In Western Venezuela, close to the Matícora River, a large prehistoric longhouse was fortuitously discovered by the author during a reconnaissance of the region in 1981, and has never been fully reported. The site (FAL-7) and the house structure were accidentally exposed and adversely impacted by a bulldozer during the construction of a Jaguar (pond). The oval house measures 18 x 13 m (234 m2), making it the largest such structure in northern Venezuela. Defined features include two interior hearths, postmolds, pitholes, and two possible entryways. This essay presents a discussion of the local culture historic context of the longhouse and a descriptive and interpretative analysis of the house features and associated materials.

Résumé
Dans l’ouest de Venezuela près du fleuve Matícora, une grande habitation préhistorique fut découverte fortuitement, par l’auteur pendant une reconnaissance de la région en 1981. Ceci n’a jamais été publié en totalité. Le site et l’habitation furent mis à jour par hasard par un bulldozer pendant la construction d’un étang (jagüey). L’habitation ovale multifamilial mesure 18 x 13 m (234 m2) ce qui fait d’elle la plus grande de ce genre de structure en Venezuela du nord. Les structures apparentes comprennent deux cheminées internes, trous de poteaux, fosses et deux entrées possibles. Cette communication expose le contexte historico-culturel de l’habitation et une analyse interpré- tative et descriptive des structures de la maison et du matériel archéologique associé.

Abstract
In Western Venezuela, close to the Matícora River, a large prehistoric longhouse was fortuitously discovered by the author during a reconnaissance of the region in 1981, and has never been fully reported. The site (FAL-7) and the house structure were accidentally exposed and adversely impacted by a bulldozer during the construction of a jagüey (pond). The ovoid longhouse measures 18 x 13 m (234 m2), making it the largest such structure in northern Venezuela. Defined features include two interior hearths, postmolds, pitholes, and two possible entryways. This essay presents a discussion of the local culture historic context of the longhouse and a descriptive and interpretative analysis of the house features and associated materials.

1. INTRODUCTION
Between 1981 and 1983, I conducted an extensive, regional archaeological survey along the gulf coast region of Falcón State, Western Venezuela (Figure 1). The survey and testing program was supported by the Centro de Investigaciones Arqueológicas, Antropológicas y Paleontológicas (CIAAP) of the Universidad National Experimental Francisco de Miranda (UNEFM), then directed by José M. Cruxent. On June 1981, at site FAL-7, I fortuitously discovered a large (ca. 234 m2 in area) oval-shaped longhouse structure near the Matícora River valley (Figure 2). This is the only prehistoric structure thus far identified in Western Venezuela. While the results of the survey have been presented elsewhere (Oliver 1989, 1990), the data from the Matícora longhouse study has remained unpublished.

2. LIMITATIONS OF THE DATA RECOVERY AT FAL-7 SITE.
My first trip to the Matícora River had no other purpose than to explore the region’s potential for a future, systematic survey. It was in this first trip to Matícora that I was informed of a site FAL-7. This site was one among several later located in a sector locally known as Los Indios (Figure 2). The local vaquiano (guide) informed that some time earlier a bulldozer had razed FAL-7 to build a berm for a small water reservoir (jagüey). Upon my arrival to Los Indios it was very clear that I was looking at a potential prehistoric house site.

The unanticipated discovery taught me entirely unprepared. I lacked most of the tools, photographic camera, and materials necessary to conduct a proper rescue. For better or worse, I decided to stay and salvage whatever could be recovered at that moment rather to risk the loss of the features to further erosion or human impact. The decision was fortunate since, shortly after the 1981 salvage work, the entire coastal region witnessed a rare but vicious (September-October) rainstorm of a magnitude not seen in over twenty years by locals. Little evidence if any was left of the house site beyond the traces of the postmould and feature excavations upon a subsequent visit to the site.

Unfortunately, other problems besieged the Matícora study. The macroflora, macrobotanical, soil, and charcoal samples collected were subsequently lost in Maracaibo, while these were in storage awaiting air-lift to the University of Illinois for detailed analysis. All these factors conspired against publishing the results. I was particularly annoyed at the lack of photographic documentation, so crucial for peer review. As a result, I confined this study to a single reference made in a brief footnote in my doctoral thesis (Oliver 1989:431). I was not comfortable then with the shortcomings of this report. It was only after the encouragement of Aad Versteeg that I finally decided to prepare this report.

