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Introduction: Metabolomics technology facilitates studying associations

between small molecules and disease processes. Correlating metabolites in

cerebrospinal fluid (CSF) with Alzheimer’s disease (AD) CSF biomarkers may

elucidate additional changes that are associated with early AD pathology and

enhance our knowledge of the disease.

Methods: The relative abundance of untargeted metabolites was assessed

in 161 individuals from the Wisconsin Registry for Alzheimer’s Prevention.

A metabolome-wide association study (MWAS) was conducted between 269 CSF

metabolites and protein biomarkers reflecting brain amyloidosis, tau pathology,

neuronal and synaptic degeneration, and astrocyte or microglial activation and

neuroinflammation. Linear mixed-effects regression analyses were performed

with random intercepts for sample relatedness and repeated measurements

and fixed effects for age, sex, and years of education. The metabolome-wide

significance was determined by a false discovery rate threshold of 0.05. The

significant metabolites were replicated in 154 independent individuals from then

Wisconsin Alzheimer’s Disease Research Center. Mendelian randomization was

performed using genome-wide significant single nucleotide polymorphisms from

a CSF metabolites genome-wide association study.

Results: Metabolome-wide association study results showed several significantly

associated metabolites for all the biomarkers except Aβ42/40 and IL-6.

Genetic variants associated with metabolites and Mendelian randomization

analysis provided evidence for a causal association of metabolites for soluble
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triggering receptor expressed on myeloid cells 2 (sTREM2), amyloid β (Aβ40), α-

synuclein, total tau, phosphorylated tau, and neurogranin, for example, palmitoyl

sphingomyelin (d18:1/16:0) for sTREM2, and erythritol for Aβ40 and α -synuclein.

Discussion: This study provides evidence that CSF metabolites are associated with

AD-related pathology, and many of these associations may be causal.

KEYWORDS

Alzheimer’s disease, metabolomics, CSF NeuroToolKit biomarkers, metabolome-wide
association, Mendelian randomization

Introduction

The neuropathological changes of Alzheimer’s disease (AD)
consist of extracellular amyloid-β (Aβ) plaques and intracellular
neurofibrillary tangles of hyperphosphorylated tau proteins in
the brain (Anoop et al., 2010). Well-established core biomarkers
that reflect AD pathology and show promising performance in
evaluating AD risk and diagnosing AD are the 42 amino acid form
Aβ (Aβ42), the ratio of Aβ42/40, phosphorylated tau (P-tau), and
total tau (T-tau) in the cerebrospinal fluid (CSF) (Blennow et al.,
2012). However, it has been suggested that other pathophysiology
such as neuroinflammation through glial activation and neuronal
and synaptic degeneration also contribute to symptomatic AD,
and CSF biomarkers of these may provide valuable information
about disease progression (Blennow et al., 2012). Thus, the
NeuroToolKit (NTK), a panel of automated CSF immunoassays,
was introduced to complement the established core AD biomarkers
(Hulle et al., 2021). The NTK panel includes S100 calcium-binding
protein B (S100b), chitinase-3-like protein 1 (YKL-40), and glial
fibrillary acidic protein (GFAP) as markers of astrocyte activation;
soluble triggering receptor expressed on myeloid cells 2 (sTREM2)
and interleukin-6 (IL-6) as markers of microglial activation and
inflammation; and neurofilament light (NfL), neurogranin, and α-
synuclein as markers of axonal injury and synaptic dysfunction
(ALZFORUM, 2019).

Untargeted metabolomics technology is a promising approach
that can simultaneously identify and quantify a large number of
small molecules (<1,500 Da, e.g., lipids) in a biological sample
(Hasin et al., 2017). Previous research has evaluated the potential
application of metabolites as biomarkers for AD and shown that
metabolomic changes in the human brain and CSF were associated
with AD status and AD pathological alterations (Koal et al., 2015;
Jacobs et al., 2019; van der Velpen et al., 2019; Morrow et al.,
2021; Dong et al., 2022; Liang et al., 2022). For example, Koal
et al. (2015) identified eight metabolites that were significantly
increased in the CSF samples with AD-like pathology including
an acylcarnitine (C3), two sphingomyelins [SM (d18:1/18:0) and
SM (d18:1/18:1)], and five glycerophospholipids (PC aa C32:0,
PC aa C34:1, PC aa C36:1, PC aa C38:4, and PC aa C38:6).
Recent studies focused on 12 CSF sphingomyelin metabolites
(SM) (Morrow et al., 2021) or derived principal components
from 308 CSF metabolites (Dong et al., 2022) also suggested
evidence of an association between CSF metabolites and AD
biomarkers, e.g., SM (d18:1/14:0, d16:1/16:0) and p-tau, NFL, and

α -synuclein. However, no studies have examined associations
between the full untargeted CSF metabolome and a broad panel
of biomarkers such as the NTK panel. Thus, our study aims
to link CSF metabolites with established and developing AD
biomarkers with the goals of (1) identifying CSF metabolites that
are individually associated with the CSF NTK biomarkers and (2)
conducting Mendelian randomization (MR) to determine if the
CSF metabolites significantly associated with NTK biomarkers are
likely to be in the causal pathway instead of simply changing with,
or as a result of, AD biomarker changes.

Materials and methods

Participants

The Wisconsin Registry for Alzheimer’s Prevention (WRAP)
began recruitment in 2001 as a prospective cohort study, with
initial follow-up 4 years after baseline and subsequent ongoing
follow-up every 2 years. WRAP is comprised of initially cognitively-
unimpaired, asymptomatic, middle-aged (between 40 and 65)
adults enriched for parental history of clinical AD (Johnson et al.,
2018). At each visit, the participants undergo comprehensive
medical and cognitive evaluations. Additional details of the study
design and methods of WRAP have been described previously
(Johnson et al., 2018). From the WRAP cohort, we identified
161 self-reported non-Hispanic white individuals with both
longitudinal CSF biomarker and metabolomic data available from
2010 to 2017. The sample size for other racial/ethnic groups was too
small (n < 10) to include in the analyses.

The Wisconsin Alzheimer’s Disease Research Center’s (ADRC)
clinical core cohorts started in 2009 and are comprised of
well-characterized participants who undergo cognitive testing
and physical exams every 2 years (Bettcher et al., 2018). The
Wisconsin ADRC has a cohort of initially cognitively-unimpaired,
asymptomatic middle-aged (between 45 and 65) adults with
a similar study design to WRAP [the Investigating Memory
in Preclinical AD-Causes and Treatments (IMPACT) cohort]
(Racine et al., 2016; Darst et al., 2017; Vogt et al., 2018).
From the IMPACT cohort, we identified 154 self-reported non-
Hispanic white participants with cross-sectional CSF biomarker
and metabolomic data available between 2010 to 2017. As with
WRAP, the sample size for other racial/ethnic groups was too small
(n < 10) to include in the analyses.
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Standard protocol approvals,
registration, and patients

This study was conducted with the approval of the University
of Wisconsin Institutional Review Board, and all participants
provided signed informed consent before participation.

