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Highlights 

 Recovery modeling framework capturing technical, socioeconomic, and political 

factors  

 Integration of recovery trajectories of utility networks and residential buildings 

 Inclusive post-disaster intervention prioritisation using an optimization algorithm 

 Data-driven recovery time model for electric power networks in developing 

countries 
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ABSTRACT 

Post-disaster recovery is a significant challenge, especially in developing countries. Various 

technical, environmental, socioeconomic, political, and cultural factors substantially influence 

post-disaster recovery. As a result, methodologies relevant in developed nations may not be 

directly applicable in Global South contexts. This study introduces a probabilistic framework 

for modeling the post-disaster recovery of buildings and electric power networks (EPN) in 

developing countries. The proposed framework combines a building-level assessment of 

individual assets with a community-level assessment of EPNs to evaluate a building 

portfolio‘s post-event functionality state. As part of the framework, a stochastic network 

analysis approach is proposed to estimate the recovery time of damaged buildings while 

accounting for technical, environmental, socioeconomic, political, and cultural factors, 

quantified using data gathered from past events. Similarly, a probabilistic modeling approach 

is proposed to quantify the EPN‘s initial post-event outage levels. Specifically, empirical 

formulations for estimating the recovery time of an EPN as a function of its initial post- event 

outage levels are calibrated using post-event data from developing countries. A case study is 

presented to illustrate the application of the proposed framework to model the post-earthquake 

recovery of a synthetic low-income residential community. The analysis showed that negative 

technical, environmental, socioeconomic, political, and cultural factors could amplify the 

reconstruction time of damaged buildings by a factor of almost three. The proposed 

framework can support decision-makers in disaster planning and management strategies for 

vulnerable low-income communities. 
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1 INTRODUCTION 

Recent catastrophic events worldwide have emphasized the challenges to achieve rapid post-

disaster recovery, particularly in Global South contexts. For example, the majority of the 

occupants of the over 500,000 buildings demolished after the 2015 Gorkha earthquake 

continued to live in temporary shelters for over 18 months after the disaster (The Asia 

Foundation 2016). About 65,000 displaced people were still homeless five years after the 

2010 Haiti earthquake (IOM 2015). The delayed recovery process in some of these countries, 

especially low-income ones, is often influenced by various technical, environmental, 

socioeconomic, political, and cultural aspects (e.g., the presence of political conflicts or war, 

availability of stable governance, land disputes, and lack of technical know-how, among 

many other factors  (Chang et al. 2011; Sharma et al. 2018; Weerakoon et al. 2007).  

This study focuses on developing countries as defined by the United Nations Development 

Programme‘s Human Development Index, which is based on Gross National Income, life 

expectancy, and education level (UNDP 2021). Recovery modeling frameworks available in 

the literature are either building-specific or community-level. Regarding building-level post-

disaster recovery modeling, various studies (e.g., Almufti and Willford 2013; Cook et al. 

2022; Terzic et al. 2021)) have been developed to evaluate the downtime and recovery 

trajectory of damaged buildings. However, these studies focus mainly on repair downtime 

modeling. Therefore, they may be unable to capture long-term recovery facets of low-income 

countries typically dominated by reconstruction and not repair. Furthermore, these studies do 

not consider the diversity in disaster resilience between countries due to various geographic, 

                  



 4 

 

technical, environmental, socioeconomic, political, and cultural factors. As such, some of the 

existing frameworks may not be easily extrapolated to regions outside of the regions for 

which they were developed, for instance. Similar conclusions can be reached for most 

community-level recovery modeling studies (e.g., Aghababaei et al. 2020; Aghababaei and 

Koliou 2022; Lin and Wang 2017a; Wang and van de Lindt 2021) focusing on developed 

nations. It is noted that studies (e.g., Burton et al. 2017) have developed post-disaster housing 

frameworks that implicitly consider socioeconomic factors. However, existing studies lack a 

harmonized framework to adequately account for the previously mentioned factors that 

strongly influence recovery processes in developing countries. This is a research gap that 

needs to be filled.  

Several studies have been carried out on post-disaster recovery modeling and resilience 

assessment of lifeline systems. For example, post-disaster resilience modeling frameworks of 

water networks have been proposed in research studies (e.g., Chang and Shinozuka 2004; Liu 

et al. 2020). Research studies (e.g., Kammouh et al. 2020; Li et al. 2019; Pan et al. 2022; Wu 

and Chen 2023; Yu and Gardoni 2022; Zou and Chen 2021) have investigated the post-

disaster resilience of transportation networks. Both water and transport networks are outside 

the scope of this specific study. 

Research studies (e.g., Barabadi and Ayele 2018; Mensah and Dueñas-Osorio 2016; Ouyang 

and Dueñas-Osorio 2014; Unnikrishnan and van de Lindt 2016) have also investigated and 

developed post-disaster probabilistic resilience assessment frameworks for electric power 

networks (EPNs). To account for the fact that disaster-induced disruptions in one network 

(e.g., transportation) may result in disruptions to other networks and lead to their reduced 

functionality and/or affect their recovery, studies (e.g., Almoghathawi et al. 2023; Danziger 

and Barabási 2022; Dueñas-Osorio and Kwasinski 2012; Guidotti et al. 2016; He and Cha 
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2018; Johansen and Tien 2018; Sharma and Gardoni 2022; Xiao et al. 2022) have proposed 

probabilistic recovery modeling of dependent/interdependent infrastructure networks. Critical 

gaps in these studies include: (1) existing studies focus on developed countries; (2) the 

majority of the studies are typically community-level (i.e., regional) studies and do not 

quantify the impact of utility outages on the functionality and recovery of individual 

buildings; and (3) the recovery models for lifeline systems do not consider important 

socioeconomic, political, and cultural factors (either directly or indirectly).  

Based on these remarks, the current study proposes a framework for post-disaster recovery 

modeling of disaster-struck marginalized communities in low and lower-middle-income 

countries with appropriate consideration of the influence of community-level electric power 

outages on the recovery pathways of buildings. Firstly, using data from past events, the study 

highlights critical socioeconomic, political, and cultural factors that can impede or speed up 

post-disaster recovery. Subsequently, a post-disaster functional recovery modeling 

framework is presented. The proposed framework combines a building-level assessment of 

their structural and nonstructural seismic performance with a community-level assessment of 

the EPN serving those buildings. The novel aspects of the proposed framework include (a) 

contributing to inclusive recovery simulation through incorporating a multicriteria decision-

making approach (that captures the influence of technical, socioeconomic, political, 

environmental, and cultural factors) for community-level intervention sequencing in a 

recovery modeling framework; (b) developing a stochastic network analysis approach for 

estimating the recovery time of damaged buildings, using historical data-driven recovery time 

amplification and mitigation factors; (c) developing empirical formulations (based on 

historical data) to predict the community-level recovery time of power networks as a function 

of initial post-disaster outage level; and (d) the development of an approach for simulating 

historical recovery trajectory scenario on EPNs. Finally, a case study is presented to 
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demonstrate the applicability of the proposed framework to model the post-earthquake 

recovery of a residential community. The proposed framework can serve as a tool to inform 

decision-makers on disaster planning and management strategies. For example, local 

authorities can use information from recovery trajectories to manage short-term and long-

term shelter needs, among other issues. 

