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Abstract: This paper is concerned with the numerical optimization of the thickness-wise CNT (carbon
nanotube) distribution in functionally graded CNT-reinforced composite (FG-CNTRC) beams to
secure the structural safety. The FG-CNTRC in which CNTs are inserted according to the specific
thickness-wise distribution pattern are extensively investigated for high-performance engineering
applications. The mechanical behaviors of FG-CNTRC structures are definitely affected by the
distribution pattern of CNTs through the thickness. Hence, the tailoring of suitable CNT distribution
pattern is an essential subject in the design of FG-CNTRC structure for a given boundary and loading
conditions. Nevertheless, the thickness-wise CNT distribution pattern has been assumed by several
linear functions so that these assumed primitive patterns cannot appropriately respond to arbitrary
loading and boundary conditions. In this context, this paper aims to introduce a numerical method
for optimally tailoring the CNT distribution pattern of FG-CNTRC beams. As a preliminary stage,
the effective stress is defined as the objective function and the layer-wise CNT volume fractions are
chosen as the design variables. The exterior penalty-function method and golden section method
are adopted for the optimization formulation, together with finite difference scheme for the design
sensitivity analysis. The proposed optimization method is illustrated and validated through the
benchmark experiments, such that it successfully provides an optimum CNT distribution which
can significantly minimize the effective stress, with a stable and rapid convergence in the iterative
optimization process.

Keywords: functionally graded; CNT-reinforced composite; effective stress minimization; exterior
penalty-function method; finite difference scheme; thickness-wise CNT distribution

1. Introduction

Carbon nanotube (CNT) has been spotlighted as a state-of-art material of the 21st century
due to its excellent physical, electrical and chemical properties [1,2]. A representative quality
is the high weight–stiffness ratio, so that CNTs can be used as a next-generation pillar for
polymer-matrix composites. In fact, the mechanical strength of the CNT-reinforced polymer
composite dramatically increases when only a small amount of CNTs are inserted [3]. In
mechanical applications, CNTRCs have been developed in the form of beams, plates and shells,
because these are used as ingredient components in a variety of engineering applications.
When compared with the conventional composites, CNTRCs provide superior mechanical
behaviors, such as bending deformation, free vibration and buckling [4–6].

Meanwhile, the above-mentioned structural components exhibit variations in their me-
chanical behaviors through their thickness, so that the uniform thickness-wise distribution
of CNTs may not be sufficient to respond to such variations. It has been reported that the
improvement in the mechanical behavior of CNTRCs is limited when CNTs are uniformly
distributed [7,8]. To resolve this limitation, the functional gradient in the thickness-wise
CNT distribution was introduced according to the concept of functionally graded mate-
rial (FGM) [9]. Shen [10] and Ke et al. [11] proposed a purposeful thickness-wise CNT
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distribution within CNTRCs to suppress bending deformation and control the free vi-
bration. Thereafter, the CNT-reinforced composites with purposeful thickness-wise CNT
distributions were called functionally graded CNT-reinforced composites (FG-CNTRCs).
The representative FG-CNTRCs include FG-U, FG-V, FG-O and FG-X, in which CNTs are
distributed through the thickness with the purposeful linear gradients. The dispersion
of CNTs into a polymer matrix can be carried out by the spark plasma-sintering process,
the powder metallurgy (PM) route and chemical vapor deposition. The reader may refer
to [12–14] for more details on the manufacturing of CNT-reinforced composites.

