme that is first-order

stochastically dominated by K
(
·;{Kj,θj }Tj=1

)
, violating the optimality of the

original disclosure.
Note that the robust disclosure defined by Definition 3 with at most t scores is

a (0,t)-robust disclosure. We now show the converse: its qualitative properties
are preserved by (κ,t)-robust disclosures. Since the mass of stayers outside
the bank group is fixed at κ , we can equivalently consider the investors of
the given bank group (W,Qr,Qc) as playing a coordination game only among
themselves, where the systemic risk they face when the mass of stayers among
them is l is

aκ (l)�a(l+κ)

instead of a(l). We then define

Aκ (l)�
∫ l

0
aκ (w)dw=A(l+κ)−A(κ).

By definition, Aκ (0)=0. Thus, with a(l) and A(l) replaced by aκ (l) and Aκ (l),
respectively, the equilibrium of the game is still characterized by Propositions
1 and 2, and Propositions 3∼5 still characterize (κ,t)-robust disclosures.
Moreover, for a bank group (W,Qr,Qc), its limiting (κ,t)-robust disclosure
as t →+∞ is Ω(·;W,Qr,Aκ (·)), and the resultant common switching cutoff is

x̂r

(
W,Qr,Aκ (·))≡Ec+r ·aκ

(
Ω(r;W,Qr,Aκ (·))). (24)

Proposition 8 summarizes these results.

Proposition 8. Propositions 3∼6 with A(·) replaced by Aκ (·) hold for (κ,t)-
robust disclosures in the corresponding dimension for bank group (W,Qr,Qc).

4. An Application: Public Disclosure of Stress-Test Results

Since the 2007−2008 financial crisis, a vigorous debate has arisen concerning
whether and how the regulator should disclose the results of the stress
tests of individual financial institutions. The essence of this debate is the
design of optimal public disclosure of bank-specific information that mitigates
systemic bank runs.24 This section complements existing discussions with two

24 For example, Goldstein and Sapra (2014) point out that while public disclosure of bank-specific information
may enhance market and supervisory discipline on banks’ risk-taking behaviors, it may engender the Hirshleifer
effect and undermine risk sharing, incentivize banks to boost short-term cash flows at the expense of long-term
profitability, trigger ex post coordination failure among market participants, and weaken regulators’ ability to
learn from the market.
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novel implications due to the presence of systemic risk. Theoretically, this
section also demonstrates the critical role of the robust disclosures developed
in Section 3 in the construction of optimal disclosures, given a complete
preference of the regulator that respects the partial order in Section 1.5.

4.1 Optimal disclosures
In practice, the regulator is concerned about whether banks are able to
withstand negative economic shocks. As manifested by the design of stress
tests, the regulator often focuses on hypothetical adverse scenarios and makes
policies accordingly to improve financial stability in these scenarios. Motivated
by this observation, we assume that the regulator’s objective is to maximize
the mass of banks immune from runs in a hypothetical adverse scenario, where
the fundamental θ equals an exogenous θ̂ . Again, we adopt the law of large
numbers convention25 so that qr (qc) is also the mass of type-r (type-c) banks
in the system.

Consider disclosures in dimension r . Recall from Section 3.2 that the robust
disclosure for the whole system (i.e., for bank group (1,qr ,qc)) maximizes the
robustness of the system and prevents all banks from runs when θ̂ is above the
resultant common switching cutoff x̂r (1,qr ,A(·)). A bifurcation occurs when
θ̂ <x̂r (1,qr ,A(·)): if r/r ≤ A(qr )

qr
1−qr

A(1)−A(qr ) , physical heterogeneity in systemic
vulnerabilities is so weak that all investors always share the same switching
cutoff regardless of disclosures. Thus, the whole system is subject to runs if
its robust disclosure (which is full disclosure, by Proposition 5) cannot save
it; if r/r >

A(qr )
qr

1−qr

A(1)−A(qr ) , physical heterogeneity in systemic vulnerabilities is
strong enough to allow physically strong banks to be separate from weak ones
through disclosures. Since the regulator cares only about the mass of banks
immune from runs at θ̂ , all “sacrificed” banks must be physically weak and
fully revealed, and the corresponding robust disclosure is made to “preserved”
banks to maximize their joint robustness and consequently their mass. It is
possible to preserve some banks through disclosures only if θ̂ ≥ x̂r (qr,qr ,A(·)),
where x̂r (qr,qr ,A(·)) is the common switching cutoff resulting from the
robust disclosure for bank group (qr,qr ,qc), which consists exclusively of all
physically strong banks in the system.

Proposition 9. Consider optimal disclosures in dimension r . Let x̂r be given
by equation (23). Suppose r/r >

A(qr )
qr

1−qr

A(1)−A(qr ) .

• If θ̂ ≥ x̂r (qr,qr ,A(·)), a mass 1−Wr

(
θ̂ ,qr

)
of type-r banks are fully

revealed and subject to runs at θ̂ while the remaining banks are revealed
as specified by their robust disclosure and are immune from runs at θ̂ .

25 See footnote 17.
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Here, Wr

(
θ̂ ,qr

)
is the maximum W in [qr,1] such that x̂r (W,qr,A(·))≤

θ̂ .
• If θ̂ <x̂r (qr,qr ,A(·)), no bank is immune from runs at θ̂ regardless of

disclosures.

Suppose r/r ≤ A(qr )
qr

1−qr

A(1)−A(qr ) . If θ̂ ≥ x̂r (1,qr ,A(·)), all banks are fully revealed

and immune from runs at θ̂ ; otherwise, they are all subject to runs at θ̂

regardless of disclosures.

Optimal disclosures in dimension c are analogous. Recall from Proposition 3
that nondisclosure is always a robust disclosure in dimension c for any bank
group. Thus, Proposition 10 indicates that it is optimal to reveal nothing about

any bank in dimension c regardless of θ̂ when c−c≤
[

A(qc)
qc − A(1)−A(qc)

1−qc

]
Er ,

and to fully reveal “sacrificed” type-c banks but to reveal nothing about the

rest when c−c>
[

A(qc)
qc − A(1)−A(qc)

1−qc

]
Er .

Proposition 10. Consider optimal disclosures in dimension c. Let x̂c be given

by Equation (22). Suppose c−c>
[

A(qc)
qc − A(1)−A(qc)

1−qc

]
Er .

• If θ̂ ≥ x̂c (qc,qc,A(·)), a mass 1−Wc

(
θ̂ ,qc

)
of type-c banks are fully

revealed and subject to runs at θ̂ while the remaining banks are revealed
as specified by their robust disclosure and immune from runs at θ̂ . Here,

Wc

(
θ̂ ,qc

)
is the maximum W in [qc,1] such that x̂c (W,qc,A(·))≤ θ̂ .

• If θ̂ <x̂c (qc,qc,A(·)), no bank is immune from runs at θ̂ regardless of
disclosures.

Suppose c−c≤
[

A(qc)
qc − A(1)−A(qc)

1−qc

]
Er . If θ̂ ≥ x̂c (1,qc,A(·)), all banks are

revealed as specified by their robust disclosure and immune from runs at θ̂ ;
otherwise, they are all subject to runs at θ̂ regardless of disclosures.

Our key addition to a standard Bayesian persuasion model is systemic risk,
which engenders strategic complementarity between the investors of different
banks. This is the key concern of the designers of macro-prudential policies
and Basel III. In the absence of systemic risk (i.e., when a(·)=0), disclosures
in dimension r do not matter, and an optimal disclosure in dimension c is
nondisclosure for all banks if θ̂ ≥Ec, and full disclosure for “sacrificed”
type-c̄ banks but nondisclosure for “preserved” banks, such that the latter
barely survive θ̂ if θ̂ <Ec.26 Systemic risk renders disclosures of systemic

26 To see this, note that by Equation (15), a score-i investor’s switching cutoff is simply x̂i =ci .
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vulnerabilities r meaningful. In practice, such disclosures may comprise
the magnitude of interbank lending or positions of publicly traded assets.
By Propositions 9 and 10, optimal disclosures in either dimension apply
the respective robust disclosures to banks immune from runs. But recall
from Section 3 that because of beneficial negative assortative matching,
robust disclosures in dimension r assign adjacent scores that maximally
differentiates these banks provided that they are equally robust, while
disclosures in dimension c (such as those of banks’ cash and cash equivalents
or nonperforming loans of little systemic consequence) do not entail such
differentiation. And the distinction becomes extreme with weak physical
heterogeneity; that is, when the impact of systemic risk dominates physical
heterogeneity. Then, optimal disclosure in dimension r is full disclosure,
while nondisclosure is an optimal disclosure in dimension c. This is in sharp
contrast to Bouvard, Chaigneau, and Motta (2015), where systemic risk is not
considered.

Implication 1: To mitigate systemic bank runs in the presence of
systemic risk, optimal disclosures of systemic vulnerabilities entail significant
differentiation among banks not in trouble, while optimal disclosures of
idiosyncratic shortfalls need not.

Moreover, as shown in Bouvard, Chaigneau, and Motta (2015), when
systemic risk is absent, as the adverse scenario deteriorates, more physically
weak banks are fully revealed and “sacrificed” under the optimal disclosure.
Proposition 11 confirms that this conclusion continues to holds in the presence
of systemic risk. Moreover, Proposition 11 stipulates that this notion of “more
information should be disclosed under worse scenario” is strengthened by
systemic risk in dimension r . That is, in the presence of systemic risk, optimal
disclosures of systemic vulnerabilities also differentiate banks immune from
runs by more under worse scenario, in the sense that more physically strong
banks are also fully revealed.

Proposition 11. As θ̂ decreases, the mass of type-r (type-c) banks that
are fully revealed under optimal disclosures of systemic vulnerabilities
(idiosyncratic shortfalls) weakly increases. In addition, the mass of type-
r banks that are fully revealed under optimal disclosures of systemic
vulnerabilities also weakly increases.