2 FACTORS INFLUENCING POST-DISASTER RECOVERY 

Compared to pre-disaster construction projects, post-disaster recovery projects are generally 

more complex, dynamic, and chaotic (e.g., Davidson et al. 2007). Different post-disaster 

recovery programs in different countries have unique features that can influence recovery 

(Comerio 2016). Due to the impact of various factors, post-disaster reconstruction projects in 

developing countries can take several years. For example, the reconstruction of about 40,000 

housing units following the 1999 Izmit earthquake took over six years (Tas et al. 2011). 

Reconstruction projects are still ongoing in Central Sulawesi five years after the 2018 

earthquake and tsunami. 

A key objective of this study is to quantify the impact of various factors affecting post-

disaster recovery time overrun for numerical simulation purposes. First, a literature review 

was conducted to identify the quantified impacts of various recovery-impeding factors on 

task completion duration for post-disaster recovery projects. Second, data from stakeholder 

engagements with engineers, contractors, government and non-government agency officials, 

and disaster victims involved in the recovery process of residential and school buildings 

following the 2018 Central Sulawesi earthquake and tsunami were adopted. The stakeholder 

engagements were in the form of surveys, semi-structured interviews and workshops. 

Opabola et al. (2023) provide more information on the stakeholder engagements. 
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From both tasks (i.e., literature review and stakeholder engagement), eight critical factors 

were identified and classified: hostile political conditions (socioeconomic/political factor), 

land dispute issues (socioeconomic factor), epidemic-induced delays (environmental factor), 

delays associated with material procurement (socioeconomic), poor management skills 

(technical), delays in funds disbursement (socioeconomic), technical delays (technical), and 

community participation (socioeconomic). It is noted that other factors may impact recovery. 

However, this paper focuses on the prominent and quantified factors from our study. 

Hostile political conditions have been reported to amplify post-disaster recovery time in 

developing/low-income countries. Such conditions include the absence of local government 

officials to coordinate the recovery process (Sharma et al. 2018), political instability and 

conflicts (Samaratunge et al. 2012), and bureaucratic burdens, egoism, vested interests and 

corruption among government officials (Sharma et al. 2018). For example, Sharma et al. 

(2018) reported that due to the absence of local government officials, resolving fundamental 

issues (e.g., tender process, building permits, and land acquisition) took at least four times the 

ideal time following the 2015 Gorkha earthquake. Also, data presented by Weerakoon et al. 

(2007) show that the recovery rate of buildings in Sri Lanka following the 2004 Indian Ocean 

tsunami was up to eight times larger in conflict zones compared to zones outside the conflict 

region (Figure 1). In Sri Lanka, conflicts influenced post-disaster recovery time by a factor of 

about five. Furthermore, empirical construction delay prediction models (e.g., Gondia et al. 

2020) show that, even without disasters, hostile political conditions amplify construction 

project time by at least 60%.  Based on this evidence, this study assumes a range of 1.5 to 5 

as time amplification factors due to hostile political conditions. 
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Figure 1 – Influence of conflict and recovery type on recovery projects of residential 

buildings following the 2004 Indian Ocean tsunami (Data from Weerakoon et al. (2007)) 

 

Land dispute resolutions are typically relevant for relocation projects. After a significant 

event, the government typically enforces a ‗no build‘ zone (or multiple of those). For 

instance, the Sri Lankan government introduced 100m and 200m coastal buffer zones in the 

south and east after the 2004 Indian Ocean tsunami to restrict reconstruction. As a result, 

people in such regions needed to be relocated to other sites. Delays on such relocations could 

take several months (Weerakoon et al. 2007). Data from the post-2010 Haiti earthquake (Jahn 

et al. 2017) show that land rights issues amplified reconstruction time by a factor of up to 

two. Waheeb and Andersen (2022) have also reported that land disputes resulted in post-

disaster reconstruction time overrun with factors ≥ 1.25 in Iraq.  

Post-disaster reconstruction projects are either community-/owner-managed or agency-

managed (Karunasena and Rameezdeen 2010). Various literature (e.g., Westoby et al. 2021) 

has highlighted the significant delays in the tender selection process and contract award 
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associated with agency-managed projects. Opabola et al. (2023) observed delays in agency-

managed projects which were partly attributed to poor management situations where 

contracts were awarded to the lowest bidder, who may not necessarily have the best 

experience/know-how to plan and manage the project accordingly. By comparing the 

reconstruction times of community-/owner-managed and agency-managed following the 

2018 Central Sulawesi earthquake and tsunami from stakeholder engagement, it is observed 

that tasks in community-/owner-managed projects were completed at least 1.45 times faster 

than tasks in agency-managed projects. Waheeb and Andersen (2022) have attributed time 

overrun factors of up to three to poor management.  

Increased construction material costs have been reported following major global earthquakes 

and other catastrophic events. The increased cost is due to demand surge and supply shortage 

associated with increased material transportation costs, inadequate production capacity, local 

material scarcity, and profit-driven price gouging by suppliers (e.g., ADB 2007; AIR 2021; 

Chang et al. 2011). To optimize budget, construction projects are typically delayed until 

material costs have stabilized, potentially leading to significant delays. ADB (2009) reported 

that the post-disaster reconstruction rate in Aceh was about 2.3 times slower than expected. 

Community/stakeholder participation during the recovery planning and implementation 

phases has been reported to reduce post-disaster recovery time (e.g., Ophiyandri et al. 2013; 

Shafique and Warren 2015; Tas et al. 2011). Reports (e.g., Gharaati and Davidson 2008; 

Kennedy et al. 2008; Tas et al. 2011) have highlighted that poor community engagement can 

lead to construction delays, rejection by beneficiaries, and rework of newly constructed 

buildings. Based on reports from the aforementioned literature and stakeholder engagements 

in Central Sulawesi, recovery tasks that benefitted from community participation were 

observed to have been completed 10-30% faster.  
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Based on the discussions presented above, Table 1 provides ranges of amplification and 

mitigation factors that can be used for post-disaster recovery time modeling in developing 

countries. Only one time overrun multiplier could be sourced from existing literature for 

certain factors (e.g., delay in material procurement). In such cases, the identified multiplier is 

treated as an upper-bound while the lower bound is based on the authors‘ judgement. The 

multipliers for technical delays are based on Waheeb and Andersen (2022) and Gondia et al. 

(2020). The time overrun multipliers attributed to pandemics are based on reported 

differences in construction task completion in pre- and mid-COVID-19 scenarios (nPlan 

2022; Opabola et al. 2023). The subsequent sections of this study introduce a post-disaster 

recovery framework and propose a methodology for incorporating the time overrun 

multipliers in recovery time simulation. 

