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Abstract 

Neurodegenerative diseases are a group of diseases characterised by progressive loss of 

structure and function of neurons. Conditions under this umbrella tend to have two main 

effects on patients, degeneration of motor function, and degeneration of cognitive ability. 

Two diseases which are closely linked are Amyotrophic Lateral Sclerosis (ALS) which has 

primarily motor effects, and frontotemporal dementia (FTD) which has primarily cognitive 

effects. Despite their different presentations, both have been linked to dysregulation in RNA 

binding proteins (RBPs). All of my work has sought to add to the existing body of knowledge 

around how neurodegenerative diseases act and progress. 

 

The main body of my work has sought to use RNA sequencing data to analyse data relating to 

neurodegenerative diseases. 3 of the studies are relating to the effects on RNA expression 

and splicing of mutations in C9orf72, TAU, FUS, and TARDBP. These chapters aim to further 

elucidate how these genes function, either through analysing RNA expression in novel mouse 

models, or by comparing RNA expression data from samples in the human brain biobank to 

relevant controls. In them I find several promising candidates for further investigation with 

regards to the changes which result from mutations in my genes of interest. 

 

One other chapter uses RNA-sequencing data, and aims to compare data from a total RNA-

seq kit, and a kit produced by Lexogen which aims to be able to provide similar information 

at a lower read depth as total RNA-seq data. While this was more a technical chapter, the 

samples used were from FUS mutant mice and some of the results of analysis has been 

published elsewhere. The final chapter involved creating a tool to analyse degeneration of 

neuromuscular junctions using data from a tool created by a colleague. 

 

Overall, my PhD thesis aims to move the field of research into neurodegenerative diseases 

forward through a combination of improving our knowledge of diseases, improving our 

knowledge of the tools we are using, and creating tools for use by future researchers. 
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Impact Statement 

The work of my project is a collaboration between the UCL institute of Neurology, Dementia 

Research Institute and the UCL Genetics Institute. It has used sequenced data from both 

mouse models and human brain samples.  

 

4 Published papers have involved my work -  “FUS ALS-causative mutations impair FUS 

autoregulation and splicing factor networks through intron retention” (Humphrey et al., 

2020), “FUS-ALS mutants alter FMRP phase separation equilibrium and impair protein 

translation” (Birsa et al., 2021), “NMJ-Analyser identifies subtle early changes in mouse 

models of neuromuscular disease” (Mejia Maza et al., 2021), and “A comparison of low read 

depth QuantSeq 3′ sequencing to Total RNA-Seq in FUS mutant mice” (Jarvis et al., 2020). Of 

these, I am first author on 1 (Jarvis et al., 2020) and co first-author on another (Mejia Maza et 

al., 2021). There have been a total of 52 citations across the papers. 

 

I analysed RNA-sequencing data from samples. One chapter I have worked on evaluated the 

differences between two methods of RNA analysis. The comparison was between total RNA-

seq, broadly considered the gold standard, and low read depth QuantSeq. My work suggested 

possible roles for the relatively inexpensive QuantSeq and ways to validate the results. This 

work has potential to be valuable to many labs doing RNA expression analysis regardless of 

the focus of their research. 

 

The tool I created with my colleague Alan Mejia Maza to automatically classify neuromuscular 

junctions as degenerating or healthy may also have a wide use among other groups. Once it 

has been further refined it may be a key tool in the toolbox of those studying 

neurodegeneration as it can substantially reduce the time spent manually classifying 

neuromuscular junctions which is a slow part of existing neurodegeneration research. It will 

also serve to reduce the level of subjectivity in results making them more easily comparable 

between labs (this is reliant on ensuring that any data that this model and any future model 

is trained on is robust). 

 

My analysis of RNA-seq data in neurodegeneration, either through models or human brain 

samples has revealed possible mechanisms through which some of the mutations of interest 

may act. This helps our understanding of both ALS and FTD, and may help develop treatments 

for both conditions. 
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1.  Introduction 

 

1.1. The Spectrum of ALS and FTD 

Amyotrophic lateral Sclerosis (ALS) is a progressive neurodegenerative disorder. It primarily 

causes degeneration of motor neurons and affects between 1 and 5 people per 100,000 

(Logroscino et al., 2010; Chiò et al., 2013). It results in gradual loss of control in muscles and 

limbs, eventually leading to inability to speak or swallow. Death most commonly results from 

infection due to the inability to swallow and tends to be within 3 years of onset. 

 

Frontotemporal dementia (FTD) is another progressive neurodegenerative disorder. It causes 

degeneration of the frontal and temporal lobes leading to worsening of either behavioural 

inhibition, or language production and comprehension. It affects 15-22 people per 

100,000(Onyike and Diehl-Schmid, 2013) and is the second most common form of early onset 

dementia after Alzheimer’s disease(Ratnavalli et al., 2002). FTD is not directly life threatening. 

It is, however, linked with an increase in risk of death(Loi et al., 2022). It increases the risk of 

infections often through dysphagia, as well as the risk of falls. It may make patients unable to 

care for themselves, and more likely to engage in impulsivity, particularly in the behavioural 

variant(Rascovsky et al., 2011). 

 

 
Figure 1-1.Amyotrophic lateral sclerosis and frontotemporal dementia—extremes on the phenotypic spectrum of a 
single disease from (van Es et al., 2017) 

 

Both disorders peak in incidence around age 60, and are incurable. ALS and FTD are part of a 

spectrum of disease ALS/FTD. There is an overlap of both the changes observed in the brain 
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and some of the phenotypes. Some ALS patients exhibit cognitive decline, and some FTD 

patients may start to exhibit motor deficits. The majority of cases in both diseases are 

sporadic, meaning they have no significant family history. About 10% of ALS cases (Kurland 

and Mulder, 1955; Taylor et al., 2016) and 1/3 FTD cases (Woollacott and Rohrer, 2016) are 

familial. Familial cases, while less common, are of particular interest to study as they can 

provide more obvious insights into the mechanisms of both conditions.  

 

Both disorders have recognisable brain pathology post mortem characterised by aggregated 

protein inclusions in the regions of the brain most affected. Inclusions of TAU (encoded by 

the gene MAPT on chromosome 17) are found in around 45% of FTD patients (Rademakers et 

al., 2004). The majority of the remaining FTD patients have inclusions made up of either TAR 

DNA-binding protein 43kDA (TDP-43) (Neumann et al., 2006) encoded by the gene TARDBP, 

or fused in sarcoma (FUS) (Neumann et al., 2009) encoded by the gene FUS. In ALS, some 

patients have FUS protein inclusions (Kwiatkowski et al., 2009; Vance et al., 2009), and the 

97% have TDP-43 inclusions (Neumann et al., 2006; Scotter et al., 2015). The overlap in these 

protein inclusions further demonstrates the link between the two diseases. While inclusions 

of these proteins are relatively common, mutations are rare. 

 

Another gene which is important in both FTD and ALS is C9orf72. C9orf72 was identified as a 

gene of interest as many familial cases of FTD seemed to have changes in a particular region 

of chromosome 9. Specifically, it was found that an intron of C9orf72 had a large expansion 

within it (Renton et al., 2011). Most of the data available is from Caucasians, where about 7% 

of sporadic and 39.3% of familial ALS patients have mutations in C9orf72 present. Similarly, 

mutations in C9orf72 are present in 6% of sporadic, and 24.8% of familial cases of FTD in 

Caucasians of north American or European descent. While the evidence from non-Caucasian 

patients were relatively sparse, some sporadic black (4.1%) and Hispanic (8.3%) individuals 

had C9orf72 mutations but no Native American, Asian, or Pacific Islander patients had the 

mutation. The initial event was therefore dated estimated to be approximately 1500 years 

ago (Majounie et al., 2012).  

 

Aside from FUS, TARDBP, and C9orf72, there are approximately 20 other genes which have 

been linked to ALS (Nguyen et al., 2018). The first identified genetic cause of ALS was SOD1 

(Rosen et al., 1993), it produces the enzyme Cu-ZN superoxidase dismutase. It is associated 

with somewhere in the range of 10-20% of familial ALS, and 0.5-2% of sporadic ALS (National 

Institute of Health; Chiò et al., 2008). Other genes of interest include UBQLN2, TBK1, SQSTM1, 

OPTN, NEFH, and SETX. 

 

MAPT, and C9orf72 are some of the genes most strongly linked to FTD. While TDP-43 

pathology is common, mutations in TARDBP occur less often than mutations in GRN, a gene 

on the same chromosome as MAPT (Kumar-Singh, 2011). Familial FTD, GRN, MAPT and 



 
 

15 
 
 

C9orf72 mutations are found in 60% of cases. Mutations which occur in less than 5% of familial 

cases include VCP, FUS, CHMP2B, ITM2B, TBK1, and TBP (Olszewska et al., 2016).  

 

Genome Wide Association Studies (GWAS) have been performed comparing patients with the 

conditions to those without. GWAS studies in ALS have found several new loci to be linked to 

increased likelihood of development of disease and to different disease progression rate. 

Whilst some loci are directly linked to genes involved in dominant forms of disease such as 

C9orf72 and SOD1 (Nicolas et al., 2018; van Rheenen et al., 2016, 2021), other loci have 

highlighted variants linked to disease progression as in UNC13A (Van Es et al., 2009). A novel 

method used machine learning to integrate functional genomics into GWAS summaries found 

a rare mutation within the gene KANK1, identifying it as a novel ALS gene. This has 

subsequently been validated, with reproduction of mutations in human neurons leading to 

neurotoxicity and TDP-43 mislocalisation(S. Zhang et al., 2022). GWAS studies of FTD have 

found novel loci linked to disease, including some associated with C9orf72. They have also 

found a link immune enrichment suggesting immune dysfunction is linked to development of 

FTD(Broce et al., 2018; Ferrari et al., 2014; Reus et al., 2021). 

 

1.2. Role of RNA in ALS/FTD 

Both TDP-43 and FUS are RNA-binding proteins. Given the regularity with which inclusions of 

these two proteins appear in patients, it is believed that changes in RNA are, if not necessarily 

causing disease, then at least substantially increasing the likelihood of disease. In this section 

I aim to give a brief background of several genes which I evaluate the effects of within my 

thesis, how they work when functioning normally, and some of what we know about how 

they cause disease. 

 

 
Figure 1-2. Protein domains of TDP-43 and FUS. Structures of the two proteins, coloured by functional domain. 
Positions of each mutation are represented by black bars. Figure courtesy of Jack Humphrey, and adapted from 
(Kapeli et al., 2017). 

1.2.1 TDP-43 

As stated previously, TDP-43 is of interest because it has been linked to most cases of ALS and 

many of FTD. Cytoplasmic inclusions of TDP-43 are found in both diseases. These inclusions 
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occur regardless in both familial and sporadic cases, and do not seem to require mutations to 

occur.   Cases where there are obvious mutations are useful, as they both allow us to model 

disease, and understand some of the more common mechanisms by which disease occurs. 

While pathology of TDP-43 is common, actual mutations seem to be rare. When they do 

occur, they have been found to cluster around the low-complexity domain (Kapeli et al., 

2017), and lead to decreased presence in the nucleus and increased presence in the 

cytoplasm. There is debate over whether the role TDP-43 plays in neurodegeneration is a 

result of reduced presence in the nucleus and therefore reduced nuclear function, or a toxic 

gain of function in the cytoplasm. 

 

TDP-43 is a predominantly nuclear protein but also shuttles to the cytoplasm during normal 

function (Ayala et al., 2008). TDP-43 plays a role in transcription, splicing, RNA transport, and 

translation. With regards to splicing, it binds within introns to change behaviour, with the 

position of binding changing the form which the regulation takes. While this effect was 

initially discovered in single genes, it has since been validated genome wide through RNA-

protein interaction experiments which found some mechanisms through which TDP-43 

performs its regulation (Polymenidou et al., 2011; Kapeli et al., 2016; Tollervey et al., 2011). 

These genome wide studies found that TDP-43 was most heavily associated with 3’ 

untranslated regions and binding in the middle of long introns. Long intron genes are 

significantly downregulated when TDP-43 is depleted suggesting that this binding has a 

stabilising role.  

 

In the cytoplasm, TDP-43 binds a set of genes at the 3’ untranslated region (Colombrita et al., 

2012), and can form RNA granules which are subsequently transported along neurons (Fallini 

et al., 2012; Alami et al., 2014). It plays a role in translation, both of a small number of target 

genes and its own gene. It also interacts with proteins that have themselves been linked to 

translation (Freibaum et al., 2010). Some of the genes it targets are themselves genes linked 

to translation. TDP-43 can bind to the 3’ UTR of TARDBP, acting to regulate its own mRNA and 

thus the production of the protein (Ayala et al., 2011). This has made both knockdown and 

overexpression models difficult to produce. 

 

Full knock out of TARDBP is embryonically lethal, as is being homozygous for certain 

mutations (Kraemer et al., 2010). Conditional knockout causes gradual degradation of 

neurons and atrophy of muscles (Iguchi et al., 2013).  

 

The low-complexity domain of TDP-43 has a high quantity of glycine, glutamine, and 

asparagine. This region is strongly  linked to disease: firstly, pathogenic mutations are 

clustered in this region; further this low complexity domain has important properties that link 

it to disease pathogenesis. It has been shown to be able to undergo liquid-liquid phase 

separation to create droplets of cytosolic and nuclear TDP-43. These droplets are likely to play 
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important physiological roles, but when excessive phase separation occurs, it is thought to 

seed and lead to protein aggregation, the core feature of ALS pathology. It is suggested that 

it may disrupt nucleocytoplasmic transport, induce clearance of nuclear TDP-43, and cell 

death. These aggregates appear to be the most common mechanism of TDP-43 toxicity 

(Baloh, 2011; Gasset-Rosa et al., 2019).   This low-complexity domain is also capable of 

forming many secondary structures, and can have a prion-like effect, causing deterioration in 

other proteins and making those proteins also capable of inducing misfolding in other 

proteins(King et al., 2012). 

 

While aggregates can form spontaneously, they are far more likely with mutations in the 

nuclear localisation signal (Johnson et al., 2009). Some humanised mouse mutations in TDP-

43 also caused neurodegeneration when expressed at a standard physiological level but did 

not cause protein aggregates (Wegorzewska et al., 2009; Barmada et al., 2010). This suggests 

that while the protein aggregates are toxic, and linked to disease, they are not required for 

aberrant TDP-43 to cause neurodegeneration.  A recent review challenges this notion, and 

believes that these protein aggregates are key to cause neurodegeneration in patients with 

ALS (Hergesheimer et al., 2019). Aggregation in the cytoplasm is undeniably a cause of 

neurodegeneration as it leads to degeneration of cells it occurs in relatively rapidly. Some 

hypothesise that targeting it may be targeting too late in the process due to the relatively 

rapid timeframe over which it occurs(Suk & Rousseaux, 2020). 

 

The gain of cytoplasmic function is closely linked to the loss of nuclear function – one does 

not occur in patients without the other. Both have been isolated and investigated 

independently. The effects of loss of function have generally been evaluated in models which 

deplete TDP-43. These models have found that splicing – and particularly cryptic splicing - is 

impaired both across the whole brain, and in pathways specific to certain cell types(Jeong et 

al., 2017; Ling et al., 2015; Wu et al., 2019). While stronger evidence is present for the 

pathogenic effect of cytoplasmic gain of function than loss of function, both play roles in 

pathogenesis, and neither occur independently in patients. 

 

1.2.2 FUS 

FUS is a member of the FET family of RNA-binding proteins. Other proteins in the FET family 

have been linked to frontotemporal lobe degeneration (the pathological counterpart to FTD), 

but have not been strongly linked to ALS (MacKenzie and Neumann, 2012). There have been 

40 mutations in FUS linked to ALS, and it is linked to 5% familial, and 1% sporadic cases 

(Kwiatkowski et al., 2009). Similarly to TDP-43, FUS has a large low-complexity domain. 

Disease causing mutations are most common in this domain and in the nuclear localisation 

signal (Shang and Huang, 2016). Familial disease-causing mutations lead to rapid onset, and 

cause FUS protein aggregates. FUS has also occasionally been linked to FTD pathology, both 



 
 

18 
 
 

through mutant FUS (Broustal et al., 2010; Van Langenhove et al., 2010), and through protein 

aggregates in the absence of mutation (Neumann et al., 2009). 

 

FUS acts to regulate splicing and polyadenylation by binding to GUU motifs in introns and 

3’UTRs (Ishigaki et al., 2012; Lagier-Tourenne et al., 2012; Rogelj et al., 2012). While the 

method of action is similar to TDP-43, it is different enough that they share few targets. FUS 

is presumed to act to stabilise long intron genes, as depletion causes reduced expression in 

mouse models (Lagier-Tourenne et al., 2012). By binding to RNA polymerase II, FUS also 

regulates polyadenylation and may have an effect on transcription elongation speed 

(Schwartz et al., 2012).  

 

There is strong evidence that mislocalisation of FUS is the primary cause of FUS related ALS. 

