
  

  

Abstract— In the field of precise agriculture with autonomous 

unmanned aerial vehicles (UAVs), the utilization of drones holds 

significant potential to transform crop monitoring, 

management, and harvesting techniques. However, despite the 

numerous benefits of UAVs in smart farming, there are still 

several technical challenges that need to be addressed in order 

to render their widespread adoption possible, especially in 

constrained environments. This paper provides a study of the 

technical aspect and limitations of autonomous UAVs in precise 

agriculture applications for constrained environments. 

 

I. INTRODUCTION 

Mountain agriculture is essential for multiple reasons. 

Firstly, mountain regions are home to about 12% of the global 

population providing food and employment opportunities for 

the local communities [1]. Secondly, it represents a significant 

portion of the farmland. In fact, in England, the majority of 

hill farming land, classified as a Less Favored Area (LFA), 

represents 17% of the land farmed in the country [2]. As the 

global population is projected to reach 9.7 billion by 2050,  

demand for food and agricultural products will exponentially 

increase [3], and mountain agriculture will play an important 

role in the future of food self-sufficiency. Indeed, mountain 

agriculture has the potential to contribute to meeting this 

future demand by increasing productivity and improving the 

efficiency and sustainability of agricultural practices in these 

regions. Additionally, mountain agriculture plays an 

important role in maintaining ecosystem services such as soil 

conservation, watershed protection, and biodiversity 

conservation. However, the geographical constraints and 

difficulties of farming in these regions often result in higher 

costs and lower productivity compared to other areas. The 

challenges faced by mountain farmers also include a harsh 

and unpredictable climate. These challenges can lead to lower 

work productivity, which can have a negative impact on the 

sustainability of mountain communities [4].  

To address these challenges, there is a need for innovative 

solutions that can help improve the efficiency of mountain 

agriculture. The use of autonomous unmanned aerial vehicles 

(UAVs) can help address some of these challenges by 

providing more efficient and cost-effective ways to monitor 

crops, manage pests and diseases, and support decision-

making [5]. The integration of UAVs into mountain 

agriculture (Fig. 1) has the potential to improve the viability 
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and sustainability of these farming systems, making them 

more resilient to the challenges posed by the unique 

conditions of mountain environments. In fact, drones have the 

potential to revolutionize the agricultural industry. However, 

practical implementation of precise agriculture using drones 

is impeded by various technical challenges. Thus, in the 

following sections, the role of drones in precise agriculture for 

hill agriculture will be studied, along with the technical 

constraints of this application. The ongoing technical research 

and advancements aimed at addressing these challenges will 

also be emphasized.  

II. ROLE OF AUTONOMOUS UAVS IN SMART FARMING 

In precise agriculture, drones are classified into two distinct 

categories (Table I.): large drones, also known as Remotely 

Piloted Aircraft (RPA), and small drones, referred to as 

Unmanned Aerial Vehicles (UAVs). UAVs lead in the drone 

industry as they are cost-effective. They have lower payload 

capacity, making them easier to operate. In addition, the data 

collected by small drones can be analyzed and used to 

optimize decision-making processes, such as determining the 

best time to plant, water or harvest crops, and optimizing 

fertilizer and pesticide application [6].  In contrast, RPAs are 

used for tasks that are more heavy duty. These drones are 

larger and have a higher payload capacity, allowing them to 

carry more weight and cover larger areas. They are also used 

to automate the spraying and seeding processes and reduce 

waste by only spraying specific areas [7].  

 
TABLE I.    UAVS IN PRECISE AGRICULTURE 

 Applications Sensors 

 
UAV 

- Crop monitoring (crop 

health, soil moisture, plant 

growth) 
- Field mapping 

- Surveillance 

- Cameras (RGB, 

Multispectral, 

hyperspectral, thermal) 
- Soil sensor 

- Humidity sensor 

- LiDAR 

 
RPA 

- Planting 

- Crop pollination 

- Aerial seeding 
- Sampling 

- Spraying (water, pesticide, 

fertilizer) 

- Spraying equipment: spray 
tank, nozzles, and a pump 

- Seed hoppers 

- Probe/ sampling tools 
- TLS  

 

Currently, specific non-autonomous drones designed for 

smart farming are available on the market. For instance, the 

Matrice 300 RTK [8] is designed for agriculture, equipped 

with a multi-spectral camera from third party manufacturers 

for crop analysis and mapping, and a large-capacity battery 
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for an industry-leading flight time of 55 minutes.  The Parrot 