Table 1 –Factors for modeling recovery times 

Parameter Time overrun multiplier 

Time amplification factors 

Land dispute resolution 1.25 – 2 

Pandemic* 1.5 – 3 

Delay in material procurement 1.2 – 2.5 

Hostile political conditions 1.5 – 5 

Poor management skills 1.5 – 3 

Funds disbursement 1.25 – 3 

Technical delays 1.2 – 2.5  

Time mitigation factor 

Community participation 0.5 – 0.9 

* Peak values are specified for time-dependent factors (discussed in Section 3.7) 

 

3 PROPOSED FRAMEWORK 

3.1 Overview 

The proposed post-disaster recovery modeling framework combines community-level 

functionality estimates for EPNs with building-level functionality estimates of individual 

buildings to evaluate the recovery trajectory of a disaster-hit community (Figure 2). As 
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shown in the figure, there are five distinct modules in the proposed framework – hazard 

analysis, post-event functionality assessment, decision-making analysis, intervention 

prioritization analysis, and recovery time analysis. The hazard analysis is used to generate 

hazard-induced intensity measures (IMs) (e.g., peak ground accelerations and spectral 

accelerations in the case of earthquake hazard) at each building site and location of the 

components and systems within the EPNs (Section 3.2). Power outage assessment at each 

building site relies on the available information on the generation, transmission, and 

distribution networks (e.g., fragility functions and connectivity). The post-event functionality 

of each building is estimated based on the building‘s damage state and the availability of 

power supply (see Section 3.2). The study does not focus on water networks, as evidence 

shows that several low-income communities rely on local wells for water sources. In 

addition, the link between the recovery of the transport network and residential buildings is 

outside this study‘s scope. Once the post-event functionality level of each building is 

assessed, the decision-making module (described in section 3.3) is used to identify the 

appropriate intervention for each building. It is noted that both the post-event functionality 

level assessment and decision-making analysis are building-level analyses.   

To ensure inclusive recovery, this study proposes an intervention prioritization module 

(described in section 3.4) that decision-makers can use to define the intervention hierarchy 

for each damaged building in the community based on relevant socioeconomic, political, 

environmental, and cultural factors. The fifth module is the recovery time module, which 

defines the recovery time for the EPN and the recovery time for each building, accounting for 

the building‘s place in the prioritization list (Section 3.7). The recovery time for EPNs (i.e., 

the time to repair or replace damaged components and systems) can be estimated through 

simulation-based approaches, which assume an intervention sequence (e.g., Shinozuka et al. 

2004). As an alternative, the current study (Section 4.3) proposes empirical formulations for 
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estimating power downtime as a function of the outage level of the EPN, defined through an 

initial operability assessment (Section 4.2). Furthermore, we propose an approach for 

estimating the recovery time of each building using time amplification and mitigation factors 

relevant to low and lower-middle-income communities. 

 

Figure 2 – Proposed framework 

3.2 Hazard analysis 

In the first part, for a pre-defined event scenario, a hazard analysis to simulate the local 

hazard intensity measures (e.g., earthquake-induced ground shaking, flood-induced water 

depth, typhoon-induced wind speeds) at each building site, and location of the components 

and systems (Campbell and Bozorgnia 2014; Resio et al. 2009; Stewart et al. 2015). The 

hazard analysis adequately accounts for the spatial distribution of the intensities throughout 

the region of interest (Huang and Galasso 2019; Kuehn and Abrahamson 2020; Markhvida et 

al. 2018). 

3.3 Post-event functionality assessment  

The post-event functionality of a building is dependent on the damage states/levels of its 

various structural and nonstructural systems and the utility networks (and their components) 

serving it. Post-event damage assessment of such systems is performed by relating hazard-

induced intensity measures (IMs) (e.g., peak ground accelerations and spectral accelerations 

in the case of earthquake hazard) and/or hazard-induced engineering demand parameters 
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(EDP) (e.g., interstory drifts and peak floor accelerations) to building-level and/or 

component-level damage and loss estimates. This is done through fragility models expressing 

the probability of various building-level damage levels as a function of a hazard IM (e.g., 

Gautam et al. 2021; Martins and Silva 2021; Giordano et al. 2021) or the probability of 

various component-level damage levels as a function of an EDP (e.g., FEMA 2012) for both 

structural and nonstructural components/systems within a building. Similar fragility models 

can be used for the components of a utility network (e.g., Ang et al. 1996; FEMA 2003; 

Shinozuka et al. 2007; Straub and Der Kiureghian 2008; Vanzi 2000)). 

The functionality level assessment implemented in this study builds on existing building-

level functionality assessment approaches (e.g., Lin and Wang 2017b) to classify buildings 

into four functionality levels (FL0, FL1, FL2, and FL3) based on the damage states of the 

structural and nonstructural components and utility service availability (See Figure 3 for a 

description of each functionality level). However, while existing studies (e.g., Lin and Wang 

2017b) provide prescriptive definitions for utility availability without relevant simulation, the 

proposed framework in the current study explicitly simulates building-level utility service 

availability. Utility service availability is based on community-level network analysis, as 

described subsequently in this paper. 
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Figure 3 – Defining post-event functionality level using a fault tree 

 

FL0 corresponds to a functionality level whereby a building is occupiable and safe with 

100% functionality of all utility systems. An FL1 building is safe and occupiable, but there is 

reduced functionality due to a faulty utility system. An FL2 building is unoccupiable due to a 

damage state S2 for the nonstructural system. It is, however, noted that buildings in FL2 

could be used as shelter-in-place. An FL3 building is an unsafe building with extensive or 

complete damage to the structural system.  

 

3.4 Decision-making on intervention 

Once the functionality level is determined, a decision is made on the appropriate intervention 

strategy. A decision-making flowchart is presented in Figure 4. The flowchart assumes that 

buildings in FL1 and FL0 are in a repairable state, and any minor damage to the systems will 

not compromise the response of the building in an aftershock. However, it is also assumed 

that repairs that are not safety-critical can be done while the building is in continued use. An 
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FL3 building requires partial or total replacement, and relocation may be necessary in some 

instances (e.g., buildings located in liquefiable soil). 

A decision-making analysis is required to decide whether an FL2 building would be 

decommissioned or not. Such analysis could be done by comparing the mean loss ratio (i.e., 

the repair cost to the total replacement cost of the building) to a predetermined threshold 

(e.g., FEMA 2012), a cost-benefit analysis, or a multicriteria decision-making analysis. The 

choice of the analysis type is dependent on the decision-makers. 