The mutations in FUS which cause the most severe disease tend to be either in a key proline 

residue in the NLS, or entirely eliminate the NLS through a frameshift or unexpected stop 

codon (Chiò et al., 2009; Bosco et al., 2010; DeJesus-Hernandez et al., 2010). Mutations in the 

NLS are linked to earlier disease onset with a more rapid disease course. While this does 

suggest that mislocalisation is the primary disease cause, it is still not clear whether it is as a 

result of loss of function in the nucleus or gain of cytoplasmic function. 

 

Another mechanism of pathogenesis is increased localisation of FUS to the cytoplasm. This is 

partly linked to the most severe disease course being linked to loss of the nuclear localisation 

signal (Shang and Huang, 2016), and partly due to the evidence around FUS aggregation. FUS 

self-aggregates naturally in the cytoplasm (Murray et al., 2017). While mutations in the NLS 

do not themselves cause FUS to self-aggregate (Sun et al., 2011), they are linked to FUS 

aggregates: Partly due to increasing localisation to the cytoplasm where FUS is more likely to 

self-aggregate, and partly because FUS aggregates are normally dispersed through binding of 

transportin to the NLS (Wang et al., 2018; Yoshizawa et al., 2018). If the NLS is mutated/lost 

this cannot occur.  

 

FUS aggregates form within the cytoplasm due to the large, low-complexity domain. As is the 

case with TDP-43, this region is both more likely to bind to other FUS proteins, and has a prion 

like effect, causing other proteins to misfold (King et al., 2012). 

 

One study seemed to suggest a “two hit hypothesis” for FUS pathology (Vance et al., 2013). 

When cells with higher levels of cytoplasmic FUS experience oxidative stress, the recruitment 

of FUS to stress granules may lead to too much FUS being recruited, leading to the formation 

of FUS aggregates. When there is a large amount of FUS present, it is more likely that it will 

aggregate as their low-complexity domains are more likely to interact and bind. These 

aggregates lead to toxicity and neurodegeneration. 
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Complete knockout of FUS is embryonically lethal in an inbred homozygous strain (Barouch 

et al., 2000; Hicks et al., 2000), but specimens survive until adulthood with no motor deficits 

at 90 weeks old in the heterozygous strain (Kino et al., 2015). While both FUS knockout and 

FUS mutations are lethal when homozygous, only mutant FUS causes the degeneration and 

motor neuron loss associated with disease, confirming the fact that FUS gain of function is 

necessary for neurodegeneration, whilst FUS LOF may contribute to this process but is not 

sufficient (Scekic‐Zahirovic et al., 2016).   

 

1.2.3 C9orf72 

 
Figure 1-3. Format of C9orf72 and depiction of RAN translation of C9orf72 GGGGCC repeats. Courtesy of the 
Isaacs lab  

Mutations in C9orf72 (Chromosome 9, open reading frame 72) highlighted the overlap in 

pathology between FTD and ALS. As stated previously, it is one of the most common 

mutations among Caucasian people, accounting for 40% of sporadic cases of familial ALS, and 

25% of FTD patients. It was first identified as the cause of disease through several genome 

wide association studies, which were eventually traced back to a locus on chromosome 9 

termed 9p21 (Pearson et al., 2011; Mok et al., 2012).  Through deep sequencing, a GGGGCC 

repeat in the first intron of C9orf72 was identified as the most common cause (Renton et al., 

2011). 

 

Not a huge amount is known about the protein C9orf72. It is produced by the gene of the 

same name. It is strongly related to the Differentially Expressed in Normal and Neoplasia 

(DENN) family of proteins (Levine et al., 2013).  It is suspected to play a role in membrane 

traffic in conjunction with Rab-GTPase switches (Levine et al., 2013). Both through implication 

as these mechanisms are related to autophagy, and direct complexes which have been 

observed (M. Yang et al., 2016), C9orf72 has been linked to autophagy. When disrupted it can 

have both positive and negative effects on initiation of autophagy acting to upregulate 

initiation through loss of ability to regulate MTORC1 signalling, but also disrupt vesicular 

transport. Disruption is also linked to alterations of autophagosome formation and lysosome 

function (Beckers et al., 2021). Mutations which cause the repeat expansion seen in disease 

also seem to induce a DNA damage response and cause dysfunction in nucleolins (Farg et al., 

2017) suggesting a role in DNA formation/stabilisation.  
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C9orf72 also may have cell specific functions. It has a high level of expression in myeloid cells, 

macrophages, and dendritic cells compared with other immune cell populations(Atanasio et 

al., 2016; O’Rourke et al., 2016). Induced pluripotent derived microglia with mutant C9 have 

been shown to have disrupted phagocytic activity and heightened inflammatory response 

(Lorenzi et al 2022). This reinforces some links which have been found in to play post-mortem 

mice and patient brains which have suggested that immune cells such as macrophages, 

microglia, and astrocytes play a role in neurodegeneration (Rostalski et al., 2019; O’Rourke et 

al., 2016).   ALS Additionally, several novel transcription sites have been found within myeloid 

cells and certain CNS tissues cell types suggesting tissue-specific function(Rizzu et al., 2016). 

 

In normal function, the first intron of C9orf72 contains some copy of the GGGGCC repeat 

(Renton et al., 2011; Fong et al., 2012). Issues occur when there is a substantial expansion of 

this repeat. A healthy number of copies is generally considered between 6 and 30 (Renton et 

al., 2011; Van Mossevelde et al., 2017), with pathogenic levels that have been found as low 

as 30 and as high as >1000 (Almeida et al., 2013).  

 

There are three proposed mechanisms for how expansion of this repeat causes disease 

(Mizielinska et al., 2013; Gendron et al., 2014; Zhang et al., 2018): 

● Reduced expression of C9orf72 

● Presence of large numbers of RNA foci (aggregates of RNA produced by both sense 

and antisense G4C2 repeats) 

● Production of dipeptide repeat (DPR) proteins through repeat-associated non-ATG 

(RAN) translation. 

 

Reduced expression of C9orf72 is the most straightforward change. If not enough of the 

protein C9orf72 is produced, then it will be unable to undergo its normal physiological duties. 

This may cause neurodegeneration through loss of stability/degeneration of DNA or incorrect 

trafficking at the membrane. 

 

The Isaacs lab termed large aggregates of repeat RNA RNA-foci. RNA foci had been described 

and well-characterised in other neurodegenerative diseases such as Myotonic dystrophy, 

where they were found to sequester an RBP, named Muscleblind, and alter its normal 

function. The quest for identifying the equivalent for Muscleblind in C9orf72 did not yield 

clear cut results. These RNA-foci disrupt nucleocytoplasmic transport (Zhang et al., 2015) and 

other RBPs such as SF2, SC35, and hnRNP-H have been shown to co-localise with RNA-foci. Of 

these, only hnRNP-H has been shown to directly bind to RNA foci (Lee et al., 2013). It has been 

directly shown that high levels of certain proteins produced from the DPRs do directly impair 

RNA metabolism by delaying breakdown of stress granules, and binding ribosomal proteins 
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and others linked to RNA metabolism such as STAU2(Hartmann et al., 2018; Sun et al., 2020; 

Y. J. Zhang et al., 2018b).  

 

Finally, through RAN translation, the repeats lead to the production of substantial numbers 

of DPR proteins. These DPR proteins have been shown to cause neurodegeneration in 

drosophila (Mizielinska et al., 2014) as well as being toxic to cultured cells (Kwon et al., 2014). 

The two most toxic DPRs appear to be poly-GR and poly-PR. These proteins are more 

hydrophilic and less prone to aggregation than other DPRs. They are capable of relocating 

themselves to the nucleus and seem to disrupt ribosomal RNA production(Kwon et al., 2014). 

They have also been shown to affect phase separation of proteins with low complexity 

sequence domains, disrupting the function of membrane-less organelles(Lee et al., 2016). 

1.2.4 MAPT 

 
Figure 1-4. A: Schematic presentation of MAPT genomic structure with the 15 exons shown as boxes. B: The six 
major transcripts resulting from alternative splicing of exons 2, 3, and 10 observed in human brain. A: Filled boxes 
represent constitutively spliced exons. Alternatively spliced exons are in gray. Hatched exons 4a and 6 are not 
expressed in the major brain isoforms. Exon 8, shown in white, is not expressed in human MAPT transcripts. Introns 
and exons are not drawn to scale. B: For each transcript the acronym of the encoded isoform and the number of 
amino acids (AA) is indicated. Figure from (Rademakers et al., 2004) 

 

Through alternative splicing, the gene Microtubule-Associated Protein Tau (MAPT) encodes a 

group of 6 highly soluble protein isoforms called tau proteins. Tau inclusions are much more 

common in FTD, and Alzheimer's disease than they are in ALS, but increased levels of 

phosphorylation of Tau proteins has been found in some ALS patients (Stevens et al., 2019). 

 

Tau proteins are cytoskeletal proteins associated with microtubules. Their primary role seems 

to be microtubule stabilisation in axons (hence MAPT’s name). They perform this through 

interactions with tubulin, stabilising microtubule formation primarily in the distal region of 

axons (Cleveland et al., 1977). In addition to their structural roles, tau proteins impair 
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ribosomal function through binding, reducing protein synthesis (Meier et al., 2016; 

Papanikolopoulou et al., 2019), and play roles in long term memory and certain types of 

learning (Papanikolopoulou et al., 2019). 

 

The main pathological mechanism of tau is hyperphosphorylation of tau proteins. This results 

in the accumulation of tau and formation of paired helical filaments (Alonso et al., 2001). 

These fragments bind into aggregates, these aggregates are one of the primary biomarkers of 

Alzheimer’s disease, initially characterised in 1985 (Brion et al., 1985). The other biomarker is 

extracellular plaques predominantly made of fibrillar amyloid β (Masters et al., 1985). These 

aggregates are also found in 40% of FTD patients. It appears that the predominant pathogenic 

mechanisms of tau are loss of normal tau function, and disruption caused by these 

aggregates. 

1.3. RNA-sequencing 

Francis Crick claimed that central dogma of molecular biology is generally stated to be that 

“DNA makes RNA, and RNA makes protein” (Crick, 1970). This broadly describes the flow of 

information, from relatively permeant DNA, to RNA and proteins which are generally the less 

permeant but usually more capable of specific functions. The amount of RNA produced by 

any particular gene is broadly considered to be a measure of the amount which that gene’s 

level of expression.  

 

RNA Sequencing (RNA-seq) is a form of high throughput sequencing which allows for 

hypothesis free examination of the transcriptome (the array of all RNA transcripts in a cell) 

(Wang et al., 2009). This means that knowledge of which genes may be involved in changes 

of interest are not required and novel changes can be more easily discovered without prior 

hypothesis. This means it is an incredibly useful method and huge amounts of RNA-seq data 

are being produced in response to people recognising this utility. 

 

The two most common methods for sequencing RNA sequencing-by-synthesis, and nanopore 

sequencing. Both methods tend to require the RNA to be separated from the tissue and 

fragmented. Particular types of RNA such as mRNA can then be extracted if desired. The 

length of the functional part of these fragments is called the read length, and is determined 

by the tool being used. In theory, longer reads are better, they can more easily provide more 

information on the read, including knowledge about the isoform, and splicing. Long-read 

sequencing is a developing technology however, it is more error prone, and may require 

different tools to short read sequencing (Heather & Chain 2016; Amarasinghe et al., 2020).  

 

Nanopore works by feeding fragments of RNA through tiny holes (nanopores) in a surface. As 

each base in the RNA passes through the nanopores, it causes a slight change in ions in the 

surrounding area, this change is measured and used to sequence samples (Deamer et al., 
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2016). It has advantages in that it is highly portable, is very good at long read sequencing, and 

does not require conversion to cDNA - which may introduce artifacts - unlike sequencing-by-

synthesis. It will likely become an ever more dominant market force but still has several 

challenges to contend with. The biggest challenge is that it has a higher error rate than 

Illumina sequencing (Senol Cali et al., 2018). These errors are randomly distributed and can 

be more easily fixed during analysis. Since it is a less commonly used technology, some of 

these tools are less well developed than tools for other methods. Nanopore is also often less 

well documented, and is more subject to change than similar Illumina data. Given that 

Nanopore is a relatively young technology, the tools for analysis are still being developed and 

there are fewer people familiar with pipelines for analysis. 

 

All of the sequencing I have analysed has been performed on some variation of an Illumina 

dye-based sequencer – a form of sequencing-by-synthesis. This means that most of the 

comments I make in the remainder of this section are primarily referring to it, although they 

may be applicable to nanopore based methods as well. 

 

The most common read lengths in Illumina sequencing currently range between 50 and 

150bp. In sequencing, RNA is extracted, and then may be filtered to remove types of RNA 

which may not be desired such as ribosomal RNA, or RNA without poly-A tails. This RNA is 

then generally fragmented into smaller parts. RNA then undergoes a process called reverse-

transcription which converts it to cDNA, a more stable form required for amplification by PCR. 

The cDNA is then amplified either through bridge or emulsion PCR. This produces large 

numbers of copies of the transcript (Wang et al., 2009). Generally, only the forward copies of 

these strands are kept, with the reverse copies being removed. Nucleotides with a particular 

dye are then integrated into the mixture and used to create complementary copies of the 

remaining strands. As each new base is added, the strand is excited and the colour of the 

fluorescence is recorded. This fluorescence is used to identify which base the original strand 

has at each position (Canard and Sarfati, 1994; Meyer and Kircher, 2010; Clark et al., 2018).  

 

By default, most sequencing methods provide no information on whether the RNA sequenced 

is from the sense or antisense strand. As genes on the sense and antisense strands may 

overlap, there have been methods developed (Levin et al., 2010; Mamanova and Turner, 

2011) which can attach identifiers to a strand, marking its origin as sense or antisense. These 

can then be used to improve alignment of the sequencing data, and overall accuracy of 

analysis.      

 

The data from RNA-seq is hypothesis free. This means that it can be used for exploratory 

analysis.  Even if initial analysis does not provide obvious, useful results, the data is all based 

on the same basic tool and so, as of right now, all existing RNA-seq data will likely be able to 

take advantage of newly developed tools for analysis of RNA-seq data. This may be through 
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additional context of discoveries, better optimisation of tools for analysis, or realising an 

additional role that a subset of the data may play such as splicing and exon usage (Wang et 

al., 2008; Anders et al., 2012), or the role of non-coding RNAs (Morris and Mattick, 2014).  

 

This is not to say that new methods of sequencing do not hold their advantages. There are 

somewhere in the region of 100 methods for NGS-sequencing listed on the Illumina website 

(NGS Library Preparation; Stark et al., 2019) all aiming to provide an advantage over standard 

RNA-seq. This may be through reduction in cost, increasing ease of use, or through providing 

specific information on changes in specific types of RNA such as mRNA and ribosomal RNA. 

Long read sequencing methods are also increasingly being used to answer new questions that 

have been beyond the reach of short read data. 

 

In addition to analysis of differences between the actual methods of RNA-sequencing data, 

there are also changes in ways to analyse the data. There are several tools/pipelines for 

analysis of existing data and comparisons of tools at any particular step is useful for 

optimisation of existing pipelines or choosing which tools are worth using when developing 

new ones. 

 

As stated in (Stark et al., 2019), RNA-seq is very much in an “awkward teenage phase”. The 

glut of new technologies means that there are many potential comparisons to be made 

between methods. These may be direct comparisons between two methods for sequencing, 

or between methods for differential expression analysis, or a combination; aiming to evaluate 

the most effective ways to analyse new datasets. I have performed some comparisons 

through the course of my PhD, both evaluating methods of sequencing, and trying to optimise 

analysis of some existing data using new tools which have been developed.      

 

1.3.1 Cell type disambiguation 

The human CNS is made up of billions of cells. There are approximately 100bn neurons and it 

is currently believed, a roughly equal number of glia – a collective term for non-electrical cells, 

predominantly oligodendrocytes, astrocytes, and microglia(Azevedo et al., 2009; von Bartheld 

et al., 2016). The specific proportions of cell types within the brain are heterogenous, varying 

between regions of the brain and between individuals. They may also vary between 

conditions.  

 

There are 3 main types of neurons present within the brain. Sensory neurons which carry 

information from sense organs, motor neurons which control muscle activity, and 

interneurons which connect sensory and motoneurons. Developing neurons are called 

neuronal projections. 
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Microglia are immune cells within the brain. In normal function they clear toxic products and 

dead cells from within the brain (Soulet & Rivest, 2008). They have, also been linked to 

neurodegenerative disorders such as Alzheimer’s Disease. In this case they are harmful to 

neurons including via mediating synaptic loss and exacerbating tau pathology(Hansen et al., 

2018). Astrocytes maintain the environment around neurons, controlling levels of 

neurotransmitter within synapses, blood flow within the brain, and maintaining general 

homeostasis (Sofroniew & Vinters, 2010). Finally, Oligodendrocytes predominantly act to 

produce a myelin sheath around neurons (Bradl & Lassmann, 2010). 