Anafi USA [9] features a 32x zoom, 4K HDR camera with a 

21-megapixel Sony sensor and thermal imaging capabilities, 

allowing users to capture highly detailed images and videos 

for mapping and surveillance tasks. The UAV has a flight 

time of up to 32 minutes and a range of up to 6900 m. The 

Precision Hawk Lancaster 5 [10] is equipped with a high-

resolution multispectral camera and a thermal sensor, which 

allows it to capture images in multiple spectra for enhanced 

analysis and decision-making for crop health assessment, 

yield estimation, and precision irrigation. The drone has a 

flight time of up to 45 minutes and can cover up to 4000 m2 , 

making it suitable for covering large areas efficiently.  

 
Figure 1.  Precision agriculture cycle and its main phases 

The literature currently available shows that autonomous 

drones offer several technical advantages in constrained 

environments such as farming in mountains: 

• expand accessibility to hard-to-reach regions: UAV’s 

ability to manoeuvre in tight spaces and over rough 

terrain [11], makes them well suited for working in 

challenging environments or densely vegetated areas; 

• improved data collection speed and accuracy: UAVs 

can cover large areas of hilly terrain quickly and 

efficiently, providing farmers with high fidelity real-

time data (NDVI, RGB, and LiDAR) [12]; 

• enhance safety for farmers: UAVs reduce the need for 

manual labor in challenging terrain such as steep 

slopes, rocky terrain, and pesticide application [13]. 

III. TECHNICAL ADVANCES AND LIMITATIONS OF 

AUTONOMOUS DRONES IN CONSTRAINT ENVIRONMENTS 

Operating autonomously in complex environments, such as 

under a forest canopy, can be arduous. In this section, the 

major technical limitations of autonomous drones operating 

in challenging environment will be listed and explained.  

A. State estimation  

In a UAV, the state space vector is defined as: 

𝑥𝑘⃗⃗⃗⃗  = [𝑥, �̇�, 𝑦, �̇�, 𝑧, �̇�, ∅, ∅̇, 𝜃, �̇�, 𝜓, �̇� ]        (1) 

 

where (𝑥, 𝑦, 𝑧) is the vehicle’s position, (�̇�, �̇�, �̇�) the linear 

velocity, (∅, θ, ψ)  the roll, pitch and yaw respectively, and 

(∅̇, θ̇, ψ̇) the angular velocity [14]. The state is found by using 

mathematical models and algorithms to fuse available 

measurements from multiple sensors [15]. Fusing GPS and 

IMU data using a Kalman Filter is mainly used for outdoor 

state estimation. However, GPS signals are often not available 

in many rural areas and forests, making it difficult to use GPS-

based navigation and mapping solutions in these cluttered 

environments. To counter this challenge, UAVs can rely on 

alternative algorithms, such as RTK (Real-Time Kinematic) 

GPS [16], SLAM [17], and VIO [18] to provide accurate state 

estimation in GPS-denied environments [19]. Despite 

showing encouraging results in controlled standard 

environments, in constrained environment, however, their 

performances decrease tremendously. 

To estimate the position 𝑝𝑘⃗⃗⃗⃗   of the drone in a GPS-denied 

environment, the pose (𝑥, 𝑦) in the horizontal plane is usually 

decoupled from the z-coordinate, which represents the 

altitude. In the context of precise agriculture, drones need to 

fly close to the ground to capture accurate and high-quality 

data. Nonetheless, flying at a low altitude can generate 

additional problems for height estimation ℎ𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑, as the 

flat ground assumption is not valid anymore when flying 

below 3 m [20]. One of the main issues is that the height 

sensor may not have a clear line of sight to the ground, 

especially in areas with tall vegetation or uneven terrain. In 

addition, in the presence of cavities and hills, it is challenging 

to maintain a desired minimum clearance ℎ𝑑𝑒𝑠𝑖𝑟𝑒𝑑 , which is 

the minimum vertical distance that must be maintained 

between the drone and the terrain. Indeed, to maintain a 

constant altitude ℎ𝑑𝑒𝑠𝑖𝑟𝑒𝑑 , the mainly used altitude P-

controller for VTOL UAVs [21] 𝑢(𝑡) = 𝐾𝑝 ∗ (ℎ𝑑𝑒𝑠𝑖𝑟𝑒𝑑 −

ℎ𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑  ) takes the difference between ℎ𝑑𝑒𝑠𝑖𝑟𝑒𝑑  and the 

current height sensor measurement  ℎ𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 . Thus, if a 

drone is flying over a hill, the height sensor will measure the 

altitude of the drone relative to the slope of the hill, rather than 

ground clearance [22]. Similarly, if the drone is flying over 

holes or depressions, the UAV may descend into the 

depression, even if the height sensor indicates that it is 

maintaining a constant vertical distance above the ground. 