CSF sample collection and biomarkers
quantification

Fasting CSF samples were collected via lumbar puncture using a
Sprotte 25- or 24-gauge spinal needle at the L3/4 or L4/5 interspace
with gentle extraction into polypropylene syringes. More details
can be found in the previous study (Darst et al., 2017). The CSF
collection for WRAP and the Wisconsin ADRC followed the same
protocol, and the lumbar puncture for both studies was performed
by the same group of well-trained individuals.

All CSF samples were batched together and assayed for
the NTK biomarkers at the Clinical Neurochemistry Laboratory,
University of Gothenburg, using the same lot of reagents, under
strict quality control procedures. The immunoassays of Elecsys R©

Aβ(1–42), P-tau(181P), and T-tau, as well as S100b and IL-6, were
performed on a cobas e 601 analyzer (Hulle et al., 2021). The
remaining NTK panel was assayed on a cobas e 411 analyzer
including Aβ(1–40), α-synuclein, GFAP, YKL-40, sTREM2, NfL,
and neurogranin (Hulle et al., 2021).

CSF metabolomic profiling and quality
control

Cerebrospinal fluid metabolomic analyses and quantification
were performed in one batch by Metabolon (Durham, NC)
using an untargeted approach, based on Ultrahigh Performance
Liquid Chromatography-Tandem Mass Spectrometry platform
(UPLC-MS/MS) (Evans et al., 2014). Details of the metabolomic
profiling regarding sample preparation, metabolite extraction,
derivatization, separation and detection, and raw data processing
were described in an earlier study (Darst et al., 2019).

A total of 412 CSF metabolites were identified and quality
control procedures were performed. First, 46 metabolites missing
for at least 80% of the individuals were excluded. Then the
values for each of the remaining metabolites were scaled so that
the median equaled 1. Two metabolites with an interquartile
range (IQR) of zero were excluded and no metabolites had zero
variability between individuals. Log10 transformation was applied
to normalize the data. After quality control, 269 metabolites with
known biochemical names remained for this investigation. The
missing percentage of each metabolite in WRAP and Wisconsin
ADRC is available in Supplementary Table 1.

Genotyping and quality control

In the WRAP participants, DNA was extracted from whole
blood using the PUREGENE R© DNA Isolation Kit, and the

concentrations were quantified using the InvitrogenTM Quant-
iTTM PicoGreenTM dsDNA Assay Kit. More details can be found
in the previous study (Darst et al., 2019). Genotyping data
were generated by the University of Wisconsin Biotechnology
Center using the Illumina Multi-Ethnic Genotyping Array for
1,340 individuals originally. Quality control procedures have been
described previously (Darst et al., 2019). Briefly, samples and
variants with missingness >5% and samples with inconsistent
genetic and self-reported sex were removed. The resulting 1,198
samples from European ancestry individuals and 898,220 variants
were then imputed using the Michigan Imputation Server and the
HRC reference panel. Variants with a low imputation quality score
(R2 < 0.8), with a low minor allele frequency (MAF) (<0.001),
or out of HWE were removed. The genetic ancestry was assessed
by using Principal Components Analysis in Related Samples (PC-
AiR) because of the sibling relationships present in the WRAP
cohort.

Genetic data in the Wisconsin ADRC were generated from
DNA extracted from blood samples at baseline and genotyped
with either the Infinium OmniExpressExome-8 Kit or the Infinium
Global Screening Array-24 Kit. Genetic data for the Wisconsin
ADRC underwent the same quality control (QC) and imputation
as the WRAP data except samples and SNPs missing in >2% were
excluded and HWE threshold was p < 1e-6 due to differences in
sample sizes and the number of SNPs between the two cohorts.

Statistical analysis

Metabolome-wide association study
A metabolome-wide association study (MWAS) was conducted

in the WRAP cohort between 269 individual CSF metabolites
and 13 CSF NTK biomarkers using linear mixed-effects regression
models with random intercepts to account for repeated measures
and family relationships (10 families with two or more siblings) and
fixed effects for age at CSF collection, sex, and years of education.
Replication of each CSF metabolite significantly associated with
one or more biomarkers in WRAP was then conducted in the
Wisconsin ADRC cohort using linear regression adjusting for the
same covariates. Both Bonferroni and false discovery rate (FDR)
methods were used to correct the p-values for multiple testing; the
FDR corrected q value was used to determine statistical significance
in each analysis. Potential functional pathways of the replicated
significant metabolites were identified by pathway analyses using
the web-based software Metabo-analyst 5.0 (Pang et al., 2021)
based on the Kyoto Encyclopedia of Genes and Genomes (KEGG)
Homo sapiens pathway. The hypergeometric test and relative-
betweenness centrality were employed to evaluate the pathway
importance, and the pathways with an impact score ≥0.1 were
selected.

Prediction performance and elastic net
regression

The variance for each biomarker explained by its corresponding
significant metabolites was evaluated using r2 in the combined
and imputed cohorts of WRAP and the Wisconsin ADRC.
For this analysis, we only included the first available measures
of independent participants from WRAP. Since the number
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of significant metabolites for each biomarker was large and
some of the metabolites were highly correlated, elastic net
regression (Zou and Hastie, 2005) was employed to select the
important independent metabolites. Then the r2 of elastic net-
selected metabolites was re-calculated. For each biomarker, we
fit three types of models, the (1) base model, which only
included the demographics of age, sex, years of education,
and indicator of cohort, (2) metabolite model, which included
the demographics in the base model plus all the replicated
significant metabolites, and (3) elastic net-selected metabolite
model, which contained the demographics and elastic-net-selected
metabolites.