Since their introduction, extensive research efforts have focused on FG-CNTRCs to in-
vestigate their mechanical behaviors, particularly the parametric investigation with respect
to the thickness-wise distribution pattern of CNTs. For example, Zhu et al. [15] and Cho and
Ahn [3] numerically investigated the influence of CNT distribution pattern on the bending
deformation and the natural frequencies of FG-CNTRC plates using finite and natural
element methods. Cheshmeh et al. [16] investigated the buckling and vibration behaviors
of FG-CNTRC plate with respect to the CNT distribution pattern and the CNT volume
fraction using the higher-order shear deformation theory. Zhong et al. [17] investigated the
free vibration of FG-CNTRC circular and annular plates with arbitrary boundary conditions
with respect to the CNT distribution pattern. Xiang et al. [18] numerically investigated
the free vibration of FG-CNTRC conical shell panels with respect to the CNT distribution
pattern, as well as the key design parameters using the Ritz element-free method. Mirzaei
and Kiani [19] analytically investigated the influence of the CNT distribution pattern on the
thermal buckling of FG-CNTRC conical shells. Thai et al. [20] proposed a NURBS formula-
tion based on the four-variable refined plate theory for free vibration, buckling and bending
analyses of multilayer FG-CNTRC plates. Civalek et al. [21] investigated the free vibration
and buckling behaviors of FG-CNT-reinforced cross-ply laminated composite plates using
an FSDT and a discrete singular convolution (DSC) method. Mohammadimehr et al. [22]
analyzed the buckling and free vibration of double-bonded micro-composite sandwich
plates based on the most general strain gradient theories (MGSGT) under electro–magneto–
thermo–mechanical and pre-stress loadings. Wu et al. [23,24] investigated the geometrical
imperfection sensitivity of postbuckling of FG-CNTRC and piezoelectric FG-CNTRC beams
using the first-order shear deformation (FSD) beam theory with von-Kármán nonliearity.
Zaghloul et al. [25,26] studied the fatigue and tensile behaviors of polymer composites
filled with nanoparticles and presented an experimental and modeling analysis of their
mechanical–electrical behaviors. The review papers by Liew et al. [27] and Zaghloul and
Zagghloul [14] may be referred to for a broader literature survey of FG-CNTRC structures.

As can be realized from the above literature survey, most studies focused on the
parametric investigation of FG-CNTRC structures with respect to the CNT distribution
pattern. This parametric study can provide a guideline for choosing a suitable one from
the above-mentioned primitive CNT distribution patterns. Nevertheless, this approach
can only be called a passive one because the most suitable CNT distribution pattern for
the FG-CNTRC under consideration is problem-dependent, as the mechanical behavior of
FG-CNTRC is definitely influenced by the structure geometry and the loading/boundary
conditions. In this situation, an active approach to tailoring a best thickness-wise CNT
distribution pattern, which can maximize the target performance, is required for the
successful application of FG-CNTRC structures. Inspired by this situation, the present
paper introduces a numerical method for optimally tailoring the thickness-wise CNT
distribution pattern for FG-CNTRC structures.

As a preliminary stage, the static bending of FG-CNTRC beam is considered and the
optimization problem is defined by minimizing the effective stress. The CNT distribution
in the FG-CNTRC beam varies continuously and smoothly throughout the thickness, so
the definition of design variables should be considered. In the current work, an FG-
CNTRC beam is divided into several sub-layers with uniform CNT distributions in order
to minimize the total number of design variables and maintain the flexibility of CNT
distribution through the thickness. Then, the CNT volume fractions of each sub-layer
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become the design variables and their arithmetic sum should satisfy the preset entire CNT
volume fraction. The constrained numerical optimization is formulated by employing the
exterior penalty-function method, and the sensitivity of objective function to the design
variable vector is evaluated using the central difference scheme. The proposed numerical
optimization method is validated through the benchmark examples, and the optimum CNT
distributions and the associated stress distributions are investigated with respect to the
loading condition and compared with those of conventional CNT distribution patterns.
The numerical experiments confirmed that the present optimization method successfully
seeks the optimum CNT distribution, which provides the minimum effective stress.

The paper is organized as follows: FG-CNTRC structures are introduced in Section 2,
together with the CNT volume fraction distribution and the effective material properties.
The numerical formulations for the finite-element static analysis and the CNT distribution
optimization are addressed in Section 3. The optimization results are presented in Section 4,
together with the discussion, and the final conclusion is given in Section 5.

2. Modeling of Functionally Graded CNT-Reinforced Composites

Figure 1a shows a typical CNT-reinforced rectangular composite in which single-
walled CNTs (SWCNTs) are functionally distributed through the thickness within a polymer
matrix. The carbon nanotubes are inserted such that their axes direct to the x–direction,
and the composite has the length L, the depth D and the thickness h. The distribution of
CNT through the thickness has a functional gradient as shown in Figure 1b, where four
types of functionally graded CNTRCs are depicted: FG-U, FG-V, FG-O and FG-X. Since
FG-CNTRCs are sort of dual-phase composite, their effective mechanical properties can
be determined using the approximate method [9,28] such as the rule of mixture or the
Mori–Tanaka estimate. For the current study, the modified linear rule of mixtures (LRM) is
used by introducing the CNT efficiency parameters ηj(j = 1, 2, 3).
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Figure 1. A carbon-nanotube-reinforced composite (CNTRC): (a) geometry and dimensions; (b) 
four functionally graded (FG) distributions. 