 

One area of interest in my research has been evaluating whether proportions of cell types do 

vary between conditions within ALS-FTD. There are existing methods for evaluating levels of 

cell types such as laser capture microdissection (Emmert-Buck et al., 1996) and single-cell 

RNA-seq (Olsen and Baryawno, 2018). These methods tend to be time or labour intensive, 

and provide less information on their own than bulk RNA-seq. There are tools which have 

been developed which use bulk RNA-seq data to generate information on cell types within a 

set of data from overall tissues such as CibersortX (Newman et al., 2019) and MuSiC (Wang et 

al., 2019). This process is called cell type deconvolution. I aimed to evaluate the feasibility of 

using existing methods for cell type deconvolution to evaluate changes in cell types in my 

tissues. If possible, I also hoped to use this information to improve accuracy of differential 

expression analysis. Table 1-1 shows several commonly used methods for cell type 

deconvolution, the broad methods they work, their output, and whether a cell type signature 

is required or provided.  

 

Deconvolution at its core is a method for calculating values of a source based on an output. It 

is utilised in various fields, from audio-mixing to evaluating the path which an electrical 

current takes within the brain. There are two main forms of deconvolution, blind source 

separation (BSS), and guided blind source separation (gBSS). BSS involves taking raw data, and 

without knowing the origins, or how the method used to transform them into the final data, 

calculating the initial input. gBSS knows has some more information on the source data, and 

uses this in conjunction with the output to separate data (Mohammadi et al., 2017). BSS is a 

very difficult problem to solve, and requires a substantial amount of tailoring for datasets. 

gBSS uses known algorithms, combined with a set of data on how the data is mixed to produce 

results. In the case of RNA based cell type deconvolution, it uses a matrix of data on 

expression in individual cell types to generate information on those cell types. I deemed that 

it was not a good use of time to use BSS methods. 

 

When using gBSS, there are two variables with regards to the method: reference dataset, and 

tool. Several tools had reference datasets for blood or cancer cell deconvolution. There did 

not seem to be a gold standard reference dataset for deconvolution of brain tissue. When 

searching for reference datasets, and use of the data, the most common and highest quality 
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reference datasets for deconvolution in RNA-seq data seemed to be for blood samples or 

cancer tissues. While the tools developed are generalisable, they require a reference dataset. 

At the time of my analysis, Voineagu lab (Sutton and Voineagu, 2020) were putting substantial 

time and effort into attempting to develop a gold standard reference dataset. As there was 

another group working on this problem, who had already encountered several hurdles, 

developing my own reference dataset was considered beyond the scope of my project. They 

subsequently decided that developing a reference dataset may not be a worthwhile use of 

time(Sutton et al., 2022). The existing methods which have integrated brain cell type 

reference datasets, tend to not be true deconvolution methods, rather giving more relative 

expression results.  

 

There were some methods (Kelly et al., 2018; Hagenauer et al., 2018; McCoy et al;, 2018, 

Wang et al., 2020) which are specifically designed with deconvolution of neuronal data in 

mind. The lack of comparison of relative efficacy meant that when deciding on which method 

to use, my decision predominantly rested on ease of use, format of output data, and intended 

use cases. A comparison of existing methods specifically designed for brain cell type 

deconvolution on known data would be of great utility. In addition, a tool which allows for 

selection of specific datasets and regions which are already integrated broken down by the 

factors which (Sutton et al., 2022) would be hugely useful to researchers seeking to perform 

bulk brain RNA-seq analysis.  

 
Table 1-1. Table of cell type deconvolution methods. From (Sutton et al., 2022) 

Algorithm Class Signature Foundation Output Citation 

DeconRNASeq Deconvolution User-specified Non-negative 
least squares 

Proportions (Gong & 
Szustakowski, 
2013) 

CIBERSORT Deconvolution User-specified Support 
vector 
regression 

Proportions (Newman et 
al., 2015) 

Dtangle Deconvolution User-specified Linear mixing 
model 

Proportions (Hunt et al., 
2019) 

MuSiC Deconvolution User-specified 
(single-cell 
only) 

Weighted 
non-negative 
least squares 

Proportions (X. Wang et 
al., 2019) 

Linseed Deconvolution None Simplex 
topology 

Proportions of 
unlabelled cell-
types 

(Zaitsev et al., 
2019) 

BrainInABlender Enrichment In-built 
(human and 
mouse brain) 

Average 
scaled 
expression of 
marker genes 

Enrichment (Hagenauer et 
al., 2018) 
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xCell Enrichment In-built 
(cultured 
human brain 
cells) 

Gene set 
enrichment 
analysis 

Enrichment (Aran et al., 
2017) 

Coex Enrichment None Weighted 
gene co-
expression 
network 
analysis 

Enrichment for 
unlabelled cell-
types 

(Kelley et al., 
2018) 

 

 

 

1.4. Aims of my thesis 

The goal of my thesis was to bring novel insights into the biology of ALS and FTD through the 

analysis of RNA-seq data from human-derived samples and mouse models of the disease. 

Aside from one outlying chapter, this was predominantly through analysing RNA-sequencing 

data: Either by cataloguing the effects of mutations/pathologies on RNA-expression, or by 

analysis of the effectiveness of tools for RNA-sequencing analysis. 

 

In the process, I tested and applied various existing RNA-seq data processing and analysis 

tools, and devised new strategies for statistical analysis, data integration and visualisation. 

RNA-seq data was used because many of the mutations which have been linked to ALS-FTD 

are involved in RNA-regulation.  

 

My final thesis is a combination of various analyses. Most were linked to neurodegeneration 

and RNA-seq analysis. At various points I examine the role effect of mutations in TDP-43, FUS, 

TAU, and C9orf72 on RNA expression. I have also worked to attempt to extract more 

information from our RNA-seq data, evaluate methods for analysis, and investigate changes 

in either makeup or expression in brain cell types. Most of my analysis has been performed 

on mouse models bred, developed, or created by Nicol Birsa, Agnieszka Ule, or Carmelo 

Milioto. I have performed some analysis on human brain data which was from the UCL Brain 

Bank, and trained a machine learning model on data created from a method by Alan Mejia 

Maza.   

 

 

1.5. Chapter Abstracts 

1.5.1 Comparison of low read depth QuantSeq and RNA-seq – Chapter 3 

Transcriptomics is a developing field with multiple new methods of analysis being produced 

which may hold advantages in price, accuracy, or information; QuantSeq is one such method. 
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It is a 3’ sequencing method which aims to obtain similar information on differential gene 

expression with at a lower read depth than standard RNA-seq. It is a method of particular 

interest to the Fratta lab as it can also be used for information on differential polyadenylation. 

Changes in polyadenylation have been linked to FUS and therefore we were interested in 

seeing if QuantSeq was able to provide useful information at much lower read depths. Mouse 

models of both FUS knockout, and a humanised FUS mutation were sequenced along with 

littermate controls using both low read depth QuantSeq and total RNA-seq. I then compared 

the results of the two methods.  

 

1.5.2 Differential Expression in Post Mortem brain tissue in FTD patients – Chapter 4  

The Fratta Lab has a large set of RNA-seq data from human brains derived from a mix of 

healthy, ALS, and FTD patients. We already had a dataset from FTD patients with both C9 and 

TAU morphology as well as relevant control brains. The goal of my analysis was twofold: first 

I aimed to examine the changes in expression in our patients when compared to both each 

other and our control dataset, second, I aimed to see what role differences in cell types might 

play, and work out how to best integrate this information into differential expression analysis. 

 

1.5.3 Analysis of C9orf72 repeat expansion in mice – Chapter 5  

Mutations in C9orf72 are one of the most common causes of both ALS and FTD, specifically, 

a hexanucleotide expansion in an intron. Carmelo Milioto of the Isaacs lab created mouse 

models of two proteins created by repeat expansions which have been most strongly linked 

to disease. Upon receiving the data, my objective was to investigate the changes that these 

repeats caused over time, and how the two proteins differed from each other. 

 

1.5.4 Analysis of F210I mutant mouse data – Chapter 6  

Members of our lab created mice which have a point mutation in one of tardbp’s RNA binding 

domains. While homozygosity of this mutation is embryonically lethal, heterozygous mice 

grew to adulthood with no neuropathology.  I was provided with RNA-sequencing data from 

adult heterozygous mice, as well as embryonic data from homozygous mice. My goal was to 

analyse the heterozygous mouse data which had not been previously analysed and also 

compare the changes seen to changes in the homozygous mice. 

 

1.5.5 Identification of degenerating neurons using machine learning – Chapter 7  

Using confocal microscopy to study neuromuscular junctions (NMJ) is common practice in the 

study of neurodegeneration. Existing methods are to an extent manual, requiring 

thresholding and manual judgements of which NMJs are degenerating and which are healthy. 

My colleague Alan Mejia Maza developed a method which was more automatic, removing 

the manual thresholding, and which produced more morphological information than other 

methods. I used the results from his method to create a machine learning model which can 

automatically classify NMJs into healthy and degenerating based on the output of his method. 
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2. Methods and RNA-Seq analysis pipeline 

 

2.1. Why we need a pipeline 

All but one of my results chapters involves analysis of RNA sequencing data. In order to ensure 

that this can be done effectively a pipeline was created primarily by other members of the 

Plagnol lab. I have occasionally personalised some steps or needed to run them manually both 

due to differing needs between projects, and issues running the pipeline on the UCL 

Computer Science cluster. An overview of the pipeline can be seen in Figure 2-1.  

 

 

 
Figure 2-1. Diagram of the ways in which the RNA-seq pipeline processes data. Taken from 
https://github.com/plagnollab/RNASeq_pipeline/ 

 

2.2. Quality control and read alignment 

The first two steps in our pipeline are pre-processing steps. They involve running FastQC, then 

if the data is considered degraded, we recommended that Trim Galore is run. FastQC v0.11.2 

(Andrews, 2010) is a tool that produces visual representations of the quality of the reads of 

each sample.  It allows for quick and obvious evaluation of the quality of reads. This can show 

any issues introduced either during library preparation, or sequencing itself. 
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Smaller reads may also have adapter sequences which are used during sequencing. High levels 

of adapter sequences most commonly occur if the original RNA is heavily degraded or there’s 

a flaw in fragmentation. If the proportion of adapter sequences are too high, they may 

interfere with alignment. We have included another option to run Trim Galore v0.4.5 

(Krueger, 2012) which acts to remove both these adapters and low-quality ends of reads, 

setting the quality cutoff to 20. All other arguments were left as default. 

 

The first main step of the pipeline is properly aligning the reads present in the FASTQ files to 

the appropriate genome. As well as being aligned to the genome, in RNA sequencing (as 

opposed to DNA sequencing) information on which sections of the gene have been spliced 

out, and the location of these splice sites is recorded. This information can be stored as splice 

junctions and used for further analysis. 

 

As far as we are aware, the current gold standard for RNA-seq alignment which includes splice 

junctions (ignoring alignment-free comparisons such as Kallisto (Bray et al., 2016)) is Spliced 

Transcripts Alignment to a Reference henceforth known as STAR, we used v2.4.2a (Dobin et 

al., 2013), using zcat as the command to read files, and 4 threads, all other arguments were 

left as their default. It tends to outperform other methods both in terms of accuracy and 

speed. It tends to be faster on systems with large RAM because it loads the whole genome 

into memory to allow faster access, and uses the seed-and-extend algorithm which helps to 

quickly find the best location for splice junctions. 

 

NovoSort V1.03.09 (http://www.novocraft.com) is used to sort the BAM files. The arguments 

used are: -md (mark duplicates), -xs (secondary alignments do not have duplicates removed), 

and -f (sorting is forced). The SAMtools V1.2 (Danecek et al., 2021) index function V1.2 is used 

to index the sorted BAM files using default arguments. 

 

Finally, our pipeline counts the number of reads that are mapped to each exon using HTSeq 

v0.9.1 (Anders et al., 2015). We use Ensembl transcript annotation as our reference 

(Cunningham et al., 2015). The functions GenomicArrayOfSets, GFF_Reader, SAM_Reader, 

BAM_Reader, and pair_SAM_alignments are used where relevant. Arguments are set to 

default, aside from stranding which is changed depending on the data. 

 

 

 

 

 

http://www.novocraft.com/
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2.3. Differential expression 

R version 3.5.1 was used for all differential expression, splicing, and machine learning analysis. 

It was running within RStudio version 1.3.959. 

 

Differential gene expression is generally the primary rationale for performing an RNA-seq 

experiment. Experiments tend to be performed by sequencing multiple biological replicates 

of both the mutant and wildtype. While the cost of sequencing has been rapidly decreasing, 

it is still often prohibitively expensive to sequence a lot of samples meaning that an algorithm 

needs to be chosen carefully. We decided to use DESeq2 (Love et al., 2014) because it is faster 

than other algorithms, and has been designed in such a way that robust statistical inferences 

can be made from experiments with a small number of replicates. I ran it via the R package 

EnrichmentBrowser v2.12.1 (Geistlinger et al., 2016). Default Arguments were used aside 

from setting the argument for which algorithm to use to DESeq2 (aside from the cases where 

another algorithm was used). DESeq2 V1.26.0 is used to produce normalised reads per counts. 

This uses a median of ratios to normalise counts described in the paper regarding DESeq 

(Anders et al., 2010).  

 

The package pheatmap is then used to create heatmaps of expression where relevant. I input 

the normalised reads produced by DESeq2, generally amongst the most variant genes, and it 

produces a heatmap. The log of these normalised reads are used to increase readability. All 

arguments are set to default, and Euclidian distance is used to perform hierarchical clustering.  

 

In most cases, I did not perform differential expression as part of the main pipeline, preferring 

to run it manually to allow for greater flexibility than using the pipeline.  When DESeq2 is run, 

first the reads are summed then the reads of each gene are normalised for each sample in 

the library in order to make it easier to compare samples while accounting for library size. It 

then assumes normalised read counts have a binomial distribution and uses that assumption 

to fit a negative binomial probability distribution. In order to improve our ability to visualise 

the data we then shrink the dispersion using the function lfcShrink which improves 

performance on some datasets and makes the rest easier to visualise (Love, n.d.).  

 

The software then fits two generalised linear models: one with the null hypothesis that there 

is no difference between expression of a gene across the two conditions, and one for the 

alternative hypothesis that there is. The results of the two models are then compared using 

a Wald test to see which fits best. Due to the large number of tests, multiple testing correction 

needs to be performed. DESeq2 uses the Benjamini-Hochberg (Hochberg, 1995) method to 

do this.  

 

The final output of DESeq2 has the name and Ensembl ID of each gene, the mean reads across 

all samples, the fold change of number of reads across the two conditions, as well as the 
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adjusted and unadjusted P-values.  P-values are calculated by DESeq2 using a Wald test, and 

adjusted using Benjamini and Hochberg correction. P-values are a measure of the likelihood 

that a value would be as extreme or more extreme than the one observed in the analysis 

purely due to chance. Adjustment is required as when performing a large number of tests, it 

is likely that a large number of samples would appear to be significant. The adjusted p-value 

adjusts the p-values to correct for the number of tests which have been performed – in this 

case the number of genes which have been tested for significance. Unless explicitly stated 

otherwise, the adjusted p-value of under 0.05 is the significance threshold used. 

 

Gene ontology (GO) analysis is a method used with the goal of reducing the complexity of 

interpretation of analysis. It does this by producing measures of whether a pathway seems to 

be significantly enriched/depleted compared with what is expected. The GO project was the 

first large scale project relating to this. Their goal was to standardise terms used to describe 

mechanism, and produce a database of genes and the pathways with which they are 

linked(Consortium, 2004). I performed GO term analysis by finding all genes which were 

significantly differentially expressed. I then used a combination of topGO v 2.34.0 (Alexa and 

Rahnenfuhrer, 2020), and pathview v1.22.3 (Luo and Brouwer, 2013) to produce GO term 

networks based on these genes. To calculate differences, both Fisher’s exact test and a 

Kolmogorov-Smirnov like test are used by topGO. Those networks were then re-created using 

yEd (yworks, 2019) to allow for easier formatting and text size changing to improve 

readability. Relative enrichment / depletion was measured against a background gene list of 

all genes which were expressed within my samples that had not been filtered out due to low 

expression. 

 

2.4. Differential splicing 

Another possible use for RNA-Seq data is the investigation of differential splicing or exon 

usage. In order to look at differential exon usage, we use the R package DEXSeq v1.5.3 (Anders 

et al., 2012) which, like DESeq2, fits 2 generalised linear models over a negative binomial 

distribution and tells us whether it is more likely that the results we see are due to random 

chance or a real difference between conditions, which causes this change in the reads seen 

in each exon.  

 

In order to look at differential splicing we use a package called SGSeq 1.4.0 (Goldstein et al., 

2016) which normalises the reads of each exon and then finds the type of splicing events that 

are observed (both annotated and novel), and the number of reads of each event that we see 

in each sample. We then instruct DEXSeq to treat each splicing event as a gene and each 

variant of that particular splicing event as an exon. This allows us to identify alternative 

splicing events. 
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2.5. Evaluating changes in cell types 

Brain tissues are relatively heterogeneous in their makeup. As I am also working with 

neurodegeneration, I surmised that it might be possible to evaluate whether there are 

differences in the relative balance or levels of RNA expression of certain cell types in some of 

our brain data.  