 

Figure 4 – Flowchart for decision-making on required intervention for each building 

 

3.5 Intervention prioritization at the community-level 

Community-level intervention requires substantial resources – including workforce, time, 

funding, and material. Appropriate resource allocation is essential to mitigate the adverse 

socioeconomic impacts of a prolonged recovery process. As highlighted in past studies (e.g., 

Peacock et al., 2014), fragmented and unequal intervention strategies significantly impact 

socially vulnerable communities. To achieve an inclusive recovery process in government (or 

any centrally)-managed intervention projects, it is crucial to adopt an intervention 

prioritization model incorporating all socioeconomic, political, and cultural factors. Key 
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factors to consider include the political importance of buildings requiring intervention 

(political factor), social vulnerability indicators of people in affected buildings 

(socioeconomic), available budget for intervention (socioeconomic), land availability for 

relocation (socioeconomic and environmental), and the historical and cultural significance of 

the affected buildings (cultural). An intervention prioritization list for affected buildings can 

be developed using a multicriteria decision-making (MCDM) framework, which entails (a) 

developing criteria weights for each of the considered socioeconomic, cultural, and political 

factors using the analytical hierarchy process (Saaty 1980) for criteria weight calibration; (b) 

defining performance measures, corresponding to the considered factors, for each affected 

building; (c) combining the criteria weights and performance measures to develop the 

prioritization list using the technique for order of preference by similarity to ideal solution 

(TOPSIS) (Hwang and Yoon 1981) for the ranking process. The criteria weights are defined 

based on the importance level assigned to each criterion by the decision-makers. For the sake 

of brevity, detailed discussions on criteria weights calibration and ranking process in MCDM 

frameworks are omitted. Detailed discussions are available in Saaty (1980), Hwang and Yoon 

(1981), and Opabola and Galasso (2022). Other optimization algorithms, aside from the 

recommended AHP + TOPSIS, can be adopted if desired. 

3.6 Recovery sequence for each building 

The recovery sequence (including both the mobilization and intervention phases) for a 

building is selected based on the chosen intervention type. The average recovery time is 

assumed to be the sum of the average time required to inspect damaged buildings (Tinsp), for 

the bidding and construction mobilization (Tmob), and to restore functionality through the 

selected intervention process (Tint). 

As shown in  
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Table 2, each task in the intervention sequence is linked with a corresponding functionality 

level Q(Ti) attained after task i is completed at a given time Ti. Furthermore, considering 

workers‘ allocation, each task‘s ideal duration (w) in a pre-disaster scenario is also defined. 

However, the relocation and (re)construction sequence may be region- or building-specific. 

For instance, local authorities may have policies to relax or toughen construction design and 

planning processes following a disaster. Therefore, it is recommended that the intervention 

sequence be defined based on the local context. 

 

Table 2 – Intervention sequence for a recovery project 

Task Preceding 

task 

Functionality 

level 

(Q(t)) 

Duration 

Ideal 

(w) 

Optimistic 

(a) 

Most likely 

(m) 

Pessimistic 

(b) 

Mobilization phase 

A Disaster Q(TA) = Q(0) wA aA mA bA 

B A Q(TB) wB aB mB bB 

C A Q(TC) wC aC mC bC 

D B Q(TD) wD aD mD bD 

E B,C Q(TE) wE aE mE bE 

Intervention phase 

F D,E Q(TF) wF aF mF bF 

G E Q(TG) wG aG mG bG 

H F Q(TH) wH aH mH bH 

I H,G Q(TI) wI aI mI bI 

Target recovery Q(Ttarget)  

 

3.7 Recovery time modeling using stochastic network analysis 

This study uses network analysis techniques to model buildings‘ recovery time. Network 

analysis is a project management approach that supports the planning of projects by 

identifying the interrelationships between tasks or activities making up complex processes. 

Network analysis can be used to determine the critical path for complex projects. The critical 

path indicates the required minimum timeframe to complete a given project. Network 

analysis techniques are either deterministic (e.g., Critical Path Method - CPM) or 
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probabilistic (e.g.,, Program Evaluation and Review Technique – PERT; or Monte Carlo 

Sampling - MCS).  

Deterministic network analysis techniques do not consider the time to complete a task as a 

random variable. To account for delays, time buffers are applied to each task. This approach 

adds flexibility to the recovery time evaluation process; however, a series of delay-inducing 

events can result in extended recovery time, which time buffers cannot adequately cover 

(Goldratt 1997). Stochastic network analysis techniques account for anticipated delays in 

each recovery task (and the uncertainties associated with these delays) in a probabilistic 

manner, such that the evaluated recovery time is probabilistic. PERT is most reliable when a 

project has only one path. However, typical projects have multiple paths, so MCS is typically 

the preferred analysis method. Hence, this study adopts MCS to evaluate the recovery time of 

buildings. 

The recovery time Rt to attain a given functionality level Q(t) is defined as a function of the 

mobilization time Mt and the intervention time It and can be expressed as 

 

Rt (Y) = f [Mt (Y), It (Y),Q(0),Q(t)], (1) 

 

where Y is a set of variables characterizing the selected intervention strategy for the building 

(i.e., repair, retrofit, replacement, or relocation), and Q(0) is the initial post-event 

functionality level.  

 

Table 2 and Figure 5 depict the intervention sequence and a hypothetical network diagram of 

a recovery process (i.e., repair, retrofit, reconstruction, or relocation) disaster-damaged 
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building. The tasks (A to I) are tasks within the building‘s emergency, transition, and 

recovery phases. Each task is characterized by a single task duration in a deterministic 

analysis using CPM. However, when employing MCS, each task is characterized by three 

durations – the optimistic duration (a), the most likely duration (m), and the pessimistic 

duration (b). The three duration parameters for each task are defined from the average time 

(w) to complete a task in an ideal (typically pre-disaster) scenario using recovery time 

amplification and mitigation factors. The defined duration parameters (i.e., a, m, and b) are 

then used to generate a PERT distribution for each task duration (e.g., (Clark 1962; Hajdu 

2013; Keefer and Verdini 1993). The defined probabilistic duration parameters for each task 

are then used to carry out MCS (Burt and Garman 1971; Van Slyke 1963). This entails 

conducting critical path analyses (for a chosen number of iterations) using randomly chosen 

task durations in each iteration (i.e., equal likelihood of selecting a, b, or m). The expected 

critical path and critical path duration (i.e., expected recovery time) are evaluated for each 

iteration. Once the iterations are completed, it is then possible to evaluate the recovery time 

distribution required to attain the functionality level after each intervention task is completed 

– the analysis output.  
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Figure 5 – Hypothetical network diagram for the recovery process of a building 

 

In this study, amplification and mitigation factors account for socioeconomic, political, 

environmental, and cultural conditions expected in a disaster-hit community. These factors 

explicitly account for the availability of human and material resources, inflation, land-related 

issues, environmental conditions, availability of transportation channels, political 

environment, security-related issues, bureaucracy, design and construction practice, finance-

related matters (e.g., delay in sourcing for donors and foreign aids), epidemic-related issues, 

socio-cultural issues, and level of community participation.  