The volume fraction functions of CNTs in the above four FG-CNTRCs through the 
thickness are expressed by 

( ) ( )
( )
( )












−
−
−+

=

XFG22
OFG2-12
VFG/21
U-FG

*
cnt

*
cnt

*
cnt

*
cnt

cnt

Vh/z
Vh/z
,Vhz

,V

zV  (4)

Here, the total volume fraction  *
cntV  of CNTs contained within the polymer matrix is 

calculated from the CNT mass fraction cntw  such that 

( ) ( ) cnt
mcntmcnt

cnt

cnt*
cnt w//w

w
V

ρρρρ −+
=  (5)

with cntρ  and mρ  being the densities of CNTs and the polymer matrix. 

Table 1. The CNT efficiency parameters for three different *
cntV  (PMMA/CNT at KT 300= ). 

*
cntV  1η  2η  3η  

0.12 0.137 1.022 0.715 
0.17 0.142 1.626 1.138 
0.28 0.141 1.585 1.109 

 
Meanwhile, the effective Poisson’s ratio 12ν  and the effective density ρ  are deter-
mined in a similar manner 

312312 →→=+= αβννν αβαβ ,VV m
m

cnt*
cnt  (6)

m
m

cnt
cnt VV ρρρ +=  (7)

Considering the FG-CNTRCs as a 3-D orthotropic body occupying a bounded do-
main 3ℜ∈Ω , its displacement field ( ) ( )z,y,xuxu =  under the action of body force f  
and external load t̂  is governed by 

( ) z,y,xij,inf ij,ij == Ωσ u  (8)

with the boundary conditions: 

Donˆ Γuu =  (9)

Figure 1. A carbon-nanotube-reinforced composite (CNTRC): (a) geometry and dimensions; (b) four
functionally graded (FG) distributions.

According to the modified LRM, the effective elastic moduli and the effective shear
modulus are calculated as [10]

E1 = η1VcntEcnt
1 + VmEm (1)

η2

E2
=

Vcnt

Ecnt
2

+
Vm

Em (2)

η3

G12
=

Vcnt

Gcnt
12

+
Vm

Gm (3)

in which Vcnt and Vm = 1 − Vcnt denote the volume fractions of CNTs and polymer
which are in function of z. In Equations (1)–(3), the scripts cnt and m are used to denote
the properties of SWCNT and polymer matrix. The polymer matrix is assumed to be
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homogeneous and isotropic while SWCTs are modeled as an orthotropic material, and,
furthermore, it is assumed that E3 = E2 and G23 = G31 = G12. The scale dependence
of the effective material properties of CNTRCs is reflected through the CNT efficiency
parameters ηj [29]. These parameters were obtained by matching the effective CNTRC
properties predicted by the molecular dynamics (MD) simulation with those estimated
by LRM. Table 1 presents the CNT efficiency parameters for a poly(methyl methacrylate)
(PMMA) matrix with CNTs reinforcement at room temperature.

Table 1. The CNT efficiency parameters for three different V∗cnt (PMMA/CNT at T = 300K).

V*
cnt η1 η2 η3

0.12 0.137 1.022 0.715
0.17 0.142 1.626 1.138
0.28 0.141 1.585 1.109

The volume fraction functions of CNTs in the above four FG-CNTRCs through the
thickness are expressed by

Vcnt(z) =


V∗cnt, FG−U
(1 + 2z/h)V∗cnt, FG−V
2(1− 2|z|/h)V∗cnt FG−O
2(2|z|/h)V∗cnt FG− X

(4)

Here, the total volume fraction V∗cnt of CNTs contained within the polymer matrix is
calculated from the CNT mass fraction wcnt such that