 

In order to investigate the possibility of changes I used the R package BrainInABlender (BIAB) 

(Hagenauer et al., 2018). This package performs cellular deconvolution on bulk RNA-seq data 

to provide relative levels of each of a predefined set of brain cells. It takes normalised reads 

of genes as an input, and further scales them to ensure no one sample exerts too much 

influence on the balance in other cells. Comparisons are then performed between these 

normalised, variance stabilised data, and built-in datasets of representative expression of 10 

different brain cell types. This comparison is used to work out the relative levels of each cell 

type in datasets. 

 

Integrating the results of BIAB into our differential expression analysis was also something 

with which I experimented. I attempted to use formulas which treated each cell type as an 

individual covariate e.g.  

 

Age + Sex + Cell type 1 + Cell Type 2 + Cell Type 3 + condition 

 

This style of formulas caused errors in DESeq2 which seemed to be due to insufficient 

differences between our cell types. The format  

 

Age + Sex + Cell type 1:Cell Type 2:Cell type 3:condition + condition 

 

was able to run more consistently. In my final analysis I settled on the approach of only 

including cell types within the model if there are significant differences in relative cell type 

balance between cells, and that, when desired, they should be integrated as an interaction 

term with the condition in DESeq2’s formula. 

 

2.6. Machine Learning 

Supervised machine learning is a process of providing a dataset to a computer with certain 

attributes and groups into which they need to be classified. An algorithm then finds the best 

ways to classify each sample in the training dataset into the groups and tests its accuracy. The 

most accurate models can then be used to predict the classes of new data (Jiang et al., 2020).  
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In chapter 7, models were trained on data created by my colleague Alan Mejia Maza’s imagej 

plugin NMJ Analyser (Mejia Maza et al., 2021). The models were created using the R package 

Caret V 6.0-78 (Kuhn 2008). Two models were created, one which used the raw data, and one 

which equalised the number of denervated and healthy NMJs (1000 each). In both cases, 80% 

of the data was used for training models, and the remaining 20% was used to evaluate 

models. Both models created were random forest models created using 10-fold cross 

validation. 
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3. Comparison of low read depth QuantSeq 

and RNA-seq 

 

3.1. Publication 

This comparison of methods has been published in the journal Frontiers in Genetics (Jarvis et 

al., 2020). Elements of this analysis have also been published in Science Advances (Birsa et al., 

2021) and Nucleic Acids Research (Humphrey et al., 2020). The text present here is largely 

adapted from (Jarvis et al., 2020). 

 

3.2. Introduction 

As explained in the introduction, mutations in Fused in Sarcoma (FUS) are linked to 

development of amyotrophic lateral sclerosis (ALS). Changes in the levels of FUS cause 

significant changes in splicing and expression (Ishigaki et al., 2012; Coady and Manley, 2015; 

Humphrey et al., 2020). Members of the Fratta lab worked to develop a mouse model which 

carries mutations in endogenous FUS, this mutation causes skipping of the penultimate exon 

in FUS – exon 14 – and will henceforth be known as FUS d14 (Devoy et al., 2017). It is 

considered a humanized mutation, as it is a mutation found in humans which has been linked 

with onset of ALS (DeJesus-Hernandez et al., 2010). It expresses ALS at endogenous levels 

when heterozygous, and causes progressive motor neuron loss in midlife, so has a similar 

effect to that observed in patients. This allows us to see the effects of the mutation without 

the overexpression present in some other FUS models. Concurrent with our mouse models 

we produced a set of mice who’s FUS had been fully knocked out (FUS KO), these, along with 

littermate controls for both mutations, were sequenced using total RNA-seq and the changes 

were compared. I found the expression changes induced by these mutations appeared to 

mostly be caused by loss of function (Humphrey et al., 2020). It does this by changing levels 

of intron retention events in RBPs, causing them to be unable to correctly function.  

 

We also sequenced the same samples using a form of 3’ sequencing called QuantSeq to 

compare the performance of these two different approaches in evaluating gene expression. 

QuantSeq aims to be able to provide useful information about differential expression at lower 

read depths than other methods, as well as providing data on differential polyadenylation 

(Moll et al., 2014). After fragmentation of the constituent RNA, QuantSeq extracts only 

fragments which have a polyA signal attached. These fragments are the only ones sequenced 

meaning that multiple fragments from the same initial piece of RNA will not be sequenced, 
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reducing redundancy. This allows for a more accurate gauge of expression at lower read 

depths. 

 

In order to investigate the viability of using QuantSeq as a possible replacement for total RNA-

seq, I compared the results of the sequencing of two datasets; Fus KO and Fus d14, each 

against their own wild-type (WT) littermate controls. I observed differences between the 

genes that are found to be differentially expressed using the two methods and aimed to 

identify some possible causes.  

 

3.3. Methods 

FUS knockout mice were obtained from the Mouse Knockout Project [FUStm1(KOMP)Vlcg]. 

FUS d14 mice were created as previously described (Devoy et al., 2017). All procedures for 

the care and treatment of animals were in accordance with the Animals (Scientific 

Procedures) Act 1986 Amendment Regulations 2012. The total number of samples was four 

FUS KO mice and four WT littermate controls, and four FUS d14 mice with four of their own 

littermate WT controls. All mouse work was performed by Nicol Birsa. 

 

For RNA sequencing experiments FUS d14 or KO heterozygous and homozygous mice were 

compared to their respective WT littermates. Spinal cords were collected from E17.5 mouse 

embryos. Tissues were snap frozen, genotyped and total RNA was extracted from the 

appropriate samples using Qiazol followed by the mini RNAeasy kit (Qiagen). RNA samples 

used for sequencing all had RIN values of 9.9 or 10. The same samples were used for total and 

QuantSeq sequencing and preparation and extraction was performed by Nicol Birsa. For total 

RNA-seq, cDNA libraries were made at the Oxford Genomics facility using a TruSeq stranded 

total RNA RiboZero protocol (Illumina). 

 

Libraries were sequenced on an Illumina HiSeq to generate paired end 150 bp reads. For 

QuantSeq libraries the 30 mRNA-seq library prep kit REV for Illumina (Lexogen) was used 

QuantSeq and samples were sequenced by the Lexogen facility (Austria). In QuantSeq the 

average number of reads was 933,955 in d14 and 1,453,108 in KO. In RNA-seq the average 

number of reads was 35,678,902 in d14 and 39,159,292 in KO. The full number of reads found 

in each sample can be found in Table 3-1. 

 

Alignment of the RNA-seq samples was performed by the pipeline as described in chapter 2 

using an in-house pipeline. Gregor Rot aligned our QuantSeq samples in the method described 

in his paper (Rot et al., 2017). This method also uses STAR, but adds in filters to reduce 

instances of internal priming by filtering alignments containing stretches of six consecutive A 

or with 70% A coverage within 10 bp of the polyA signal. Differential Expression was 

performed using the DESeq2 algorithm via EnrichmentBrowser as described in Chapter 2.3. 
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Paired T-tests were used to test for correlation where appropriate. The full code for 

differential expression and comparisons between the two samples can be found on GitHub 

(https://github.com/SethMagnusJarvis/PhDFigureCreation/tree/main/QuantSeq)  

 

 
Table 3-1. Number of reads sequenced in QuantSeq and RNA-seq 

Sample Name QuantSeq Count RNA-seq Count 

d1WT 582093 35709893 

d2WT 1326069 38443056 

d3WT 1123340 43643022 

d4WT 875931 37918784 

d1HOM 736595 36154653 

d2HOM 929399 40040056 

d3HOM 913675 32262506 

d4HOM 984539 21414181 

k1WT 1456620 33683581 

k2WT 1440645 33593705 

k3WT 1429041 39451942 

k4WT 1295541 37243756 

k1KO 1276747 29531417 

k2KO 1718545 35790444 

k3KO 1503195 54350352 

k4KO 1504529 46666652 

3.4. Results  

3.4.1 Analysis of overall differences between methods 

 

We performed our methods comparison on two sets of samples derived from embryonic 

spinal cords of: (a) four Fus KO mice and WT littermate controls, and (b) four Fus d14 mice 

with their own littermate WT controls. The same RNA samples were then sequenced either 

using standard total RNA-seq for library preparation or QuantSeq kits produced by Lexogen. 

QuantSeq selectively amplifies regions of RNA close to a polyA signal, whilst total RNA-seq 

sequences all pieces of RNA present within the cell regardless of a presence of a polyA signal. 

The core differences between the two methods are illustrated by Figure 3-1.    

 

Our intention with this data was to evaluate the relative performance of low read depth 

QuantSeq against RNA-seq to see whether it would be a suitable supplement to, or 

replacement for RNA-seq in our lab given as it is comparatively inexpensive, and can provide 

accurate information on differential polyadenylation, a topic in which I am interested as ALS 

has been shown to have an effect on polyadenylation. 
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Figure 3-1. Plot comparing QuantSeq and Total RNA-seq. It demonstrates that Total RNA-seq uses all fragments 
from all reads, while QuantSeq only uses fragments which have polyA tails attached. From Jarvis, S. et al 2020 

 

We made PCA plots of normalised reads by gene in both datasets (Figure 3-2). The way the 

data segregated seemed to show that the two samples were not directly comparable. This 

was because the RNA-seq samples clustered more strongly with the other RNA-seq samples, 

than they did with themselves, or other samples sequenced with the same mutation..  

 
Figure 3-2. PCA of normalised RNA expression by gene in (a) d14 and (b) KO. Both figures show that the samples 
are more similar to the samples which were sequenced using the same method than they were to the samples 
taken from the same organism sequenced using different methods. 
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In order to evaluate whether there was a correlation overall despite the differences, I 

investigated whether the mean expression of genes correlated between methods in each 

mutation (Figure 3-3). There appeared to be a positive correlation in the graphs and I found 

that this was reflected in a paired t-test in both datasets (cor = 0.3515, p < 0.0005 in the d14 

datasets, and cor = 0.3586, p < 0.0005 in the KO datasets). In other words, there is a 

statistically significant positive correlation in the number of reads per gene in QuantSeq and 

RNA-Seq. Some of the differences observed may be partially due to how small the size of the 

correlation is, but it also means that differences observed are mainly due to other factors. 

 

 
Figure 3-3. Scatter plots of log Mean reads QuantSeq vs log mean reads in RNA-seq in (a) d14 and (b) KO from 
Jarvis, S. et al 2020 

 

When performing this step, I noticed that several genes found in the RNA-seq dataset were 

not found at all in the QuantSeq dataset as they did not appear in the list of genes which had 

a mean number of reads in QuantSeq when I joined the tables. Some of these were due to 

low expression in QuantSeq resulting in them being filtered out, but some were pseudogenes 

or genes which had not been experimentally confirmed. QuantSeq is only capable of 

interacting with RNA which has polyA signals attached, this means that it can only work with 

RNA which is relatively heavily processed and likely to be translated into a protein. These 

genes therefore cannot be detected by QuantSeq and were removed from future analysis. 
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Figure 3-4. Comparison of Z-scores in QuantSeq and RNA-seq in (a) d14 and (b) KO datasets. Z-scores are a 
signed measure of significance based on the p-value and fold change of the gene. Both panels broadly show that 
genes which are significant using one method are either also significant with the same direction of fold change in 
the other method, or are non-significant. from Jarvis, S. et al 2020 

 

After running differential expression analysis using DESeq2 on the sequenced samples and 

their relevant controls, I calculated the signed z-scores – a measure based on the p-value and 

the fold change of the gene. To see if the trend in expression resulted in a similar trend in 

differential expression of genes I created Z-score plots comparing RNA-seq and QuantSeq 

data (Figure 3-4). Genes with an unsigned z-score greater than 2 (equivalent to an unadjusted 

p value of 0.023), meant these genes were most likely to be significantly differentially 

expressed, rarely exceeded the significance thresholds in opposite directions in analysis of 

QuantSeq and RNA-seq.  

 

 
Figure 3-5. Venn diagrams showing overlap of significant genes (padj <0.05) between QuantSeq and RNA-seq in 
(a) d14 and (b) KO datasets. It shows that in the d14 samples 2/3 genes significant in QuantSeq are also significant 
in RNA-seq, and in KO that only 10.7% of genes significant in QuantSeq are significant in RNA-seq. 

When I directly compared genes which were significantly differentially expressed (adjusted p-

value < 0.05) (Figure 3-5) I found that of the 70 genes which were found to be significantly 
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differentially expressed in RNA-seq, only 2 were also found in QuantSeq (Pspc1 and Selenop). 

QuantSeq did find one gene to be significantly differentially expressed that RNA-seq did not, 

Mt2 – a gene linked to metal ion binding. Substantially more genes were found to be 

significantly differentially expressed in our KO QuantSeq dataset. Only 10.71% of the genes 

which were found to be significant in QuantSeq were also found to be significant in RNA-seq 

despite both groups having more genes significantly differentially expressed overall. The 

genes which were found to be significantly differentially expressed in both datasets were 

Trim72, Fus, Bcas1, Gjd2, Ahi1, and Chodl are linked to, among other things, cell repair and 

development of the nervous system(Cong et al., 2020; Ferland et al., 2004). 

 

 
Figure 3-6. Venn diagrams showing the comparison genes found significant using an unadjusted p-value of 0.05 
in one dataset and an adjusted p-value of 0.05 in the other dataset, using unadjusted RNA-seq p-values in a-b and 

unadjusted QuantSeq p-values in c-d 

 

Adjusted p-values are used to reduce the likelihood that a difference in levels of expression is 

due to random chance. I thought it might be useful to test relaxing the significance threshold 

of one of the comparisons at a time to evaluate whether the overlap in significance was 

increased. There is a chance that the stringent adjustment was meaning that genes where 

there truly was a difference were being obscured as it did not quite reach significance. Since 

we were evaluating a specific pool of genes, I felt this was not unreasonable. It would also let 

us see if it was potentially a read-depth issue, causing subtle changes in expression to be 

missed as they did not reach the extremes required for adjusted significance (Figure 3-6). In 

the KO data I found that when I relaxed the QuantSeq threshold, the percentage of RNA-seq 

genes that overlapped rose from 10.71% to 35.71%. There was a bigger increase when I 

relaxed the RNA-seq threshold, where the overlap with QuantSeq rose from 10 to 36% of the 

total genes QuantSeq found to be significant. 



 
 

43 
 
 

 

To continue our investigation into the differences between our two methods of sequencing I 

ranked each gene by its mean expression relative to the expression of other genes in the same 

sample (Figure 3-7). I found a slight but significant correlation of the rank in both the KO (r2 

0.2795, p-value <0.0005) and d14 (r2 0.323, p-value <0.0005) samples across genes which 

were significant in either sample. This supports the hypothesis that read depth and sampling 

coverage are a major source of the discrepancies observed. 

 
Figure 3-7. Comparison of genes found to be significant in one dataset, ranked by their relative expression in d14 
(A-B) and KO (C-D). Genes are coloured green if only significant (padj < 0.05) in RNA-seq, blue if only significant 
in QuantSeq, and red if significant in both. Panels B & D use a relaxed threshold for red, where if a gene is adjusted 
significant after multiple testing correction in one dataset, it only needs to have an unadjusted p-value threshold of 
0.05 in the other. From Jarvis, S. et al 2020 

 

Ten genes which were significantly differentially expressed in QuantSeq were not present in 

the matrix of Reads from our QuantSeq data. Of these, eight were found as fusion genes, and 

two had been filtered due to having very low reads. The majority of genes found to be 

significantly differentially expressed in RNA-seq were not found in QuantSeq data. Figure 3-8 

shows the breakdown of these genes. The majority of these genes had very low expression, 

although some had no expression at all in our data. Several of the genes which were not found 

were mostly antisense or long non-coding RNAs, these would not be found in QuantSeq as it 

requires RNA transcripts to have polyA tails which non-functional genes do not have. 
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Figure 3-8. Bar plots showing the distribution of genes that were found significant in RNA-seq but were not present 
in our QuantSeq differential expression results after filtering pseudogenes and genes to be experimentally 
confirmed in (A) d14 and (B) KO. From Jarvis, S. et al 2020 

 

 

 

 

 

 

 
Table 3-2.  Table showing overlap of significant GO terms in each dataset 

  GO terms only 

significant in Total 

RNA-seq 

GO terms only 

significant in 

QuantSeq 

GO terms significant 

in both 

d14 28 12 5 

KO 186 109 98 
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3.4.2 Investigation of possible causes of differences between methods 

We compared the biological process GO terms arising from the different analyses using genes 

which were found to be significant with an unadjusted p-value <0.05. This allowed us to have 

a broader base of GO-terms to potentially see any overlap. Table 3-2 shows the results of this 

comparison. The majority of GO terms in both datasets did not overlap, however I could see, 

especially in the KO dataset (where more GO-terms were found to be significant) that there 

was a 25% overlap of the total number of GO terms found to be significant. These included 

GO terms related to sensory perception, localisation, transport, and RNA-metabolic 

processes. This tells us that while the two datasets do differ in which genes they find 

significant, the processes that those genes serve do overlap to an extent. The full results of 

which GO terms were found to be significant can be found in Table 3-4 and Table 3-5. 