Mendelian randomization

In our analysis, we employed Mendelian randomization (MR)
(Sanderson et al., 2022) which uses genetic variation as an
instrumental variable to assess the causal relationship about
whether metabolites influence the CSF NTK biomarkers. The
genome-wide significant SNPs (p < 5 × 10−8) from a previous
genome-wide meta-analysis of CSF metabolites (Panyard et al.,
2021) were extracted for each elastic net-selected metabolite
(5,863 SNPs for 52 metabolites). These SNPs (or the top 100
SNPs if there were more than 100 genome-wide significant SNPs
for a metabolite) were used as instrumental variables (IV) for
the metabolite. Then we conducted one-sample MR analysis for
each elastic net-selected metabolite-NTK biomarker association
pair in the combined WRAP and Wisconsin ADRC cohort by
using the summary statistics and individual-level genetic data
of extracted SNPs. For each MR test, we first checked the
strength of the IVs using F statistics. Typically, an IV with
an F statistic greater than 10 is considered to be strong, while
instruments with F statistics below 10 are considered to be weak
(Stock et al., 2002). Next, the estimated (or less confounded)
beta and p-values for the effect of the metabolite on the NTK
biomarker were calculated using the two-stage least squares method
if the IVs were strong and correlated, but using the limited
information maximum likelihood (LIML) for correlated IVs that
were relatively weak (Chao and Swanson, 2005; Wooldridge, 2010).
The confidence intervals (CI) of the point estimates from both
LIML and another conditional likelihood ratio (CLR) method,
which is robust to weak IVs (Moreira, 2003), were compared
and only significant results with CIs in the same direction and
with a similar range of effect size between these two methods
were considered as evidence of a causal effect. The Bonferroni
corrected p-value < 0.05 based on the number of all MR tests
performed was used to determine significance. The MR analysis
was conducted using the R package “ivmodel” (Kang et al.,
2021).

Data availability

The genetic data have been uploaded to the National
Institute on Aging Genetics of Alzheimer’s Disease Data Storage
Site (NIAGADS) and metabolomic data are being uploaded
to Accelerating Medicines Partnership Program for Alzheimer’s
Disease (AMP-AD).

TABLE 1 Sample characteristics of WRAP and Wisconsin
ADRC participants.

WRAP*
N = 161

Wisconsin
ADRC
N = 154

Mean SD Mean SD

Age 62.1 6.5 58.1 5.5

Years of education 16.2 2.2 16.2 2.3

P-tau 17.5 6.4 15.9 5.8

T-tau 200.6 67.3 184.5 69.3

Aβ42 895.4 369.4 942.6 363.1

Aβ40 14336.1 4497.9 13897.4 4742.3

NfL 87.2 38.0 83.3 80.7

Neurogranin 798.6 307.5 728.2 286.7

YKL-40 144.6 48.3 128.7 39.1

S100b 1.1 0.3 1.2 0.3

GFAP 8.6 2.9 8.6 3.3

sTREM2 7.9 2.4 7.6 2.1

IL-6 4.3 2.6 5.2 3.7

α-synuclein 157.4 65.1 146.2 64.1

N % N %

Sex

Female 105 65.2 106 68.8

Male 56 34.8 48 31.2

Cognitive status

Unimpaired stable 129 80.1 154 100

Unimpaired
declining

27 16.8

Clinical MCI 5 3.1

No. of samples per individual

1 56 34.8 154 100

2 45 27.9

3 55 34.2

4 5 3.1

*The summary statistics of WRAP were based on each individual’s first available CSF
collection where both metabolomics and biomarkers were measured.

Results

Participant characteristics

Characteristics of the WRAP and Wisconsin ADRC
participants can be found in Table 1. In the WRAP cohort,
just over one third of the participants had one CSF sample, almost
one third had two CSF samples collected approximately 2 years
apart, and just over one third had three CSF samples collected
approximately every 2 years. The first available measures were
used to calculate the summary participant characteristics. In
the Wisconsin ADRC cohort, only one sample was available for
each participant. In both studies, the CSF was collected between
2010 and 2017. Among 161 WRAP participants, the mean age and
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FIGURE 1

Manhattan plots of MWAS results between CSF metabolites and CSF NTK biomarkers. Each dot represents a metabolite and the different colors
represent the CSF NTK biomarkers (x-axis) in (A) WRAP and (B) the Wisconsin ADRC (only significant metabolites after FDR correction in WRAP were
included). The –log10(p-value) is shown on the y-axis. The legend box indicates the number of metabolites that were significant after FDR correction
for each NTK biomarker. The annotated metabolites in the figures represent the most significant metabolite associated with each NTK biomarker.

education level were 62.1 and 16.2 years, respectively. The mean age
and years of education in the Wisconsin ADRC were 58.1 and 16.2,
respectively. Females comprised 65.2% of WRAP participants and
68.8% of the Wisconsin ADRC. In the longitudinal WRAP cohort,
80.1, 16.8, and 3.1% of participants were cognitively unimpaired
stable, unimpaired declining, or had clinical MCI, respectively.
Four participants progressed from cognitively unimpaired stable
to unimpaired declining by the last CSF collection 2–4 years
later. All participants in the Wisconsin ADRC were cognitively

unimpaired stable. The mean values of each biomarker are also
listed in Table 1.

MWAS detects significant associations
between CSF metabolites and
biomarkers of AD pathology