3. THE CULTURAL SEQUENCE IN THE MATICORA VALLEY.
During the 1981-82 surveys along the middle-lower course of the Matícora Valley ten archaeological sites were investigated, along with several others that received only a cursory inspection. These ten sites yielded artifact assemblages that were assigned to the following cultural complexes or styles:
Matícora style (Tortolitan Malamboid Subseries): This style, a late member of the Malamboid series, is found at sites FAL-7, FAL-8, and FAL-9. Based on ceramic comparisons, the estimated chronological range is between circa AD 600-1400/1450 (Figure 3). Matícora style is a late, divergent development out of the Tortolitan Malamboid subseries (ca 100 BC-AD 500). As depicted in Figure 4, the Malamban Malamboid subseries is largely restricted to the Lower Magdalena and Ciénaga de Santa Marta areas in Colombia (see Angulo Velás 1981, Langebaek 1987, Reichel Dolmatoff 1986). An off-shoot of the Malamban spread eastward along the coast into the Guajira coast and Maracaibo Basin, giving rise to the Torotilan Malamboid styles by at least 100 BC, represented at Tortolitas site near Cano Inciarte in N.W. Maracaibo (Arvelo 1987), El Campamento and Kusi’s sites in the Guajira (Oliver 1989, Arvelo 1987), and Hato Nuevo site on the eastern Maracaibo shores (Cruxent and Rouse 1958:66-67).
An early Tortolitan penetration further east into coastal Falcón is indicated at Nueva Venecia (FAL-38) site, adjacent to the Bororo River. Nueva Venecia probably represents the first penetration of a ceramic-bearing group into coastal Falcón (Oliver 1996, 1989: 326-ss.; Arvelo 1987:168-170). Supidebo style (Bachaqueroan Dabajurid subseries): This style is a member of the Bachaqueroan Dabajurid subseries and is present at sites FAL-4, FAL-5, and FAL-6, along the Matícora River (Figure 2). Absolute dates from sites FAL-23a, FAL-30, and FAL-17 (Bororo subarea) place this style after ca. AD 1350 (Oliver 1989; Figure 3), but the estimated range is between ca. AD 1300 and 1550 (Figure 3). The Bachaqueroan subseries is a late, divergent member of the Dabajurid (AD 800-1600) series in western Venezuela, and a direct off-shoot of the Dabajurid Dabajurid subseries, more specifically (early/late) Urumaco style (Figures 3, 5). The Dabajurid core area encompasses Paraguaná, the off-shore islands, especially Aruba, and the gulf coast between Coro and Bororo (Oliver 1989, 1990). There is strong evidence that Dabajurid Dabajurid intruded into the gulf coast from eastern Falcón around AD 800 (Figure 5). By AD 1250-1300 much of the gulf coast and large off-shore islands were settled and colonized by Dabajurans bearing Urumaco style ceramics and related insular stylistic variants (cf. Antczak and Antczak 1993; Havisier 1989, 1991; Oliver 1990). After ca. AD 1300, the Dabajurid subseries continued to expand westward, beyond the Bororo River area. The latter resulted in the development of impoverished Dabajurid styles in the western periphery, possibly as a result of weak interaction with the core area and closer relationships to the Maracaibo-Guajira region, giving rise to the Bachaqueroan subseries (Supidebo and Bachaquero styles [cf. Oliver 1989, 1996]).

In addition to the above, several prehistoric sites included assemblages that are unrelated to either the Tortolitan or Malamban subseries. Site FAL-7 yielded a new prehistoric style designated Mauroa, and bears general resemblances with some of the ceramics of the multicomponent site of Kusi’a in the Guajira Peninsula. G. Reichel-Dolmatoff (pers. comm. 1984) indicated that Mauroa ceramics seem to have vague relationships with several unnamed ceramic complexes in the Lower Magdalena region of Colombia. La Víbora (FAL-10) consists of a sparse ceramic scatter located on a pointbar near an abandoned meander of the Matícora River. No diagnostic ceramics were found; however, in the past locals have collected Matícora style ceramic specimens at La Víbora. The remaining sites in the Matícora region belong to the historic period: Cataura (FAL-1) and El Tanquecito-I (FAL-3a), Tanquecito II site (FAL-3b), and several others not formally investigated. The earlier historic complex is designated Cataura (AD 1600-1800), while the later complex (AD 1800-present) relates to the Falconian Criollo Ceramic Manufacturing Center II, as defined by Cruxent et al. (1988:215). The details of ceramic ware and style, architecture, settlement pattern and economic pattern of these complexes are described elsewhere (Oliver 1996).