 
Table 3-3. Minimum number of genes required to cover 10 and 50% of total reads 

  d14 QuantSeq d14 RNA-seq KO QuantSeq KO RNA-seq 

First 10% 15 61 16 64 

First 50% 698 1159 646 1224 

 

As stated in the methods, RNA-seq has about 30 times the average number of reads per 

sample as QuantSeq. I used the sample function in R to take random reads from our RNA-seq 

dataset, at several different levels between 1.5 million reads and 20 million reads per sample 

to see how they compared. There was a positive correlation overall, with more reads resulting 

in more genes found to be differentially expressed. The results in KO can be observed in Figure 

3-9. At these lower levels of sampling, QuantSeq does find more genes to be differentially 

expressed than RNA-seq in KO aside from at 20 million reads per sample and finds as 

many/more genes differentially expressed below 10 million reads per sample in the d14 

dataset. The number of genes found to be significant by RNA-seq is highly correlated with the 

number of reads (adjusted r2 0.9049, p-value 0.0083). 
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Figure 3-9. Plot showing the number of genes with padj < 0.05 plotted against the number of reads that the KO 
RNA-seq dataset had been downsampled to. From Jarvis, S. et al 2020 

 

 

Whilst the number of detected differentially expressed genes may depend mostly on the 

number of reads as shown above, our investigation progressed to explore reasons for the 

differences between genes that were observed to be differentially expressed between the 

two methods. RNA-seq finds about 5x the genes that QuantSeq does represented in the top 

10% of reads, and about double the number of genes in the top 50% of reads (Table 3-3). 

There are about half the number of genes with reads in QuantSeq compared with RNA-seq 

meaning by the time 50% of reads have been accounted for, the proportion of total genes 

represented is similar. This suggests that RNA-seq tends to distribute reads more evenly 

across genes whereas QuantSeq has a large number of reads concentrated in relatively few 

genes. 
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Figure 3-10. Possible sources of difference between QuantSeq and RNA-seq using d14. (A, C, E, G) and KO (B, 
D, F, H) datasets: (A-D) Bar plots showing the proportion of genes that are significantly differentially expressed 
(padj < 0.05) separated by the mean number of reads in the gene using (A and C) QuantSeq, and (B and D) RNA-
seq sequencing; (E-H) Bar plots showing the proportion of genes that are significantly differentially expressed (padj 
< 0.05) separated by the length of the Appris Primary 1 transcript in the gene using the (E and G) QuantSeq, and 

(F and H) RNA-seq sequencing. From Jarvis, S. et al 2020 

 

We wished to see if there were any obvious reasons for the differences I observed between 

the methods beyond differential read depth. Figure 3-10 A-D shows the correlation between 

the mean number of reads found by a method, and the proportion of genes which were found 

to be significant with an unadjusted p-value < 0.05. As can be seen, there is appears to be a 

positive trend in QuantSeq, more reads in a gene appears to increase its sensitivity to 

significantly differentially expressed events. In RNA-seq there is a minimum number of reads 

desired per gene, but past that point it plateaus and may even have a slight negative 

correlation (this disappears when using adjusted p-values). 

 

Subsequently I wondered whether the length of a gene’s primary transcript had an effect on 

whether a gene was found to be significant (Figure 3-10 E-H). I found a negative correlation 

in both datasets in QuantSeq, and a slight positive correlation in RNA-seq between primary 

transcript length and proportion of genes found to be significant. The correlation persists in 

QuantSeq when using adjusted significance values but is no longer present in RNA-seq.  
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Figure 3-11. Bar plots showing the proportion of genes that are significantly differentially expressed (p-value < 
0.05) separated by the number of polyA signals each gene has found within the polyA atlas. From Jarvis, S. et al 
2020  

As QuantSeq uses the polyA region to prime during sequencing I tested whether either 

method had a bias for genes with more polyA signals. I found that there was no correlation in 

any but the RNA-seq d14 dataset (Figure 3-11). This negative correlation is no longer present 

when using adjusted p-values. 

 

 
Figure 3-12. Plots comparing Z-Scores of RNA-Seq and QuantSeq in d14 & KO experiments of the top 25% most 
expressed genes in QuantSeq and RNA-seq. (a) the most expressed genes in QuantSeq using data from the d14 
mutation, (b) the most expressed genes in QuantSeq using data from the KO mutation, (c) the most expressed 
genes in total RNA-seq using data from the d14 mutation, (d) the most expressed genes in total RNA-seq using 
data from the KO mutation. They do not show clear differences from the prior z-score plots aside from being more 

sparsely populated. From Jarvis, S. et al 2020 
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Finally, I wanted to see how the top 25% most expressed genes (Figure 3-12), and genes with 

a single polyA signal (Figure 3-13) changed our Z-score plots. Neither change made a 

substantial difference to the results. 

 

 
Figure 3-13. Plots comparing Z-Scores of RNA-Seq and QuantSeq in d14 & KO experiments of genes which only 
have 1 polyA signal in (a) d14, (b) KO. They do not show clear differences from the prior z-score plots aside from 
being more sparsely populated. From Jarvis, S. et al 2020 

 

3.5. Discussion 

Due to the rapid development of various NGS technologies including RNA-seq, various 

methods are aiming to provide a better service, more information on certain methods, or at 

a lower cost. In the case of low read depth QuantSeq the hope is to provide both a lower cost 

service and more information on differential polyadenylation over total RNA-seq. While the 

read depth I used is not recommended on the Lexogen site, it was sequenced by them so falls 

within parameters of what they consider acceptable usage.  

 

QuantSeq is able to provide information on differential polyadenylation in ways that RNA-seq 

is not. As it binds to the poly-A signal, we can evaluate which regions of each gene have polyA 

signals attached and from that gain some insight into the process.  While it cannot provide 

information on splicing, this additional information means that it has a distinct use case 

irrespective of how it performs in other use cases. We felt that it was useful to compare how 

it performs at low read depts to see inexpensive low-read depth analysis was another 

potential use case. 
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The largest methodological difference between the two methods is how the libraries are 

prepared. This leads to substantial changes in the characteristics of sequenced RNA. 

QuantSeq sequences one fragment per piece of RNA, and exclusively sequences fragments 

with a polyA signal attached. Total RNA-seq fragments and sequences a random sample of all 

RNA within the cell. This means that QuantSeq will tend to sequence more mature RNA, and 

will not sequence non-coding genes. This will lead to some difference in levels of expression 

at a gene level as the two methods are sampling from a different population of RNA. 

QuantSeq is also likely to sequence less ribosomal RNA as while ribosomal RNA is sometimes 

polyadenylated, it does not tend to be abundant (Slomovic et al., 2006). All of my analysis 

within this chapter does need to be viewed through the lens of these differences. 

 

I found substantial differences in the genes found to be significantly differentially expressed 

in QuantSeq and total RNA-seq. Total RNA-seq is a very widely used method and so it was 

concerning that QuantSeq’s results were different. The relatively low reads of the genes which 

weren’t significant in QuantSeq but were in RNA-seq did suggest that the issue was with the 

read depth rather than with the method itself. 

 

Given the appearance of our Z-score plots, and how low the overlap of genes found to be 

significantly differentially expressed between the two datasets were, I felt it was important 

to identify any possible sources of differences beyond the difference in read depth. By 

sequencing both cases and controls using both methods I have done our best to ensure that 

I correct for biases within each method, that being said, I suspected that the methods may 

have a bias towards certain types of genes. I did find that at this read depth, QuantSeq was 

more likely to find a gene to be significant when it had a high number of reads whereas RNA-

seq only required a certain baseline of reads before more stopped making a difference. That 

may change at higher read depth. Unlike in other work (Ma et al., 2019), I did not find that 

RNA-seq was more likely to find genes to be significant if they had a longer primary transcript, 

this is likely because they used an mRNA-sequencing kit for library preparation. QuantSeq’s 

likelihood of finding a gene to be differentially expressed did seem slightly negatively 

correlated with primary transcript length. I didn’t manage to find any other contributing 

factors to the differences observed.  

 

While polyA selection has been linked to changes in splicing, Humphrey et al., 2017 found 

that the overlap between splicing and expression changes in these datasets was minimal 

therefore I felt it was unlikely to be responsible for the differences observed. 

 

When I down sampled the RNA-seq data I did find that there were reads in more genes in our 

RNA-seq data than our QuantSeq data, this is likely to have led to the relative 

underperformance of RNA-seq at this low level of read depth, in combination with QuantSeq 

advantage of only having one transcript per read, potentially increasing its sensitivity to 
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changes at this read depth. As Illumina does not recommend this low read depth (Illumina 

Inc, 2017), the poor performance was expected, but useful as a comparative to QuantSeq. 

 

Colleagues in the Fratta laboratory have validated many of the genes which RNA-seq found 

to be exclusively differentially expressed in the lab. Some of the genes which QuantSeq found 

to be exclusively differentially expressed, including 3 of the 5 most differentially expressed 

genes in our knockout samples (Mcur1, FTSJ1, and GPR17), have been linked to 

neurodegeneration, and in the case of GPR17 specifically to ALS elsewhere (Liao et al., 2017; 

Angelova et al., 2020; Bonfanti et al., 2020). The rest of the genes found to be significant 

exclusively in QuantSeq sadly have not been tested. 

 

Corley et al., 2019 found a much better correlation between RNA-seq and QuantSeq results 

when performed at a similar read depth. They also used an mRNA library preparation method. 

They used Kallisto – a fast, pseudoalignment tool – for analysis. They suggest that the 

combination of low read depth QuantSeq and Kallisto is a good tool for investigative 

alignment particularly where polyadenylation is of interest. I think that my research supports 

this idea of a combination. It could provide useful insights into differential expression in 

samples at a lower cost and faster than other methods. The additional insight into differential 

polyadenylation is especially useful. Given the differences between the two methods 

however, experimental validation of any hits observed using methods such as qPCR and 

nanostring is especially important. 

 

I have highlighted some ways that these methods differ and do advise caution when using 

low read depth QuantSeq given how it differs from the current gold standard of RNA-

sequencing. At higher read depths, QuantSeq does provide useful insight (Oh et al. 2020), and 

as stated before, correlates well with the results from RNA-seq analysis. At this low read 

depth, while some of the hits have been validated, many have not, and several genes which I 

expected to be differentially expressed were not found to be. Given this, while we aren’t sure 

of the sensitivity, low read depth QuantSeq may be useful for broad inexpensive surveys of 

many samples, the most promising results of which can then be experimentally validated.  

 

3.5.1 Future work 

The primary questions arising from my analysis are:  

● Do genes exclusively significantly differentially expressed in QuantSeq show changes 

in qPCR? 

● Do similar comparisons in other datasets show similar differences?  

 

The best method for validating DEGs exclusively found in QuantSeq would likely be an 

experimental method such as qPCR. If the exclusively DEGs in QuantSeq do seem to show 

differences, then they may be future targets for analysis of the changes that result from 
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mutations in FUS. It may also suggest a limitation of using total RNA-seq on datasets which 

result from changes in genes known to be linked to RNA regulation. If the genes don’t show 

changes, then it suggests that low read depth QuantSeq may not be useful even for initial 

analysis of changes. 

 

Validating whether the differences between the two methods are also seen in other methods 

would also be important. This validation would ideally be performed by a similar experiment; 

a group would sequence a dataset consisting of a mutation that is known to cause large 

numbers of DEGs using both low read depth QuantSeq and RNA-seq. If the differences in DEGs 

are not seen in this other dataset, then this would substantially expand the utility of low read-

depth QuantSeq. It might then be worth investigating why our data had the differences I 

observed. There are two major possible causes of these differences. One is that our mutation 

is in a gene that is heavily linked to RNA-regulation. The other is that QuantSeq exclusively 

examines mRNA, while total RNA-seq examines all RNA. Total RNA-seq looks at all transcripts 

in the cell while mRNA-seq looks exclusively at coding regions. If there are substantial 

differences between expression in coding and non-coding regions in our data it may be 

responsible for some of the differences observed. If the differences persist then the utility of 

low read depth QuantSeq depends on whether DEGs exclusively found in QuantSeq are found 

to be changed in lab-based validation. 

 

The implications of this work are potentially interesting. If the DEGs are validated, or the 

differences in which DEGs are found to be significant do not persist then this suggests that 

low read depth QuantSeq may be a powerful tool for cheap, widespread initial exploration of 

differential expression data. If the differences are not seen in other datasets, then low read 

depth QuantSeq may be a useful replacement for RNA-seq wholesale; it is less expensive, and 

provides easier access to information on differential polyadenylation. 

 

Given the lack of statistical power found in a large number of results in the QuantSeq data, 

an additional opportunity may arise. The lower power suggests that the tools which currently 

exist may not be best suited to low read depth QuantSeq data. One possible avenue for 

people working with the data would be to further develop tools to extract the maximum 

possible information from the data.  
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Table 3-4. Results of GO term analysis of all genes in d14 in both datasets 

Description GO Term Fold 
Enrichment 
Total 

FDR 
Total 

Fold 
Enrichment 
Quant 

FDR 
Quant 

sensory perception of chemical 
stimulus  

GO:0007606 -0.13 1.13E-10 -NA 0.0051
8 

sensory perception of smell  GO:0007608 -0.12 3.36E-10 -NA 0.0115 

regulation of biological quality  GO:0065008 +1.34 0.01 +1.69 0.0066
5 

cellular process  GO:0009987 +1.11 0.0182 +1.25 0.0013 

developmental process  GO:0032502 +1.25 0.0256 +1.62 0.0014
1 
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Table 3-5. Results of GO terms found to be significant in both datasets in KO filtered to terms which have a fold 

enrichment >= 1.5. 

Description GO Term 
Fold 
Enrichment 
Total 

FDR 
Total 

Fold 
Enrichment 
Quant 

FDR Quant 

cellular nitrogen 
compound 
metabolic process  

GO:0034641 1.54 1.16E-18 1.51 0.00152 

gene expression  GO:0010467 1.52 2.46E-09 1.86 3.58E-05 

RNA metabolic 
process  

GO:0016070 1.54 2.39E-07 1.71 0.0115 

translation  GO:0006412 2.15 1.01E-06 2.7 0.00541 

peptide biosynthetic 
process  

GO:0043043 2.09 1.70E-06 2.54 0.0108 

peptide metabolic 
process  

GO:0006518 1.86 7.06E-06 2.16 0.0273 

RNA processing  GO:0006396 1.63 1.14E-05 2.04 0.00352 

regulation of cellular 
amide metabolic 
process  

GO:0034248 1.74 0.00103 2.23 0.0433 

positive regulation 
of cell migration  

GO:0030335 1.54 0.00601 2 0.0373 

regulation of 
cytoskeleton 
organization  

GO:0051493 1.52 0.0079 2.49 0.00018 

divalent inorganic 
cation homeostasis  

GO:0072507 1.5 0.0198 2.23 0.00665 

cellular divalent 
inorganic cation 
homeostasis  

GO:0072503 1.52 0.0221 2.35 0.00413 

calcium ion 
homeostasis  

GO:0055074 1.5 0.031 2.07 0.0401 

cellular calcium ion 
homeostasis  

GO:0006874 1.5 0.0324 2.15 0.0311 
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4. Differential Expression in Post Mortem 

brain tissue in FTD patients 

 

4.1. Publication 

This work has yet to be published. 

4.2. Introduction 

As stated in the introduction, the most common cause of frontotemporal dementia is 

mutations in the gene C9orf72. The 2nd most common cause is mutations in the gene MAPT 

which encodes the protein TAU. 

 

TAU proteins act to maintain stability of microtubules in neuronal cells. Mutations in MAPT 

can lead to TAU proteins being abnormally phosphorylated and accumulating within cells 

(Alonso et al., 1997). This accumulation then leads to the development of the behavioural 

variant of frontotemporal dementia (Rademakers et al., 2004). Unlike C9, mutations in MAPT 

have not been linked to the development of ALS. 

 

FTD is a neurodegenerative disorder, and some pathology has been linked to changes in RNA. 

In order to investigate changes caused by various pathologies RNA-seq is often performed on 

bulk brain tissues. As discussed in 1.3.1,  brain tissue is predominantly comprised of neurons 

and glial cells. Different cell types may have different levels of expression both in marker 

genes – genes that are known to be associated with the cell types, and other genes. 

Differences in the number or degree of activity in various cell types between samples may 

result in biological noise. This makes it harder to identify true changes in expression(Shen-Orr 

& Gaujoux, 2013). Given this possibility for noise, I aimed to use cell type disambiguation 

techniques in order to determine whether there were substantial differences in the 

proportions of various cell types in the tissue data being analysed.  Cell type disambiguation 

tends to rely on using levels of expression in various marker genes to find some measure 

related to levels of various cell types. If my investigation does find substantial changes in cell 

types between either samples or conditions, I am aiming to determine whether it is 

worthwhile correcting for these changes in our differential expression analysis as different 

cell types express some genes at different levels.  