V∗cnt =
wcnt

wcnt + (ρcnt/ρm)− (ρcnt/ρm)wcnt
(5)

with ρcnt and ρm being the densities of CNTs and the polymer matrix.
Meanwhile, the effective Poisson’s ratio ν12 and the effective density ρ are determined in a
similar manner

ναβ = V∗cntν
cnt
αβ + Vmνm, αβ = 12→ 23→ 31 (6)

ρ = Vcntρ
cnt + Vmρm (7)

Considering the FG-CNTRCs as a 3-D orthotropic body occupying a bounded domain
Ω ∈ <3, its displacement field u(x) = u(x, y, z) under the action of body force f and

external load
^
t is governed by

σij(u),j = fi in Ω, ij = x, y, z (8)

with the boundary conditions:

u =
^
u on ΓD (9)

σijnj = t̂i on ΓN (10)

Here, ΓD and ΓN denote the displacement and force boundaries, and σij and nj are the stress
components and the unit normal vector, respectively.

3. Analysis and Optimization
3.1. Analysis of Bending Deformation

By virtue of the virtual work principle, the previous static equilibrium equations in
Section 2 are converted to the following weak form for the elastic deformation field∫

V
εij(v)σij(u)dV =

∫
A

vT^
t dA (11)
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for every admissible displacement v. Additionally, using isoparametric finite elements, the
actual and virtual displacements u and v are approximated as

u = [N]{¯u}, v = [N]{¯v} (12)

where [N] is a (3× 3N) matrix containing N FE(finite element) basis functions and {¯u}
and {¯v} denote the (3N × 1) nodal vectors.

Next, two matrices [D] and [E] are introduced to define the strain vector
{

εij
}

and the
stress vector

{
σij
}

, respectively

[D] =

∂/∂x 0 0 ∂/∂y 0 ∂/∂z
0 ∂/∂y 0 ∂/∂x ∂/∂z 0
0 0 ∂/∂z 0 ∂/∂y ∂/∂z

 (13)

[E] = diag[E1,E2, E3, G12, G23, G31] (14)

The components in [E] denote the effective orthotropic material properties of CNTRC
structures, which will be given later. Using these two matrices, together with the FE
approximation (12), both strains and stresses are approximated as

{
εij(v)

}
= [H]{¯v}, [H] = [D][N] (15)

and
{σij(u)} = [E][H]{¯u} (16)

Introducing Equations (15) and (16) into the weak form (11), one can obtain the
simultaneous linear equations to solve the static deformation problem:

[K]{¯u} = {f} (17)

where the stiffness matrix [K] and the load vector {f} are defined by

[K] =
∫

V
[HT ][E][H] dV (18)

{f} =
∫

A
{NT}

^
t dA (19)

3.2. Optimization of CNT Distribution

For the present numerical optimization, an FG-CNTRC beam with the specific thickness-
wise CNT gradient is divided into (ND) numbers of uniform homogenized sub-layers, as
depicted in Figure 2. Then, the CNT volume fractions (Vcnt)i of each sub-layer define the
design variable vector X:

X = {(Vcnt)1, (Vcnt)2, . . . , (Vcnt)ND} (20)
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From the physical constraint, each layer-wise CNT volume fraction (Vcnt)i must satisfy the
following upper and lower bounds

0 ≤ (Vcnt)i ≤ 1, i = 1, 2, . . . , ND (21)

and their sum should be equal to the preset volume fraction V∗cnt of CNTs:

(Vcnt)1 + (Vcnt)2 + · · ·+ (Vcnt)ND = ND×V∗cnt (22)

Next, the peak effective stress is defined as the objective function F(X), such that

F(X) = max
x∈Ω

∣∣∣σe f f (x; X)
∣∣∣ (23)

with Ω being the entire material domain of FG-CNTRC beam.
Then, the constrained optimization of thickness-wise CNT distribution is formulated

as follows, together with the FE approximation (17):

Find X = {Xi}ND
i=1 , Xi = (Vcnt)i (24)

Minimize F(X) (25)

Subject to [K]{¯u} = {f} (26)

h(X) : ∑ND
i=1 (Vcnt)i − ND×V∗cnt = 0 (27)

gj
(
Xj
)

: −(Vcnt)j ≤ 0, j = 1, 2, . . . , ND (28)

gj
(
Xj−ND

)
: (Vcnt)j−ND − 1 ≤ 0, j = ND + 1, . . . , 2 ∗ ND (29)

Note that Equation (27) is the equality constraint, while Equations (28) and (29) are the
inequality constraints.