The significant MWAS results in WRAP and the Wisconsin
ADRC are summarized in Figure 1. In WRAP, a large number
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of CSF metabolites reached the significance threshold after FDR
correction (Figure 1A). 47 metabolites were associated with P-tau,
56 were associated with T-tau, 58 were associated with Aβ42,
80 were associated with Aβ40, 65 were associated with NfL, and
62 were associated with neurogranin. However, no metabolites
were associated with the ratio of Aβ42/40 or IL-6. Many of the
metabolites that were significant in WRAP were also significant
in the Wisconsin ADRC (Figure 1B). For example, among 47
significant metabolites for P-tau in WRAP, 40 metabolites were also
significant in the Wisconsin ADRC. Table 2 shows the replication
results for the top 10 significant CSF metabolite-biomarker
associations (if there were 10 or more significant metabolites)
in the Wisconsin ADRC. For example, the top three metabolites
associated with P-tau and T-tau were 1-palmitoyl-2-stearoyl-GPC
(16:0/18:0), N-acetylneuraminate, and C-glycosyltryptophan.
N-acetylneuraminate and 1,2-dipalmitoyl-GPC (16:0/16:0) were
the top two metabolites associated with Aβ42 and Aβ40. The top
three metabolites associated with NfL were N-acetylthreonine,
N-acetylalanine, and beta-citrylglutamate. N-acetylneuraminate,
C-glycosyltryptophan, and N6-succinyladenosine were the
top three metabolites for neurogranin. N-acetylneuraminate,
1,2-dipalmitoyl-GPC (16:0/16:0), and stearoyl sphingomyelin
(d18:1/18:0) were the top three metabolites for YKL40. Stearoyl
sphingomyelin (d18:1/18:0), 1-stearoyl-2-docosahexaenoyl-GPC
(18:0/22:6), and 1-palmitoyl-2-oleoyl-GPC (16:0/18:1) were the top
three metabolites associated with S100b. Only six metabolites were
associated with GFAP, and the top three were 1,2-dipalmitoyl-GPC
(16:0/16:0), 1-palmitoyl-2-stearoyl-GPC (16:0/18:0), and beta-
citrylglutamate. For sTREM2, the top metabolites were stearoyl
sphingomyelin (d18:1/18:0), 1,2-dipalmitoyl-GPC (16:0/16:0), and
palmitoyl sphingomyelin (d18:1/16:0). Finally, for α-synuclein, the
top three metabolites were 1-palmitoyl-2-stearoyl-GPC (16:0/18:0),
1,2-dipalmitoyl-GPC (16:0/16:0), and N-acetylneuraminate. The
full results of WRAP and the Wisconsin ADRC can be found in
Supplementary Tables 2–25. The association patterns between
significant CSF metabolites and NTK biomarkers are provided
in the Figure 2. The summary of the number of significant
associations and the name of NTK biomarkers that were replicated
in the Wisconsin ADRC are presented in Supplementary Table 26.
Most of the significant metabolites were lipids, amino acids,
and carbohydrates. For example, the lipid, 1,2-dipalmitoyl-
GPC (16:0/16:0), the amino acid, beta-citrylglutamate, and the
carbohydrate N-acetylneuraminate were strongly associated with
almost every CSF NTK biomarker of AD. On the contrary, amino
acids like kynurenate and proline were only significantly associated
with α-synuclein.

The functional pathways for replicated significant metabolites
with known human metabolome database (HMDB) IDs for
each CSF NTK biomarker are shown in Supplementary
Table 27. Two significant metabolites, 1,2-dipalmitoyl-GPC
(16:0/16:0) and 1-oleoyl-GPC (18:1), were enriched in the
glycerophospholipid metabolism pathway for most biomarkers.
Other pathways such as pyrimidine metabolism (including orotate
and orotidine), ascorbate and aldarate metabolism (including
gulonate and glucuronate), arginine biosynthesis (including
N-acetylglutamate and argininosuccinate), and pentose and
glucuronate interconversions (also including gulonate and
glucuronate) may also be of interest.

Prediction performance for CSF
biomarkers of AD pathology improved
after addition of CSF metabolites

The prediction performance of replicated significant
metabolites was measured by r2 and presented in Table 3. The r2 of
the base models, which only included the demographic variables,
ranged from 0.01 to 0.25. Adding the replicated significant
metabolites increased the r2 substantially for each biomarker,
ranging from 0.23 to 0.74. The elastic net regression further
prioritized candidate metabolites associated with each biomarker.
For example, 14 of the original 40 significant metabolites were
selected by the elastic net as important independent metabolites
for P-tau. Initially, 40 significant metabolites explained about 72%
of the variance in P-tau; the 22 elastic net-selected metabolites still
explained 67% of the variance.

Mendelian randomization detects
metabolites with a potential causal effect
on CSF biomarkers of AD pathology

According to the F statistics, we employed the LIML method
for MR. The full results of the test statistics are provided
in Supplementary Table 28. After checking for consistency of
the CIs for the LIML and CLR methods, the significant and
consistent MR results are displayed in Table 4, showing metabolites
with a potential causal effect on the NTK biomarker based on
instrumental variables formed by genome-wide significant SNPs.
For example, we observed a positive causal association between
palmitoyl sphingomyelin (d18:1/16:0) and sTREM2.

Discussion

In this analysis, we tested the associations between CSF
metabolites and CSF NTK biomarkers representing different
pathologies of AD in initially cognitively-unimpaired individuals.
Significant metabolites were identified in the WRAP cohort using
linear mixed effects regression and most of the metabolites
were replicated in the Wisconsin ADRC cohort. The elastic net
regression method reduced the number of CSF metabolites by
selecting the important and independent metabolites for each
CSF biomarker. This provides a smaller, more practical set of
metabolites to focus on in future research. The results of the MR
analyses suggested several metabolites that may play a causal role
in AD pathology. A detailed look into these associations, such as
the contributing genes and their corresponding functions, is worth
exploring.

We have identified and replicated multiple CSF metabolites that
were associated with CSF NTK biomarkers for AD pathology; most
of these CSF metabolites were lipids, particularly sphingolipids,
phosphatidylcholines, and lysophospholipids, which are all types of
phospholipids. Phospholipids are a class of lipids that construct the
cellular membranes and are involved in many complex activities
of membrane proteins, receptors, enzymes, and ion channels in
the cell or at the cell surface (Kosicek and Hecimovic, 2013). In
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TABLE 2 Top 10 significant CSF metabolites associated with each NTK biomarker in WRAP and replicated in the Wisconsin ADRC.

NTK
Biomarker

Biochemical names Compound
ID

Beta P Adjusted P FDR q Super
pathway

Sub-pathway

P-tau 1-palmitoyl-2-stearoyl-GPC (16:0/18:0) 52616 24.10 9.89E-23 4.65E-21 4.65E-21 Lipid Phosphatidylcholine (PC)

N-acetylneuraminate 32377 29.31 2.66E-21 1.25E-19 6.25E-20 Carbohydrate Aminosugar metabolism

C-glycosyltryptophan 48782 29.26 1.41E-20 6.62E-19 2.21E-19 Amino acid Tryptophan metabolism

1,2-dipalmitoyl-GPC (16:0/16:0) 19130 27.21 6.95E-16 3.27E-14 8.17E-15 Lipid Phosphatidylcholine (PC)

Stearoyl sphingomyelin (d18:1/18:0) 19503 26.20 9.38E-16 4.41E-14 8.81E-15 Lipid Sphingolipid metabolism

Arabitol/xylitol 48885 28.10 1.50E-15 7.04E-14 1.17E-14 Carbohydrate Pentose metabolism

Beta-citrylglutamate 54923 23.47 9.84E-15 4.62E-13 5.82E-14 Amino acid Glutamate metabolism

N-acetylserine 37076 35.24 9.90E-15 4.65E-13 5.82E-14 Amino acid Glycine, serine and threonine metabolism

Sphingomyelin (d18:1/18:1, d18:2/18:0) 37529 24.14 4.10E-14 1.93E-12 2.09E-13 Lipid Sphingolipid metabolism

N6-succinyladenosine 48130 22.14 4.44E-14 2.09E-12 2.09E-13 Nucleotide Purine metabolism, adenine containing