 

There are various cell type disambiguation techniques which have been developed, but 

analysis of cell types in brains is relatively uncommon. Most of these tools are tissue agnostic, 

but all require reference data from various cell types. Table 1-1 has a list of commonly used 
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tools and whether they require reference data, and if they do whether it is included. As there 

is currently no gold standard for brain cell type expression analysis, and developing my own 

was beyond the scope of this chapter, I restricted the tools I used to ones with an integrated 

reference dataset for brain cell types. As discussed in 1.3.1, there are some tools  which fit 

this criterion. Of them, I felt that two were best suited to my work, BrainInABlender 

(Hagenauer et al., 2018) and Xcell (Aran et al., 2017). Both of these tools calculate an 

enrichment score, rather than estimated proportions of total cell abundance as produced by 

some other methods such as CibersortX (Newman et al., 2019).  

      

The overall aim of this analysis was to find differences in levels of RNA expression between 

patients with FTD, and control brains. It also aimed to find if there were clear differences in 

mechanism between the two different FTD pathologies. Members of the Fratta lab sequenced 

samples from the UCL brain bank, some were brains from healthy donors, some were from 

donors who had FTD which stemmed from a mutation in C9orf72, and some from donors with 

FTD which stemmed from MAPT mutations. In addition to evaluating changes between the 

types of brain, I also aimed to find whether there were significant changes between brain cell 

types and determine the utility of including brain cell types as covariates in the differential 

expression model. If there are substantial changes in cell types between samples it might add 

biological noise to the differential expression analysis. By accounting for this, truly 

differentially expressed genes may become clearer.   

4.3. Methods 

Brains were donated to the UCL brain Bank. Our dataset consisted of 4 healthy brains, 5 brains 

from patients with FTD with C9 pathology, and 4 brains from patients with FTD with TAU 

pathology.  

 
Table 4-1. Table of metadata including read depth of samples 

Sample Name Condition Age Sex Reads 

CTL_1 CTL 63 M 43323837 

CTL_2 CTL 85 M 59456990 

CTL_3 CTL 79 F 52218081 

CTL_4 CTL 71 M 57055405 

C9_1 C9 72 M 46165285 

C9_2 C9 68 M 33036357 

C9_3 C9 66 F 54544627 

C9_4 C9 45 M 64851575 

C9_5 C9 74 F 65318616 

TAU_1 TAU 75 M 34795333 

TAU_2 TAU 68 M 38549539 

TAU_3 TAU 74 M 51863825 

TAU_4 TAU 72 M 60039216 
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Alignment and read counting were performed as discussed in chapter 2. Differential 

expression was performed using DESeq2 (Love et al., 2014). I also normalised reads using 

DESeq2, and used them to quantify cell type abundance using both BrainInABlender 

(Hagenauer et al., 2018) and xCell (Aran et al., 2017) with default parameters for both 

methods. 

 

PCA plots of the BrainInABlender results took used relative levels of all cell types to calculate 

PCA score. 

 

The formula used when integrating the results of cell type disambiguation into the differential 

expression formula is: 

~ Condition:Astrocyte:Endothelial:Microglia:Mural:Neuron_All: 

Neuron_Interneuron:Neuron_Projection:Oligodendrocyte: 

Oligodendrocyte_Immature:RBC + Condition 

Age and sex are added to the start of the formula in cases where it does not cause the model 

to fail to converge. What this means is that the model will evaluate how each of the 

interaction terms interact with one another, and the condition, as well as the effect of the 

condition alone. Given as changes in relative enrichment in one cell type will be linked to 

changes in another, this seemed to be a prudent step, and ensured that the model didn’t fail 

to converge.  

 

The full code developed for the differential expression and other analyses can be found here: 

https://github.com/SethMagnusJarvis/PhDFigureCreation/tree/main/FTDBrain.  

 

4.4. Results  

Two causes of frontotemporal dementia are mutations in C9orf72 and Tau. I used sequenced 

samples from UCL’s brain bank consisting of 4 control samples, 5 FTD patients with a C9 

mutation and 4 FD patients with a TAU mutation. The mean age was 70 with most people 

being between 60 and 80. There were 3 women, one control and two FTD C9 mutants. Our 

objective was both to analyse these samples in order to see the effect which mutations in 

these genes had on RNA expression, and to evaluate the effectiveness of tools to 

disambiguate cell types in human brain data and correct for any changes seen in our 

differential expression results. This was useful both as part of analysis of this dataset, and in 

preparation of analysis of a much larger cohort of patient brain data which has been 

sequenced in the US.  

 

 

https://github.com/SethMagnusJarvis/PhDFigureCreation/tree/main/FTDBrain
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4.4.1 Differential expression in TAU and C9 mutants 

      

 
Figure 4-1.  PCA of normalised reads per gene in (a) WT vs Mut, (b) WT vs C9, (c) WT vs TAU, and (d) C9 vs TAU. 
It shows some segregation between the three types of sample, with the most pronounced differences being 
between TAU and the other samples. Sample C9_3 is more similar to TAU samples than to other C9 samples. 

 

As an initial quality control step, I ran principal component analysis (Figure 4-1) on reads 

normalised by DESeq2, both examining all samples overall, and each possible comparison (CTL 

vs C9, CTL vs TAU, C9 vs TAU). I saw the most obvious differences in our TAU mutants, which 

were distinct from both the FTD C9 patients, and the controls. There was some separation 

between C9 and control, but it was not as pronounced. 

 

We proceeded to make heatmaps of the genes with most variance in their expression using 

hierarchical clustering (Figure 4-2). I once again see that TAU mutants cluster together and 

separately from other samples. There are two C9 samples (C9_1 and C9_3) which seem to be 

most similar. They seem to be more similar to the main tau cohort than one TAU sample is to 

the rest of the tau cohort. The C9 mutants show distinct expression patterns compared to the 

control samples aside from one control sample which clusters in their midst. 
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Figure 4-2. Heatmap of normalised expression per gene among the most expressed genes in each dataset. Each 
line represents the expression of an individual gene using normalised values as produced by DESeq2. Colour 
coding indicates log of these normalised reads. In (a) All WT vs all mutants, (b) WT vs C9, (c) WT vs TAU, and (d) 

C9 vs TAU 

 
Figure 4-3. Venn diagram comparing genes differentially expressed when samples with C9 and TAU etiology were 
compared to our control samples. It shows that the TAU samples have 9.7x the number of genes significantly 
differentially expressed when compared with control and that 40% of genes in which are significantly different in 
C9 etiology are also significantly different from control in TAU etiology.  

 

Our PCA plots suggested that the TAU mutation had a much stronger transcriptional 

phenotype compared to C9. I therefore expected to uncover more differentially expressed 
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genes under this condition when compared to the control samples than C9. This was found 

to be correct. Our Venn diagram showing the overlap of the two samples (Figure 4-3) showed 

that TAU had far more genes differentially expressed than C9, and that of the genes found to 

be significantly differentially expressed from control in C9, two thirds were also differentially 

expressed in TAU. Figure 4-4 shows the volcano plots of the differential expression results in 

the comparisons and further demonstrate the differences in size of mutation in the 

comparisons. 

 

 

 

 

 
Figure 4-4. Volcano plots of differential expression in all 4 comparisons of samples in (a) All WT vs all mutants, (b) 
WT vs C9, (c) WT vs TAU, and (d) C9 vs TAU. Samples were colored depending on whether they met certain 
thresholds of significance met (log2FC >abs(2), p-value <=10-6), they are colored green if they exclusively meet 
the fold change threshold, blue if they exclusively meet the significance threshold, and red if they meet both 
thresholds. 
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Figure 4-5. Most significant molecular function GO terms in significantly differentially expressed genes using 
Kolmogorov-Smirnov in (a) WT vs Mut, (b) WT vs C9, (c) WT vs TAU, and (d) C9 vs TAU. This is a subgraph 
induced by the most significant GO terms identified by the fisher exact algorithm for scoring GO terms for 
enrichment. Rectangles indicate the most significant terms. Node colour represents the relative significance, 
ranging from dark red (most significant) to bright yellow (least significant). For each node, some basic information 
is displayed. The first two lines show the GO identifier and a trimmed GO name 

 
 

 

a b 

c d 
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In order to see what processes the differentially expressed genes were involved in, I 

calculated the GO term enrichments for each of our datasets (Figure 4-5). The most significant 

GO terms were linked to deoxygenase activity and DNA-binding in our combination of control 

to both FTD groups at once. In CTL vs C9 the most significant GO terms were linked to the 

extracellular matrix and collagen binding. In CTL vs TAU the most significant GO terms were 

linked to Phosphatidylserine binding and GABA receptor activation. Finally, in our comparison 

of C9 Mutants to TAU mutants, our most significant GO terms were linked to calcium 

dependent protein binding and scavenger receptor activation. 

 

4.4.2 Cell type enrichment 

 

Brains have relatively heterogeneous cell types, and so correcting for differences in cell types 

can be useful in the analysis. I used the R packages BrainInABlender (BIAB) (Hagenauer et al., 

2018) and XCell (Aran et al., 2017) to examine changes in cell types between samples, both 

to identify differences in cell types, and to improve differential expression accuracy.  

 

The first step was to create a PCA plot of the samples to see whether there were obvious 

differences in levels of enrichment between the different etiologies. Figure 4-6 shows that 

the grouping of samples is similar to that observed previously; TAU mutants seem to share 

the least similarities with the other two samples. Figure 4-7 shows boxplots of each individual 

cell type, it shows that the only statistically significant differences in relative enrichment of 

cell types are between the TAU aetiologies and control samples. The outlier observed in both 

the gene level and cell type enrichment level PCAs in C9 (C9_3) may be due to changes in 

relative levels in oligodendrocytes in that sample. This is further reinforced in Figure 4-8 – a 

heatmap of relative enrichment of each cell type by sample. If oligodendrocytes are truly 

enriched in this sample compared to others, it would mean that genes related to 

oligodendrocytes are more heavily enriched in that sample which would cause it to be 

segregated from other samples in PCA analysis. While we do not have full information about 

the disease courses of patients who were analysed, as stated previously, there does not seem 

to be a substantial difference between the rate of disease progression of patients with tau 

aetiology compared to those with C9. 
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Figure 4-6. PCA plot of relative enrichment of cell types in each sample compared to what is expected based on 
expression of cellular marker genes from brain in a blender. This shows a similar separation to the PCA plot of 
normalised expression, with patients with a TAU etiology having the clearest segregation from other samples. 

 

 
Figure 4-7. Boxplots of relative enrichment of cell types from BIAB in (A) Astrocytes, (B) Endothelial, (C) Microglial, 
(D) All Neurons, (E) Interneurons, (F) Neuron Projections, (G) Oligodendrocytes, (H) Immature Oligodendrocytes, 
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and (J) Red blood cells. A Kruskal-Wallis test for significance was performed among the overall samples, both to 
identify whether there is a significant difference in the levels of enrichment overall, and if there is a significant 
difference between any two types of samples. 

 

 

 
Figure 4-8. Heatmap of relative enrichment of cell types from BrainInABlender across the different samples and 
conditions. Colour gradient represents the relative level of each cell according to BIAB. 

 

Overall, however, the only statistically significant differences in cell types were observed 

between the control samples and the TAU mutants (Figure 4-7). The C9 Samples did appear 

to have levels of cell type specific enrichment and depletion which were more similar to 

control than TAU. They were, however, different enough from the control samples that their  

levels of cell types were not found to be significantly different from TAU.  
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Figure 4-9. Venn diagrams overlap of differential expression results. “Solo” refers to using exclusively age, sex and 
condition as covariate, and “Join” to the analysis that also includes the interaction between the levels of all cell 
types from BIAB and the condition, in addition to the age, sex, and condition in (a) WT vs Mut, (b) WT vs C9, (c) 
WT vs TAU, and (d) C9 vs TAU  

Given the variability present in the cell type makeup of brain tissue, I hoped to include the 

interaction of the types of cells with the condition as a covariate in the differential expression 

model. When this interaction was included, I found that the number of genes found to be 

significantly differentially expressed in all comparisons Figure 4-9). It is reassuring that almost 

all of the genes which are found to be significantly differentially expressed when correcting 

for cell type are also found to be differentially expressed when not correcting for it. When 

creating volcano plots (Figure 4-10). I found that including cell types as interaction terms 

seems to cause DESeq2 to substantially overestimate fold changes in genes.  

 

The most significant GO terms when using these interaction terms can be seen in Figure 4-11.  

Many GO terms changes between the two samples. The terms appeared to tend towards 

being less specific when the BIAB results were included than in Figure 4-5. This is possibly due 

to the number of genes found to be significant decreasing which would make it harder to find 

more specific effect sizes as there would be fewer genes linked to that pathway. This included 

the WT vs C9 samples changing from having specific terms related to the extracellular matrix 

and collagen, to more general protein binding and translation initiation factor activity. 

Similarly, the WT vs TAU no longer found GABA-A receptor and phosphatidylserine binding to 

be significant. Instead, it found that the more general term carbohydrate binding was found 

to be significant along with extracellular matrix binding.  
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Figure 4-10. Volcano plots of differential expression results, including BIAB cell type enrichment as a covariate in 
(a) WT vs Mut, (b) WT vs C9, (c) WT vs TAU, and (d) C9 vs TAU. Samples were colored depending on whether 
they met certain thresholds of significance met (log2FC >abs(2), p-value <=10-6), they are colored green if they 
exclusively meet the fold change threshold, blue if they exclusively meet the significance threshold, and red if they 
meet both thresholds. Fold changes appear to have partially converged around certain locations. The reason 
appeared to be related to how they were integrated into differential expression analysis. Future work should work 

on improving the integration of brain cell types into differential expression analysis. 

Table 4-2. Table showing number of genes found to be significantly differentially expressed in each sample when 
relative levels of enrichment of each cell type are included in the formula for differential expression.  

Names 

Significant 

genes in 

WT vs Mut 

Significant 

genes in WT 

vs C9 

Significant 

genes in WT 

vs TAU 

Significant 

genes in C9 

vs TAU 

Astrocyte 4097 520 3507 1346 

Endothelial 2111 2190 3396 1649 

Microglia 5301 1349 4159 1843 

Mural 1832 705 3765 1282 

Neuron_All 6477 3704 2872 3631 

Neuron_Interneuron 5441 3787 3300 3933 

Neuron_Projection 6694 3101 4378 3443 

Oligodendrocyte 2689 2217 3324 3071 

Oligodendrocyte_Immature 1515 2054 3499 1476 

Red Blood Cell 733 450 3395 1239 
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When correcting for each cell type individually the results are more difficult to interpret, as in 

almost all cases I see a substantial increase in the number of genes which are found to be 

differentially expressed (Table 4-2). It is possible that many of these genes may not be 

differentially expressed. The broad variance seen in cell types may cause these changes.  

 

 

 
Figure 4-11. Most significant molecular function GO terms in significantly differentially expressed genes the 
interaction between the levels of all cell types from BIAB and the condition using Kolmogorov-Smirnov in (a) WT 
vs Mut, (b) WT vs C9, (c) WT vs TAU, and (d) C9 vs TAU. This is a subgraph induced by the most significant GO 
terms identified by the fisher exact algorithm for scoring GO terms for enrichment. Rectangles indicate the most 

a b 

c 
d 
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significant terms. Node colour represents the relative significance, ranging from dark red (most significant) to bright 
yellow (least significant). For each node, some basic information is displayed. The first two lines show the GO 
identifier and a trimmed GO name 

When I used X-cell estimates of the two brain cell types included by default (astrocytes and 

neurons), only neurons showed significant differences in abundance. The difference was also 

only significant between CTL and TAU samples. When I broadened this to include all cell types, 

adipocytes, Fibroblasts, and neurons were the only cell types with significant differences. 

Adipocytes and fibroblasts had significant differences between TAU and both CTL and C9 

samples. Given as neither of these cells should have a significant presence in the brain, I 

suspect a technical artifact. I would hypothesise that the markers which are used for these 

cells may overlap with other products of the CNS such as those produced for myelination, and 

other immune cells. This results in changes in these cells being observed where they may not 

be truly present.  

 

I re-ran differential expression correcting for the proportions of neurons from XCell. The 

overlap with differential expression that was not corrected for these cell types was lower than 

expected (Figure 4-12).  

 

When comparing significantly differentially expressed genes when correcting for the cell type 

proportions from BIAB against those obtained when correcting for levels of neurons from 

XCell, I see that while BIAB does find fewer genes to be significantly differentially expressed. 

Most of the genes found significant when correcting for BIAB cell types are also significant 

when correcting for XCell's neuron correction results (Figure 4-13). 

 

 
Figure 4-12. Venn diagrams overlap of differential expression results where Solo is using exclusively age, sex and 
condition as covariate, and join including levels of Neurons suggested by XCell. (a) WT vs Mut, (b) WT vs C9, (c) 

WT vs TAU, and (d) C9 vs TAU 
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Figure 4-13. Comparisons of significantly differentially expressed genes when correcting for all cell types from Brain 
in a blender, vs when correcting for Neurons from XCell. (a) WT vs Mut, (b) WT vs C9, (c) WT vs TAU, and (d) C9 
vs TAU 

 

4.5. Discussion 

I had two main aims when starting this analysis. The first was to uncover changes in gene 

expression that are related to FTD. The second was to evaluate cell type disambiguation 

methods. My analysis of differential expression looked at the effects of mutations against 

control, both in aggregate, and separated by mutation. When investigating cell type 

disambiguation, I searched for potential tools, and evaluated methods for integrating the 

results into differential expression analysis. 