This can cause degraded performances and in the worst case 

scenario even lead to a crash and collision with the ground. 

The main algorithm used to estimate the pose (𝑥, 𝑦) in GPS-

denied environment is 3D LiDAR Simultaneous Localization 

and Mapping (SLAM). 3D LiDAR SLAM [23] works by 

simultaneously creating a map of the unknown environment 

and estimating the drone’s pose within the map. Despite the 

promising performance of the state of art 3D LiDAR SLAM 

in unobstructed scenarios, its accuracy and robustness in 

complex environments pose significant challenges [24]. 

 
Figure 2.  LiDAR 3D SLAM process overview   
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 Indeed, to construct the Global Map for 3D LiDAR SLAM 

(Fig.2), IMU angles and LiDAR frames are fused to compute 

𝑻𝑖+1
𝑜 , the transformation from UAV’s coordinate system {B}  

to the world coordinate system {O} at the time i+1 [24]: 

 

𝑻𝑖+1
𝑜 = 𝑻𝑖

𝑜 𝑻𝑖+1
𝑖                                (2) 

 

𝑻 =  [ 𝑹𝐼𝑀𝑈𝑖+1
𝑖 𝒑𝑖

𝑖−1

0 1
]𝑖+1

𝑖                (3) 

𝒇𝑖+1
𝑜 = 𝑻𝑖+1

𝑜 ∗ 𝒇𝑖+1
𝑖                          (4) 

 

where 𝑻𝑖+1
𝑖  and 𝑹𝐼𝑀𝑈𝑖+1

𝑖  are the translation and the rotation 

measured by IMU transformations between two consecutive 

LiDAR frames 𝒇  and 𝒑𝑖
𝑖−1  is the displacement vector. In Eq. 

(3), the transformation between two LiDAR frames 𝑻𝑖+1
𝑖  is 

obtained using IMU data. Although, while LiDAR data is 

typically captured at a rate of approximately 10Hz, IMU data 

is collected at a much higher frequency of about 200Hz. To 

integrate the two types of data, the IMU data needs to be 

synchronized with the LiDAR timestamp: all IMU angular 

velocity measurements between two LiDAR frames are 

integrated to get the angular increment. However, navigating 

throughout a complex environment requires rapid changes in 

yaw pitch and roll, making the IMU data integration between 

two frames uninformative. In addition, certain types of UAV 

navigation that involve frequent and rapid changes in rotation, 

such as high-speed aerial maneuvers or flying in turbulent 

wind conditions, can increase the noise of the IMU. This is 

because the rapid changes in rotation can cause the inertial 

sensors in the IMU to experience high levels of acceleration 

and vibration, which can introduce additional error and bias 

into the measurements [26]. Thus, the inaccuracy of IMU time 

integration and noise augmentation make  𝑹𝐼𝑀𝑈 invalid, and 

therefore the mapping unsuitable.  

Once the transformation matrix 𝑻𝑖+1
𝑜  is obtained, it is used 

to transform the point cloud data 𝒇 from the vehicle’s 

coordinate system to world coordinate system Eq. (4). 

Mathematically, 𝒇 = { 𝑥 1… 𝑥 𝑛} is a set of LiDAR points 

𝑥 𝑛 = (𝑥𝐿𝑖𝑑𝑎𝑟 , 𝑦𝐿𝑖𝑑𝑎𝑟 , 𝑧𝐿𝑖𝑑𝑎𝑟) in the drone's coordinate system. 