T-tau N-acetylneuraminate 32377 349.51 2.25E-21 1.26E-19 1.26E-19 Carbohydrate Aminosugar metabolism

1-palmitoyl-2-stearoyl-GPC (16:0/18:0) 52616 296.17 1.53E-19 8.54E-18 4.27E-18 Lipid Phosphatidylcholine (PC)

C-glycosyltryptophan 48782 336.75 7.77E-19 4.35E-17 1.45E-17 Amino acid Tryptophan metabolism

1,2-dipalmitoyl-GPC (16:0/16:0) 19130 343.88 3.72E-18 2.09E-16 5.21E-17 Lipid Phosphatidylcholine (PC)

N-acetylthreonine 33939 372.61 1.37E-17 7.68E-16 1.54E-16 Amino acid Glycine, serine and threonine metabolism

Arabitol/xylitol 48885 340.87 1.61E-16 9.00E-15 1.50E-15 Carbohydrate Pentose metabolism

Stearoyl sphingomyelin (d18:1/18:0) 19503 314.01 6.07E-16 3.40E-14 4.85E-15 Lipid Sphingolipid metabolism

N6-succinyladenosine 48130 275.91 1.19E-15 6.64E-14 8.30E-15 Nucleotide Purine metabolism, adenine containing

Erythronate* 42420 608.03 1.48E-15 8.30E-14 9.23E-15 Carbohydrate Aminosugar metabolism

Beta-citrylglutamate 54923 281.29 6.24E-15 3.49E-13 3.49E-14 Amino acid Glutamate metabolism

Aβ42 N-acetylneuraminate 32377 1831.96 7.62E-20 4.42E-18 2.65E-18 Carbohydrate Aminosugar metabolism

1,2-dipalmitoyl-GPC (16:0/16:0) 19130 1922.65 9.15E-20 5.31E-18 2.65E-18 Lipid Phosphatidylcholine (PC)

1-palmitoyl-2-oleoyl-GPC (16:0/18:1) 52461 2019.63 4.04E-19 2.34E-17 7.50E-18 Lipid Phosphatidylcholine (PC)

1-palmitoyl-2-stearoyl-GPC (16:0/18:0) 52616 1608.22 5.17E-19 3.00E-17 7.50E-18 Lipid Phosphatidylcholine (PC)

1-myristoyl-2-palmitoyl-GPC (14:0/16:0) 19258 1779.94 5.29E-18 3.07E-16 6.13E-17 Lipid Phosphatidylcholine (PC)

Stearoyl sphingomyelin (d18:1/18:0) 19503 1735.41 7.98E-17 4.63E-15 7.72E-16 Lipid Sphingolipid metabolism

N-acetylserine 37076 2220.93 1.96E-15 1.14E-13 1.63E-14 Amino acid Glycine, serine and threonine metabolism

Arabitol/xylitol 48885 1732.68 2.00E-14 1.16E-12 1.45E-13 Carbohydrate Pentose metabolism

(Continued)

Fro
n

tie
rs

in
A

g
in

g
N

e
u

ro
scie

n
ce

0
7

fro
n

tie
rsin

.o
rg

https://doi.org/10.3389/fnagi.2023.1214932
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org/


fnagi-15-1214932
A

ugust24,2023
Tim

e:13:32
#

8

D
o

n
g

e
t

al.
10

.3
3

8
9

/fn
ag

i.2
0

2
3

.12
14

9
3

2

TABLE 2 (Continued)

NTK
Biomarker

Biochemical names Compound
ID

Beta P Adjusted P FDR q Super
pathway

Sub-pathway

N-acetylthreonine 33939 1832.87 3.07E-14 1.78E-12 1.98E-13 Amino acid Glycine, serine and threonine metabolism

1-palmitoyl-2-palmitoleoyl-GPC
(16:0/16:1)*

52470 1793.19 3.46E-14 2.01E-12 2.01E-13 Lipid Phosphatidylcholine (PC)

Aβ40 N-acetylneuraminate 32377 27190.93 2.92E-30 2.34E-28 2.34E-28 Carbohydrate Aminosugar metabolism

1,2-dipalmitoyl-GPC (16:0/16:0) 19130 27204.24 2.46E-26 1.96E-24 9.51E-25 Lipid Phosphatidylcholine (PC)

1-palmitoyl-2-stearoyl-GPC (16:0/18:0) 52616 23086.44 3.57E-26 2.85E-24 9.51E-25 Lipid Phosphatidylcholine (PC)

1-stearoyl-2-oleoyl-GPC (18:0/18:1) 52438 27203.88 1.22E-23 9.72E-22 2.43E-22 Lipid Phosphatidylcholine (PC)

1-palmitoyl-2-oleoyl-GPC (16:0/18:1) 52461 27594.67 4.59E-23 3.67E-21 7.35E-22 Lipid Phosphatidylcholine (PC)

N-acetylserine 37076 34639.61 5.99E-23 4.79E-21 7.99E-22 Amino acid Glycine, serine and threonine metabolism

Stearoyl sphingomyelin (d18:1/18:0) 19503 24933.03 8.41E-23 6.73E-21 9.61E-22 Lipid Sphingolipid metabolism

Arabitol/xylitol 48885 26504.66 6.06E-22 4.85E-20 5.64E-21 Carbohydrate Pentose metabolism

1-myristoyl-2-palmitoyl-GPC (14:0/16:0) 19258 24513.57 6.34E-22 5.07E-20 5.64E-21 Lipid Phosphatidylcholine (PC)

Erythronate* 42420 47037.89 2.43E-20 1.94E-18 1.94E-19 Carbohydrate Aminosugar metabolism

NfL N-acetylthreonine 33939 194.81 4.51E-04 2.93E-02 2.09E-02 Amino acid Glycine, serine and threonine metabolism

N-acetylalanine 1585 262.23 9.53E-04 6.19E-02 2.09E-02 Amino acid Alanine and aspartate metabolism

Beta-citrylglutamate 54923 150.23 9.66E-04 6.28E-02 2.09E-02 Amino acid Glutamate metabolism

Arabitol/xylitol 48885 165.78 1.70E-03 1.10E-01 2.26E-02 Carbohydrate Pentose metabolism

1-palmitoyl-GPC (16:0) 33955 142.17 1.74E-03 1.13E-01 2.26E-02 Lipid Lysophospholipid

1,2-dipalmitoyl-GPC (16:0/16:0) 19130 154.06 2.68E-03 1.74E-01 2.53E-02 Lipid Phosphatidylcholine (PC)