We now discuss the practical implications for public disclosure of bank-
specific information as the summary of this subsection. Regardless of the
nature of bank-specific information, banks that cannot be protected from runs
by optimal policies under a given adverse scenario should be fully revealed.
But a bifurcation emerges concerning banks that can be immune from runs:
Optimal disclosures of information related to their systemic vulnerabilities,
such as the magnitude of their interbank lending or positions of publicly
traded assets, should entail significant differentiation. But disclosures of
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Figure 5
Optimal disclosures in dimensions c and r , respectively
This figure illustrates how optimal disclosures in either dimension c or dimension r evolve with the deterioration
of the average quality of the banking system, represented by a reduction in qc . Panels A to C illustrate optimal
disclosures in dimension c with the corresponding distributions of scores, and panels D to F illustrate those in
dimension r . In each panel, the horizontal axis represents disclosed scores, and the vertical axis represents the
mass of banks; solid areas represent “preserved” banks when θ = θ̂ , with their total mass represented by the w in
the title, and hollow areas represent “sacrificed” banks. For all panels,

(
r,r
)

=(2,3), qr =0.5,
(
c,c
)

=(3.75,5.75),

a(l)=2− l, θ̂ =9, and both c−c>
[

A(qc )
qc − A(1)−A(qc )

1−qc

]
Er and r/r >

A(qr )
qr

1−qr

A(1)−A(qr ) are satisfied.

information of little relation to systemic vulnerabilities, such as cash and cash
equivalents or nonperforming loans of little systemic consequence, need not.
Moreover, more information should be disclosed given a worse state of the
economy.

4.2 A sudden run on a huge mass of banks may be inevitable even with
optimal disclosures

Figure 5 illustrates how optimal disclosures in dimensions r and c evolve
respectively with the deterioration of the average quality of the banking
system, represented by a reduction in qc, the percentage of type-c banks in the
system, under strong physical heterogeneity. Observe that they preserve two
properties of optimal disclosures in the respective dimensions in the absence
of systemic risk. First, “sacrificed” banks (marked by hollow areas) are all
physically weak and fully disclosed, and their scores are separate from those
of “preserved” banks. Second, more information is disclosed as the banking
system deteriorates. However, systemic risk makes a key difference in this
process:

Implication 2: When the impact of systemic risk is large, under the
optimal disclosure of bank-specific information, as the quality of the banking

31

D
ow

nloaded from
 https://academ

ic.oup.com
/rfs/advance-article/doi/10.1093/rfs/hhad089/7457500 by Eastm

an D
ental Institute user on 06 M

arch 2024



[15:41 7/12/2023 RFS-op-revf230093.tex] Page: 32 1–53

The Review of Financial Studies / v 00 n 0 2023

0

0.5

0

0.5

0

0.5

A B C

Figure 6
The minimum mass of type-c banks
The black solid curves in this figure illustrate the minimum mass Qc of type-c banks among banks of a given mass
W that can keep them from runs under optimal disclosures in dimension c when θ = θ̂ , given by x̂c

(
W,Qc,A(·))=

θ̂ . The horizontal axis of each panel represents the mass W of all banks, and the vertical axis represents the mass
Qc of type-c banks. The blue dashed lines indicate the natural constraint Qc ≤W . For all panels,

(
r,r
)

=(2,3),

Er =2.5, and θ̂ =9. From panels A to C, we scale up a(·) to achieve higher systemic risks. To ensure the feasibility
of the same θ̂ =9 for disclosures under a uniformly higher systemic risk a(·), we lower (c,c) accordingly: we pick

c=9.5−1.5×Er× a(l)
2−l

and c=c−2.

system deteriorates, a banking crisis unfolds as follows: first, a substantial
mass of banks are run simultaneously, and then the remaining banks are run
gradually.

To see this, note that the value of qc in Figure 5, panel A, is the critical
level that could prevent all banks from runs with disclosures in dimension
c: if it falls a tiny bit to that in panel B, the mass w of “preserved” banks
experiences a negative discontinuous jump from 1 down to 0.399. A similar
pattern also applies to disclosures in dimension r , as shown in the transition
from panel D to panel E. This is due to a new economic force: the “sacrifice”
of physically weak banks reduces the total liquidity and increases the systemic
risk faced by all the “preserved” banks. This also differentiates our paper from
Bouvard, Chaigneau, and Motta (2015), which abstracts from the strategic
interaction among investors of different banks.

Figure 6 illustrates the role of systemic risk in shaping this implication with
disclosures in dimension c. In each panel, the black solid curve illustrates the
minimum mass Qc of type-c banks among banks of a given mass W that can
keep them from runs under optimal disclosures in dimension c when θ = θ̂ ,
given by x̂c (W,Qc,A(·))= θ̂ . Consequently, the maximum mass w of banks in
the system that can be immune from runs at θ̂ given qc is determined by the
(the furthest right, if there are several) intersection of the black curve and the
horizontal line Qc =qc.

Figure 6, panel A, depicts the benchmark without systemic risk. There, a
constant average quality of the bank group, and thus a constant Qc/W , are
required for the group to be preserved given the same θ̂ . Thus, the black
solid curve is a straight line passing through the origin. To keep the whole
system from runs, Qc must reach the critical level qc

0 indicated by the red
dot-dashed line. The total mass qc of physically strong banks in the system
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determines the maximum mass w of immune banks through the constraint
Qc ≤qc. If qc>qc

0 , the constraint slacks and w=1. Now consider a fall in qc

from qc
0 to qc

1 , as shown by the downward shift of the horizontal dot-dashed
line indicated by the green arrow. The constraint Qc ≤qc binds in the process,
and the mass w of immune banks adjusts linearly from w0 =1 down to w1, the
level corresponding to Qc =qc

1 on the black solid line. Thus, without systemic
risk, there is no discontinuous jump in w; that is, bank runs under optimal
disclosures in dimension c are gradual.

High systemic risk breaks the monotonic relation between Qc and W , as
illustrated in Figure 6, panels B and C: since banks outside the group are almost
surely run at θ̂ , a reduction in W (e.g., from 1 to 0.9 in both figures) raises
the systemic risk expected by all investors in the group at θ̂ , and requires a
higher Qc to compensate. This results in a discontinuous jump in w following
a fall in qc from the critical level qc

0 analogous to that in Figure 6, panel A.
In this process in Figure 6, panel B, where systemic risk a(·) is identical to
that in Figure 5 and qc

0 =0.25 as in Figure 5, panel A, even if the magnitude
of the fall in qc is infinitesimal, the resultant reduction in the mass w of
“preserved” banks, w0 −w1, is greater than 1−0.4=0.6! This interprets the
large reduction in w from 1 to 0.399 in Figure 5, from panel A to panel B.
But there is no further jump in w as qc decreases further, as shown by the
transition in Figure 5, from panel B to panel C, until all the type-c̄ banks are
sacrificed, when further reduction in qc instantaneously kills all the type-c
banks.

When systemic risk is sufficiently high, another constraint by construction,
Qc ≤W , further worsens the situation. In all panels, this constraint means that
the black solid curve cannot go beyond the blue dashed 45-degree line: Qc =W .
In Figure 6, panel C, this is violated for low values of W corresponding to
the black dotted curve segment, since the impact of systemic risk is so large

that c−c<
[

A(qc)
qc − A(1)−A(qc)

1−qc

]
Er . For these values, even if Qc =W , the runs

on banks (of mass 1−W ) outside this group raises the systemic risk perceived
by investors in this group by so much, that their switching cutoff cannot be
reduced to θ̂ . This implies a downward jump in w of magnitude 1: once qc

falls below the critical level qc
0 , no bank is immune from runs regardless of

disclosures.

5. Extension and Discussion

5.1 Investors’ heterogenous impact on total liquidity
In the baseline model, the action li of each investor i affects the total liquidity
l equally. What if such impact is heterogeneous? This subsection studies
the impact of such heterogeneity.27 Specifically, suppose l =

∫
bilidi, where

27 We thank an anonymous referee for suggesting the discussion in this subsection.
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systemic impact bi = b>0 with probability qb and bi = b̄�b with probability
1−qb, such that Eb=qbb+

(
1−qb

)
b̄=1, so that the baseline model is its

special case. We assume first that bi is independent of ri and ci , and study the
nature of disclosures in this new dimension b: {(rk,ck,bk,wk)}nk=1 with rk =Er ,
ck =Ec, wk >0 and b≤bk ≤ b̄ for all k,

∑
kwk =1 and

∑
kwkbk =Eb=1. We

have

Proposition 12. For any disclosure in dimension b, all investors share the
switching cutoff x̂ =Er ·A(1)+Ec.

Note that this cutoff is identical to that given by (22). This is because, while
bi �=1, since each investor i is still infinitesimal, his choice of li is invariant
given the original equilibrium aggregate liquidity l(θ ) obtained when bi =1 for
all i.

Usually, banks more vulnerable to systemic risk also have a greater impact
on the total liquidity of the banking system and thus on systemic risk, as
exemplified by too-big-to-fail financial institutions versus small local banks;
that is, bi is positively correlated with ri , so that disclosures of the latter
reveal the former. To explore the interaction between them, we highlight such
correlation by assuming that banks with ri =r (ri =r) have bi =b (bi =b).
Proposition 13 shows that disclosures in dimension r are still beneficial as long
as physical heterogeneity in systemic impact is smaller than that in systemic
vulnerability, so that the adverse impact of larger banks on systemic risk is
dominated by their larger vulnerability to it.

Proposition 13. If b/b<r/r , then there must exist a disclosure in dimension
r under which all banks are more robust than under nondisclosure.