Changing point cloud’s coordinate system is computationally 

expensive, especially for large point clouds. To optimize the 

computation complexity and cost, various techniques can be 

used. One technique is to use approximation algorithms like 

Iterative Closest Point (ICP) [27] or Coherent Point Drift 

(CPD) [28] to provide an estimation of the transformation 

matrix with reduced computational complexity. Another 

technique is to rely on certain libraries. Point cloud processing 

libraries, such as Point Cloud Library (PCL) [29] and Robot 

Operating System (ROS) [30], provide optimized functions 

for point cloud transformation. These functions can take 

advantage of hardware acceleration, such as Graphics 

Processing Units (GPUs), to speed up the computation. GPUs 

are specialized hardware designed for parallel processing and 

are capable of processing large amounts of data in parallel. 

For example, PCL provides a GPU-based implementation of 

the ICP algorithm, which can be used for point cloud 

registration. This implementation, called GPU-ICP [31], can 

achieve significant speedups over the CPU-based 

implementation. Additionally, ROS also offers a GPU-

accelerated point cloud library called PCL CUDA (Compute 

Unified Device Architecture), which provides optimized 

functions for point cloud processing on NVIDIA GPUs [32]. 

3D LIDAR SLAM algorithms, while optimized, remain 

resource-intensive due to the large datasets involved. Forest 

mapping with 3D SLAM involves two methods: single-scan 

and multiple-scans mode. The former entails LiDAR scanner 

placement at a single point within a forest plot, allowing 

unidirectional tree visibility acquisition. Despite its simplicity 

and speed, single-scan mode suffers from lower detection 

rates due to occlusion effects. Conversely, multiple-scans 

mode enables full stem surface coverage through data 

acquisition from multiple scanner positions, necessitating 

more extensive observation. This results in heightened 

temporal and preprocessing requirements, taking 1 to 10 

hours depending on plot size and forest type. For instance, a 

30m x 30m plot requires approximately 1 hour, while a 100m 

x 100m plot demands around 10 hours, exceeding typical 

drone flight durations [33]. 

As the LiDAR frames in forest measurements are complex 

and dense with an irregular or non-uniform terrain within a 

forest ecosystem, matching two consecutive LiDAR frames 

for global mapping becomes challenging. One used technique 

for matching frames is the Implicit Moving Least Squares 

(IMSL) [25]. The IMLS algorithm uses ICP algorithm to find 

the transformation that best alignment. This transformation is 

then used to update the position and orientation of the sensor 

in the map. Another proposed method involves linear 

interpolation for point cloud processing where each 

measurement is correctly re-projected in the map reference 

frame by considering a continuous time trajectory [35-36]. 

Despite the promising results of the state of art algorithms 

cited above, global ground consistency assumption (the 

property of a 3D reconstruction that ensures the ground 

surface is correctly identified across different segments or 

scans) restricts its use to flat terrain and uneven terrains 

cannot be adapted, making their performance poor in 

constrained environments. In addition, the range and accuracy 

of sensors used, such as LIDAR, can be limited in dense 

environments, particularly in the presence of obstacles that 

interfere with their signals [37] or dust. Furthermore, in dense 

environments like forest canopy, the data association 

problem, which involves matching features in consecutive 

frames, can become more challenging due to the presence of 

similar-looking features [38].   

B. Control system 

The limits of control systems for UAVs in precise 

agriculture can be attributed to several factors. As mentioned 

in section III.A, drones need to fly at low altitude to be able 

to capture detailed information about crops and soil at a closer 

range. Although, flying close to the ground creates “ground 

effect disturbances” [39]. This phenomenon is generated due 

to the interaction between the terrain and the UAV, which 

produces turbulences including vortexes. These additional 

disturbances can cause severe impacts on a drones’ flight, 

especially during the vertical takeoff and landing. Indeed, 
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these disturbances can affect the stability and control of the 

drone, leading to difficulty in maintaining stable flight [40].  

Secondly, as mentioned in section II., RPAs for precise 

agriculture are equipped with spraying systems including a 

tank. This added system generates an additional disturbance 

called “sloshing effect”. Sloshing is the movement of liquid 

inside the tank due to the motion of the UAV, which can result 

in a shift in the Center of Gravity (CoG) of the drone. Indeed, 

phenomena can have significant negative impact on the 

stability and performance of the vehicle [41]. This can affect 

the UAV's stability and increase the challenges of the control 

system. Thus, standard controllers as PID might not be suited 

for this application and more advanced techniques paired with 

accurate dynamics are rendered necessary. In detail, sloshing 

effects significantly increase the modelling complexity as the 

impact of the shifting CoG and mass variation need to be 

accounted for. The authors in [42] developed a nonlinear 

dynamic model for the quadrotor, taking into account the 

impact of center of gravity and mass variations on the 

vehicle's behavior. Thus, the model includes an additional 

reference frame of the tank attached below the drone as seen 

in Fig. 3. Indeed, the modified translational and rotational 

motion of the UAV become: 