Amplification and mitigation factors are either time-dependent or not. If a factor is deemed to 

be time-dependent, a time-series function needs to be defined. Figure 6 illustrates two types 

of time-series functions for the factors – reversing and non-reversing. A reversing time-series 

function is relevant in a case where the amplification or mitigation factor increases and 

decreases intermittently over time (Figure 6a). Examples of cases where reversing factors 

may be required include government-imposed intermittent lockdowns (during a pandemic) 

and weather conditions affecting site productivity. A non-reversing time-series function is 

relevant when the amplification or mitigation factor increases or decreases to a peak value 
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and balances off (Figure 6b). An example of cases where non-reversing factors may be 

applied includes the influence of material cost increase on recovery time and cost. Studies 

(e.g., Chang et al. (2011)) provide data on material costs versus time following the 2008 

Wenchuan earthquake. Reversing and non-reversing factors can be modeled using a wave 

function fitted to available data. Another approach is to model a non-reversing factor by 

defining four time parameters (Figure 6b) – 1) the time when amplification/mitigation starts 

(t1); 2) the time when amplification or mitigation factor reaches its peak (ta); 3) the time when 

amplification or mitigation factor starts deteriorating (tb); and 4) the time when no 

amplification/mitigation occurs (i.e., returns to pre-disaster scenario) (tc). A reversing factor 

can also be modeled by defining t1, ta, tb, tc for each half-cycle. 

 
(a) Reversing factor (b) Non-reversing factor 

Figure 6 – Time-dependent factors 

 

The recommended amplification and mitigation time overrun multipliers are provided in 

Table 1. No recommendations are provided on the time parameters for time-dependent 

factors because such parameters would significantly vary from region to region. It is 

recommended that these parameters are defined based on relevant local context. However, 

typical peak values for time-dependent factors are provided in Table 1. It is also noted that 

the list provided in Table 1 is not exhaustive or definite. Users can use knowledge of the 
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socioeconomic, cultural and political setting of their case study region to select the 

appropriate factor when adopting Table 1. 

Once the amplification and mitigation factors for each task in the intervention sequence are 

defined, the optimistic duration (a), the most likely duration (m), and the pessimistic duration 

(b) can be computed. The optimistic duration (a) is the minimum time to complete a task in 

the recovery process, assuming all the expected time mitigation factors are activated and 

there are no time-amplification factors. The optimistic duration (a) for task i can be estimated 

using Equation (2).  

1

( ) ( )
p

i li i

l

a t MF t w


   (2)a 

 ( ) max ( )i li ia t MF t w   (2)b 

 

Equations (2)a & b are recommended when the mitigation factors are assumed to have 

sequential and concurrent impacts, respectively. In Equation (2), w is the average time to 

complete a task in an ideal pre-disaster situation, l is the number of mitigation factors (MF) (l 

= 1, 2.., p) influencing task i. A value of MF is selected from Table 2. As previously 

mentioned, mitigation factors may be time-dependent, which must be accounted for when 

calculating a.  

The pessimistic duration (b) is the maximum time to complete a task assuming all the time 

amplification factors are activated and there are no time mitigation factors. The pessimistic 

duration (b) can be estimated using Equation (3). Equations (3)a & b are recommended when 

the amplification factors are assumed to have sequential and concurrent impacts, respectively. 

1

( ) ( )
q

i ni i

n

b t AF t w


   (3)a 
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 ( ) min ( )i ni ib t AF t w   (3)b 

 

The most likely duration (m) captures the highest likelihood of completing the task in a given 

timeframe. m is defined to be closer to a if there is a higher likelihood that the mitigation 

factors would be more prevalent than the amplification factor or closer to b otherwise. When 

uncertain, m can be defined as 0.5(a+b).  

4 MODELING ELECTRIC POWER DISRUPTION  

4.1 Defining fragility functions for EPN components 

EPNs comprise three main systems – generation, transmission, and distribution. The 

generation system is mainly made up of power-generating plants. The transmission system 

includes electrical substations (including primary components such as transformers, breakers, 

and switches), transmission towers, and lines. Finally, the distribution system consists of 

distribution poles, distribution conductors, pole-mounted transformers, and service drops.  

Fragility models for power systems are typically in the form of binary states (i.e., fail or 

survive) or in the form of continuous fragility functions for multiple damage states (as a 

function of a hazard IM). Several studies (e.g., Ang et al. 1996; FEMA 2003; Shinozuka et al. 

2007; Straub and Der Kiureghian 2008; Vanzi 2000) have developed numerical and empirical 

fragility models for generation, transmission, and distribution systems under various hazard 

demands at the system and component levels. Dueñas‐Osorio et al. (2007) have also 

developed fragility models for an entire power grid. A detailed review of all available 

fragility functions is outside the scope of this paper.  

If a system-level fragility function is available, it can be adopted in the proposed framework 

(Figure 2). On the other hand, if only component-level fragility functions are available, the 
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probability of a system being in a functionality level, given the functionality states of its 

components at a given hazard intensity level, can be computed as 

 
1 1

j jn n

j j i i i i i

i i

P S s IM P S s C c P C c IM
 

   
         

  

, (4) 

 

where s is the functionality level of system j (equals 0 for a functioning system and 1 for a 

nonfunctioning system), Ci is the functionality level of component i (equals 1 if component i 

suffers at least a moderate damage or 0 otherwise); 
1

jn

j i i

i

P S FL C c


 
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is the conditional 

probability of a system j having a functionality level FL given the events of its components; 

1

jn

i i i

i

P C c IM


 
  

 

 is the conditional probability of a component being functional given a 

hazard intensity measure (IM) at the site of component i.  

4.2 Initial operability assessment framework 

As shown in Figure 2, an operability assessment is carried out after the fragility functions for 

all the systems and components have been defined. The flowchart for the operability 

assessment is presented in Figure 7. The flowchart builds on lifeline loss estimation modeling 

frameworks described in past studies (e.g., Chang et al. 2002; Mensah and Dueñas-Osorio 

2016) for wind-related hazards. Firstly, the region of interest is divided into service areas. 

Each service area is supplied by one substation. Next, an adjacency matrix for the distribution 

network is assembled. This shows the connections between the substation supplying the 

service area and the distribution load points (i.e., Figure 9b) within the service. Once the 

adjacency matrix is developed, given the hazard intensity level (simulated through MCS at 

each location of interest) and fragility functions, N realizations of component and system 

functionality states are defined. For each realization, the number of consumers served is 

estimated, as shown in Figure 7. The initial post-event operability of the power system Qp(0) 

is then taken as the ratio of the number of consumers served immediately after the disaster to 

the number of consumers served pre-disaster. If the state of a generation system is simulated 

as nonfunctional, a total power shutdown is assumed (i.e., Qp (0) = 0). Otherwise, the 
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functionality of each substation is assessed. The consumers within a service area with a 

nonfunctioning substation are assumed to have lost power access. For functioning 

substations, the adjacency matrix is updated based on the simulated functional state of the 

components in the distribution network. A path-finding algorithm is then used to evaluate the 

presence of a distribution link between the consumer and the substation. All consumers 

without a functional link with a functioning substation are assumed to have lost power access. 

 

 

Figure 7 – Initial operability assessment framework for an electric power network  

 

The output of the initial operability assessment framework is the probabilistic distribution of 

the initial post-event operability Qp(0), given the N realizations of components and system 

functionality states (corresponding to the simulated N IM realizations at each considered 

site). For each realization, the recovery time can be estimated using simulation techniques as 

the time to repair or replace damaged components and systems (e.g., Çağnan et al. 2006). 