5.2 Implications for the 2023 banking crisis
March 2023 witnessed the second-, third-, and fourth-largest bank failures in
the history of the United States. According to Jiang et al. (2023), because of the
rise of federal funds rate and quantitative tightening, marked-to-market bank
assets have declined by an average of 10% across all the banks from Q1 2022
to Q1 2023. As a victim, Silicon Valley Bank failed following a run by its
uninsured depositors, and its contagion effect28 resulted in runs on Signature
Bank and First Republic Bank. The runs, exacerbated by poor management,
lead to the failure of these two banks.29 With fears of further contagion, besides
extraordinary liquidity provision (such as Bank Term Funding Program), public

28 For example, using comprehensive Twitter data, Cookson et al. (2023) quantify the role of social media as a bank
run catalyst.

29 See, for example, https://www.fdic.gov/news/speeches/2023/spmay1723.html, retrieved on July 23, 2023.
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disclosure of bank-specific information is also debated in policy proposals.30

Our model captures the situation, and thus our discussion in Section 4 also
contributes to this debate.31

Specifically, in Equation (1), the decline in banks’ asset values due to the
rising interest rate and quantitative tightening is captured by a reduction in θ ,
the contagion effect by ria(l), and the poor management by an increase in
ci . Implication 1 indicates a bifurcation of bank-specific information: optimal
disclosures of banks’ systemic vulnerabilities (such as those of magnitude
of interbank lending or positions of publicly traded assets) entail significant
differentiation among banks not in trouble, while optimal disclosures of
idiosyncratic shortfalls (such as those of banks’ cash and cash equivalents or
management skills) need not, since only the former leads to the beneficial
negative assortative matching between PSR and PSV. Implication 2 gives a
caveat: when the impact of systemic risk is large, simultaneous runs on a
substantial mass of banks are inevitable even with the optimal disclosure of
bank-specific information.

5.3 Beyond the banking industry
So far, we have been using “banks” to describe the entities facing systemic risk,
and public disclosure of stress test results as the leading example. Potentially,
our theory can be applied to other industries and settings with positive
spillover. There, positive spillover could arise because of complementarities
in production networks (Cohen and Lou 2012) or customer-supplier relations
among firms (Cohen and Frazzini 2008). However, we think that the banking
industry is the most relevant application of our theory. In practice, regulations
concerning disclosures of firm-specific information are far more prevalent
in the banking industry than in other industries. Besides political and
cultural reasons, such prevalence can be understood from an economic
perspective.

Public disclosure of firm-specific information is costly, since it requires
the collection of confidential data from relevant firms and the mechanism
enforcing truthful reporting. Several factors render the benefit of such
disclosure potentially larger for the banking industry than for other industries.
First, the banking industry is larger than most industries, and has a crucial
impact on the whole economy. Second, positive spillover in the banking
industry is much more impactful than that in other industries. Lastly, as
suggested by a few empirical papers, banks are likely more opaque than firms

30 See, for example, Maurer (2023). Also, Dursun-de_Neef, Ongena, and Schandlbauer (2023) and Granja (2023)
discuss the problem of held-to-maturity accounting.

31 We thank the editor for suggesting the discussion in this subsection.
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in many other industries,32 leaving larger room for the regulator’s disclosure
of bank-specific information.33

5.4 Robustness check
This subsection discusses the robustness of our results to the relaxation of
three assumptions. Mathematical details have been relegated to the Internet
Appendix because of length requirements.

In our baseline model, banks’ systemic vulnerabilities and idiosyncratic
shortfalls are assumed to be independent, allowing the regulator to disclose
information in only one dimension. This facilitates our analysis of the different
impact of disclosures in different dimensions. In reality, different bank-
specific information could be correlated, so that a disclosure in one dimension
automatically reveals information in the other. In our first robustness check, we
allow for correlation between bank types in different dimensions. We find that
if types in different dimensions are not too negatively correlated, or if allocation
of systemic risk is sufficiently important,34 disclosures in dimension r still can
be beneficial due to the same mechanism of negative assortative matching as in
the baseline model, and disclosures in dimension c affect investors’ strategies
only through the information they reveal in dimension r .

In our baseline model, investors’ priors are assumed to be uninformative
about bank-specific information in both dimensions r and c. In reality, investors
may have information sources about their banks other than the regulator’s
disclosures. In our second robustness check, we consider the possibility of
informative common priors in dimensions r and c, and show that disclosures
in dimension c can only hurt the stability of a bank group (i.e., increase the
maximum of its investors’ switching cutoffs), while there is always a disclosure
in dimension r that improves its stability. In this sense, our main results are
robust to this possibility.

In our baseline model, we assume that each bank has a representative
investor, so that the model naturally abstracts from coordination problems
within a bank. In our third robustness check, we take this layer of coordination
into consideration.35 We make three changes to the baseline model. First,

32 For example, Bessler and Nohel (1996) identify significantly stronger announcement effect of dividend cuts
for banks than for nonbanks; Morgan (2002) and Iannotta (2006) observe that bank bonds are more likely to
be rated differently by different bond-rating agencies; Hirtle (2006) finds that, following the SEC mandate
that CEOs certify the accuracy of their financial statements, bank holding companies experienced positive
and significant abnormal returns, but nonfinancial firms did not, and the abnormal returns are related
to measures of opacity; while Flannery, Kwan, and Nimalendran (2004) detect no statistically significant
differences between banks’ and nonfinancial firms’ equity market microstructure properties, they subsequently
discover in Flannery, Kwan, and Nimalendran (2013) that this conclusion holds only for normal times, not for
crisis periods.

33 We thank the editor for suggesting the discussion in this subsection.

34 A precise if-and-only-if condition is given in the Internet Appendix.

35 We thank an anonymous referee for suggesting this discussion.
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each bank has infinitesimal investors with total mass one, and now li ∈ [0,1]
represents the mass of stayers of bank i, which can be interpreted as inside
liquidity. Second, the probability that bank i survives at date 2 is

P i =
1

R
[θ i −ri ·e(l,li)+1−ci],

where e(l,li) is decreasing in both l and li . This allows investors to have a more
significant impact on the survival of their own banks, so that an investor cares
more about other investors of his own bank. Third, at date 1, each investor j

of each bank i observes a private signal about θ , xij =θ +σεi +σηη
ij , where

θ i =θ +σεi represents the information shared by all investors of bank i, while
σηη

ij represents each investor’s idiosyncratic noise. εi and ηij are independent,
and follow probability density functions φ(·) and ψ(·), respectively, which
are continuous, bounded, and fully supported over (−∞,+∞). Parameters σ

and ση determine the magnitude of noises respectively. To derive the main
properties of optimal disclosures, we need to characterize the equilibrium of the
coordination game following any feasible disclosure analytically. As pointed
out by Liu (2023), this exercise is challenging because one signal xij is used
to infer both total liquidity and inside liquidity. For tractability, we follow the
approach of Liu (2023) and assume that the heterogeneity in information across
investors within a bank is much smaller than that across banks. Specifically, we
first take ση→0 with σ fixed, and then take σ →0 as in the baseline model. We
show that our main results hold with the function a(·) defined as

a(·)≡
∫ 1

0
e(·,x)dx.

6. Conclusion

This paper studies how the disclosure of bank-specific information can mitigate
systemic bank runs through a novel channel: the reallocation of systemic risk
across banks. We find that regardless of disclosure, the aggregate systemic
risk perceived by all marginal investors is constant, and that the disclosure of
bank-specific information differentiates banks by their resilience to adverse
shocks, and results in a negative assortative matching: it reallocates systemic
risk from weak banks to strong ones. However, the disclosure of different
kinds of bank-specific information has qualitatively different impacts. The
disclosure of information concerning the vulnerability of banks to systemic
risk could improve the stability of all banks, because it reallocates more of
the constant aggregate systemic risk to banks that are believed to be less
vulnerable to such risk. However, the resultant negative assortative matching
from the disclosure of banks’ idiosyncratic shortfalls of funds is not conducive
to mitigating systemic bank runs.

Throughout the paper, we have focused on disclosures in either dimension,
but not in both. This enables us to highlight the dependence of optimal
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disclosure on the nature of the information, which is ignored in the literature.
Once the joint design of disclosures in both dimensions with more than two
scores is allowed, in addition to the values of scores in each dimension, the
regulator can flexibly design the correlation structure between them. While
interesting, this would significantly complicate the analysis, as exemplified by
the binary-score setup in the Internet Appendix. We leave this promising but
technically challenging work for future research.

Appendix A. The Construction of Limiting Robust Disclosures

We take two steps to construct the limiting robust disclosure Ω(r;W,Qr,A(·)). In step 1, for any
bank group with a total mass W of banks, we construct an auxiliary disclosure Ω̃(r;W,X̂,A(·))
that takes the following form: there is a continuous component with support [r−,r+]⊂[r,r̄], a
mass m≥0 piled at r , and a mass m̄≥0 at r̄ , such that all scores are adjacent to each other and
their common cutoff is X̂. In step 2, we show that there exists a unique value of X̂, denoted by
x̂r (W,Qr,A(·)), such that the total mass Q̃ of type-r banks implied by this auxiliary disclosure is
exactly Qr . We then define Ω(r;W,Qr,A(·)) as Ω̃(r;W,x̂r (W,Qr,A(·)),A(·)).

A.1 Constructing Auxiliary Disclosures
Given the total mass W of banks, if X̂∈

[
r

A(W )
W

+Ec,r
A(W )

W
+Ec

]
, we say X̂ is a feasible switching

cutoff.36 Define a distribution of scores r ∈[r,r̄], whose cumulative distribution function is

Ω̃(·;W,X̂,A(·)): [r,r̄]→ [0,W ] such that

Ω̃(r;W,X̂,A(·))=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

m, if r ∈ (r,r−)
m+

∫ r

r− w(τ )dτ, if r ∈ (r−,r+]

m+
∫ r+
r− w(τ )dτ, if r ∈ (r+,r)

m+
∫ r+
r− w(τ )dτ +m, if r =r

, (A1)

where

m

{
=0, if X̂≥Ec+ra(0)

satisfies X̂=Ec+r
A(m)

m
if X̂<Ec+ra(0)

, (A2)

m

{
=0, if X̂≤Ec+ra(W )

satisfies X̂=Ec+r
A(W )−A(W−m)

m
if X̂>Ec+ra(W )

, (A3)

and w(·) is such that for any r ∈[r−,r+
]
,

X̂=Ec+r ·a
(

m+
∫ r

r−
w(τ )dτ

)
, (A4)

and that the total mass

Ω̃(r̄;W,X̂,A(·))=m+
∫ r+

r−
w(τ )dτ +m=W.