4. DIFFERENTIAL SETTLEMENT PATTERNS IN THE MATÍCORA VALLEY

Members of both the Tortolitan Malamboid and Bachaqueroan Dabajurid subseries partly overlapped in time in the Matícora Valley area, but their settlement patterns differ. All the Matícora style sites are clustered in an interfluvial zone between the Cocuiza and Matícora Rivers; that is, within the Los Indios and La Montañita sectors. In contrast, Supidebo style sites are found linearly dispersed along the Matícora River (Figure 2) and east-west along the beach, just behind beachdunes and river mouths. In the valley there are no multicomponent, stratigraphically overlapping Matícora-Supidebo components. This mutually exclusive spatial distribution may be indicative of an ethnic/political border and, possibly, differential emphases of resource access and exploitation.

At the level of subsistence—and keeping in mind that detailed analyses of faunal remains are not available—there are differences between Matícora and Supidebo sites. For example: the abundance manos and metates combined with the thin aripo griddles found in Supidebo sites contrast with the rarity of metates and abundance of thick budare griddles and associated topias (clay firedogs) found in Matícora sites. Terrestrial game is diverse and abundant in both Supidebo and Matícora sites (particularly rabbit, white-tailed deer, and b-quiró). Marine shellfish and fish-bone remains are ubiquitous in Supidebo middens, but not in Matícora sites.

5. RESCUE METHODS AND RESULTS AT FAL-7

Prior bulldozing activity at FAL-7 had exposed a zone just below the living floor of a 13 m x 18 m house structure. Only the very bottom 10-15 cm of the postmold features and hearths were preserved from destruction (see Figures 6, 7, 8). These features appeared essentially as dark circular stains against a lighter brown and sterile subsoil (probably B or B/C Horizon). The bulldozed terrain is an irregular somewhat rectangular-shaped area measuring roughly 150 x 750 m (11.25 ha of exposure). The western end had a natural, small rise that gradually dipped to the east and south. The bulldozer cut about 2.5 m below the top surface of the natural rise at the western end of the site area, whereas the eastern end of the site dipped gradually from the natural rise until reaching a small arroyo. Toward the east end, the bulldozer appears to have scraped about 50-75 cm below the hypothesized sloping surface gradient.

A general surface «grab» collection and another dividing the site into three sectors were conducted throughout the bulldozed field. The zone of concentrated stained soil features was systematically collected, once the grid was in place (Figure 7). In the end, however, all the surface remains were pulled together since it was obvious that their location was the result of redeposition by the bulldozing activities. The one exception was the few materials that were found in situ associated with the hearths.

Two hearths were found surrounded by over 300 somewhat circular soil stains, of which only half were mapped and excavated (Figure 6). These two hearths 1 and 2 were found within an oval house structure, defined by post-molds (n=74) and associated with four large post- and/or pit-holes. A third hearth feature was found further south probably related to a second house structure as well, although deep bulldozing activities here precluded observing any clear patterns of post-molds.