The constrained optimization problem is solved by employing the exterior penalty-
function method (EPFM) [30]. This method converts the constrained objective function
F(X) to an unconstrained pseudo-objective function Φ

(
X; rp

)
, by adopting the exterior

penalty parameters rp, such that

Φ
(
X; rp

)
= F(X) + rpc1

{
h2(X)

}
+ rpc2

2∗ND

∑
j=1

max
[
0, g2

j (X)
]

(30)

Meanwhile, the maximum value of objective function is in the order of 106 ∼ 107 while
those of the constraints are 1.0, as will be shown later. Therefore, the normalization factors
c1 and c2 are inserted to maintain the balance between the magnitudes of constraints and
objective function. These two factors are calculated using the usual normalization given by

c1 =
max |∇F(X)|
max |∇h(X)| , c2 =

max |∇F(X)|
max

j

∣∣∇gj
(
Xj
)∣∣ (31)

The definition of inequality constraints given in Equations (28) and (29) leads to∣∣∇gj(X`)
∣∣ =

∣∣∂gj/∂X`

∣∣
=
∣∣∣±δj`

∣∣∣ ≤ 1
(32)

Plugging Equation (32) into Equation (31) results in

c2 = max |∇F(X)| (33)
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The iterative optimization process starts with an initial design variable X0. At each
iteration step k (k = 1, 2, . . .), the sensitivity analysis presented in Section 3.3 is performed
and the convergence is examined as follows∣∣∣F(Xk

)
− F

(
Xk−1

)∣∣∣/∣∣∣F(Xk
)∣∣∣ ≤ εT (34)

with εT being the convergence tolerance. The iterative optimization is terminated when the
convergence criterion is satisfied; otherwise, the optimization process proceeds to the next
iteration by updating the current exterior penalty parameter

rk+1
p = γ · rk

p (35)

Here, γ (γ > 1) indicates an iteration-independent update constant, which successively
increases the penalty parameter during the iterative optimization. The flowchart of the
proposed optimization process is represented in Figure 3.
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3.3. Sensitivity Analysis

The sensitivity analysis calculates the direction vector S of the design variable, which
is essential for searching the optimization direction. From Equations (23) and (27)–(29),
the sensitivity of the pseudo-objective function Φ

(
X; rp

)
to the ith design variable Xi is

expressed by

∂Φ
(
X; c, rp

)
∂Xi

=

∂

{
max
x∈Ω

∣∣∣σe f f (x; X)
∣∣∣}

∂Xi
+ 2c1rph(X) + 2c2rp

[
(Vcnt)j − 1

]
, i = 1, 2, . . . , ND (36)

This direct method may be considered when the thickness-wise CNT distribution is as-
sumed a priori such that the objective function F(X) is expressed in an explicit form of CNT
volume fractions (Vcnt)i. However, it can be assumed that the first term on the right-hand
side of Equation (36) requires a complex and painstaking analytical derivation.
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An effective and attractive alternative is to employ the finite difference method because
the current optimization problem is not large-scale. When the finite difference is used, the
direction vector Sk =

{
Sk

1, Sk
2, . . . , Sk

ND

}
at the kth stage is computed by

Sk =
Φ
(

Xk−1 + δX; ck−1
1 , ck−1

2 , rk−1
p

)
−Φ

(
Xk−1; ck−1

1 , ck−1
2 , rk−1

p

)
δX

, k = 1, 2, . . . (37)

with r0
p being the initial exterior penalty parameter. When the direction vector is obtained,

the design variable is updated such that

Xk = Xk−1 + ∆Xk, ∆Xk = βkSk (38)

with the iteration-dependent constants βk for determining the direction vector magnitude.
Two representative methods are widely used to decide the magnitude of direction

vector: Lagrange interpolation and golden section methods [30]. Both methods commonly
seek the critical value of β that minimizes the pseudo-objective function Φ

(
X; c, rp

)
, but the

latter is preferable because it always secures the local minimum to the design variable vector.
The detailed description for this method is skipped because the numerical implementation
of this method is standardized.