The construction of Ω̃(·;W,X̂,A(·)) ensures that all different scores are adjacent. To see this,
first observe that by construction, all investors share the same switching cutoff X̂. In addition,

36 Only switching cutoffs in this range are feasible. Given the total mass W of the bank group, if all banks are of

type-r , then the common switching cutoff of their investors is r
A(W )

W
+Ec, which is the lowest feasible target

switching cutoff. Similarly, r̄
A(W )

W
+Ec is the highest feasible target switching cutoff.
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Equation (A4) indicates that any investor whose score is in the “continuous component”
[
r−,r+

]
of the distribution Ω̃(·;W,X̂,A(·)) faces no strategic uncertainty. That is, when he is indifferent
between running and staying, he believes that stayers exactly consist of investors with scores lower
than his own, whose mass is m+

∫ r

r− w(τ )dτ .
Moreover, physical heterogeneity may restrict informational heterogeneity; that is, scores

cannot go beyond
[
r,r̄
]
. If r is so high that X̂<Ec+ra(0), some mass out of W has to be piled

at r =r . These are type-r banks whose type is fully revealed and whose mass m is such that
their investors face strategic uncertainty only among themselves. The high value of r impedes
the elimination of such uncertainty.

Similarly, consider the situation in which r̄ is too low for a given W (recall that a(·) is
decreasing), such that X̂>Ec+ra(W ). While assigning higher scores to banks hurts their investors’
confidence, this adverse effect is dominated by the beneficial negative assortative matching, given
the large mass of banks to be dealt with. So the regulator would “spread” the score beyond r̄ if
feasible, which is impeded by the low value of r̄ . Again, the mass m̄ piled at r̄ (consisting of type-
r̄ banks whose type is fully revealed) is such that their investors face strategic uncertainty only
among themselves.

A.2 Determining the Common Cutoff
For any W ∈ [0,1] and any feasible switching cutoff X̂, the distribution Ω̃(r;W,X̂,A(·))
implies a mass of type-r banks Q̃

(
X̂;W,A(·)

)
�

r̄W−∫ r̄
r=r r·dΩ̃(r;W,X̂,A(·))

r̄−r
. The auxiliary disclosure

constructed in step 1 is continuous in nature. To enhance the stability of the bank group with given
total mass W ; that is, to induce a lower X̂, the auxiliary disclosure has to assign more scores with
low r , which requires a larger mass of type-r banks out of the fixed total mass W . This monotonicity
further implies that there is a unique value of X̂, denoted by x̂r (W,Qr,A(·)), that is consistent with
the mass Qr of type-r banks in the bank group (W,Qr ).

Lemma 2. Q̃
(
X̂;W,A(·)

)
is continuous and strictly decreasing in X̂. Thus, there exists a

unique x̂r (W,Qr,A(·)) such that Q̃
(
x̂r (W,Qr,A(·));W,A(·))=Qr . In addition, x̂r (W,Qr,A(·))

is continuous and decreasing in Qr .

Appendix B. Proofs

Proofs of all the lemmas introduced in the appendix have been relegated to the Internet Appendix.

Proof of Proposition 1
We take three steps to prove the proposition. The first two steps are summarized by the following
two lemmas.

Lemma 3. For any infinite sequence {σm}+∞
m=1 of σ that converges to 0, there exists an infinite

subsequence {σ 4
m}+∞

m=1 such that all x̂
σ4
m

i and �
σ4
m

i−1,i either converge to finite numbers or go to

infinity. Moreover, their limits {(x̂0
i ,�0

j,i )}j,i∈{1,2,...,n} satisfy the equation system consisting of
(15), (16), and (17).

Lemma 4. The equation system consisting of (15), (16), and (17) has a unique solution.

Based on the two lemmas, we prove that the equation system is the necessary and sufficient
condition for {x̂i}ni=1 to be the limits of the cutoffs as σ →0.

Suppose as σ →0, {x̂σ
i }ni=1 do not converge to {x̂0

i }ni=1. That means, there exists ε and an
infinite sequence {σm}+∞

m=1 such that maxi

∣∣x̂σm
i − x̂0

i

∣∣>ε. However, according to Part I and Part II,
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there exists an infinite subsequence {σ 4
m}+∞

m=1 of {σm}+∞
m=1 such that {x̂σ4

m
i }ni=1 converges to {x̂0

i }ni=1.
Contradiction! Therefore, as σ →0, {x̂σ

i }ni=1 converge to {x̂0
i }ni=1.

On the other hand, if {x̂i}ni=1 satisfies the equation system, when the disclosure is implemented,
as σ →0, {x̂σ

i }ni=1 must converge to the solution of the equation system, which is uniquely {x̂i}ni=1.

Proof of Proposition 2
For any z, the scores in the partition cell [pz,pz+1) all have the same cutoff in the limiting case,
which is denoted by x̂(z). Then for any i ∈ [pz,pz+1),

x̂(z)

=Ec+ri

∫ 1

0
a

⎛
⎜⎜⎝ ∑
{
j :�j,i=+∞

}wj +
∑

{
j :
∣∣∣�i,j

∣∣∣<∞
}wj

[
1−�

(
�−1(1−mi )−�j,i

)]⎞⎟⎟⎠dmi

=Ec+ri

∫ 1

0
a

⎛
⎝pz−1∑

j=1

wj +

pz+1−1∑
j=pz

wj

[
1−�

(
�−1(1−mi )−�j,i

)]⎞⎠dmi,

so

x̂(z)−Ec

ri
=
∫ 1

0
a

⎛
⎝pz−1∑

j=1

wj +

pz+1−1∑
j=pz

wj

[
1−�

(
�−1(1−mi )−�j,i

)]⎞⎠dmi .

For any real number μi , we can replace mi with 1−�(μi −y) and write the right-hand side as
an integral with respect to y over (−∞,+∞), that is,

x̂(z)−Ec

ri

=
∫ +∞

y=−∞
a

⎛
⎝pz−1∑

j=1

wj +

pz+1−1∑
j=pz

wj

[
1−�

(
�−1 (�(μi −y))−�j,i

)]⎞⎠d [1−�(μi −y)]

=
∫ +∞

y=−∞
a

⎛
⎝pz−1∑

j=1

wj +

pz+1−1∑
j=pz

wj

[
1−�

(
μi −y−�j,i

)]⎞⎠d [1−�(μi −y)] (B1)

Specifically, because of Equation (17), we can pick {μi}ni=1 such that μj −μi =�i,j .
Multiplying Equation (B1) by wj and sum over [pz,pz+1), we obtain

pz+1−1∑
i=pz

x̂(z)−Ec

ri
wi

=

pz+1−1∑
i=pz

∫ +∞
y=−∞

a

⎛
⎝pz−1∑

j=1

wj +

pz+1−1∑
j=pz

wj

[
1−�

(
μi −y−�j,i

)]⎞⎠d
[
wi −wi�

(
μi −y

)]

=
∫ +∞
y=−∞

a

⎛
⎝pz−1∑

j=1

wj +

pz+1−1∑
j=pz

wj

[
1−�

(
μj −y

)]⎞⎠d

⎧⎨
⎩

pz+1−1∑
i=pz

[
wi −wi�

(
μi −y

)]⎫⎬⎭

=
∫ ∑pz+1−1

i=pz
wi

ω=0
a

⎛
⎝pz−1∑

j=1

wj +ω

⎞
⎠dω=A

⎛
⎝pz+1−1∑

j=1

wj

⎞
⎠−A

⎛
⎝pz−1∑

j=1

wj

⎞
⎠.
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so

x̂(z)=Ec+

⎛
⎝pz+1−1∑

j=pz

wj

rj

⎞
⎠

−1⎡
⎣A

⎛
⎝pz+1−1∑

j=1

wj

⎞
⎠−A

⎛
⎝pz−1∑

j=1

wj

⎞
⎠
⎤
⎦.

Proof of Proposition 3
According to (20) and ri =Er for all i, if i ∈{pk,pk +1,...,pk+1 −1},

pk+1−1∑
j=pk

wj x̂j =

pk+1−1∑
j=pk

wj x̂i =

pk+1−1∑
j=pk

wj cj +Er

⎡
⎣A

⎛
⎝pk+1−1∑

j=1

wj

⎞
⎠−A

⎛
⎝pk−1∑

j=1

wj

⎞
⎠
⎤
⎦.

Then the average cutoff is∑t
j=1wj x̂j

W
=

∑t
j=1wjcj

W
+Er

A(W )

W
=

[
Qc ·c+(W −Qc)· c̄]

W
+Er · A(W )

W
,

which is also a lower bound of the maximum cutoff. Under nondisclosure, all investors have the
same cutoff, so the maximum cutoff achieves this lower bound.

Proof of Proposition 4
For any k, the scores in the partition cell [pk,pk+1) all have the same cutoff in the limiting case,
which is denoted by x̂(k). If two scores have different cutoffs, then there must exist k such that
x̂(k)<x̂(k+1). Let kmax be the maximum among them. Then x̂(kmax +1)= x̂(kmax +2)= ...= x̂(K).

Let x̃ be the root of
pK+1−1∑

i=pkmax+1

(x̃−Ec)wiri

x̂(kmax +1)−Ec
+

pkmax+1−1∑
i=pkmax

(x̃−Ec)wiri

x̂(kmax )−Ec
=

pK+1−1∑
i=pkmax

wiri .