A grid system encompassing the northern postmold concentration was established (Figure 7; see also Oliver 1996: Table 1). Each excavated circular stain was given a unique feature number, beginning with Feat. 1, although due to recording mistakes in my field notes, some stains with the same number were later further distinguished by a letter (e.g., Feat. 31a, 31b). Each circular feature was bisected and excavated to expose a vertical profile; the soil matrix was laid on a piece of board and troweled by hand. Artifacts and other materials found where collected and bagged. Feature profiles were drawn in a graph paper notebook. Since no screens (of any kind) were available—there are differences between Matícora and Supidebo sites. For example: the abundance manos and metates combined with the thin aripo griddles found in Supidebo sites contrast with the rarity of metates and abundance of thick budare griddles and associated topias (clay firedogs) found in Matícora sites. Terrestrial game is diverse and abundant in both Supidebo and Matícora sites (particularly rabbit, white-tailed deer, and b-quiró). Marine shellfish and fish-bone remains are ubiquitous in Supidebo middens, but not in Matícora sites.
6. POSTMOLD AND POSTHOLE FEATURES AT FAL-7
Of the 300 plus circular, semi-circular and irregular soil stains, 151 were mapped and excavated. Of these, 74 were definite cultural features pertaining to postmold stains/fill; in contrast to root stains, postmold features showed a clearly defined vertical profile, almost always tapering to a rounded point; in a few rare instances these ended in a wedge-shape. The postmold fill is generally characterized by a loamy clay or clayey loam texture. As the profile in Figure 8 shows, the medium and larger-sized posts showed a posthole fill around the postmold stains. The posthole fill presented a similar texture to that of the postmold stain, but was somewhat lighter-colored and more loamy in texture.

The texture of the postmolds and postholes sharply contrasted with the sterile clay (greda) subsoil that underlies the whole area (a B/C or C Horizon). The contrast in soil color and texture made the identification and definition of postmold features quite unambiguous once a profile view was obtained. From the surface, however, the differences between postmold and non-cultural stains were not quite as apparent. The largest concentration of these features occur north of the East-14-15 grid-line; to the south the bulldozer had cut still deeper into the subsurface, leaving only the deepest postmolds visible (Figure 7). Analysis of the 74 postmold diameters suggests three distinct clusters: (1) a large size (avg. 47.4 cm) found only in two of the four post hole features, namely «Central Post-1 and 2»; (2) a medium sized postmold (avg. 24.7 cm; n=13) and (c) a small postmold (avg. 6.5 cm; n=59) [see Figure 9]). As expected, the largest postmolds are found at the center, with the smaller and medium-sized ones forming an oval spatial configuration around the large ones (Figures 6, 7).

The medium-sized postmolds are located at the north, south, east and west points of the oval distribution, where one would expect to find the anchoring of the cross-beams supporting the structure. The larger postholes are interpreted to be the main supports of the building, with the central, erected posts holding the cross-beams and superstructure together. As is the case at other sites, such as Golden Rock, St. Eustatius, and El Parking (PO-38), Puerto Rico, large postholes were excavated leaving a bench-like feature midway down so as to ease the erection of the large posts (see Weaver et al. 1992; Versteeg and Schinkel ed. 1992; Kooijmans 1994). For an undescribed reason, the narrower postmold stains found to one edge of the pithole were very diffuse and hard to define for the two southern postholes (No. 3-4), whereas the two northern ones (Nos. 1-2) were clearly defined. No rocks or cobblestones were found within the postholes (Figure 7). Given their large size, it is possible that the post was anchored by, and fastened to, a shorter, secondary buried post, but this could not be demonstrated with the available evidence. Because the original surface of the FAL-7 site is unknown (bulldozing) and especially because the living floor associated with the longhouse had also been scraped by the bulldozer, there is no horizon or level of reference that can be tied-in to the living floor. The latter is the only accurate datum to control the elevation and relationships of all the cultural features and associated materials (above/below living floor). In its absence, I was forced to use the much less meaningful machine-scraped surface as the elevation reference datum. A simple regression of postmold depth/width distribution, as one might expect in the absence of a secure elevation datum, did not show a particularly strong correlation (r=0.76) with the expected depth/width ratio projected by the regression line (Figure 9). In fact, only the smaller diameter postmolds did strongly cluster about the expected ratio. The medium-sized postmolds had a wider diameter than expected for their relative depth, whereas the two largest postmolds had the least correlation with the expected width/depth ratio. In sum, all that can be said with certainty is that the postmolds, postholes and parts of the hearth intruded into some unknown depth below the house floor (the latter, possibly some 10-25 cm above machine-scraped surface). Figure 9 also demonstrates that there were three modal values for postmold size.