 

I believe my work is novel as while some analysis has been performed comparing mutants to 

wildtype, it is not hugely common. Existing studies such as (Dickson et al., 2019; Prudencio et 

al., 2015) also only seek to compare FTD patients to control patients, and not to other 

mutants. Brain cell type disambiguation is also a relatively novel field, particularly compared 

to more established analysis in cancer. Other studies using a larger portion of the same brain 

database performed by collaborators with our lab (Humphrey et al., 2022) have since 

performed brain type disambiguation on larger FTD datasets, but I believe my work was the 

first to attempt this analysis in FTD. While sample sizes are small, I may have found some 

useful insights into some of the mechanisms of how these FTD aetiologies cause disease. It 
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will be very important to confirm findings with a larger dataset, either by further RNA-

sequencing or quantitative RTPCR of interesting DEGs. 

 

The most obvious result of my differential expression analysis was that mutations in TAU 

cause more changes in expression than mutations in C9. This was immediately obvious in PCA 

plots, and further backed up by the differential expression plots where TAU brains as a 

collective had 10x the number of genes differentially expressed as did C9 mutants. This was 

unexpected as, while the two pathologies do often have differing clinical presentation, they 

have similar gross pathologic features, not consistently differing in severity or progression 

(Van Langenhove et al., 2013). 

 

In the initial analysis of patients with C9 aetiology, in the absence of cell type correction, we 

did find that there were significant changes in GO terms linked to the extracellular matrix and 

collagen binding. This finding supports some of the results recently published by the Isaacs 

lab who found that novel knock-in mice expressing either poly(GR) or poly(PR) dipeptide 

repeat proteins (DPRs) had increased levels of extracellular matrix proteins identified through 

quantitative proteomics (Milito et al., 2023). This study also confirmed an increase of 

extracellular matrix protein gene expression in laser capture micro dissected spinal motor 

neurons from C9 patients (Highley et al.,2014; Milito et al., 2023). This convergence of 

different datasets gives confidence in our RNA-seq findings despite small sample size. 

However, these changes were no longer apparent after correcting for relative cell type 

enrichment. One possible explanation is that this extracellular matrix signal is driven by 

reactive gliosis as it has been shown that reactive astrocytes increase extracellular matrix 

gene expression (Ziff et al., 2022). This would lessen the disease specific relevance for C9 

FTD/ALS, but given the emergence of data from several sources this pathway still remains 

worthy of further follow-up.  

 

Extracellular matrix binding was also found to be one of  the most significant GO terms in the 

comparison of control samples to patients with a TAU aetiology when correcting for cell types. 

This highlights potential links between the mechanisms of the aetiologies, and given the 

results of the Isaacs lab (Milito et al., 2023) may be worth further investigation. 

 

Differences the magnitude of genes found to be differentially expressed may be rooted in 

differences in either proportion or expression in certain cell types in the brain tissue. The only 

statistically significant changes between datasets in any cell types were between TAU and our 

control brain dataset. This suggests either changes in the number of certain cell types or 

changes in expression of certain cell types occur more within TAU samples than within C9. 

Every cell type aside from immature oligodendrocytes and red blood cells had significant 

differences between TAU and control. Microglial cells have been linked elsewhere to tau 

pathology in Alzheimer’s disease (Hansen et al., 2018) so some of the relative enrichments in 
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other changes may be linked to changes in microglia. The lack of significant differences 

between cell types in C9 samples and TAU samples does suggest that there are some slight 

changes within C9, but they are small enough that I did not have the statistical power to 

calculate whether this was significant. All statistically significant differences between samples 

were between TAU and control.  

 

As discussed in the introduction, I settled on using BrainInABlender as my primary method for 

cell type disambiguation, while also employing complementary estimates generated by XCell. 

As enrichment is a relative rather than an absolute measure, it can make comparison between 

studies difficult. It also stops goodness of fit and error measures from being calculated. This 

can make biological interpretation difficult without some direct analysis of cell types, and 

defined hypothesis about what is expected to occur in cell types. However, my goal was to 

examine differences between samples, so calculating exact cell proportions was not essential 

in this analysis. The key advantage of these two methods is that they both provide their own 

reference datasets of cell type markers.   There are methods which estimate cell fractions out 

of the total population, such as Cibersortx (Newman et al., 2019), and dtangle (Hunt et al., 

2019), but all of them require reference datasets. While some of them do have reference 

datasets included, they tend to be for cells related to cancer rather than brain cells. 

 

My analysis was intended as a proof of concept and therefore I felt that using the methods 

for relative enrichment was acceptable to investigate relative changes between samples, and 

to test normalisation in our differential expression models.  

 

To the best of my knowledge, relatively little direct work in changes of cell type proportions 

has been performed in ALS-FTD. Tau pathology has been linked to changes in how glia - and 

particularly strongly microglia act in Alzheimer’s Disease and ALS-FTD(Brelstaff et al., 2021; 

Kahlson & Colodner, 2015; Perea et al., 2020). Some other comparisons of changes in relative 

enrichment of cell types in C9 has been performed, which suggests that there is some level of 

enrichment – however, this was performed in ALS patients, and used a different methodology 

for selecting markers of enrichment (Humphrey et al., 2022). This enrichment was also not 

specific to C9, with all ALS patients showing similar changes.  

 

I believe there are two hypotheses for why C9 does not appear to have clear changes in cell 

type composition compared to wildtype controls: 

• There are differences between C9 and Control, however these changes do not reach 

significance either because they are small changes and our sample size is relatively 

small, or because the variability within our samples means that we cannot clearly 

observe them. 
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• Neurodegeneration may result in overall changes to levels of expression in all cell 

types. This would result in relatively few changes appearing in the relative levels of 

expression even if the absolute levels are reduced. 

 

I do not think that there is enough data to support any one of these hypotheses above others. 

When we integrate cell type information into the differential expression analysis in C9 

patients we find that the most significant GO terms appear to be far broader. This included 

no-longer seeing the more specific terms collagen binding and the extracellular matrix which 

have been demonstrated elsewhere. This demonstrates that caution needs to be taken when 

attempting to integrate cell type changes into differential expression analysis. It may lead to 

disguising true effects. 

 

Prior work has found differences in markers of cell types between FTD patients with C9 

aetiology and those without (Dickson et al., 2019). The core difference between this work and 

my work is they had samples from more patients (24 control, 34 C9FTD patients, 44 non-C9 

FTD patients). Due to this, I feel it is more likely that the true changes cannot be distinguished 

from natural variations between patients due to our relatively small sample size.  

 

In terms of integrating the changes as covariates in differential expression models, while the 

ideal would be to use each cell type as a separate covariate, this consistently resulted in 

errors. I believe this is because in most cases, there were either no differences in some cell 

types, or all of the differences in one or more cell types that were present were already 

accounted for by the condition. I therefore added the relative enrichment of cell types to the 

differential expression model as a combined interaction term with relation to the condition. 

Including this interaction term did cause substantial irregularities in the fold changes 

calculated by DESeq2. It may be worth investigating why these large changes in fold changes 

occur, but I consider the most important future work arising to be investigating changes in 

which genes were deemed to be significantly differentially expressed by DESeq2. 

 

Adding one cell type at a time as a potential confounding factor to individual differential 

expression models sems to add more noise than it does provide utility. When I included all of 

the cell estimates from BIAB as a single covariate however, I did find a substantial reduction 

in the number of genes found to be significantly differentially expressed. It would not be 

practical to validate whether or not all of the changes are truly not differentially expressed, 

however, selecting several genes at varied levels of expression as a representative sample 

would be a worthwhile method of validation. 

 

Overall, several useful insights were gained from this research. First, there is substantial 

overlap in the mechanisms of TAU and C9 pathology. This is not surprising as the end result 

of the mutations is similar. I also found that TAU seems to be a mutation with stronger 
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transcriptional consequences in bulk RNA-seq data, although it is not currently clear if this is 

due to changes in cell type expression. 

 

These larger changes are also reflected in changes of relative enrichment of cell types. The 

cell type plots only show significant differences in enrichment between TAU mutations and 

the control. This is an interesting finding and is worth further investigation to see if this is an 

artefact of the large number of differentially expressed genes or a true difference. I also found 

that adding the enrichment of all cell types from BrainInABlender to differential expression 

models may help to reduce biological noise and make finding true differences easier. Until 

the genes which are only found to be differentially expressed when accounting for cell type 

in bulk samples are validated, future research should focus on some of the genes which are 

found to be significantly differentially expressed both when accounting and when not 

accounting for this cell type information. 

 

4.5.1 4.4.1 Future work 

There are three obvious questions that require further validation that have come out of my 

research into our FTD brain dataset: 

● Why does TAU seem to produce many more changes in differentially expressed 

genes? 

● Are there real differences in cell types between datasets? 

● How accurate are the changes in genes found to be differentially expressed when 

including the cell type enrichment? 

 

Previous research into the individual mutations has shown that C9 and TAU pathology in FTD 

does act via some different pathways(Balendra & Isaacs, 2018; Sha et al., 2012; Young et al., 

2021), with C9 bearing some similarities to sporadic FTD cases(Conlon et al., 2018). The 

differences do not translate into changes in the severity or rate of progression of disease (Van 

Langenhove et al., 2013). This meant that TAU having an order of magnitude more DEGs was 

surprising. The first point to investigate would be why this is.  

 

A possible reason for the differences in results may have been the changes in relative 

enrichment of cell types. C9 pathology did not have any cell types that seemed to be 

significantly different from control, while TAU had several significant differences in cell types. 

When including the relative enrichment of brain cell types from BrainInABlender (BIAB), the 

number of DEGs found in TAU seemed to be much more similar to the numbers found in C9 

pathology. This suggests that the differences in the number of DEGs may be linked to the 

differences in cell types. One initial method of validation may be single cell RNA-seq. It would 

be ideal to sequence several of the cell types which BIAB suggests show differences in 

expression. This would allow us to see both whether there are any overall changes in 

expression, and would allow for clarification of true DEGs. If single cell RNA-seq in human 
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brains is not feasible, then investigating whether there are similar changes observed in mouse 

models would provide some insight into the truth of our results. 

 

We have performed some initial validation through our C9 mouse dataset analysed in chapter 

5. This analysed C9 mice which had a repeat expansion inserted, causing mice to express one 

of two proteins linked to pathogenesis. In our mutant mice we did not find any significant 

changes to the proportion of brain cell types between our samples and their wildtype 

controls. While more validation is required, this finding may be particularly interesting when 

combined with validation of a similar TAU mouse mutant dataset. 

 

Depending on the results I see other questions would arise. If there are substantial changes 

in cell types in TAU, it would be ideal to see which of the genes are truly differentially 

expressed in TAU and how they overlap with C9. It would also be useful to investigate which 

of the cell types are truly changed and how accurate BIAB is on our dataset. If there are no 

substantial changes in expression in cell types then further investigation into both the results 

of the cell type enrichment and differences in the number of differentially expressed genes 

between C9 and TAU would be necessary. 

 

In a broader context, further development of tools to analyse cell types in brains would be 

useful. The relative levels of enrichment and depletion of cell types require validation. The 

reasons for the anomalies observed in fold changes observed when integrating levels of cell 

types needs to be investigated. Depending on the results of the validation, investigation into 

the specific genes which are found to be differentially expressed when cell types are 

integrated may also produce useful insights into pathways which are changed within patients. 

 

The creation of a tool which could easily use multiple types of reference data, and multiple 

algorithms for deconvolution, along with potentially integration of differential expression 

analysis accounting for changes in cell types would be useful. The tools which I found which 

specialised in brain cell type deconvolution tended to produce relative rather than absolute 

brain cell type deconvolution results, and do now allow for selection of the specific types of 

tissues from which the RNA-seq data was produced. Given the findings of (Sutton et al., 2022), 

a tool which had multiple types of neuronal data from several different sources which could 

be easily selected would make analysis of cell type deconvolution in neuronal data more 

accurate and accessible. Adding a method to then easily integrate these results into 

differential expression analysis has the potential to substantially improve analysis of bulk 

RNA-seq data, and help produce reliable results which would better improve our 

understanding of changes which occur in the datasets of interest.  
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5. Analysis of C9orf72 repeat expansion in 

mice 

 

5.1. Publication 

This work has yet to be published. 

5.2. Introduction 

A GGGGCC (G4C2) hexanucleotide repeat expansion in C9orf72 gene is the most common 

genetic cause of FTD and ALS (Majounie et al., 2012). There are currently three non-mutually 

exclusive proposed mechanisms for how this expansion causes disease: presence of sense 

and antisense RNA foci, reduced expression of C9orf72 gene, and presence of dipeptide 

repeat (DPR) proteins (Zang et al., 2018; Gendron et al., 2014). 

 

Repeat associated non-ATG (RAN) translation of C9orf72 occurs in all sense and antisense 

reading frames, leading to six dipeptide repeat proteins: glycine–alanine (poly-GA), glycine–

proline (poly-GP) and glycine–arginine (poly-GR) from sense repeat transcripts, and proline–

glycine (poly-PG), proline–arginine (poly-PR) and proline–alanine (poly-PA) from antisense 

repeats. Two repeats in particular, poly-GR and poly-PR have both been linked to 

pathogenesis (Kwon et al., 2014; Mizielinska et al., 2014). 

 

In order to generate physiological models of C9FTD/ALS and understand the effect of DPR at 

endogenous levels, the Isaacs lab have successfully generated novel DPR knock-in mouse 

models in which patient-length DPRs are driven by the endogenous mouse C9orf72 promoter. 

They have inserted 400 codon optimised repeats of GR and PR directly after the ATG start 

codon of the mouse C9orf72, generating C9orf72 knock-in mouse models that express 

physiological levels of DPRs. Codon optimisation was performed to minimise repetition and 

guanine-cytosine content as much as possible. The respective mutants are henceforth known 

as (GR)400, and (PR)400. Both mice develop phenotypes consistent with adult-onset 

neurodegeneration (Milito et al., 2023). To establish a detailed transcriptional 

characterisation, we have sequenced both wildtype and mutant samples at 6 and 12 months 

old. 

 

The goal of this chapter was to evaluate the effect of poly-GR and poly-PR DPRs on RNA-

expression when expressed in mice. I sought to compare the mutant mice to their relevant 

controls and to one another. I also hoped to evaluate whether these DPRs caused changes in 

relative proportions of cell types within the brain. 
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5.3. Methods 

DPR-specific mouse models were produced by inserting transgene vectors with 400 PR/GR 

repeats immediately after and in frame of the ATG start codon in mouse C9orf72 using 

CRISPR/Cas9 technology. Spinal and brain extraction was performed. The paper establishing 

these mice is under review as of time of writing. Meso Scale Discovery (MSD) – a form of 

plate-based assay which uses antibodies to detect molecules of interest (Burguillos, 2013) - 

was performed to ensure that models expressed their respective DPRs in the spinal cord. 

Whole-brain RNA extraction was performed and at 6 and 12 months using miRNeasy Micro 

Kit (Qiagen), this was subsequently sequenced using Illumina NovaSeq. The breeding of mice, 

culling and extraction were performed by Carmelo Milioto. Further information regarding 

these mice can be found in (Milito et al., 2023). Read depth was performed at an average of 

70,000,000 reads; full per sample information can be found in Table 5-1.  The number of 

samples were chosen as they are a relatively standard number, and have identified significant 

and relevant differences in other RNA-seq experiments. No power calculations were carried 

out prior to these experiments. 

 

Alignment, read counting, differential expression analysis, and GO term analysis were 

performed as discussed in chapter 2. The full code for the specifics of how I performed 

differential expression, GO term analysis, and figure creation can be found on my GitHub 

(https://github.com/SethMagnusJarvis/PhDFigureCreation/tree/main/AdrianC9).  

 

Differential expression was performed using DESeq2 as described in section 2.3. Cell type 

analysis was performed using the R package BrainInABlender. PCA plots of the 

BrainInABlender results used relative levels of all cell types to calculate PCA score. 

 

In order to search for sequences, I used the command line utility grep which can search raw 

text files for specific strings, and return the number of occurrences of a particular string within 

a file. 

5.4. Results 

5.4.1 Sequencing of samples 

We extracted and sequenced the brains of 30 mice, 15 at 6 months, and 15 at 12 months, 

each group consisted of 5 (GR)400 mutant mice, 5 (PR)400 mutant mice and 5 littermate 

controls. Our intention was to see what effect these mutations would have on gene 

expression of these mice. 
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5.4.2 Removal of outliers 

Our initial attempt at analysis did not produce the results I was expecting. There were very 

few genes which were differentially expressed between mutant mice and comparable 

wildtype mice. This was true both in the 6-month-old samples, and the 12-month-old samples 

which had begun to develop motor deficits.  We had already recognised that two mice 

(NM8078_797806, NM8082_800555) had been contaminated, and I had not included them 

in my analysis. 
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Table 5-1. Table showing the presence of each mutant sequence in samples. In this table, each sample name 
corresponds to a different mouse. I used grep to search for a 40 BP long representative sequence of each sample. 