Then x̂(kmax )<x̃ <x̂(kmax +1).
Consider an alternative disclosure with

r ′
i =

⎧⎪⎪⎨
⎪⎪⎩

ri , ∀i <pkmax
(x̃−Ec)ri

x̂(kmax )−Ec
∀pkmax ≤ i <pkmax+1

(x̃−Ec)ri
x̂(kmax+1)−Ec

∀i ≥pkmax+1

and the same mass wi for each score as the original disclosure. We guess the equilibrium is
(x̂′

1,...,x̂
′
n), where x̂′

i = x̂i if i <pkmax , x̂′
i = x̃ if ∀i ≥pkmax , and its {�′

i,j }tj,i=1 is the same as the
original one {�i,j }tj,i=1. To verify that this is indeed the equilibrium, we need to show that ∀i,j ,

x̂′
i =Ec+r ′

i

∫ 1

0
a

⎛
⎝ n∑

j=1

wj

[
1−�

(
�−1(1−mi )−�′

j,i

)]⎞⎠dmi,

and x̂′
i = x̂′

j if �′
ij is finite. It is easy to see

x̂′
i −Ec

r ′
i

=
x̂i −Ec

ri
=
∫ 1

0
a

⎛
⎝ n∑

j=1

wj

[
1−�

(
�−1(1−mi )−�j,i

)]⎞⎠dmi

=
∫ 1

0
a

⎛
⎝ n∑

j=1

wj

[
1−�

(
�−1(1−mi )−�′

j,i

)]⎞⎠dmi .

In addition, for i,j <pkmax , if �′
ij is finite, �ij is finite, then x̂′

i = x̂i = x̂j = x̂′
j ; for i <pkmax and

j ≥pkmax , �′
ij is infinite; for i,j ≥pkmax , x̂′

i = x̂′
j . So, this is indeed the equilibrium, and it has

the same partition structure as the original one. This alternative disclosure has a strictly lower
maximum cutoff; that is, maxi

{
x̂′

i

}
= x̃ <x̂(kmax +1)=maxi

{
x̂i

}
. To prevent such decrease in the

maximum cutoff, the robust disclosure must result in all scores being either entangled or adjacent
to each other.
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Proof of Proposition 5
The case of r/r ≤ A(Qr )

Qr
W−Qr

A(W )−A(Qr ) According to Proposition 2, the switching cutoff of
investors in the k-th partition cell is

x̂(k)=Ec+

⎛
⎝pk+1−1∑

j=pk

wj

rj

⎞
⎠

−1⎡
⎣A

⎛
⎝pk+1−1∑

j=1

wj

⎞
⎠−A

⎛
⎝pk−1∑

j=1

wj

⎞
⎠
⎤
⎦.

So, the maximum cutoff

max
i

{
x̂i

}≥Ec+

⎛
⎝pk+1−1∑

j=pk

wj

rj

⎞
⎠

−1⎡
⎣A

⎛
⎝pk+1−1∑

j=1

wj

⎞
⎠−A

⎛
⎝pk−1∑

j=1

wj

⎞
⎠
⎤
⎦

⇔
⎛
⎝pk+1−1∑

j=pk

wj

rj

⎞
⎠[max

i

{
x̂i

}−Ec

]
≥A

⎛
⎝pk+1−1∑

j=1

wj

⎞
⎠−A

⎛
⎝pk−1∑

j=1

wj

⎞
⎠.

Summing over k, we obtain(
t∑

i=1

wi

ri

)[
max

i

{
x̂i

}−Ec

]
≥A(W )⇒max

i

{
x̂i

}≥Ec+
A(W )∑t

i=1
wi
ri

.

By Lemma 1, we obtain

wi

ri
≤ wir−wiri

r−r

1

r
+

wiri −wir

r−r

1

r
⇒

t∑
i=1

wi

ri
≤ Qr

r
+

W −Qr

r
.

The last inequality holds if any ri is not equal to r or r . So,

max
i

{
x̂i

}≥Ec+
A(W )

Q
r

+ W−Q
r

.

Consider the disclosure r1 =r , r2 =r , w1 =Qr and w2 =W −Qr . By r
A(Qr )

Qr ≥r
A(W )−A(Qr )

W−Qr ,

they must have the same cutoff, Ec+ A(W )
Q
r + W−Q

r

. Therefore, the robust disclosure is a uniquely full

disclosure.

The case of r/r >
A(Qr )

Qr
W−Qr

A(W )−A(Qr ) Suppose kmax is the greatest score that is entangled with
another score. We prove the statement for any kmax ≥2 by mathematical induction.

First, consider kmax =2 and t =2. The two scores are entangled and have a common cutoff
Ec+ A(W )

w1
r1

+
w2
r2

. Consider an alternative disclosure r ′
1 and r ′

2 that satisfy w1r1 +w2r2 =w′
1r

′
1 +w′

2r
′
2,

w1 +w2 =w′
1 +w′

2, and r ′
1 =r1 −δ(r1 −r), r ′

2 =r2 +δ(r−r2). Since r ′
1 and r ′

2 are entangled when
δ =0 and are separate when δ =1, there must exist a δ′ >0 such that they are adjacent; that

is, r ′
1

A(w′
1)

w′
1

=r ′
2

A(w1+w2)−A(w′
1)

w1+w2−w′
1

. Note for any δ>0, w1
r1

+ w2
r2

<
w′

1
r′1

+
w′

2
r′2

. So when r ′
1 and r ′

2 are

adjacent, their maximum cutoff is strictly lower than the original one.
Second, consider kmax =2 and t ≥3. Only r1 and r2 are entangled. The scores 2∼ t are

adjacent. All scores have the common cutoff x̂3 =Ec+r3
A(w1+w2+w3)−A(w1+w2)

w3
. Consider the

mean-preserving spread of {(r1,w1),(r2,w2)}, {(r ′
1,w

′
1),(r ′

2,w
′
2)} where r ′

1 =r1, r ′
2 =r2 +δ, w′

1r
′
1 +

w′
2r

′
2 =w1r1 +w2r2, and w′

1 +w′
2 =w1 +w2. We show that there exists δ′ such that r ′

1
A(w′

1)

w′
1

=

r ′
2

A(w1+w2)−A(w′
1)

w1+w2−w′
1

. Note that δ′ ∈ [0,+∞). To see this, on one hand, since only r1 and r2 are
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entangled under the original disclosure, when δ =0, r ′
1

A(w′
1)

w′
1

>r ′
2

A(w1+w2)−A(w′
1)

w1+w2−w′
1

. On the other

hand,
A(w1+w2)−A(w′

1)

w1+w2−w′
1

≥a(w1 +w2) and r ′
1

A(w′
1)

w′
1

<r1a(0), when δ is sufficiently large, r ′
1

A(w′
1)

w′
1

<

r ′
2

A(w1+w2)−A(w′
1)

w1+w2−w′
1

. Therefore, there exists δ′ >0 such that the equation holds. Consider an

alternative disclosure (r ′
1,r

′
2,r3,...rt ) that replaces {(r1,w1),(r2,w2)} with the {(r ′

1,w
′
1),(r ′

2,w
′
2)}

associated with δ′ while keeping {(ri ,wi )}ni=3 unchanged. Since

r ′
1
A(w′

1)

w′
1

=r ′
2
A(w1 +w2)−A(w′

1)

w1 +w2 −w′
1

=

(
w′

1

r ′
1

+
w1 +w2 −w′

1

r ′
2

)−1

·A(w1 +w2)

<

(
w1

r1
+

w2

r2

)−1

·A(w1 +w2)=r3
A(w1 +w2 +w3)−A(w1 +w2)

w3
,

it is straightforward to see that under the alternative disclosure, the scores 3∼ t are still adjacent
to each other and their common switching cutoff is still x̂3; the scores 1 and 2 are adjacent and
have a common cutoff strictly lower than x̂3. That means, each partition cell has only one score.
Following the proof of Lemma 4, we can find a disclosure under which all scores are adjacent in
this case and the maximum cutoff is strictly lower.

Next, suppose the statement holds for kmax <k(≥3) and any t . Consider kmax =k and any t .
Consider an alternative disclosure that replaces (rk−1,rk) with one of its mean-preserving spread
(r ′

k−1,r
′
k) while keeping other scores unchanged. Specifically, r ′

k−1 =rk−1 −δ and r ′
k =rk . Consider

the process that δ increases until r ′
k−1 =rk−2 or r ′

k−1 and r ′
k are adjacent, whichever is first. We

conjecture that the cutoff of r ′
k is always decreasing and rk+1,...rt have the same cutoff as under

the original disclosure. Suppose the partition cell that contains r ′
k−1 and r ′

k consists of the scores
{n(δ),...,k−1,k}. We write this as P (δ). In this process, P (δ) may experience three kinds of
changes.

1. P (δ) does not change. Then the cutoff of r ′
k

x̂′
k =Ec+

⎛
⎝ k−2∑

j=n(δ)

wj

rj
+

wk−1

r ′
k−1

+
wk

r ′
k

⎞
⎠

−1⎡
⎣A

⎛
⎝ k∑

j=1

wj

⎞
⎠−A

⎛
⎝n(δ)−1∑

j=1

wj

⎞
⎠
⎤
⎦

is strictly decreasing in δ.