1-oleoyl-GPC (18:1) 48258 136.99 2.72E-03 1.77E-01 2.53E-02 Lipid Lysophospholipid

Stearoyl sphingomyelin (d18:1/18:0) 19503 145.43 3.35E-03 2.18E-01 2.72E-02 Lipid Sphingolipid metabolism

Orotidine 35172 129.73 4.56E-03 2.96E-01 3.00E-02 Nucleotide Pyrimidine metabolism, orotate
containing

Cysteine 1868 187.12 4.98E-03 3.24E-01 3.00E-02 Amino acid Methionine, cysteine, SAM and Taurine
metabolism

Neurogranin N-acetylneuraminate 32377 1574.23 6.97E-26 4.32E-24 4.32E-24 Carbohydrate Aminosugar metabolism

C-glycosyltryptophan 48782 1442.13 9.29E-20 5.76E-18 2.88E-18 Amino acid Tryptophan metabolism

N6-succinyladenosine 48130 1234.78 3.19E-18 1.98E-16 6.60E-17 Nucleotide Purine metabolism, adenine containing

1-palmitoyl-2-stearoyl-GPC (16:0/18:0) 52616 1212.87 1.38E-17 8.53E-16 1.89E-16 Lipid Phosphatidylcholine (PC)

(Continued)
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TABLE 2 (Continued)

NTK
Biomarker

Biochemical names Compound
ID

Beta P Adjusted P FDR q Super
pathway

Sub-pathway

Arabitol/xylitol 48885 1470.51 1.53E-17 9.48E-16 1.89E-16 Carbohydrate Pentose metabolism

N-acetylthreonine 33939 1549.35 1.83E-17 1.13E-15 1.89E-16 Amino acid Glycine, serine and threonine metabolism

Erythronate* 42420 2626.14 1.19E-16 7.40E-15 1.06E-15 Carbohydrate Aminosugar metabolism

1,2-dipalmitoyl-GPC (16:0/16:0) 19130 1370.31 5.60E-16 3.47E-14 4.34E-15 Lipid Phosphatidylcholine (PC)

1-palmitoyl-GPC (16:0) 33955 1202.61 1.09E-15 6.78E-14 7.54E-15 Lipid Lysophospholipid

N-acetylserine 37076 1719.96 2.67E-15 1.65E-13 1.65E-14 Amino acid Glycine, serine and threonine metabolism

YKL-40 N-acetylneuraminate 32377 162.38 7.62E-17 1.37E-15 1.37E-15 Carbohydrate Aminosugar metabolism

1,2-dipalmitoyl-GPC (16:0/16:0) 19130 169.92 1.71E-16 3.08E-15 1.54E-15 Lipid Phosphatidylcholine (PC)

Stearoyl sphingomyelin (d18:1/18:0) 19503 160.90 8.86E-16 1.60E-14 5.32E-15 Lipid Sphingolipid metabolism

1-palmitoyl-2-stearoyl-GPC (16:0/18:0) 52616 140.55 1.05E-14 1.89E-13 4.65E-14 Lipid Phosphatidylcholine (PC)

1-palmitoyl-2-oleoyl-GPC (16:0/18:1) 52461 171.39 1.29E-14 2.32E-13 4.65E-14 Lipid Phosphatidylcholine (PC)

Arabitol/xylitol 48885 162.00 7.35E-14 1.32E-12 2.21E-13 Carbohydrate Pentose metabolism

1-myristoyl-2-palmitoyl-GPC (14:0/16:0) 19258 147.07 4.57E-13 8.22E-12 1.17E-12 Lipid Phosphatidylcholine (PC)

N6-succinyladenosine 48130 121.32 2.81E-11 5.06E-10 6.32E-11 Nucleotide Purine metabolism, adenine containing

Cysteine 1868 181.51 6.78E-11 1.22E-09 1.36E-10 Amino acid Methionine, cysteine, SAM and Taurine
metabolism

1-palmitoyl-2-palmitoleoyl-GPC
(16:0/16:1)*

52470 148.93 1.16E-10 2.09E-09 2.09E-10 Lipid Phosphatidylcholine (PC)

S100b Stearoyl sphingomyelin (d18:1/18:0) 19503 0.81 8.99E-07 2.34E-05 2.34E-05 Lipid Sphingolipid metabolism

1-stearoyl-2-docosahexaenoyl-GPC
(18:0/22:6)

52611 0.54 3.45E-05 8.97E-04 4.49E-04 Lipid Phosphatidylcholine (PC)

1-palmitoyl-2-oleoyl-GPC (16:0/18:1) 52461 0.73 6.95E-05 1.81E-03 6.03E-04 Lipid Phosphatidylcholine (PC)

1,2-dipalmitoyl-GPC (16:0/16:0) 19130 0.67 1.07E-04 2.79E-03 6.96E-04 Lipid Phosphatidylcholine (PC)

1-palmitoyl-2-docosahexaenoyl-GPC
(16:0/22:6)

52610 0.50 1.59E-04 4.14E-03 8.27E-04 Lipid Phosphatidylcholine (PC)

Sphingomyelin (d18:1/18:1, d18:2/18:0) 37529 0.60 2.07E-04 5.39E-03 8.99E-04 Lipid Sphingolipid metabolism

Erythronate* 42420 1.18 3.28E-04 8.52E-03 1.22E-03 Carbohydrate Aminosugar metabolism

Palmitoyl sphingomyelin (d18:1/16:0) 37506 0.55 7.47E-04 1.94E-02 2.43E-03 Lipid Sphingolipid metabolism

1-palmitoyl-2-stearoyl-GPC (16:0/18:0) 52616 0.50 9.45E-04 2.46E-02 2.73E-03 Lipid Phosphatidylcholine (PC)

(Continued)
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TABLE 2 (Continued)

NTK
Biomarker

Biochemical names Compound
ID

Beta P Adjusted P FDR q Super
pathway

Sub-pathway

Sphingomyelin (d18:2/16:0, d18:1/16:1)* 42459 0.44 1.53E-03 3.97E-02 3.96E-03 Lipid Sphingolipid metabolism

GFAP 1,2-dipalmitoyl-GPC (16:0/16:0) 19130 10.08 1.76E-07 1.06E-06 1.06E-06 Lipid Phosphatidylcholine (PC)

1-palmitoyl-2-stearoyl-GPC (16:0/18:0) 52616 8.07 9.91E-07 5.95E-06 2.97E-06 Lipid Phosphatidylcholine (PC)