modal sizes may well indicate the use of three different wood species or, alternatively, the same wood species but harvested during three different growth stages. None of the postmolds contained large wood or charred wood pieces preserved; however, small charcoal bits flecks and small bits (1-2 cm2.) were occasionally noted. Several other postmold fills included fair amounts of ash (see Oliver 1996: Table 1). In no case I was able to determine that a wooden post had been burned in situ. It is more likely that the darker soil stains are sediment fill mixed with a high content organic matter. Finally, the fill from postmold features 25, 46, and 96a respectively contained one Matcora incised sherid, one plain sherd, and two plain sherds. These specimens were tempered with chamote (crushed sherds) which in turn were also tempered with chamote. This temper is diagnostic of Matcora style. Supidebo style is always characterized by at least two temper modes: zazore (grit) and a chamote variety consisting of clay pellets.

7. ANALYSIS OF THE LONGHOUSE PLANVIEW
The 72 small and medium postmolds present a sharply defined oval configuration. The dimensions of the oval area are 18 m (N-S) by 13 m (E-W), covering a potential living floor area of 234 m2. It is, indeed, a very large structure, a longhouse or «maloca».

In Figure 7, I have plotted the hypothetical horizontal pairs of cross-beams supported by the medium sized posts and the central, vertical posts. Although it cannot be conclusively proven, it is likely that each cross-beam was slanted upwards and tied to each of the central posts, perhaps leaving an opening along the central north-south axis. The roof was perhaps made of thatched palm leaves with a u-shaped eaves of some sort, but again, no hard evidence was found. My mental image of the entire structure is not unlike the exteriors of the large longhouses of the «Xinguan» groups of Central Brazil (Hackenberger and Petersen 1995; see also Rivière 1995, Lea 1995, Hugh-Jones 1995). Two entry-ways were detected on the east and west sides of the structure, while the north-south ends were, apparently, closed by small to medium posts. There is a lack of internal posts, suggesting that no sections of the structure had raised platforms or barbaconas, as for example, in the case of modern Achuar of the Makuma-Huasaga drainages (Zeidler 1983), or in the case of the historic Caquetío of the Yaracuy Valley (Oliver 1989). Nor are there indications of permanent internal partitions, as is evident in the cases of the Dabajarun Dabajuroid sites of Tanki Flip, Santa Cruz and Wanapa of the off-shore islands (Versteeg 1993, 1995; Bartone 1995; Haviser 1987, 1991). However partitions made with, for example, canes cannot be entirely ruled out, given the likelihood that bulldozing activities could have obliterated any shallow postmolds of this nature.

A surprising characteristic of the longhouse is the negligible evidence of structural repairs that so often disturb the original postmold contour pattern. This leads me to hypothesize that the wooden framework was extremely durable, utilized during an unspecified short length of time and then abandoned after the first signs of structural deterioration. The abandonment of a house, well before structural repairs were necessary, could be for ideological reasons, such as after the death of the household head. One should also consider the possibility that the large size of this structure may be due to special function, such as a ceremonial or bachelor’s house.

The locally abundant palo de vera (Bulnesia arborea) would result in the durability hypothesized for the longhouse. Local vaquianos informed that vera is the hardest wood in the entire region; it is so durable that it requires no further treatment against termites or any other burrowing insects. Some repairs of very limited scope, however, were undertaken. These are inferred by the presence of paired sets of adjacent postmolds (Figure 6: Feat.-24-25; Figure 7: unit S2.5-E4-5) and in the somewhat dispersed set of postmolds found in units S5 to S6 and E12 to E14, toward the northeast quadrant of the structure (Figure 7). Otherwise, little if any repair work is evident.
8. HEARTH FEATURES AND ASSOCIATED MATERIALS

All the artifacts and materials collected on the surface within the house structure were the result of redeposition and/or displacement. These cannot be used to infer intra-house activities or for stylistic associations. Only those few specimens found within postmold fill and the hearths could be securely associated with the longhouse occupation. Hearths 1 and 2 provided the best window, albeit a narrow one, for making inferences regarding the possible function of the house and intra-household organization.