4. Results and Discussion

Figure 4a represents the first model problem, a simpply supported FG-CNTRC beam
subject to uniform distributed load q = 0.1 MPa. The length L is 0.1m and the depth D
and the thickness h are equally set by 0.01m, respectively. The matrix is manufactured
with poly(methyl methacrylate) (PMMA) and its isotropic material properties are given in
Table 2, where the orthotropic material properties of the (10,10) SWCNTs are also presented.
The FG-CNTRC beam is divided into 10 uniform sub-layers with layer-wise CNT volume
fractions (Vcnt)i(i = 1, 2, · · · , 10), as represented in Figure 4b, in order to suppress the
increase in the total number of design variables by considering the flexibility of thickness-
wise CNT distribution at the same time. For the finite element structural analysis, each
sub-layer is discretized into 100 × 10 uniform 8-node cubic elements, with 100 in the
x-direction and 10 in the y-direction. Therefore, the total number of finite elements for the
whole FG-CNTRC beam reaches 10,000.
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Table 2. Material properties of SWCNT and matrix (PMMA).

Materials
Young’s Modulus (GPa) Poisson’s Ratio Shear Modulus GPa Density (kg/m3)

E1 E2 E3 ν12 ν23 ν31 G12 G23 G31 ρ

SWCNT 5646.6 7080.0 - 0.175 - - 1944.5 - - 1400

PMMA 2.5 0.34 0.9328 1150

The initial CNT volume fractions (Vcnt)i of ten sub-layers are set by the preset total
CNT volume fraction V∗cnt. For example, the initial layer-wise CNT volume fractions (Vcnt)i
are equally designated by 0.12 when the preset value of V∗cnt is 0.12. The convergence
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tolerance εT in Equation (34) is set by 1.0× 10−3 and the initial penalty parameter r0
p and

the update constant γ in Equation (35) are taken by 1.0 and 2.0, respectively. Since this
problem exhibits a remarkable edge effect in the bending stress field near the left and right
ends of beam, the peak stress value is examined from the thickness-wise stress distribution
at the beam mid-span (i.e., at x = L/2). The finite element analysis was carried out by
midas NFX [31], a commercial FEM software.

For the preset CNT volume fraction V∗cnt = 0.12, the optimization process terminates
after five iterations, as shown in Table 3. The peak effective stress occurs at the top and
bottom of beam, and 311 FEM analyses were performed, mostly for the sensitivity analysis.
Table 3 shows that the objective function uniformly decreases proportionally to the iteration
number. The peak effective stress σmax

e f f is 7.504 MPa at the initial stage and 5.947 MPa at
the final stage, so that it is reduced by 1.557 MPa, which corresponds to 20.7% of the initial
peak effective stress. Figure 5a compares the initial and optimum CNT distributions, where
the layer-wise CNT volume fractions (Vcnt)i are larger than 0 and less than 1.0 and their
sum is found to be 11.95. Hence, it is confirmed that the equality constraint in Equation (27)
and the inequality constraints in Equations (28) and (29) are strictly enforced. Figure 5b
compares the thickness-wise effective stress distributions between the initial and optimum
CNT distributions, where the initial one varies linearly from zero at the mid-surface to
the peak value at the top and bottom. The optimum one is also zero at the mid-surface
and symmetric with respect to the mid-surface, but is not linear any longer and its peak is
smaller than that of the initial one. In the bending deformation, the bending strain exhibits
a linear thickness-wise variation, which produces the linear bending stress distribution
through the thickness when the elastic modulus is uniform. However, the parabolic-type
optimum CNT distribution leads to the parabolic-type distribution of elastic modulus of
FG-CNTRC beam, so that the non-linear stress distribution with the smaller peak effective
stress is revealed.

Table 3. The iteration history of objective function.