Beta-citrylglutamate 54923 7.74 6.92E-06 4.15E-05 1.38E-05 Amino acid Glutamate metabolism

N-acetylneuraminate 32377 8.00 1.59E-05 9.56E-05 2.39E-05 Carbohydrate Aminosugar metabolism

Gulonate* 46957 6.71 2.75E-05 1.65E-04 3.30E-05 Cofactors and
vitamins

Ascorbate and aldarate metabolism

Arabinose 575 9.80 3.71E-04 2.22E-03 3.71E-04 Carbohydrate Pentose metabolism

sTREM2 Stearoyl sphingomyelin (d18:1/18:0) 19503 9.59 5.72E-16 1.60E-14 1.60E-14 Lipid Sphingolipid metabolism

1,2-dipalmitoyl-GPC (16:0/16:0) 19130 9.81 1.59E-15 4.45E-14 2.23E-14 Lipid Phosphatidylcholine (PC)

Palmitoyl sphingomyelin (d18:1/16:0) 37506 9.18 2.52E-15 7.05E-14 2.35E-14 Lipid Sphingolipid metabolism

1-palmitoyl-2-oleoyl-GPC (16:0/18:1) 52461 10.20 9.68E-15 2.71E-13 6.78E-14 Lipid Phosphatidylcholine (PC)

Cholesterol 63 9.08 2.08E-14 5.83E-13 1.17E-13 Lipid Sterol

1-palmitoyl-2-stearoyl-GPC (16:0/18:0) 52616 7.89 2.11E-13 5.90E-12 9.83E-13 Lipid Phosphatidylcholine (PC)

sphingomyelin (d18:2/16:0, d18:1/16:1)* 42459 7.19 3.53E-13 9.88E-12 1.41E-12 Lipid Sphingolipid metabolism

C-glycosyltryptophan 48782 8.51 2.09E-12 5.86E-11 7.33E-12 Amino acid Tryptophan metabolism

N-acetylneuraminate 32377 8.35 2.55E-12 7.13E-11 7.92E-12 Carbohydrate Aminosugar metabolism

1-myristoyl-2-palmitoyl-GPC (14:0/16:0) 19258 8.45 3.18E-12 8.90E-11 8.90E-12 Lipid Phosphatidylcholine (PC)

α -synuclein 1-palmitoyl-2-stearoyl-GPC (16:0/18:0) 52616 306.42 1.42E-22 1.42E-20 1.42E-20 Lipid Phosphatidylcholine (PC)

1,2-dipalmitoyl-GPC (16:0/16:0) 19130 337.75 5.02E-20 5.02E-18 2.51E-18 Lipid Phosphatidylcholine (PC)

N-acetylneuraminate 32377 315.50 2.29E-19 2.29E-17 7.64E-18 Carbohydrate Aminosugar metabolism

Stearoyl sphingomyelin (d18:1/18:0) 19503 316.41 1.31E-18 1.31E-16 3.28E-17 Lipid Sphingolipid metabolism

1-stearoyl-2-oleoyl-GPC (18:0/18:1) 52438 334.85 8.69E-18 8.69E-16 1.74E-16 Lipid Phosphatidylcholine (PC)

C-glycosyltryptophan 48782 304.78 3.58E-17 3.58E-15 5.82E-16 Amino acid Tryptophan metabolism

Palmitoyl sphingomyelin (d18:1/16:0) 37506 297.65 4.24E-17 4.24E-15 5.82E-16 Lipid Sphingolipid metabolism

N-acetylthreonine 33939 343.71 4.65E-17 4.65E-15 5.82E-16 Amino acid Glycine, serine and threonine metabolism

N6-succinyladenosine 48130 266.82 9.85E-17 9.85E-15 1.09E-15 Nucleotide Purine metabolism, adenine containing

1-myristoyl-2-palmitoyl-GPC (14:0/16:0) 19258 300.75 1.17E-16 1.17E-14 1.17E-15 Lipid Phosphatidylcholine (PC)

*Indicates a compound that has not been confirmed based on a standard, but Metabolon was confident in its identity.
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FIGURE 2

The association patterns between significant CSF metabolites and CSF NTK biomarkers in Wisconsin-ADRC. Each cell represents the association of a
CSF metabolite with a biomarker. The color scale indicates the magnitude of the FDR q-values. The metabolites are also grouped and colored based
on their super pathway.

the neurodegenerative brain, e.g., in the AD brain, which has
suffered extensive damage, the compromise of the membrane
functions is expected, explaining how phospholipids may
be involved in AD pathology (Wong et al., 2017). Previous
studies have demonstrated that various phospholipids such as
phosphatidylcholines, sphingolipids, glycerophospholipids, and
lysophospholipids have changed in the AD patient’s brain, CSF
and blood when compared to healthy controls (Kosicek and
Hecimovic, 2013; González-Domínguez et al., 2014; Kao et al.,
2020). For example, a serum metabolomics study conducted by
González-Domínguez et al. (2014) showed that the concentration
of numerous phosphatidyl lipids, like 1,2-dipalmitoyl-GPC
(16:0/16:0), 1-palmitoyl-2-linoleoyl-GPC (16:0/18:2), and 1-
palmitoyl-2-oleoyl-GPC (16:0/18:1), and lysophosphatidylcholines,
like 1-palmitoyl-GPC (16:0) and 1-stearoyl-GPC (18:0), were
different in AD versus healthy controls. The 1,2-dipalmitoyl-GPC
(16:0/16:0) phosphatidylcholine has also been suggested as one
of three serum metabolites to predict AD development in MCI
individuals (Orešič et al., 2011). Another brain metabolomics study

found that higher levels of palmitoyl sphingomyelin (d18:1/16:0)
and sphingomyelin (d18:1/18:1, d18:2/18:0) were associated with
the severity of AD pathology at autopsy and AD progression across
prodromal and preclinical stages (Varma et al., 2018). The stearoyl
sphingomyelin (d18:1/18:0) was also significantly changed in the
CSF with “AD-like pathology” that was dichotomized by Aβ42,
T-tau, and P-tau levels (Koal et al., 2015). In summary, our results
confirmed the importance of the previously identified lipids but
also provided novel lipid findings for AD pathologies beyond the
major established ones.

Another class of metabolites that are of potential interest are
several carbohydrates like N-acetylneuraminate, arabitol/xylitol,
arabinose, and erythronate. Among them, N-acetylneuraminate,
also known as sialic acid, had a significant effect on most
NTK biomarkers. In addition to our study, a previous study
conducted by Nagata et al. (2018) in 2018 also showed that
CSF N-acetylneuraminate was significantly increased in AD
when compared to patients with idiopathic normal pressure
hydrocephalus and was positively correlated with CSF P-tau
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TABLE 3 Prediction performance (r2) of metabolites in the combined cohort of WRAP and Wisconsin ADRC.