2. P (δ) absorbs some scores below n(δ). We write the P (δ) before and after the change as
P (δ−) and P (δ+), respectively. In the instant when the change happens, the score n(δ−)−1
must be adjacent to P (δ−) and the scores {n(δ+),...,n(δ−)−1} are either entangled or
adjacent. So, in this instant,

x̂′
k =Ec+

⎛
⎝ k−2∑

j=n(δ−)

wj

rj
+

wk−1

r ′
k−1

+
wk

r ′
k

⎞
⎠

−1⎡
⎣A

⎛
⎝ k∑

j=1

wj

⎞
⎠−A

⎛
⎝n(�−)−1∑

j=1

wj

⎞
⎠
⎤
⎦,

and also

x̂′
k =Ec+

⎛
⎝ k−2∑

j=n(δ+)

wj

rj
+

wk−1

r ′
k−1

+
wk

r ′
k

⎞
⎠

−1⎡
⎣A

⎛
⎝ k∑

j=1

wj

⎞
⎠−A

⎛
⎝n(δ+)−1∑

j=1

wj

⎞
⎠
⎤
⎦.

This implies that x̂′
k has no jump when the change happens.

3. P (δ) drop some scores in {n(δ),...k−2}. Following the same analysis of the second case,
x̂′

k has no jump when the change happens.
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We have verified the conjecture. Then, no matter for what reason the process stops, we end up with
a new disclosure with kmax ≤k−1. If k = t , its maximum cutoff is strictly lower than the original
one. If k<t , when the process stops, x̂′

k <x̂k ≤ x̂k+1. Following the proof of Lemma 4, we can find
another disclosure whose maximum cutoff is strictly lower than x̂k+1 and kmax ≤k−1.

We can iterate this procedure finite times and end up with a disclosure with all scores adjacent
and its maximum cutoff strictly lower than that of the original one.

Proof of Proposition 6
By Proposition 5, we focus on disclosures with all scores adjacent. For any disclosure like this,

suppose their common cutoff is x̂. Then ∀k, x̂ =Ec+rk
A(
∑k

i=1wi )−A(
∑k−1

i=1 wi )

wk
, where

∑t
i=1wi =

Wand
∑t

i=1wiri =(W −Qr )r +Qrr .

Part I: x̂r (W,Qr,A(·)) is smaller than the maximum cutoff under any finite disclosure.
Consider Ω̃(r;W,x̂,A(·)) that is defined in Section A.1. Since r1 ≥r and r1

A(w1)
w1

= x̂−Ec=

r
A(m)

m
, it is easy to see that m≤w1. Similarly, m≤wt . Then for any k, there exists r̃k such that

Ω̃(r̃k;W,x̂,A(·))=
∑k

i=1wi . For the part of Ω̃(r;W,x̂,A(·)) over [r̃k−1,r̃k], we have

(x̂−Ec)
∫ r̃k

r=r̃k−1

1

r
dΩ̃(r;W,x̂,A(·))=

∫ r̃k

r=r̃k−1

a
(
Ω̃(r;W,x̂,A(·)))dΩ̃(r;W,x̂,A(·))

=A

(
k∑

i=1

wi

)
−A

(
k−1∑
i=1

wi

)
=

x̂−Ec

rk
wk. (B2)

Since by Cauchy-Schwarz inequality,

∫ r̃k

r=r̃k−1

1

r
dΩ̃(r;W,x̂,A(·)) ·

∫ r̃k

r=r̃k−1

rdΩ̃(r;W,x̂,A(·))≥w2
k =

wk

rk
wkrk,

we have
∫ r̃k
r=r̃k−1

rdΩ̃(r;W,x̂,A(·))≥wkrk. Summing over k, we have

r ·Q̃
(
X̂;W,A(·)

)
+ r̄ ·

[
W −Q̃

(
X̂;W,A(·)

)]
=
∫ r

r=r

rdΩ̃(r;W,x̂,A(·))

≥
t∑

i=1

wiri =r ·Qr + r̄ ·(W −Qr
)
,

so Q̃
(
x̂;W,A(·))≤Qr. Since Q̃

(
X̂;W,A(·)

)
is decreasing in X̂, x̂ ≥ x̂r (W,Qr,A(·)). Therefore,

x̂r (W,Qr,A(·)) is the lower bound of the maximum cutoff.

Part II: there exists a sequence of t-score disclosures
{
Ω(t)

}
such that their maximum cutoff

converges to x̂r (W,Qr,A(·)) as t →+∞. For any feasible X̂, consider a t-score disclosure
(r1,...rt ) as follow: (r1,w1)=(r,m), (rt ,wt )=(r,m); for 2≤k≤ t −1, wk =δ = W−w1−wt

t−2 , and rk

satisfies X̂=Ec+rk
A(w1+(k−1)δ)−A(w1+(k−2)δ)

δ
.

Let S(X̂;t)�w1r +
∑t−1

i=2 δri +wt r be the sum of r . S(X̂;t) is continuous in X̂. There exists
an x̂ such that S(x̂;t)=r ·Qr + r̄ ·(W −Qr ). In this case, the disclosure is feasible and all scores
are adjacent and have the common cutoff x̂. We write this disclosure as Ω(t). Let S(x̂)�∫ r

r=r
rdΩ̃(r;W,x̂,A(·)).
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Next, we compare S(x̂;t) with S(x̂). Similar to the above, suppose r̃k satisfies
Ω̃(r̃k;W,x̂,A(·))=

∑k
i=1wi =w1 +(k−1)δ. Then We have

(x̂−Ec)
∫ r̃k

r=r̃k−1

1

r
dΩ̃(r̃k;W,x̂,A(·))=A(w1 +(k−1)δ)−A(w1 +(k−2)δ)=

x̂−Ec

rk
δ

S(x̂)−S(x̂;t)=
∫ r+

r=r−
rdΩ̃(r;W,x̂,A(·))−

t−1∑
k=2

δrk =
t−1∑
k=2

[∫ r̃k

r=r̃k−1

rdΩ̃(r;W,x̂,A(·))−δrk

]
.

Note that [∫ r̃k

r=r̃k−1

rdΩ̃(r;W,x̂,A(·))−δrk

]
δ

rk

=
∫ r̃k

r=r̃k−1

rdΩ̃(r;W,x̂,A(·)) ·
∫ r̃k

r=r̃k−1

1

r
dΩ̃(r;W,x̂,A(·))−δ2

=
∫ r̃k

z=r̃k−1

∫ r̃k

y=r̃k−1

y · 1

z
dΩ̃(y;W,x̂,A(·))dΩ̃(z;W,x̂,A(·))−δ2

≤
∫ r̃k

z=r̃k−1

∫ r̃k

y=r̃k−1

r̃k

r̃k−1
dΩ̃(y;W,x̂,A(·))dΩ̃(z;W,x̂,A(·))−δ2

=
r̃k − r̃k−1

r̃k−1
δ2

Since

w(r)=
da−1

(
x̂−Ec

r

)
dr

=
1

−a′
[
a−1

(
x̂−Ec

r

)] x̂−Ec

r2
≥ 1

sup{−a′} r
A(W )

W

1

r2 >0

is bounded from below by a positive number, inf{w(r)} exists and is positive. Then

δ =
∫ r̃k

r̃k−1

w(r)dr ≥ (r̃k − r̃k−1)inf{w(r)}⇒ r̃k − r̃k−1

r̃k−1
≤ δ

r̃k−1 inf{w(r)} ≤ δ

r inf{w(r)} ,

so ∫ r̃k

r=r̃k−1

rdΩ̃(r;W,x̂,A(·))−δrk ≤ rk

r inf{w(r)} δ2 ≤ r

r inf{w(r)} δ2.

Summing over k, we obtain

S(x̂)−S(x̂;t)≤ (t −2)r

r inf{w(r)} δ2 ≤ Wr

r inf{w(r)} δ.

As t →+∞, we have δ→0, so

S(x̂)→r ·Qr + r̄ ·(W −Qr
)⇒Q̃

(
x̂;W,A(·))→Qr.

Since x̂r (W,Qr,A(·)) is continuous in Qr , as t →+∞, x̂r

(
W,Q̃

(
x̂;W,A(·)),A(·))→

x̂r (W,Qr,A(·)), that is, x̂ → x̂r (W,Qr,A(·)). So, by increasing the number of scores, we
can make the common cutoff of Ω(t), which is also its maximum cutoff, arbitrarily close to
x̂r (W,Qr,A(·)).
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Part III: The quantile functions of robust disclosures with t scores converge to that of
Ω(·;W,Qr,A(·)) in L1-norm as t →∞. Write the robust disclosure as {(ri ;wi )}ti=1 and its

corresponding common cutoff as x̂. Suppose r̃k satisfies Ω̃(r̃k;W,x̂,A(·))=
∑k

i=1wi . As t →+∞,
x̂ → x̂r (W,Qr,A(·)). By the continuity of Ω̃(·;W,x̂,A(·)) in x̂, it is easy to see that the quantile
functions of Ω̃(·;W,x̂,A(·)) converge to that of Ω(·;W,Qr,A(·)) in L1-norm as t →∞. Then our

goal is to prove that as t →+∞,
∑t

k=1

∫ r̃k
r=r̃k−1

|r−rk |dΩ̃(r;W,x̂,A(·))→0. Since

t∑
k=1

∫ r̃k

r=r̃k−1

∣∣∣∣ 1r − 1

rk

∣∣∣∣dΩ̃(r;W,x̂,A(·))≥ 1

r2

t∑
k=1

∫ r̃k

r=r̃k−1

|r−rk |dΩ̃(r;W,x̂,A(·)),

it suffices to prove that as t →+∞,
∑t

k=1

∫ r̃k
r=r̃k−1

∣∣∣ 1
r
− 1

rk

∣∣∣dΩ̃(r;W,x̂,A(·))→0.