 

[
�̈�
�̈�
�̈�

] = [
0
0
−𝑔

] 

+
1

𝑚
((𝑓𝑇(𝑋) + 𝑔𝑇(𝑋)𝑢1) [

𝑥𝐿
𝑦𝐿
𝑧𝐿
] + [

𝑅13(𝜂)

𝑅23(𝜂)

𝑅33(𝜂)
] 𝑢1)                (5) 

 

[
∅̈

�̈�
�̈�

] = [
𝑓4
𝑓5
0

] +

[
 
 
 
 𝑔4

1

𝐼𝑥𝑥
0 0

𝑔5 0
1

𝐼𝑦𝑦
0

0 0 0
1

𝐼𝑧𝑧]
 
 
 
 

[

𝑢1
𝑢2
𝑢3
𝑢4

]                                 (6) 

 

 

{
 
 

 
 
𝑓4 = 𝑙(𝑥𝐿𝑅12(𝜂) + 𝑦𝐿𝑅22(𝜂) + 𝑧𝐿𝑅32(𝜂))𝑓𝑇(𝑋) 

𝑓5 = 𝑙(𝑥𝐿𝑅11(𝜂) + 𝑦𝐿𝑅21(𝜂) + 𝑧𝐿𝑅31(𝜂))𝑓𝑇(𝑋)

𝑔4 = 𝑙(𝑥𝐿𝑅12(𝜂) + 𝑦𝐿𝑅22(𝜂) + 𝑧𝐿𝑅32(𝜂))𝑔𝑇(𝑋)

𝑓5 = 𝑙(𝑥𝐿𝑅11(𝜂) + 𝑦𝐿𝑅21(𝜂) + 𝑧𝐿𝑅31(𝜂))𝑔𝑇(𝑋)

          (7) 

  

 

where 𝑥𝑘⃗⃗⃗⃗  [𝑥, �̇�, 𝑦, �̇�, 𝑧, �̇�, ∅, ∅̇, 𝜃, �̇�, 𝜓, �̇�, 𝑥𝐿 , �̇�𝐿 , 𝑦𝐿 , �̇�𝐿 , 𝑧𝐿 , �̇�𝐿 ] 
represents an augmented state space vector with respect to 

the one introduced in Eq. (1) with 18 variables including the 

position and the velocity of the CoG of the tank [f],  𝑋 

represents (𝑥, �̇�, 𝑦, �̇�, 𝑧, �̇�),  𝑓𝑇(𝑋) + 𝑔𝑇(𝑋)𝑢1 the sloshing 

dynamics, −𝑔 the gravity and m the total mass. In Eq. (7), l 

represents the offset between the CoG of the drone and the 

tank, 𝑅𝑖𝑗 the transformation matrix between [B] and [E], 𝜂 

the attitude, [I] the moment of inertia, 𝑢1 the total thrust and 

𝑢2,3,4  the roll, pitch and yaw moments.  

 
Figure 3.  UAV Free Body Diagram with Sloshing [42] 

 Given the variability of the mass m (spraying decreases the 

weight of the tank and, therefore the total weight) and the 

unpredictable ground effect disturbance, robust controllers 

represent a suitable choice. A robust controller [43] is a type 

of controller that is designed to maintain system stability and 

performance despite parameter uncertainties, while aiming to 

maximize stability and performance over a wide range of 

operating conditions and disturbances. For instance, if the 

drone has limited computational power onboard, H2/H∞ 

could be employed. The goal of H2 [44] controller is to 

minimize the effect of disturbances on the system output 

while satisfying target performance specifications, while H∞ 

[45] main idea is to minimize the maximum gain from the 

disturbances to the output of the system. While these robust 

controllers show several advantages, they also present some 

disadvantages and limits. In fact, H2 and H∞ require the 

estimation of the envelope of dynamic parameters of the UAV 

that can be cumbersome to carry out in practical applications. 

Additionally, when the model estimate carries high degree of 

uncertainty, the designed control system can lead to a 

suboptimal performance.  This is particularly relevant in the 

aforementioned application, as significant mass and CoG 

location variations can occur leading to an over-conservative 

control law. Therefore, finding the trade-off between 

disturbance rejection and control performance can require 

significant tuning effort and expert knowledge.   