Hearth 1 (north end)

This feature had a maximum depth of 10.5 cm below the machine-scraped surface at its center and roughly a maximum diameter of 195 cm (Figure 8). It exhibited a basin-shaped bottom outline, filled with abundant ashes, charcoal, unidentified land snails (possibly intrusive), a few charred terrestrial bones (notably deer, rabbit and iguana) and ceramics. Among the 52 ceramic sherds recovered, there were two flat bases found in situ. A large number of unidentified landsnails were found resting on the two vessel bottoms (Figures 8, 11). It is unclear whether these landsnails naturally buried post-facto, or were indeed collected by the occupants. The same snails were found in the cultural lenses exposed by the bulldozer on the west «wall» of FAL-7 site. The upper portion of the two in situ vessels were «razed» by the bulldozer. Some incised shoulder fragments recovered up to four meters north of this hearth feature mended with these two partial vessels. The two reconstructed vessels correspond to a restricted bowl with an inflected, incurving shoulder, a type (Form #18) that is invariably decorated with parallel broad line incisions. In addition, there are rims belonging to vessel forms #1, 2, 3 and 5 corresponding to necked ollas (Figure 10). Base forms were rounded or flat (associated with bowl forms).3 Carbon soot deposits were noted on the interior of the restricted, inflected bowls.

Hearth No. 2 (south end)

This feature is similar in shape and contents to the northern one. It had a maximum depth of 7.7 cm below the scraped surface and measured 190 cm in diameter. It is also basin shaped and contained the same range of terrestrial fauna, ashes, charcoal, and ceramics. Some sherds showed refiring, suggesting that perhaps they were swept into the active hearth. Rims from necked ollas (Forms #4, 5) and from restricted, inflected bowl (Form #18). Flat bases were absent, suggesting that the remainder were rounded. One base had tuza (corn-cob) impressions. The negative cupule impressions suggest that kernels were fairly large, comparable to modern (flour-yielding) maize. Some of these contrasts can be summarized as follows:

9. LONGHOUSE POPULATION SIZE

I have refrained from addressing the issue of how many individuals could have or did live in such a large area (234 m2). I could have utilized various data sources to estimate the maximum number of occupants, such as those provided by Siegel (1990) for the Waïwai-Wapishiana, Guyana, or by Curet (1992) for prehistoric Puerto Rico. The Achuar jea or maloca (Zeidler 1983:163) of Amazonian Ecuador is a case in point, since the largest ones (20 x 12m; 240m2) are of comparable size and shape to the FAL-7 longhouse. The average number of Achuar occupants in a single house is about nine, while in the Pumpuentza River malocas the number of occupants increases to sixteen. Zeidler (1983:161-164 ) concluded that the number of occupants relative to house size is highly variable among the Achuar and dependent on various sociocultural, economic and political factors, including the degree of maturity of the individual household. There is every reason to believe that the same variables should apply to the FAL-7 structure. Clearly the Matclosa longhouse is of a size large enough to accommodate a large, multifamily household. My guess is that anywhere between 10 and 40 individuals could be accommodated, but this a purely impressionistic view.

10. DISCUSSION AND CONCLUDING REMARKS

Given the differential spatial distribution and temporal overlap of Matclosa and Sipitudeo sites, and noting that there are indications of interaction between the two groups, one might ask just how similar or different were the community layout and house patterns between the two. Unfortunately, prehistoric Dabajuroid house structures are only known for four sites, all from the offshore islands: Tanki Flip and Santa Cruz/Ceru Noka in Aruba; De Savaan in Curacao; and Wanapa in Bonaire (Boerstra 1982:23; Versteeg 1993, 1995; Bartone 1995; Haviser 1987:66, 1991:148, 152). Without entering into details, the differences between the insular Dabajuroid structures and FAL-7 are at present more than their similarities. Some of these contrasts can be summarized as follows:
A fairly dense clustering of 14 houses and ancillary structures (non-dwelling huts) were noted at Tanki Flip site in 2,500 m² (25 ha) of exposed area. A long fence (palisade) was found at Tanki Flip, and presumably surrounds the entire site. The Santa Cruz-Tanki Flip villages show a dual pattern: oval malocas (avg. 14 x 9 m; 126 m²) and smaller circular (avg. 8 m diam or 25 m²) houses. Secondary burials at Tanki Flip and Santa Cruz are occasionally placed under or near dwellings, although there is considerable variation between these two sites. Finally, an internal postmold partition into two halves (with dual hearths) is typical of house structures at Santa Cruz and Wanapa. While at Tanki Flip such partitions are not quite as apparent or regular, there are nevertheless internal postmolds that may represent permanent platforms (barbacao?). In contrast, FAL-7 yielded one, and at most two, large oval dwelling(s) and no pallisades. The 11.25 ha. of machine scraped surface would have yielded evidence—despite damage—of a clustering of structures (dwellings and ancillary structures), should there have been a dense village layout of the kind defined for Tanki-Flip. The FAL-7 longhouse lacked any internal partitions. The second house structure was probably another comparably large oval longhouse, and aligned in a linear fashion with the defined oval longhouse (and its two hearths) to the north. Burials were not found associated with dwellings at FAL-7. For now, the overall settlement layout and details of the structures at FAL-7 appear to be different from the Dabajuran sites of the offshore islands, and may possibly have more in common with the kind defined for Tanki-Flip. The FAL-7 longhouse lacked any internal partitions. The second house structure was probably another comparably large oval longhouse, and aligned in a linear fashion with the defined oval longhouse (and its two hearths) to the north. Burials were not found associated with dwellings at FAL-7.