Consider any 1≤k≤ t . Let �k ≡∫ r̃k
r=r̃k−1

∣∣∣ 1
r
− 1

rk

∣∣∣dΩ̃(r;W,x̂,A(·)). Following Equation

(B2),
∫ r̃k
r=r̃k−1

1
r
dΩ̃(r;W,x̂,A(·))= wk

rk
. Then it is easy to see r̃k−1 ≤rk ≤ r̃k . Suppose y and

z satisfy
∫ rk
r=r̃k−1

1
r
dΩ̃(r;W,x̂,A(·))= 1

y

∫ rk
r=r̃k−1

dΩ̃(r;W,x̂,A(·)) and
∫ r̃k
r=rk

1
r
dΩ̃(r;W,x̂,A(·))=

1
z

∫ r̃k
r=rk

dΩ̃(r;W,x̂,A(·)). Then y ≤rk ≤z. We write
∫ rk
r=r̃k−1

dΩ̃(r;W,x̂,A(·)) as u, so we have

1

y
u+

1

z
(wk −u)=

wk

rk
, (B3)

(
1

y
− 1

rk

)
u+

(
1

rk
− 1

z

)
(wk −u)=�k. (B4)

Moreover, by Cauchy-Schwarz inequality∫ r̃k

r=r̃k−1

rdΩ̃(r;W,x̂,A(·))=
∫ rk

r=r̃k−1

rdΩ̃(r;W,x̂,A(·))+
∫ r̃k

r=rk

rdΩ̃(r;W,x̂,A(·))

≥ u2∫ rk
r=r̃k−1

1
r
dΩ̃(r;W,x̂,A(·)) +

(wk −u)2∫ r̃k
r=rk

1
r
dΩ̃(r;W,x̂,A(·))

=yu+z(wk −u).

Next, we derive a lower bound of yu+z(wk −u)−wkrk . From Equations (B3) and (B4), we can
obtain 1

y
= 1

rk
+ �k

2u
and 1

z
= 1

rk
− �k

2(wk−u) . Then

yu+z(wk −u)−wkrk =
u

1
rk

+ �k

2u

+
wk −u

1
rk

− �k

2(wk−u)

−wkrk

=r2
k �k

[
− u

2u+rk�k

+
(wk −u)

2(wk −u)−rk�k

]
.

Its derivative with respect to u is r2
k �k

[
− rk�k

(2u+rk�k)2 + rk�k

(2wk−2u−rk�k)2

]
, which is increasing in

u. The minimum is attained at rk�k

(2u+rk�k)2 = rk�k

(2wk−2u−rk�k)2 ⇔u= wk−rk�k
2 . Hence, yu+z(wk −

u)−wkrk ≥ r3
k
�2

k
wk

.

Further,
∑t

k=1

∫ r̃k
r=r̃k−1

rdΩ̃(r;W,x̂,A(·))≥∑t
k=1

(
wkrk +

r3
k
�2

k
wk

)
=
∑t

k=1wkrk +
∑t

k=1
r3
k
�2

k
wk

.

By Cauchy-Schwarz inequality,
∑t

k=1
r3
k
�2

k
wk

·∑t
k=1

wk

r3
k

≥(∑t
k=1�k

)2
, so

∑t
k=1

∫ r̃k
r=r̃k−1

rdΩ̃

(r;W,x̂,A(·))−∑t
k=1wkrk ≥

(∑t
k=1

wk

r3
k

)−1(∑t
k=1�k

)2 ≥ r3

W

(∑t
k=1�k

)2
.
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As t →+∞, x̂ → x̂r (W,Qr,A(·)), so
∑t

k=1

∫ r̃k
r=r̃k−1

rdΩ̃(r;W,x̂,A(·))→r ·Qr + r̄ ·(W −Qr )=∑t
k=1wkrk . This implies

∑t
k=1

∫ r̃k
r=r̃k−1

∣∣∣ 1
r
− 1

rk

∣∣∣dΩ̃(r;W,x̂,A(·))=
∑t

k=1�k →0.

Proof of Proposition 7
Suppose the proposition does not hold. Specifically, the subdisclosure of the bank group whose
investors have the switching cutoff θk is not the (Kk−1,tk)-robust disclosure of the group. Notice
that the maximum of the switching cutoffs is also θk . Write the maximum of the switching cutoffs
under the (Kk−1,tk)-robust disclosure as x̂(Kk−1,tk ). Then by the definition, x̂(Kk−1,tk ) <θk . We
show that if this subdisclosure is replaced with the (Kk−1,tk)-robust disclosure of the group, all
investors have weakly lower cutoffs, and a positive mass of them have strictly lower cutoffs.

Part I: investors with cutoffs smaller than θk under the original disclosure. Suppose these
investors correspond to the first m scores. The investors’ cutoffs are {x̂i ,�i,j }mj,i=1 under the
original disclosure and {x̂′

i ,�
′
i,j }mj,i=1 under the new disclosure respectively. Since �i,j =+∞ for

i ≤m and j >m, {x̂i}mi=1 satisfies

x̂i =ci +ri

∫ 1

0
a

⎛
⎝ m∑

j=1

wj

[
1−�

(
�−1(1−mi )−�j,i

)]⎞⎠dmi .

Suppose there exists i ≤m such that x̂′
i >x̂i and such i constitutes the set T ={τ1,τ2,...,τL} where

τ1 <τ2 ...<τL. Consider i ∈T . There must exist j ≤m such that �′
j,i <�j,i ; otherwise, x̂′

i ≤ x̂i .
Let ξ (i) be the smallest j such that �′

j,i <�j,i .
Note that for j /∈T , since x̂′

j ≤ x̂j and x̂′
i >x̂i , �′

j,i ≥�j,i . Hence, ξ (i)∈T . Since ξ (τ1)∈T ,

ξ (τ1)>τ1. Consider ξ (2)(τ1)=ξ (ξ (τ1)). It must be in T . By the definition of ξ (τ1), for any j ∈T
and j <ξ (τ1), �′

j,τ1
≥�j,τ1 , and �′

ξ (τ1),τ1
<�ξ (τ1),τ1 . So, for these j ,

�′
j,ξ (τ1) =�′

j,τ1
−�′

ξ (τ1),τ1
>�j,τ1 −�ξ (τ1),τ1 =�j,ξ (τ1),

which implies ξ (ξ (τ1))>ξ (τ1). Iterating the procedure, we end up with an infinite sequence
{ξ (j )(τ1)}+∞

j=1 in T . This is impossible because T is a finite set. Therefore, for i ≤m, x̂′
i ≤ x̂i .

Part II: investors with cutoffs equal to θk under the original disclosure. Write the (Kk−1,tk)-
robust disclosure of the group as {(r ′

i ,c
′
i ,w

′
i

)}m+tk
i=m+1. By the definition of the (Kk−1,tk)-robust

disclosure and Kk−1 =
∑m

j=1wj , there exists {x̂′′
i ,�′′

i,j }m+tk
i,j=m+1 such that x̂′′

i ≤ x̂(Kk−1,tk ), where

x̂′′
i =c′

i +r ′
i

∫ 1

0
a

⎛
⎝ m∑

j=1

wj +

m+tk∑
j=m+1

w′
j

[
1−�

(
�−1(1−mi )−�′′

j,i

)]⎞⎠dmi,

�′′
i−1,i

⎧⎨
⎩

=+∞, if x̂′′
i >x̂′′

i−1
=−∞, if x̂′′

i <x̂′′
i−1

∈ [−∞,+∞], if x̂′′
i = x̂i−1”

,

and −�′′
i,j =�′′

j,i =
∑i

u=j+1�′′
u−1,u. Write the cutoffs of the tk scores specified by the (Kk−1,tk)-

robust disclosure under the new disclosure as {x̂′
i ,�

′
i,j }m+tk

j,i=m+1. Suppose there exists m+1≤ i ≤
m+tk such that x̂′

i >max{x̂(Kk−1,tk ),θk−1} and such i’s constitute a set T ={τ1,τ2,...,τL} where
τ1 <τ2 ...<τL. Consider i ∈T . There must exist m+1≤j ≤m+tk such that �′

j,i <�′′
j,i ; otherwise,

x̂′
i ≤c′

i +r ′
i

∫ 1

0
a

⎛
⎝ m∑

j=1

wj +

m+tk∑
j=m+1

w′
j

[
1−�

(
�−1(1−mi )−�′′

j,i

)]⎞⎠dmi

= x̂′′
i ≤ x̂(Kk−1,tk ).

Let ξ (i) be the smallest j such that �′
j,i <�′′

j,i . Similar to Part I, we will encounter contradiction.
Hence, for m+1≤ i ≤m+tk , x̂′

i ≤max{x̂(Kk−1,tk ),θk−1}<θk .
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Part III: investors with cutoffs greater than θk under the original disclosure. Note that all
other investors have cutoffs smaller than θk under the new disclosure. Since the equation system
in Proposition 1 has a unique solution, the cutoffs of these investors must be the same under the
new disclosure as they are under the original disclosure.

Proof of Proposition 8
It suffices to replace the a (·) and A(·) in the proofs of Propositions 3-6 with aκ (·) and Aκ (·),
respectively, since the only difference is that the mass of stayers outside the corresponding bank
group is now fixed at κ instead of zero.

Proof of Proposition 9
Throughout this proof, the last argument of x̂r is always A(·), so we suppress it for notational
convenience.

Part I: r/r ≤ A(qr )
qr

1−qr

A(1)−A(qr ) . If θ̂ ≥ x̂r (1,qr )=Ec+
(

qr

r
+ 1−qr

r

)−1 ·A(1), by full revelation, all

investors have a common switching cutoff x̂r (1,qr ), so all banks are immune from runs. Moreover,
full revelation minimizes the common switching cutoff of all banks.

Next, consider the case θ̂ <x̂r (1,qr ). Suppose the proposition does not hold. That means, under

a disclosure, a group of banks (W,Q) can be immune from runs. It is easy to see that r
A(qr )

qr ≥
A(1)

qr

r + 1−qr

r

≥r
A(1)−A(qr )

1−qr .

If r/r >
A(Q)

Q
W−Q

A(W )−A(Q) , then according to the construction of its 0-robust disclosure,

x̂r (W,Q)≥Ec+r limx→m
A(x)

x
≥Ec+r

A(qr )
qr >θ̂ . Contradiction!