 If sufficient computational power is available onboard, 

robust Model Predictive Control (MPC) [47] could be 

implemented to overcome the challenges cited above. Robust 

MPC is a nonlinear optimal controller that is well suited for 

controlling systems with constraints: a model-based approach 

that uses a mathematical model of the drone to predict its 

behavior over a finite time horizon, and then chooses the 

control inputs that optimize a certain performance criterion 

subject to constraints on the system inputs and outputs. 

However, robust MPC relies on accurate models. Any errors 

or inaccuracies in the dynamic models can lead to suboptimal 

control performance or instability [48]. In addition, robust 

MPC works well for systems with slow dynamics, but it may 

not be suitable for fast-changing systems, such as those with 

high-speed dynamics or rapidly changing constraints. Model 

Predictive Control (MPC) necessitates constant online 

updating of the system model with newly acquired data. 

However, as drones operating in confined spaces require swift 

and frequent movements, leading to sudden changes in both 
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dynamics and disturbances that rapidly need to be updated 

online, deploying MPC may result in instability [49].  

C. Communication  

Wi-Fi network is mainly used in the drone industry as the 

primary system to exchange data with the ground station or 

with the remote control. The latter enables the UAV equipped 

with the right antenna to transmit live footage and telemetry 

data in real time to the terrestrial-based facility. It also allows 

the drone to communicate with other drones in a multi-agents 

system, connect to internet (Internet of Things - IoT) or to 

receive commands from remote control. Thus, the operator 

can switch to manual flight and take control of the drone for 

safety reasons [50] or in case of emergency. However, the 

communication range and reliability of UAVs using Wi-Fi in 

constrained environments can be limited due to multiple 

factors related to the structure of the surroundings itself. 

Physical obstacles such as trees or hills is the major factor for 

communication loss. In this context, cluttered environments 

and presence of obstacles can obstruct the line-of-sight 

between the drone and the ground station or the remote 

control, leading to signal attenuation or loss [51]. In addition, 

other electronic devices using the same frequency band can 

cause interference and degrade the quality of the 

communication link. The interference phenomena has, 

indeed, a severe impact on the performance of multi-agents 

systems (swarm of drones deployed) [52]. The 

communication glitch between drones in the same swarm can 

lead to collision and crash as agents will not be updated with 

other agents’ latest positions. Moreover, the limited 

transmission power of Wi-Fi can limit the effective 

communication range, especially in environments with high 

levels of noise or congestion [53].  

The communication latency and bandwidth constraints of 

Wi-Fi can also be a limiting factor for the real time 

performances of the drone. The latency of the communication 

link can affect the responsiveness and stability of the drone's 

control system [54], especially in applications that require 

real-time parameters online update. The limited bandwidth of 

Wi-Fi can also limit the amount of data that can be transmitted 

between the drone and the ground station, which can be a 

significant issue for applications that require high-resolution 

image or video data. For example, the UAV may need to store 

and transmit images generated by Hyperspectral cameras. A 

hyperspectral camera with 224 spectral bands and a spatial 

resolution of 1 meter can generate approximately 67 GB of 

data per hour for a single flight. Assuming an average transfer 

rate of 50 Mbps (which is a reasonable estimate for a 

constrained environment), it would take approximately 2 

hours 58 minutes to transmit 67 GB of data over Wi-Fi. Thus, 

the real-time performance of the UAV will be impacted by the 

network latency, connectivity, and data transmission speed, 

which can reduce the ability of the drone to perform complex 

tasks or respond quickly to changing conditions. 

IV. PROMISING STATE-OF-ART RESEARCH PROGRESS 

The research is showing new techniques, technologies, and 

algorithms being developed and tested to address the technical 

challenges listed above. 