Iteration Objective Function σmax
eff Location (z)

Initial 7.50387 × 106 Pa ±5.0
1 6.32390 × 106 Pa ±5.0
2 5.93291 × 106 Pa ±5.0
3 5.94156 × 106 Pa ±5.0
4 5.93291 × 106 Pa ±5.0

Total number of FEM analyses 311          10 of 16 
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The optimization is also performed for two different CNT volume fractions, V∗cnt = 0.17
and 0.28, and the optimization results are compared in Table 4. The total iteration numbers
are similar, but the total numbers of FE analyses are different. It is presumed that the
sensitivity analysis is influenced by the value of V∗cnt. The peak effective stresses occur
at the top and bottom of beam for all the three cases, and the initial and optimum peak
effective stresses are similar. Thus, it is found that the influence of the total CNT volume
fraction V∗cnt on the CNT distribution optimization for minimizing the peak effective stress
is not significant.

Table 4. The optimization results for three different total CNT volume fractions V∗cnt.

Items
CNT Volume Fractions V*

cnt

0.12 0.17 0.28

Initial, σmax
e f f (X0) (MPa) 7.50387 7.50383 7.50366

Optimum, σmax
e f f
(
Xopt

)
(MPa) 5.94722 6.04832 5.91510

Iterations 5 4 5
Total number of FEM analyses 311 164 270

Figure 6a comparatively represents the optimum CNT distributions for three differ-
ent values of V∗cnt. It can be seen that three optimum CNT distributions are commonly
parabolic-type and show different layer-wise CNT volume fractions (Vcnt)i to fulfill the
equality constraint imposed upon V∗cnt. Figure 6b compares the effective stress distributions
between three different values of V∗cnt, where it is observed that the difference between
three distributions is not significant. Thus, it is again confirmedthat the total CNT volume
fraction V∗cnt does not impose any significant influence on the stress results.          11 of 16 
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Next, the thickness-wise stress distribution for the optimum CNT distribution when
V∗cnt is 0.12 is compared with those of four standard functionally graded CNT distributions,
FG-U, FG-V, FG-O and FG-X. The results are presented in Table 5, where ∆σmax

e f f indicates
the difference in σmax

e f f between the optimum and FG CNT distributions and the values
within parenthesis denote the relative differences with respect to the optimum stress. It is
found that σmax

e f f is lowest for the optimum case, while this is the highest for FG-V. Thus, it
has been justified that the present optimization method successfully seeks the optimum
CNT distribution, which can provide the maximum effective stress, which is smaller than
those of standard FG CNT distributions.
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Table 5. Comparison of the maximum effective stresses between the optimum and conventional
CNT distributions.

Items
CNT Distribution

Optimum FG-U FG-V FG-O FG-X

σmax
e f f (MPa) 5.94722 7.50365 13.39331 8.45360 8.76545

∆σmax
e f f (MPa) - 1.55643

(26.2%)
7.44609

(125.2%)
2.50638
(42.1%)

2.81823
(47.3%)

Location (z) ±0.5 ±0.5 +0.5 ±0.3 ±0.5

This fact is well represented in Figure 7a, where FG-V shows an unsymmetric effective
stress distribution with the highest σmax

e f f at the top of the beam because its CNT distribution
is unsymmetric, as shown in Figure 1b. Meanwhile, FG-O produces the peak effective stress
at z = ±0.3 in accordance with its CNT distribution. Furthermore, its peak effective stress
is higher than that of FG-U even though its CNT distribution is similar to the optimum CNT
distribution. For the sake of comparison, the axial stress distributions are comparatively
represented in Figure 7b, to examine whether there is a remarkable difference between
the effective stress, which is calculated by all six stress components, and a single bending
stress component. Since the axial stress is the dominant stress component in the current
bending deformation problem, the axial stress distributions are observed to be similar to
the effective stress distributions, except for the minus sign in the upper-half region.
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Next, the optimization was performed again for the previous simply supported beam
by inclining the distributed load. Referring to Figure 4a, the vertical distributed load
was inclined by α = 45◦ with respect to the z-axis. However, except for this inclined
distributed load, the beam geometry and the simulation parameters were kept the same as
the previous case. The layer-wise CNT volume fractions (Vcnt)i were initially set by 0.12,
and the numerical optimization terminates in five iterations, as presented in Table 6. When
compared with the previous case, the total number of FEM analyses was smaller and the
location of peak effective stress was fixed at the bottom. The peak effective stress σmax

e f f ws
5.666 MPa at the initial stage and 4.321 MPa at the final stage, being reduced by 1.345 MPa,
which is 23.7% of the initial peak effective stress.
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Table 6. The iteration history of objective function (α = 45◦).