If r/r ≤ A(Q)
Q

W−Q
A(W )−A(Q) , then its maximum cutoff cannot be smaller than Ec+ A(W )

Q
r + W−Q

r

. Since

A(1)−A(W )
1−W

r

<
A(W )−A(Q)

W−Q
r

≤ A(W )
Q
r

+ W−Q
r

≤ A(Q)
Q
r

,

A(1)
qr

r + 1−qr

r

≤ A(1)
Q
r + 1−Q

r

= 1
Q
r + W−Q

r
+ 1−W

r

[A(W )+A(1)−A(W )]< A(W )
Q
r + W−Q

r

. SoEc+ A(W )
Q
r + W−Q

r

>θ̂ .

Contradiction!

Part II: r/r >
A(qr )

qr
1−qr

A(1)−A(qr ) . We prove Proposition 9 for this case based on Lemma 5.

Lemma 5. Suppose r/r >
A(qr )

qr
1−qr

A(1)−A(qr ) .

• For any Q∈ [0,qr ] and θ̂ ∈[x̂r (Q,Q),x̂r (1,qr )
)
, x̂r (W,Q)= θ̂ has a unique solution in

[Q,1), Wr (θ̂ ,Q).

• Moreover, limr→r̄−Ω
(
r;Wr (θ̂ ,Q),Q,A(·)

)
=Wr (θ̂ ,Q), and Wr (θ̂ ,Q) is continuous and

increasing in Q and θ̂ .

If θ̂ ≥ x̂r (1,qr ), the 0-robust disclosure of the whole banking system, Ω (·;1,qr ,A(·)), can ensure
that all banks survive.

If θ̂ <x̂r (qr ,qr ), then θ̂ <Ec+r
A(qr )

qr . This implies that for any bank group with no more than
a mass qr of r-type banks, there does not exist a 0-robust disclosure such that the common cutoff
is not higher than θ̂ . So, no bank can be immune from runs.
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Next, we consider θ̂ ∈[x̂r (qr ,qr ),x̂r (1,qr )
)
. First, any group of banks (W,Q) that has a

cutoff smaller than x̂r (1,qr ) must have strong 0-heterogeneity. Suppose not, that is, r/r ≤
A(Q)

Q
W−Q

A(W )−A(Q) . Then its lowest cutoff is

Ec+
A(W )

Q
r

+ W−Q
r

≥Ec+r
A(W )−A(Q)

W −Q
≥Ec+r

A(1)−A(qr )

1−qr
>x̂r

(
1,qr

)
.

Second, consider any bank group (W,Q) that can be immune from runs. Suppose its maximum
cutoff under its 0-robust disclosure is θ ′ ≤ θ̂ . Then W solves x̂r (W,Q)=θ ′ and W ≤1. By the proof
of Lemma 5, we know that it must be W =Wr (θ ′,Q). Since Wr (θ,Q) is strictly increasing in θ and
Q, W ≤Wr (θ̂ ,qr ). And Wr (θ̂ ,qr ) can be attained uniquely by the 0-robust disclosure of bank
group (Wr (θ̂ ,qr ),qr ), which consists of measure qr of r-type banks and measure Wr (θ̂ ,qr )−qr

of r-type banks.

Proof of Proposition 10
Throughout this proof, the last argument of x̂c is always A(·), so we suppress it for notational
convenience.

Part I: c−c≤
[

A(qc )
qc − A(1)−A(qc )

1−qc

]
Er . Suppose there exists a disclosure such that banks have

different switching cutoffs. Because the average switching cutoff of all investors is always
x̂c (1,qc), there exists a group of banks (W,Q) such that (W,Q)≤ (1,qc) and x̂c (W,Q)<x̂c (1,qc),
that is,

Q

W

[
c+Er

A(Q)

Q

]
+

W −Q

W

[
c+Er

A(W )−A(Q)

W −Q

]

<qc

[
c+Er

A(qc)

qc

]
+(1−qc)

[
c+Er

A(1)−A(qc)

1−qc

]
.

If c+Er
A(Q)

Q
<c+Er

A(W )−A(Q)
W−Q

, x̂c (W,Q)>c+Er
A(Q)

Q
≥c+Er

A(qc )
qc ≥ x̂c (1,qc). Contradic-

tion!
If c+Er

A(Q)
Q

≥c+Er
A(W )−A(Q)

W−Q
, then c+Er

A(W )−A(Q)
W−Q

≤ x̂c (W,Q). Since

x̂c (1,Q)

=Q

[
c+Er

A(Q)

Q

]
+(W −Q)

[
c+Er

A(W )−A(Q)

W −Q

]
+(1−W )

[
c+Er

A(1)−A(W )

1−W

]

=Wx̂c (W,Q)+(1−W )

[
c+Er

A(1)−A(W )

1−W

]
≤ x̂c (W,Q),

x̂c (1,qc)≤ x̂c (1,Q)≤ x̂c (W,Q). Contradiction!
So, no matter what the disclosure is, all banks have the same cutoff, x̂c (1,qc).

Part II: c−c>
[

A(qc )
qc − A(1)−A(qc )

1−qc

]
Er . If θ̂ ≥ x̂c (1,qc), nondisclosure can ensure all banks

immune from runs.
If θ̂ <x̂c (1,qc), only part of the banks can be immune from runs. Suppose a group of banks

(W,Q) are. Then their average cutoff must be weakly smaller than θ̂ , that is,

x̂c (W,Q)=
Q ·c+(W −Q)· c̄

W
+Er · A(W )

W
≤ θ̂ .

We want to find the maximum W subject to this constraint. Notice that x̂c (W,Q) is decreasing in
Q. It is easy to see that the maximum W must be a solution to x̂c (W,qc)= θ̂ . Last, we prove the
following lemma in the Internet Appendix.

Lemma 6. For θ̂ <x̂c (1,qc), x̂c (W,qc)= θ̂ has a unique solution Wc(θ̂ ,qc).

Also, notice that x̂c (W,Q)≥ x̂c (W,qc)≥ x̂c (qc,qc). So, if θ̂ <x̂c (qc,qc), no bank can be immune
from runs under any disclosure.
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Proof of Proposition 11

The claim is trivial for θ̂ in the range high enough for all banks to be immune from runs, and for θ̂ in
the range too low for any bank to be immune from runs. For the complementary intermediate range
of θ̂ , according to Proposition 9, under optimal disclosures of systemic vulnerabilities, type-r banks
that are fully revealed are exactly those subject to runs at θ̂ . By the definition of optimal disclosures
with respect to θ̂ , the mass of banks subject to runs at θ̂ must be weakly lower for a higher θ̂ .
That means, the mass of type-r banks that are fully revealed weakly increases as θ̂ decreases. The
similar logic applies to optimal disclosures of idiosyncratic shortfalls.Under optimal disclosures
of systemic vulnerabilities, the mass of banks with ri =r that are fully revealed is m characterized
by Equation (A2) as

m

{
=0, if θ̂ ≥Ec+ra(0)

satisfies θ̂ =Ec+r
A(m)

m
if θ̂ <Ec+ra(0)

.

Since a (l) is decreasing, A(m)
m

is decreasing in m, so m weakly increases as θ̂ decreases.

Proof of Proposition 12

Let x̂i denote the switching cutoff of score-i investors. WLOG, assume x̂1 ≤ x̂2 ≤ ...≤ x̂n.
Analogous to , we have

x̂i =Er · lim
σ→0

∫ θ̄

θ=θ

a(
∑

j

wj bjm
σ
j (θ ))dmσ

i (θ )+Ec. (B5)

Suppose there exists k such that x̂k <x̂k+1. Then we have the contradiction that

x̂k =Er · lim
σ→0

∫ θ̄

θ=θ

a(
k∑

j=1

wjbjm
σ
j (θ ))dmσ

k (θ )+Ec

>Er · lim
σ→0

∫ θ̄

θ=θ

a(
k∑

j=1

wjbj )dmσ
k (θ )+Ec

>Er · lim
σ→0

∫ θ̄

θ=θ

a(
k∑

j=1

wjbj +
n∑

j=k+1

wjbjm
σ
j (θ ))mσ

k (θ )+Ec

= x̂k+1,

where the first equality results from the separation between score k and score i =k+1,...,n, the
last equality results from the separation between score (k+1) and score i =1,2,...,k, both because
x̂k <x̂k+1. Then, by (B5),

x̂ =
∑

k

wkbkx̂k

=Er · lim
σ→0

∫ θ̄

θ=θ

a(
∑

k

wkbkm
σ
k (θ ))d

∑
k

wkbkm
σ
i (θ )+

∑
k

wkbkEc

=Er ·A(1)+Ec.
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Proof of Proposition 13
Consider any finite-score disclosure in dimension r , {(ri ,wi )}ni=1. The expected systemic impact
of score-i banks is

bi =
ri −r

r−r
b+

r−ri

r−r
b.

Following the derivation of Proposition 1 and Proposition 2, we obtain

n∑
j=1

wjbj

rj
x̂j =

n∑
j=1

wjbj

rj
Ec+A

⎛
⎝ n∑

j=1

wjbj

⎞
⎠−A(0)=

n∑
j=1

wjbj

rj
Ec+A(Eb)−A(0).

In the case of nondisclosure, all banks have the common cutoff

x̂ =Ec+
Er

Eb
[A(Eb)−A(0)].

Notice that

n∑
j=1

wjbj

rj
=

n∑
j=1

wj

rj

(
rj −r

r−r
b+

r−rj

r−r
b

)
=

n∑
j=1

wj

rj
· br−br

r−r
+

b−b

r−r
.

Compared to nondisclosure, any disclosure in dimension r increases
∑n

j=1
wj
rj

. If br−br >0 or

b/r <b/r , then there must exist a disclosure in dimension r such that all banks have a common
cutoff smaller than x̂.
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