A. Navigation and state estimation 

Navigation and state estimation in complex and dense 

environments remain major challenges for autonomous 

UAVs. However, recent studies have shown promising 

results. One approach is to integrate deep learning techniques 

with SLAM algorithms, which has demonstrated improved 

feature detection, data association, and mapping accuracy in 

SLAM algorithms. This integration has showed increase in 

state estimation’s robustness in constrained environments. In 

[59], the authors introduced a deep-learning-enhanced visual 

simultaneous localization and mapping (DF-SLAM) system 

that utilizes neural networks for descriptor generation and 

feature extraction and matching. DF-SLAM employs a TFeat 

network [60] and Visual Vocabulary [61] to learn deep local 

features from the input images and uses them to generate 

descriptors, which uses DBoW [62] to match them. VIO is 

then used to estimate the vehicle’s motion. The results showed 

that DF-SLAM achieves better accuracy and robustness than 

other methods, especially in challenging environments with 

low lighting conditions. In [63], the authors present a novel 

convolutional neural network (CNN) based monocular dense 

SLAM system for real-time UAV exploration in emergency 

conditions. The proposed method uses ORB-SLAM [64] to 

extract feature, then uses Single Image Depth Estimation 

(SIDE) [65] to scale the reconstruction delivered by SLAM in 

the object space and to densify the 3D reconstruction by 

fusing the sparse depth map generated by SLAM with the 

CNN. The localization relies on CNN-based visual odometry 

network to estimate the UAV's motion. The system also 

employs a loop closure detection module to correct the drift 

and a 3D map optimization module to improve the chart 

quality. The results show that the proposed system can 

generate accurate and dense maps in real-time while 

outperforming existing state-of-the-art monocular SLAM 

systems in terms of accuracy and efficiency.  

Another approach is the use of incremental SLAM 

algorithms, which incrementally build a map of the 

environment as the UAV moves through it, reducing the 

computational complexity of traditional SLAM algorithms.  

The riSAM algorithm proposed in [66] uses a robust 

optimization framework to handle outlier measurements and 

improve the accuracy of online incremental SLAM. The 

algorithm is based on the Graduated Non-Convexity method, 

which gradually decreases the convexity of the optimization 

problem to avoid local minima and converge to a globally 

optimal solution. The riSAM algorithm incorporates also 

several strategies to improve its performance and 

computational efficiency. For example, it uses a Scale 

Invariant Graduated (SIG) kernel that admits a known 

constant number of GNC iterations, iSAM2 algorithm [67], 

and Powell’s Dog-Leg (PDL) [68]. The algorithm 

demonstrated its efficiency through benchmarking datasets, 

surpassing existing online approaches, and matching or 

exceeding the performance of current offline methods. 

B. Control system  

Recent research has witnessed a shift from classical control 

systems towards more embedded and holistic methods by 

utilizing Deep Reinforcement Learning (DRL) approaches. In 
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contrast to traditional control systems that rely on hand-

crafted controllers and receive desired waypoints from a 

navigation algorithm such as SLAM, DRL-based controllers 

learn the control policy directly from perception sensors and 

output the UAV control signal. This approach eliminates the 

need for human-designed robust control strategies and allows 

the controller to adapt to changing environments and new 

scenarios. When partial models of the environment are 

available, transfer learning approaches can be exploited to 

train baseline agents in a simulated domain and later updated 

upon deployment in the real world.  

Different kinds of reward functions can be employed to 

tune the controller. Typical goals in UAV applications 

encompass maximizing the proximity from a given target 

whilst rejecting disturbances, or following a series of 

successive waypoint or a trajectory. Continuous reward 

signals minimizing either the negative sum error from the 

desired target, or the cross-track error with respect to the 

target trajectory, weighted with Gaussian or exponential 

penalties, are delivering state-of-the-art performance [73]. 

Due to the limited energy resources available onboard UAVs, 

additional penalty terms related to the minimization of power 

consumption are usually embedded in the reward function. 

 When the application entails navigating through  

constrained environments while avoiding obstacles, 

approaches combining DRL and memory-based methods can 

be employed [34]. The latter control system is based on a 

variant of the deep Q-learning algorithm, incorporating a 

memory module that allows the agent to remember past 

experiences and exploit them to make decisions in the present. 

In addition, to account for the drone's limited knowledge of 

the environment, the authors model the task as a Partially 

Observable Markov Decision Process (POMDP), where the 

system's state is not directly observable, and the agent 

receives observations that provide partial information about 

the state. 

A novel approach for safe autonomous motion control of a 

UAV in the presence of disturbances and moving obstacles 

combines a backstepping-based control design approach with 

obstacle avoidance [72]. To ensure safety, a Barrier Lyapunov 

Function (BLF) is directly incorporated into the translational 

control to keep the vehicle outside of a safety sphere 

constructed around the obstacles, while directing it towards a 

desired position. The BLF allows for the direct inclusion of 

obstacle position in the control design, for both known and 

unknown obstacles’ velocities. This approach has the 

potential to be applied in various fields, including robotics, 

autonomous vehicles, and aerospace systems, where safety is 

critical in navigating in complex and dynamic environments. 