For now, the overall settlement layout and details of the structures at FAL-7 appear to be different from the Dabajuran sites of the offshore islands, and may possibly have more in common with the kind defined for Tanki-Flip. The FAL-7 longhouse lacked any internal partitions. The second house structure was probably another comparably large oval longhouse, and aligned in a linear fashion with the defined oval longhouse (and its two hearths) to the north. Burials were not found associated with dwellings at FAL-7.

ACKNOWLEDGMENTS
I wish to express my gratitude to Dr. A. Versteeg for encouraging me to present the data on the FAL-7 longhouse structure and to both Dr. A. Versteeg and Dr. S. Rostain for sharing with me their data on Tanki Flip and Santa Cruz. My participation in the XVI ICCA in Guadeloupe was possible thanks to generous conference travel grants from the Institute of Archaeology and the University College London. My thanks also go to Dr. Warwick Bray, Andrzej Antczak, Marlena Antczak, and Dr. L. Arvelo for their useful comments on earlier drafts of this paper. Isabel Anderton graciously translated the abstract into French. However, I alone am responsible for any errors and interpretations in this paper.

REFERENCES CITED
Angulo Valdés, C.

Antczak, A. and M. M. Antczak

Arvelo, L.

Bartone, R.

Boerstra, E.H.J.

Castaño U., C. and C. L. Dvila

Cruxent, J. M., E. Durán-Mrquez and N. J. Matheus

Cruxent, J. M. and I. Rouse

Curet, L. A.

Hackenberger, M. and J. Peterson

Haviser, J. B.

Hugh-Jones, C.


Kooijmans, L. P.

Langebaek, C.

Lea, V.

Oliver, J. R.
In my dissertation I incorrectly reported that the FAL-7 house dimensions were 18 m x 22 m.

In my fieldnotes and laboratory notes, whenever possible, I noted in a very preliminary fashion the genus and/or species of some of the bone elements. However, I am more familiar with terrestrial fauna (especially mammalian) and marine shellfish than with land snails and marine fish.

While I did not note fish bones in Matlcora sites, I suspect that such remains would have been identified had the shipment of macrofauna samples not been lost.

Due to space considerations, the illustrations of the rim/vessel forms defined for Matlcora style were not included. The reader may view these in Oliver 1989 and 1996.

Interestingly, Nicholaus Federmann (1530-31) described some 23 clustered and palisaded Caquetìo villages in the Barquisimeto area, albeit these were absent in his descriptions of the Caquetìo villages of the Yaracuy Valley (apparently linear arrangement along the valley) and the Northern Llanos (e.g., village of Hacarigua). No detailed descriptions exist for the Caquetìo of Coastal FalcÌn (historic Dabajuroid). It is evident that despite all the Caquetìo groups having a common ancestry (ie Dabajuroid series), their house and village patterns (and the implied social/ideological organization) had diverged considerably through a relatively short time and space (see Oliver 1989, 1996).

Reichel-Dolmatoff, G.

Reichel-Dolmatoff, G. and A. Dussìn de Reichel-Dolmatoff

Rivière, P.