Start
Develop adjacency matrix 

for each service area

Fragility functions for all 

systems and components

Update adjacency matrix 

based on distribution 

component states 

Generation 

system shutdown?

Substation 

shutdown?

Functional 

distribution link 

between consumer 

and substation?

Initial operability

Qp(0)

End

Recovery 

analysis

No

No

Niter < N ?

Yes

Yes

Yes

No

Yes

N is total number of iterations

Niter is the current iteration

Niter = 1

No

                  



 26 

 

However, similar to the discussions previously presented for structural systems, several 

complexities are associated with estimating the downtime of power systems. For example, 

one must assume a restoration sequence and concurrency for the damaged components. The 

number of possible sequences would be 2
ns

 (where ns is the number of damaged components 

needing restoration). Aside from that, the influence of various factors on the downtime of 

each component would need to be accounted for. Hence, the current study proposes a 

different, simplified approach for estimating downtime as a function of initial post-event 

operability.  

4.2.1 Recovery time modeling 

A literature survey was conducted to identify studies where the initial post-disaster 

operability (i.e., in terms of the number of people served or the number of operating power 

stations) and downtime have been reported. Recovery time is defined as the time to restore 

the functionality to 100%. The focus of the literature survey was developing countries. Key 

references where relevant information has been provided are Didier et al. (2017), Dueñas-

Osorio and Kwasinski (2012), and Miyamjima et al. (2018). Notably, most available 

literature on the recovery of power systems does not provide information on the initial post-

disaster operability. For example, Ahmadizadeh and Shakib (2004) only reported four-day 

downtime for a substation following the 2003 Bam earthquake without any information to 

quantify the post-disaster operability in the region.  

Figure 8 presents the available data reported on the initial post-disaster operability and 

recovery time for disaster-hit regions following the 2010 Mw 8.8 Maule Earthquake (Dueñas-

Osorio and Kwasinski 2012), 2017 Mw 7.3 Iran-Iraq Earthquake (Miyamjima et al. 2018), 

and 2015 Mw 7.8 Gorkha Earthquake (Didier et al. 2017). Dueñas-Osorio and Kwasinski 

(2012) provide multiple data points on the recovery pathway and time for two cities and a 

region. As shown in Figure 8, the recovery time for the power system RpT is highly correlated 
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to the initial post-event operability. The relationship between recovery time and initial post-

event operability can be taken as 

10 (0)
180 pQ

pTR e


 , in days (5) 

 

Equation (5) provides an R
2
 of 0.95. It is noted that the current data is limited. Hence, 

additional data are needed to validate Equation (5). For probabilistic modeling purposes, by 

fitting a logarithmic CDF to the error of Equation (5), it was determined that a logarithmic 

dispersion of 0.7 be used to simulate modeling uncertainty for Equation (5).  

  

Figure 8 – Recovery time for power systems as a function of the initial post-event operability 

 

Given that Equation (5) is empirical, it inherently accounts for some degree of local factors 

(e.g., availability of technical and human resources) that influence the overall recovery time. 

However, if deemed warranted by decision-makers, the calculated recovery time can be 

modified by using amplification factors similar to those in Table 1. 

4.3 Recovery trajectory of electric power networks 

It might seem reasonable to model the recovery trajectory for EPN based on the optimal 

intervention sequence (i.e., repair sequence of damaged transmission and distribution 
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systems). However, socioeconomic and political factors can highly influence such a 

trajectory. For example, a government may decide to focus interventions on affluent 

residential areas rather than follow an optimal sequence. Also, political conflict may 

influence the intervention sequence.  

This study recommends two approaches that may be adopted for modeling the recovery 

trajectory of EPNs. The first entails defining intervention sequences for the entire network 

and restoration time for each damaged component (e.g., Shinozuka et al. (2004)). The second 

approach involves defining a recovery trajectory function based on the expected level of 

preparedness, technical know-how, and impeding conditions (i.e., socioeconomic and 

political). Cimellaro et al. (2010) recommend trigonometric and exponential functions for 

poorly- and well-prepared communities, respectively. Cimellaro et al. (2010) recommend a 

linear function for cases without the knowledge of preparedness, resource availability, and 

societal response. Rather than adopting separate functions, this study proposes a unified 

recovery trajectory function for EPNs (Equation (6)). The functionality level Q at a given t 

can be taken as 

   0
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 

  
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, (6) 

where g and h are shape constants that quantify the recovery rate of the system, tm is the 

mobilization time, Rt is the recovery time computed using Equations (5) and (6) for power 

and water networks, respectively.  

The values of g and h express the level of preparedness, resource availability, and societal 

conditions of a community. For any value of h, g can be computed as: 
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where Q(Rt) is the functionality level once the recovery time is attained. For complete 

recovery, Q(Rt) equals unity. Q(Rt) can be greater than unity if the target functionality level is 

higher than the pre-event functionality level (e.g., in a build-back-better scenario).  

Depending on the value of h, the recovery curve derived using Equation (6) could either be 

concave, convex, or linear. Figure 9 depicts three different recovery trajectories for a power 

network with initial post-event operability of 0.25 and a recovery time of 50 days, assuming h 

= -10, h = 1.5, and h = 0. A concave recovery curve corresponds to h << 0 and represents the 

recovery trajectory of a community with a poor level of preparedness, a high level of 

resource unavailability, and unfavorable societal conditions. In contrast, h >> 0 represents a 

community with a good level of preparedness, good resource availability, and unfavorable 

societal conditions. h can be estimated by curve fitting to the available historical data on the 

recovery trajectory. As an alternative, recovery rate models calibrated to past events can also 

be used in estimating the value of h. Several studies (Barabadi et al. 2011; Barabadi and 

Ayele 2018; Gao et al. 2010) have developed regression models for predicting the recovery 

rate of utility networks. For example, Barabadi and Ayele (2018) proposed an empirical 

formulation for predicting the recovery rate of electric power networks as a function of 

hazard type, age and condition of power systems, time of the event, post-event operability, 

and length of the distribution feeders.  
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Figure 9 – Recovery trajectories for a community considering various levels of impending 

conditions 

 

5 CASE STUDY 

5.1 Overview 

The proposed framework is illustrated through four case studies to model the post-earthquake 

recovery of a synthetic small-scale residential community with a population of 22,500 people 

(Figure 10). Synthetic testbeds have gained widespread use in disaster risk management, 

particularly to test, verify, and validate community resilience models/tools (e.g., Amin 

Enderami et al. 2022). Each case study intends to demonstrate how local authorities can 

adopt the proposed framework as a disaster risk management tool for specific objectives. 

The synthetic residential community consists of a building stock of 450 reinforced concrete 

(RC) frame buildings comprising 150 two- and 300 four-story frames with an average 

occupancy of 10 households per building. It is assumed that the two-story buildings are low-

cost housing with lower floor space per occupant compared to the four-story buildings. Each 

household is assumed to consist of five members, making a total of 22,500 occupants in the 

hypothetical residential community. Most buildings in the residential community (90%) are 
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assumed not designed to modern seismic codes and are susceptible to non-ductile behavior. 