Iteration Objective Function σmax
eff z

Initial 5.66564 × 106 Pa −5.0
2 4.27414 × 106 Pa −5.0
3 4.21625 × 106 Pa −5.0
4 4.35744 × 106 Pa −5.0
5 4.32146 × 106 Pa −5.0

Total number of FEM analyses 186

Figure 8a compares the iteration histories of objective function between the previous
and current cases, where both cases produce a difference in effective stress magnitude
but commonly show rapid and stable convergence. Figure 8b comparatively represents
the initial and optimum CNT distributions, where the arithmetic sum of layer-wise CNT
volume fractions (Vcnt)i was found to be 12.08. Thus, the preset CNT volume fraction
V∗cnt = 0.12 is strictly satisfied. Meanwhile, the current optimum CNT distribution was
seen to be asymmetric, differing from the previous one shown in Figure 5a. This is because
the inclined distributed load produces the asymmetric effective stress distribution, as will
be seen below. Thus, it has been found that the optimum thickness-wise CNT distribution
is significantly influenced by the loading condition. Additionally, this asymmetric CNT
distribution cannot be tailored, even though the conventional primitive CNT distribution
patterns shown in Figure 1b are combined.
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Figure 9a comparatively represents the axial stress distributions of the initial and
optimum CNT distributions. Differing from the previous case shown in Figure 7b, the
axial stress in the present case does not vanish at the mid-surface. In other words, the
zero-line moves slightly upwards because the inclined load not only produces the bend-
ing deformation but also the axial extension. Thus, the initial axial stress distribution
is not symmetric but asymmetric with respect to the mid-surface. The optimum axial
stress distribution becomes more asymmetric because the optimum CNT distribution is
additionally asymmetric, as shown in Figure 8b. Figure 9b compares the thickness-wise
effective stress distributions between the initial and optimum CNT distributions, where
both the initial and optimum CNT distributions show higher peak effective stresses at the
bottom because the inclined distributed load produces additional tensile stress. When
compared with the previous case shown in Figure 5b, the present inclined load leads to
a remarkably different effective stress distribution. The effective stress does not vanish
near the mid-surface because the shear stress caused by the inclined distributed load is not
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negligible. Hence, it is found that not only the optimum CNT distribution, but also the
resulting stress distribution, is strongly influenced by the loading condition.
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5. Conclusions

A numerical optimization method was introduced to seek the optimum thickness-wise
CNT distribution that minimizes the effective stress in FG-CNTRC beams. An FG-CNTRC
beam with a continuous CNT distribution was divided into several sub-layers with uniform
CNT distributions, and the optimum CNT volume fractions of each sub-layer were sought
by the exterior penalty-function method. This approach not only reduced the total number
of design variables but simplified the numerical formulation. The benchmark numerical
experiments were conducted to illustrate and validate the proposed numerical method and
investigate the optimization results. Through the numerical result, the following major
observations can be drawn:

• The proposed method successfully seeks the optimum thickness-wise CNT distribu-
tion, which minimizes the effective stress, with rapid and stable convergence.

• For the vertical distributed load, the optimum CNT distribution is symmetric and
parabolic, and the effective stress distribution is also symmetric.

• The peak effective stress occurred at the top and bottom, and was reduced by 20.7%
after the optimization.

• The optimum CNT distribution is different from the four primitive CNT distributions
and leads to the peak effective stress, which is reduced by at least 26.2% compared to
those of four primitive patterns.

• Both the optimum CNT distribution and the associated stress distributions are signifi-
cantly influenced by the loading condition.

• For the inclined distributed load, both distributions become un-symmetric, but the
initial peak stress that occurred at the bottom is reduced by 23.7% after optimization.

The proposed optimization method can be practically used to tailor the thickness-wise
CNT distribution and secure the structural safety of FG-CNTRC beams against the external
load. The current work is limited to the minimization of effective stress, so the optimized
CNT distribution pattern may lead to a reduced structural sfiffness and, consequently, a
larger bending deflection. Hence, the trade-off between the effective stress and the bending
deflection would be worthwhile, and is a deserving topic for future work.
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