Siegel, P. E.

Versteeg, A. H.

Versteeg, A. and K. Schinkel, editors

Versteeg, A. and S. Rostain, editors

Zeidler, J. A.
Figure 1: Archaeological Sites in Falcon State, Western Venezuela (1391-200).

Figure 2: Archaeological sites in the Maticora Valley area, Western Venezuela.
Figure 3: Chronology of Eastern Colombia and Western Venezuela, Malamboïd and Dabajuroid series.

Figure 4: Proposed Spread of the Malamboïd series from Colombia to Venezuela (based on Arvelo 1987 and Oliver 1989, 1990)

Legend:
1. Malambo/Los Mangos
2. Hacienda Papare
3. kusi 'a (Cusi, Kusi, Uleri)
4. El Campamento
5. Tortolitas
6. Hato nuevo
7. Nueva Venecia (FAL-38)
8. Maticora (FAL 7, 8, 9)
9. Casas Viejas (FAL 48) and Mama Juana (FAL 49)
Figure 5: Proposed spread of the Dabajuroid Series into Western Venezuela (based on Oliver 1989)

Figure 6: FAL-7 Longhouse Planview Postmold feature number
Figure 7: FAL 7 Longhouse Planview - Grid Units and Beam Reconstruction

Figure 9: Vertical Stratigraphic cross section of the Longhouse between Feature 96a and 80.
Figure 9: Simple linear regression of postmold Width/Length Ratio, Long house Structure, Site FAL-7. (Vertical lines indicate three modal size clusters of postmolds)

Figure 10: Relative frequency of ceramic categories from Surface collection, Hearth 1, and Hearth 2. Frequency calculated on total ceramics for each area/unit.

RELATIVE FREQUENCY OF CERAMIC FORMS

<table>
<thead>
<tr>
<th>Ceramic Form</th>
<th>Relative Frequency (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figurine Flage</td>
<td>35.0</td>
</tr>
<tr>
<td>Annular Flages</td>
<td>12.0</td>
</tr>
<tr>
<td>Flat Base (C)</td>
<td>8.0</td>
</tr>
<tr>
<td>Flat Base (B)</td>
<td>6.0</td>
</tr>
<tr>
<td>Flat Base (A)</td>
<td>5.0</td>
</tr>
<tr>
<td>Tubular Base</td>
<td>2.0</td>
</tr>
<tr>
<td>Tubular Bodies</td>
<td>1.0</td>
</tr>
<tr>
<td>Globular Pot</td>
<td>1.0</td>
</tr>
<tr>
<td>Open Bowl</td>
<td>0.5</td>
</tr>
<tr>
<td>Strongly Incurving Bowl V</td>
<td>0.5</td>
</tr>
<tr>
<td>Incurving Bowl V</td>
<td>0.5</td>
</tr>
<tr>
<td>Necked Pot</td>
<td>0.5</td>
</tr>
<tr>
<td>Necked Jar</td>
<td>0.5</td>
</tr>
<tr>
<td>Globular Pot (A)</td>
<td>0.5</td>
</tr>
<tr>
<td>Flat Necked Olla (B)</td>
<td>0.5</td>
</tr>
<tr>
<td>Single Cylinder Necked Olla</td>
<td>0.5</td>
</tr>
</tbody>
</table>

EXPLANATION KEY
- Surface FAL-7: 937 (46.0% plain bodies)*
- Hearth 1 Total: 52 (73.1% plain bodies)
- Hearth 2 Total: 47 (72.3% plain bodies)

*Includes two perimold specimens
Figure 11: Base fragment with land snails found «in situ», Hearth Feature 1.

12 Selected ceramics from site FAL-7:
(A) rim/vessel # 1 with negative handle evidence (B) simple annular base, mode e; (C) direct rim with semi circular appliquéd on lip, open bowl #20; (D) single coiled necked olla, rim/vessel # 4 (E) multiple-coiled rim/vessel # 5; (F, I, K) rim/vessels # 18-19, with broad incised in parallel line decoration on shoulders; (J) body sherd with traces of white paint (zazare temper) probably trade sherd; (L) globular vessel # 13 with semicircular perforated horizontal tab handle, (M) quarzitic petaloid celt (locally available)