C. Communication and IoT 

Advancements in mobile communication technologies, 

such as the introduction of 5G networks, have significantly 

improved the use of drones in precision agriculture. The 

integration of drones with other technologies such as 

autonomous ground vehicles and Internet of Things (IoT) 

devices has opened new possibilities for precision agriculture 

in constrained environments. Multiple studies have been 

conducted to explore potential solutions to overcome the 

limits of the standard Wi-Fi communication as seen in section 

III.C, in order to enable the efficient use of autonomous 

drones in precise agriculture in hill farming. In [69], the 

authors discuss the use of LTE and 5G technologies for UAV 

communication, including the use of small cells, massive 

MIMO-NOMA (Multiple Input Multiple Output - Non-

Orthogonal Multiple Access) and beamforming to improve 

coverage and capacity. It also discusses the potential of 

millimeter-wave and terahertz communications for UAVs, 

which can provide even higher data rates transmission. 

However, the drone may requires more advanced signal 

processing and antenna technologies onboard. The paper also 

highlights the importance of network slicing and 

virtualization for swarm communication, which can enable 

each drones in the system to share network resources with 

other devices and applications while ensuring reliable and 

secure communication. The authors also highlighted some of 

the key research challenges and future directions for UAV 

communication, including the integration of drones into 6G 

networks, the use of machine learning and AI for 

communication and the development of new communication 

protocols specifically designed for drones. In [70], the authors 

proposed a solution that integrates IoT devices and UAVs in 

a 5G hybrid network using satellite communication. This 

communication protocol allows drones to communicate with 

IoT devices and other drones in the network. Indeed, it uses a 

distributed algorithm to optimize the communication links, 

taking into account the battery life of the UAVs and the 

bandwidth requirements of the each devices. In [71], the 

authors introduced a PLS-based security scheme for 

communication networks as security challenges are raised 

nowadays. The proposed scheme uses beamforming and 

cooperative jamming to protect against eavesdropping and 

unauthorized access. 

V. DISCUSSING FUTURE PERSPECTIVES  

In this paper, the major challenges and limitations of 

autonomous drones in precise agriculture in constrained and 

dense environments has been explored. Scientific progress 

and state-of-art technology to overcome these challenges have 

been mentioned. However, there are still several technical and 

economic hurdles that need to be addressed in order to make 

their widespread adoption possible: 

 

• development of advanced sensors: to improve the 

accuracy and reliability of state estimation and path 

planning in complex and dense environments, there is an 

urgent need to design new sensors taking into account the 

requirements needed to operate in constrained 

environments, such as lightweight high-resolution LIDAR 

sensors resisting dusting. 

• improving dynamic obstacle avoidance: to navigate safely 

and efficiently in dynamic environments (drones, workers, 

animals), robust UAV algorithm for detecting moving 

targets are still to be developed. This can be particularly 

challenging in cluttered environments with complex 

topology, such as in mountainous or hilly areas. 
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• cost reduction: to make drones more accessible and 

affordable to small and medium-sized farmers and other 

users, the cost of sensors and computational resources 

must be decrease, while maintaining or improving their 

performance 

• regulation: regulatory approval significantly impacts the 

adoption of autonomous drones in agriculture [55-58]. 

The intricate and lengthy process of obtaining permission 

for UAV operation is regulated by various government 

entities, resulting in substantial regional and national 

variance in drone usage ordinances for agriculture. This 

lack of standardization in UAV regulation generates 

confusion and uncertainty among farmers and drone 

operators. 

VI. CONCLUSION  

In summary, precision agriculture utilizing autonomous 

UAVs, although promising, faces several technical and 

economic challenges. These drones can provide farmers with 

vital data on crop health and soil conditions, aiding in 

optimization of farming practices. However, performance of 

these technologies often declines in challenging environments 

like under forest canopies or on hills. Economically, the high 

implementation cost can be prohibitive for smaller farmers, 

and the need for regulatory approval and investment in the 

technology present further barriers. As we overcome these 

limitations and the technology evolves, precision agriculture 

is expected to become the norm in the near future. 
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