NTK
biomarkers

N* Base
model r2

Metabolite
model r2

Number of
input

metabolites

Number of elastic
net selected
metabolites

Elastic net
selected

metabolites
model r2

P-tau 295 0.11 0.71 40 14 0.67

T-tau 296 0.10 0.72 44 19 0.70

Aβ42 296 0.01 0.52 54 47 0.52

Aβ40 293 0.04 0.80 73 71 0.80

NfL 297 0.10 0.24 23 15 0.21

Neurogranin 297 0.07 0.77 51 32 0.76

YKL-40 297 0.25 0.56 15 10 0.56

S100 296 0.05 0.23 20 4 0.19

GFAP 297 0.17 0.35 6 5 0.35

sTREM2 297 0.05 0.53 27 14 0.52

α-synuclein 297 0.03 0.74 90 30 0.67

Variables included in the base model were age, sex, years of education and cohort.
Variables included in the metabolite model were age, sex, years of education, cohort and all replicated significant metabolites for each biomarker.
Variables included in the metabolite model were age, sex, years of education, cohort and elastic net-selected metabolites.
*The sample sizes were different because of the missingness of metabolites.

(r = 0.55), as it was in our study. N-acetylneuraminate is an acetyl
derivative of the amino sugar neuraminic acid, which occurs in
many glycoproteins, glycolipids, and polysaccharides. Specifically,
it is a functional and structural component of gangliosides, which
are found predominantly in the nervous system and are abundant
in the brain, especially in the grey matter (Palmano et al., 2015).
Studies have shown that gangliosides play important roles in AD.
For example, it has been suggested that GM1-ganglioside binds
to Aß, and the resulted GAß has the capability to accelerate Aß
assembly (Yanagisawa et al., 1995) and is the endogenous seed
for amyloid fibral in the AD brain (Hayashi et al., 2004). The
gangliosides also have important roles in organizing the lipid rafts,
which integrate numerous types of lipid proteins involved in cell
signaling, cell-cell adhesion, and intracellular vesicular trafficking
(Nagata et al., 2018) and contain many AD-associated proteins
such as amyloid precursor protein (APP) (Ehehalt et al., 2003).
Furthermore, the gene CD33, which belongs to the sialic-acid-
binding immunoglobulin-like lectin family, has been reported as
a strong genetic locus associated with AD by GWASs (Bertram
et al., 2008; Hollingworth et al., 2011; Naj et al., 2011) and has
been suggested to impair the microglia-mediated Aβ clearance
(Bradshaw et al., 2013; Griciuc et al., 2013; Jiang et al., 2014).
Erythronate (erythronic acid) was previously identified as the
main hallmark of pentose–phosphate pathway defects (Engelke
et al., 2010), and consistent with abnormal function of pentose–
phosphate pathway in certain regions of the AD-brain (Xu et al.,
2016), and the upregulation of the pentose–phosphate pathway was
reported in a previous study of mild cognitive impairment (MCI)
participants that later progressed to AD (Orešič et al., 2011).

As mentioned above, a couple of metabolites were common to
most of the AD pathologies defined by the CSF NTK biomarkers.
On the contrary, some metabolites were unique to specific NTK
biomarkers. For example, lipids like 1-palmitoyl-2-linoleoyl-
GPC (16:0/18:2), 1-stearoyl-2-arachidonoyl-GPC (18:0/20:4),
sphingomyelin (d18:1/20:0, d16:1/22:0) and sphingomyelin

(d18:1/22:1, d18:2/22:0, d16:1/24:1) were only associated with
α-synuclein. These metabolites may be helpful to study synaptic
dysfunction and could potentially be used as biomarkers to
differentiate AD pathologies.

The significant associations between a number of metabolites
and both Aβ42 and Aβ40, but not with Aβ42/40 may indicate
that the metabolites associated with Aβ42 and Aβ40 only influence
the production of amyloid in general versus clearance of the
pathological form, Aβ42. Our analysis also suggested that no
metabolites were associated with IL-6, consistent with two other
studies in the WRAP and Wisconsin ADRC cohorts that found
no associations between twelve SM metabolites and IL-6 (Morrow
et al., 2021), and no associations between a proteomic analysis of
915 proteins and IL-6 after multiple-testing correction (Johnson
et al., 2020).

By utilizing Mendelian randomization, we found causal
evidence for several of the associations between CSF metabolites
and CSF NTK biomarkers. Among these metabolites, most of them
were lipids, with some amino acids and cofactors/vitamins, and a
xenobiotic metabolite, erythritol. Another metabolite of interest,
homocarnosine, is an inhibitory neuromodulator synthesized in
the neuron from gamma-aminobutyric acid (GABA) and histidine
(Gujar et al., 2005). The level of human CSF homocarnosine
declines drastically with age (Jansen et al., 2006) and was suggested
to be related to AD through CSF protein glycation (Hipkiss, 2007).
At the same time, GABA also plays an important role in the brain
and may be related to AD (Govindpani et al., 2017).

This study has some limitations. First, the analysis only
included non-Hispanic white individuals, so the results may not
extrapolate to other racial/ethnic groups. Second, the sample sizes
of both the WRAP and Wisconsin ADRC cohorts were relatively
small and will need to be replicated in a larger independent
sample. Although we excluded the metabolites with very high
missingness (>80%), there were 10 metabolites with missing values
in over 50% of individuals in WRAP and/or the Wisconsin ADRC
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(Supplementary Table 1). The missingness of these metabolites
reduced the power and may have resulted in a failure to detect the
association between them and biomarkers. The validation of these
top hits using a targeted approach, more sophisticated statistical
methods, and experiments in vitro are necessary for these results to
be clinically relevant. Our analysis also excluded several metabolites
with unknown biochemical names, but due to the development
of Metabolon’s library and rapidly increasing studies in this area,
it would be worthwhile to re-examine these metabolites when
we have more knowledge. Finally, the MR conclusion can be
nullified if the underlying assumptions are violated. For example,
our conclusions may be sensitive to the presence of invalid IVs
due to potential pleiotropy of metabolites. In general, the research
confirmed that several novel metabolites changed along with AD
CSF biomarkers and extended several developing and understudied
AD pathologies, e.g., synaptic dysfunction, based on untargeted
CSF metabolomics and will expand our knowledge of the biological
mechanisms behind AD.
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