The remaining 10% of the building stock is code-conforming.  

 

Figure 10 – Case study community 

 

It is assumed that the community is supplied by three power substations (Figure 10). Each 

service area (for each substation) is assumed to supply 150 buildings, corresponding to 1,500 

households and 7,500 consumers. For the sake of simplicity, a similar distribution system 

(i.e., links between substation and distribution nodes) is assumed for each service area.  

5.2 Hazard analysis 

The recovery modeling of the community is carried out for a moment magnitude 7 scenario 

occurring from a normal fault situated about 20km from the community. A Vs30 of 360m/s is 

assumed for the community as a whole. The hazard analysis uses the Campbell and 

Bozorgnia (2014) ground-motion model to derive spectral accelerations at the building 

locations, substation sites, and distribution nodes. Furthermore, the Markhvida et al. (2018) 

approach is used to generate 1,000 realizations of spatially cross-correlated spectral 

intensities at the building locations, substation sites, and distribution nodes, using Principal 

Component Analysis. 
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It is noted that, due to the limited availability of recorded ground motions in developing 

countries, regional ground motion models may be unavailable or unsuitable for developing 

cross-correlated IMs. Scoring criteria can be used to select the best models for specific 

applications (e.g., Stewart et al., 2015). Another alternative is to perform physics-based 

ground motions simulations (e.g., Jenkins et al., 2023). However, this study has not followed 

this approach given the illustrative nature of the case-study application relying on a synthetic 

testbed. 

5.3 Case study 1: Capturing the impact of improving EPN 

This case study demonstrates how the proposed methodology can capture the impact of 

various strategies for improving the EPN. Four scenarios are considered – scenario 1-1 is the 

current state with no improvement. Scenario 1-2 entails providing seismic anchors for 

components of the substations, Scenario 1-3 entails retrofitting the distribution circuits 

(without providing seismic anchors for components of the substations), and Scenario 1-4 

combines scenarios 1-2 and 1-3. 

The fragility functions for the substation and distribution circuits are derived from FEMA 

(2022). For each of the thousand realizations of spatially correlated peak ground 

accelerations, the functional states of substation and distribution nodes are used in assessing 

the number of consumers without access to the power network in the community. The initial 

post-event operability for each simulation is defined as the number of consumers without 

access to power supply divided by 22,500 (i.e., 7,500 consumers per service area times three 

service areas) pre-earthquake consumers. The median recovery time for the calculated initial 

post-event operability is then calculated using Equation (5). Subsequently, the model 

uncertainty in Equation (5) is also propagated through MCS by sampling 1,000 realizations 

of each computed median recovery time using the recommended dispersion value for 

Equation (5). Figure 11 presents the output of the EPN analysis for each considered scenario. 

                  



 33 

 

The figure shows that each considered mitigation strategy (i.e., scenarios 2, 3, and 4) 

significantly reduced the median community-level power downtime. Retrofitting the 

substations and distribution circuits reduces the downtime from 24 to 4 days. 

  

Figure 11 – Recovery time for the EPN for the four considered scenarios 

 

Figure 11 can be helpful for analysts and decision-makers seeking to understand the effect of 

various EPN failure mitigation policies. Also, the recovery time estimates can inform 

homeowners and EPN companies on necessary measures (i.e., backup power sources and 

power disruption insurance) to counterbalance potential hazards in their communities. 

Although not demonstrated here, the recovery modeling framework can be combined with a 

cost analysis for decision-makers to better inderstand the cost-benefit ratios of each 

mitigation policy. 

5.4 Case study 2: Impact of socioeconomic factors on long-term community-level 

recovery 

This case study demonstrates how the proposed methodology can capture the influence of 

socioeconomic factors on long-term community-level recovery, specifically rehousing of 

displaced people. Three scenarios are considered – scenario 2-1 is an ideal scenario with no 

recovery-impeding factors on reconstruction projects. Scenario 2-2 simulates a scenario 
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where community conflicts and bureaucratic delays influence post-disaster reconstruction; 

scenario 2-3 represents a scenario with material procurement, construction worker skills, and 

funds issues. A similar workforce (i.e., 80 crews) is assumed for all scenarios. As shown in 

Figure 11, the EPN is restored in 24 days. Hence, the impact of the EPN outage on long-term 

recovery is negligible. 

The probable functionality level of each building is estimated by combining the fragility 

functions for the structural and nonstructural systems with the IMs (spectral acceleration at 

1s) at the building site. The seismic fragility models of the structural systems and 

nonstructural components are based on Villar-Vega et al. (2017) and FEMA (2022), 

respectively. For each of the thousand realizations of spatially correlated spectral 

accelerations that were simulated (note that these realizations were done collectively with the 

IM for the EPN analysis, i.e., peak ground accelerations), the post-event functionality level of 

each building is evaluated as described in the methodology section.  

Given that the case study looks at long-term recovery, the recovery analysis focuses on 

reconstructing buildings recommended for reconstruction (See Figure 4). The calculation 

assumes that all displaced households are waiting (in temporary shelters) for the buildings to 

be rebuilt. A key assumption in this analysis is that no life was lost during the disaster, and 

each displaced household is provided with a new one-story single-family residential house.  

The intervention sequence of the reconstruction process entails sourcing for reconstruction 

funds, planning, and building design, securing relevant permits, tender process and 

contracting engineers and builders, site clearing, site mobilization, and construction. The 

average time to complete each task in an ideal pre-disaster situation (w), adopted in Equations 

(2) and (3), for the reconstruction projects are based on information derived from actual 

construction projects of one-story single-family residential houses in Palu, Indonesia 
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(Opabola et al. 2023). The time amplification factors considered for each task and each 

scenario (to estimate the pessimistic time b) are based on the maximum of the range 

presented in Table 1. A unity factor is used to estimate the optimistic time (a). The most 

likely time is assumed to be 0.5(a+b). 

Figure 12 compares the recovery curves of the three considered scenarios. As shown in the 

figure, accounting for socioeconomic factors significantly increases the time required for 

several families to return to permanent housing. According to the case study, community 

conflicts and bureaucratic delays increased community-level recovery time to more than five 

years (twice the period required in scenario 2-1).  

Decision-makers could use such information to develop appropriate mechanisms to ensure 

full recovery in communities susceptible to communal conflicts, especially in cases where 

post-disaster conditions could escalate such conflicts.  

  
(a) Scenario 2-1 (b) Scenario 2-2 

 
(c) Scenario 2-3 

Figure 12 – Community-level housing capacity recovery for (a) Scenarios 2-1; (b) 2-2; and 

(c) 2-3. 
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Delays associated with material procurement, construction worker skills, and funds issues 

(scenario 2-3) could result in less downtime than scenario 2-2. This is attributed to the fact 

that funds issues may be present during the initial phases of the project (the case assumed in 

the analysis). However, if funds-related issues are prevalent in each phase of the recovery 

project, the time to achieve full recovery may be prolonged.  

 

 

5.5 Case study 3: Impact of increased expert workforce on long-term community-level 

recovery 

This case study demonstrates how the proposed methodology can capture the influence of 

increasing the expert workforce in a community on long-term post-disaster recovery. Two 

scenarios are considered – scenario 3-1, which assumes only 80 crews of construction 

workers, and scenario 3-2, with 160 crews of construction workers. 

The post-disaster functionality level and housing capacity are estimated similarly to the 

preceding case study. A similar reconstruction sequence is also adopted. However, the 

number of construction crews is varied to capture the scenarios of interest. Regarding 

recovery-impeding factors, only delays due to material procurement are considered. The 

influence of other socioeconomic and political factors is also ignored. It is also assumed that 

the workforce is well-trained. Hence, no delays due to poor management skills are 

considered. 

Figure 13 compares the community-level housing capacity recovery curves for the two 

scenarios. As shown in the figure, doubling the workforce reduces the median recovery time 
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by 60%. Local authorities can use such information to plan the number of crews that must be 

sourced locally and/or otherwise to meet a target recovery time.  

 

  
(a) 80 construction crews (b) 160 construction crews 

Figure 13 – Community-level housing capacity recovery for case study 3 considering (a) 80 

construction crews (scenario 3-1); (b) 160 construction crews (scenario 3-2) 

 

5.6 Case study 4: Impact of structural retrofit policies on long-term community-level 

recovery 

This case study demonstrates how the proposed methodology can capture the influence of 

retrofit policies on community resilience. This study assumed a similar social vulnerability 

index for the entire community. Hence, the selection of low-code buildings for retrofit is 

based mainly on distance from the fault (i.e., low-code buildings closer to the fault are 

considered for retrofit). This assumption is adopted because the same fragility functions were 

adopted for the buildings (but different sets of fragility functions for different building 

heights). The fragility functions for the retrofitted buildings are based on Opabola et al. 

(2021). 

Four scenarios are considered. Scenario 4-1 assumes no retrofit (i.e., 90% of the entire 

building stock remains non-ductile). Scenario 4-2 considers retrofit of 25% of the total low-

code buildings closest to the fault (irrespective of the number of stories) – a total of 101 
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buildings are retrofitted. Scenario 4-3 considers retrofit of 50% of total low-code buildings 

closest to the fault (a total of 202 buildings are retrofitted). Scenario 4-4 assumes retrofit of 

75% of the total low-code buildings closest to the fault. Finally, scenario 4-5 considers 

retrofit of all low-code buildings.  

Regarding recovery-impeding factors, only delays due to material procurement are 

considered. A similar workforce (i.e., 80 construction crews) is assumed for all scenarios. 

Figure 14 compares the normalized median post-earthquake housing capacity (defined as the 

ratio of the number of households with access to a permanent residence to the total number of 

households), the median time to achieve full community recovery (i.e., construct all new 

permanent houses), and the proportion of retrofitted low-code buildings. For example, as 

shown in the figure, retrofitting 50% of the low-code buildings increases the normalized 

median post-earthquake housing capacity to 90% (from 70%) and reduces the median full 

recovery time by 40%.  

Case study 4 is relevant in cases where local authorities want to identify buildings that need 

to be prioritized for retrofit based on the fact that retrofitting such buildings significantly 

enhances community-level recovery.  
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Figure 14 – Relationship between normalized median post-earthquake housing capacity 

(defined as the ratio of the number of households with access to a permanent residence to the 

total number of households), the median time to achieve full community recovery (i.e., 

construct all new permanent houses), and the proportion of retrofitted low-code buildings 

 

Figure 15 combines the output of case studies 1 and 4 to demonstrate how local authorities 

could identify the proportion of households in the community with access to buildings that 

can achieve immediate post-event functional recovery (i.e., FL0 and FL1 buildings). As 

shown in Figure 15, building retrofit policies must be closely associated with EPN retrofit 

policies to ensure that a significant proportion of households do not need to suffer downtime 

from building or utility network damage. The proportion of households with access to a FL0 

or FL1 building increases by 2.5 times when both the transmission and distribution systems 

of the EPN are retrofitted. It is also noted that a significant proportion of buildings in scenario 

4-5 were classified as FL2 mainly because of power outage. While Figure 11 estimates a 

median recovery time of about 5 days for EPN in scenario 1-4, the importance of building-

level power backup system can help ensure retrofitted buildings achieve immediate post-

event functional recovery. 
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Figure 15 – Influence of retrofit scenarios for buildings and EPN on immediate functional 

recovery of buildings  

 

Although not demonstrated here, Figure 15 can be combined with a cost analysis for 

decision-makers to better understand the cost-benefit implications of each mitigation policy. 

The analysis presented in Figure 15 is relevant in cases where decision-makers want to 

quantify the proportion of households that will have post-disaster liveable conditions (i.e., 

safe and occupiable buildings with access to electricity) following an event. Such data can be 

helpful in developing efficient post-event management strategies.  

 

6 CONCLUSIONS 

Local authorities and decision-makers need to access efficient and reliable disaster planning 

and management tools to achieve desirable levels of community resilience. This study 
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proposes a probabilistic framework for modeling the post-disaster recovery pathway of a 

community‘s functionality blocks (i.e., buildings, electric power networks) at the community- 

and building levels. The novel aspects of the proposed framework include (a) introducing a 

multicriteria decision-making approach for community-level intervention sequencing, while 

capturing the influence of technical, socioeconomic, political, environmental, and cultural 

factors; (b) developing a stochastic network analysis approach for estimating the recovery 

time of damaged buildings, using proposed recovery time amplification and mitigation 

factors which are dependent on technical, socioeconomic, political, environmental, and 

cultural conditions of a community; (c) developing empirical formulations (based on 

historical data) to predict the community-level recovery time of power networks as a function 

of initial post-disaster outage level; and (d) the development of an approach for simulating 

historical recovery trajectory scenario on electric power networks. The output of the proposed 

framework is the probabilistic distribution of recovery times and various resilience indicators 

(e.g., the proportion of homeless households, the proportion of the population with access to 

power supply).  

The proposed framework is demonstrated using a hypothetical community subjected to an 

earthquake scenario. The case study is used to assess the probabilistic recovery pathway of 

the EPN in the community and demonstrate how various mitigation strategies can influence 

the recovery time of the EPN. Furthermore, the case study captures the influence of various 

technical, environmental, socioeconomic, political, and cultural factors on post-disaster 

housing reconstruction. The analysis shows that, due to negative socioeconomic, political, 

and cultural factors, internally displaced people might remain homeless for up to five years 

after the disaster. The analysis also shows how community-level building retrofit policies can 

be designed by accounting for the quantified benefits of the retrofit to improve community 

resilience. 
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Based on the outcome of the case study, it is recommended that local authorities invest in 

policies that ensure the considered factors (i.e., consider the influence of conflicts within the 

community, bureaucratic delays, lack of community participation, and poor onsite 

construction management) are mitigated. 
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