Read depth is included for those samples with  

Sample 

Mutant 

Only 

Sequence 

PR Only 

Sequence 

GR Only 

Sequenc

e Condition Age 

Read Depth 

(PR)400_8070 11 38 0 (PR)400 6M 60063578 

(PR)400_8071 12 29 0 (PR)400 6M 56546275 

WT_8072 0 0 0 WT 6M 58594057 

(PR)400_8073 18 23 0 (PR)400 6M 62770382 

WT_8074 0 0 0 WT 6M 53215370 

(GR)400_8075 17 0 82 (GR)400 6M 73325379 

(GR)400_8076 17 0 107 (GR)400 6M 64708113 

(GR)400_8077 13 0 66 (GR)400 6M 48870851 

WT_8078 0 3 0 WT 6M  

(GR)400_8079 35 0 117 (GR)400 6M 66664757 

WT_8080 0 0 0 WT 6M 74336161 

(GR)400_8081 19 0 62 (GR)400 6M 58270089 

(PR)400_8082 6 7 52 (PR)400 6M  

(PR)400_8083 9 15 0 (PR)400 6M 65808400 

8084 1 15 0 NA 6M  

WT_8085 0 0 0 WT 12M 81464543 

WT_8086 0 0 0 WT 12M 82417595 

(PR)400_8087 5 12 0 (PR)400 12M 51246118 

(PR)400_8088 18 47 0 (PR)400 12M 77818437 

WT_8089 0 0 0 WT 12M 67205224 

(PR)400_8090 14 36 0 (PR)400 12M 78825057 

WT_8091 0 0 0 WT 12M 73817810 

(PR)400_8092 15 38 0 (PR)400 12M 80418384 

8093 0 0 7 NA 12M  

(GR)400_8094 34 0 170 (GR)400 12M 77805035 

(GR)400_8095 34 0 139 (GR)400 12M 85426812 

(GR)400_8096 32 0 147 (GR)400 12M 76775846 

(GR)400_8097 34 0 148 (GR)400 12M 76304988 

(PR)400_8098 15 35 0 (PR)400 12M 89782534 

(GR)400_8099 17 0 117 (GR)400 12M 82504083 
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Carmelo Milioto performed PCR, searching for contamination with mutant sequences of the 

samples. For two of the wildtype samples the presence of mutant sequences was identified. 

Specifically, the samples NM8084_800973, and NM8093_793422. I then confirmed this 

issue in our RNA by searching for the mutant sequences in our fastq files (Table 5-1). 

Fortunately, the samples were of different ages so their removal would not have too much 

effect on overall dataset integrity. I also found one 6-month-old (PR)400 sample to also 

contain sequences from the other mutation - NM8082_800555. It was not obviously 

different in the PCR, but I removed all 3 of these samples from future analysis.  

 

After removing these samples, I generated PCA plots of normalised reads combining all 

samples at once (Figure 5-1 a), as well as one for our 6 months samples and one for our 12-

month ones (Figure 5-1 b and c respectively) . The biggest difference between the samples as 

a whole is the age. In the PCA plot of the 6-month samples, there is no clear visual separation 

by genotype. There is no phenotype at this age, so the lack of changes within the RNA was 

not unexpected, as substantial changes would be accompanied by some motor deficit. The 

separation of mutants from their wildtype samples at 12 months old appears to be more 

defined. In Figure 5-2 heatmaps looking at the expression of most variant genes found similar 

results; a strong grouping in the 12-month samples and a mild grouping in the 6-month 

samples, more so in the PR than GR mutants. 

 

 
Figure 5-1. PCA plots of normalised reads. (a) all samples, (b) 6-month-old samples, and (c) 12-month-old samples. 
Age appears to be the largest factor in how samples group. When samples are just performed at 6 months there 
is not a clear separation between genotypes and wildtypes. At 12 months, there is a clear segregation between 
mutant and wildtype samples. While there is some mixing between the two mutant lines, they also appear to cluster 
separately. 
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Figure 5-2. Heatmaps of normalised expression of genes in the 99.9th percentile for variance of expression across 
samples within each plot. Each line represents the expression of an individual gene using normalised values as 
produced by DESeq2. Colour coding indicates log of these normalised reads. (a) 6-Month-old (PR)400 samples 
and their relevant wildtype, (b) 6-Month-old (GR)400 samples and their relevant wildtype, (c) 12-Month-old (PR)400 

samples and their relevant wildtype, (and (d) 12-Month-old (GR)400 samples and their relevant wildtype.  

 

 

5.4.3 Differential expression 

We separated the samples both by age and mutation status and performed differential 

expression using DESeq2 (via the EnrichmentBrowser package). 

 

The number of genes found to be significant in both of our 6-month datasets was relatively 

minimal, only resulting in 2 or so differentially expressed genes per dataset. C9orf72 was 

differentially expressed in PR and Egf was differentially expressed in both. The PR and GR 12-

a 
b 

c d 
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month-old datasets had 398 and 1549 differentially expressed (padj < 0.05) genes 

respectively. The phenotype is much stronger at this age so that is not unexpected. Volcano 

plots can be seen Figure 5-3. 

 

 
Figure 5-3. Volcano plots of differential expression. (a) 6-Month-old (PR)400 samples and their relevant wildtype, 
(a) 6-Month-old (PR)400 samples and their relevant wildtype, (b) 6-Month-old (GR)400 samples and their relevant 
wildtype, (c) 12-Month-old (PR)400 samples and their relevant wildtype, (a) 6-Month-old (PR)400 samples and 
their relevant wildtype, and (d) 12-Month-old (GR)400 samples and their relevant wildtype. Blue genes are 
considered to be significantly differentially expressed (padj < 0.05), red genes do not meet the significance 

threshold 

 

Then I grouped our samples by mutation and by age. There are no significantly differentially 

expressed genes when grouping all GR samples together and 4 when grouping all PR samples 

together one of which was C9orf72. When grouping by age, 2 genes were differentially 

expressed when combining 6-month samples (Egf and Ngf), and 1,781 were found when 

merging the 12-month samples. 
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Figure 5-4. Venn Diagram of overlap of differentially expressed genes (padj < 0.05) in our 12-month-old (PR)400 
and (GR)400 samples 

 

PR has significantly fewer genes differentially expressed in its 12-month-old samples than 

does GR (t-test p-value < 0.0001). The majority of genes which are significantly differentially 

expressed in PR are also significantly differentially expressed in GR. (Figure 5-4). 

 

 
Figure 5-5 Biological GO term enrichment plot in 12-month-old (PR)400 brain samples. Following RNA-seq 
differential expression analysis, GO term enrichment was performed using the package topGO. The top 20 most 
significantly GO terms are shown, with the number of significantly differentially expressed genes associated with 
the GO term on the X axis, and coloured by p-value significance.  
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Figure 5-6. Biological GO term enrichment plot in 12-month-old (GR)400 brain samples. Following RNA-seq 
differential expression analysis, GO term enrichment was performed using the package topGO. The top 20 most 
significantly GO terms are shown, with the number of significantly differentially expressed genes associated with 
the GO term on the X axis, and coloured by p-value significance.  

      

In our 12-month-old (PR)400 samples (Figure 5-5) our most significant GO terms included RNA 

splicing and chromatin organisation, histone modification, and DNA repair. In the 12-month-

old (GR)400 samples (Figure 5-6), there are a large number of significant GO terms including 

three terms related to ubiquitin dependant protein degradation, as well as two terms relating 

to RNA splicing, and chromatin organisation.  

 

When performing significance testing, we were surprised to find that C9orf72 was not found 

to be significantly decreased in either of our GR datasets so wished to plot the expression 

against wildtype as we expect a 50% reduction due to the knock-in approach removing one 

healthy C9orf72 allele, which was confirmed by RT-PCR and immunoblot (Milioto et al., 2023). 

As can be seen in Figure 5-7 there appears to be a difference in overall expression from control 

in our PR samples at both timepoints (although less so at 12 months) and while there is some 

in the GR, it is less pronounced, and does not clear the t-test significance threshold of p-value 

<=0.05. 
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Figure 5-7. Dot plots of normalised expression of C9orf72. (a) 6-month-old, and (b) 12-month-old samples. Data 
was gathered by selecting all reads mapped to ENSMUSG00000028300 which is the Ensembl ID of C9orf72. 

 

As explained in the previous chapter, brain cell types are one of the most heterogeneous in 

the body. Given that the samples I was analysing are from brains, I wanted to investigate 

whether there were changes in specific cell types caused by (GR)400 or (PR)400 knock-in. I 

ran the R-package BrainInABlender on normalised expression and examined the resultant cell 

type balance. I created PCAs (Figure 5-8) and heatmaps (Figure 5-9) of the balance of each 

cell type across samples. Neither type of figure showed a strong correlation with sample type. 

This lack of difference was further validated when I created boxplots both with and between 

group p-values and Kruskal-Wallis p-values to compare across all samples, there was no 

significant difference in any cell type at any age (Figure 5-10). When I separately analysed the 

data by age this lack of difference continued. 
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Figure 5-8. PCA plot of relative enrichment of cell types in each sample compared to what is expected based on 
expression of cellular marker genes from brain in a blender. Plots are in (a) all samples, (b) 6 Month samples, and 
(c) 12 Month samples. There does not appear to be clear segregation of samples by mutation 
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Figure 5-9. Heatmap of relative balance of cell types in all samples coloured by relative enrichment/depletion 
compared to other cells, normalised on each row. This chart shows all samples which were involved in analysis at 
all timepoints.  

 
Figure 5-10. Dot plot of relative levels cell type in each sample in each cell, separated by mutation. (A) Astrocytes, 
(B) Endothelial, (C) Microglial, (D) Mural, (E) All Neurons, (F) Interneurons, (G) Neuron Projections, (H) 
Oligodendrocytes, (I) Immature Oligodendrocytes, and (J) Red blood cells. Significant differences comparing each 
group to each other group individually are tested using a t test, and across all samples using a Kruskal-Wallis test. 
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5.5. Discussion 

As stated previously, there are several hypotheses as to why mutations in C9 cause disease. 

The mouse models created aim to test for changes caused by the most pathological DPR 

proteins in exclusion of the other possible causes of disease. While this does not resemble 

changes seen in patients, it is an important step in further developing our understanding of 

how C9 causes disease. 

 

The main findings of my analysis were that the minimal phenotype in 6-month-old samples 

reflect an almost total lack of differentially expressed genes at this age, and that the GR seems 

to be more biologically active, and causes more genes to be differentially expressed. Most of 

the genes that were found to be expressed in PR expression mutants when compared with 

wildtype were also differentially expressed in GR expressing mutants when compared with 

wildtype. This showed a substantial overlap between the two mutations. It was unexpected 

that C9orf72 was not found to be significantly differentially expressed at the gene or exon 

level at any age in GR, one copy of the gene was removed by the inserted sequence, so further 

investigation into why it was not reduced in GR samples will need to be performed. No change 

in cell types were observed. This is consistent with no overt gliosis in this model at 6 or 12 

months of age. Neuronal loss was observed only in the spinal cord but not the brain, so no 

change in neurons is also expected. The neuronal loss in spinal cord was only identified after 

RNA-seq of the brain was performed. In the future it will be interesting to perform RNA-seq 

on spinal cord from these mice. 

 

Poly(PR) related GO term enrichments were most strongly linked to RNA splicing, chromatin 

organisation, histone modification, and DNA repair. These results are very interesting, and 

show some notable overlap with existing studies on poly(PR). For instance, in mice, 

overexpressing 50 PR repeats showed heterochromatin abnormalities and abnormal histone 

methylation (Zang et al., 2019). This was thought to be at least in part driven by the specific 

effects of poly(PR) on heterochromatin protein 1 alpha phase separation. It is intriguing that 

histone modification was not enriched in the GR dataset, indicating a specific effect of 

poly(PR) which is consistent with this earlier study. Further work is now needed to investigate 

effects of poly(PR) on histone modification in our model and how well they correspond to the 

reported changes in the 50 PR repeat mouse model. It is not surprising that the changes are 

less marked in our model where poly(PR) expression was driven by the endogenous mouse 

C9orf72 promoter as compared to high levels of overexpression using AAV driven expression 

in the PR 50 mice. It was also noted that the majority of differentially expressed genes in the 

PR 50 mice were downregulated. While we didn’t observe this trend, we noted that the genes 

with the highest fold changes and lowest p-values appeared to have negative fold changes. 

DNA repair has consistently been identified as a potential player in C9FTD/ALS, while most of 

the data focused on poly(GR) (Gao et al., 2017), one study shows an effect of poly(PR) on DNA 

damage (Farg et al., 2017). 
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Poly(GR) GO term enrichment identified GO terms relating to ubiquitin dependant protein 

degradation, and RNA splicing as two of the most significantly altered. Both of these pathways 

have been implicated in neurodegenerative diseases. It is possible that they contribute to 

neuronal dysfunction in these mice. Of relevance the finding that splicing is dysregulated in 

C9FTD/ALS patient brains (Prudencio et al., 2015). It would be very interesting to perform 

differential splicing analysis on our GR 400 dataset to see how well it matches human post-

mortem data. We expect our changes to be much earlier in the pathogenic cascade but 

changes that persist in human post-mortem material would be interesting to follow up. TDP 

induced splicing changes are now well characterised and induce the inclusion of cryptic exons 

when TDP function is reduced. However, TDP mislocalisation was not observed in the GR(400) 

mice (Milioto et al., 2023), therefore we would expect splicing changes to be independent of 

TDP-43, likely mediated either by direct binding of poly(GR) to RNA, or downstream 

compensatory effects. The Isaacs lab have recently investigated transcripts which bind to 

poly(PR) using CLIP and their data suggests it would be interesting to do the same with 

poly(GR). 

 

Our results in cell typing helped to validate the results from our chapter looking at the brains 

of FTD patients as well. There did not seem to be any substantial changes to expression in 

certain cell types/composition of cell types arising from these C9orf72 mutations. Any of the 

reasons previously hypothesised in section 4.5 may be responsible for this. An additional 

hypothesis in this case may be that the DPRs we have produced do not result in cell type 

specific neurodegeneration.  

 

 

5.5.1 Future work 

 

The biggest unanswered question arising from my work in the C9 dataset is why does C9 not 

seem to show significant changes in GR mutants? In theory the one copy of gene should be 

knocked out but in both the examination of just the gene, and of each exon, I found that there 

was no significant change either overall or in any single exon. This suggests that the presence 

of the mutant sequence rather than changes in the levels of expression of C9orf72 are 

responsible for a lot of the changes observed both in terms of gene expression and pathology. 

 

Validation of whether there are changes through qPCR would raise interesting questions for 

future research regardless of which result is found. If there truly are few or no changes in 

expression of C9orf72 in our adult mouse samples why is this? There must be a regulation 

mechanism at play which can function with this particular GR mutation. If there are changes 

that our RNA-seq data just is not showing, it would be important to investigate why this is. 
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Once this investigation has been performed, this model has the potential to provide 

interesting information on the mechanisms by which DPRs cause disease in the absence of 

RNA foci. Further interrogation of specific genes which are affected by each DPR may provide 

more insight into mechanisms of how the DPRs cause disease and highlight potential targets 

for further research or treatment.  

 

The changes of GO terms linked to RNA splicing suggest that it may be fruitful to perform 

splicing analysis on these samples at a future data to evaluate which, if any specific changes 

which are occurring as a result. The read depth of the existing data may be sufficient for 

splicing analysis.  

 

The creation of additional models may also be a fruitful endeavour. This model aimed to study 

DPR proteins without the creation of RNA foci. A future model which attempts to evaluate 

the effect of RNA foci in the absence of DPRs would also be useful if difficult to do. A model 

which produces RNA-foci and C9orf72 at endogenous levels would also be hugely informative 

as to the role some of the DPRs play while C9 is at endogenous levels. This would also not be 

something seen in patients, but would further our understanding of some of the specific 

mechanisms of disease. 

 

The lack of differences in cell types observed when analysing this dataset does seem to 

continue our findings from the FTD Brain chapter (Chapter 4). Further investigating the 

specific mechanisms of changes in brain cell types would be a good strategy for future 

research. Further developing tools for analysis and integration of brain cell type data into bulk 

RNA-seq analysis has the potential for broad reaching utility in neurodegeneration.  
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6. Analysis of F210I mutant mouse data 

 

6.1. Publication 

This work has yet to be published. 

6.2. Introduction 

Transactive response DNA‐binding protein (TDP-43) is an RNA-binding protein encoded by the 

highly conserved gene TARDBP. In normal physiological conditions, TDP-43 is localised almost 

exclusively in the nucleus, where it plays a role in various forms of RNA metabolism such as 

splicing. A ubiquitinated and hyperphosphorylated version is found in the majority of patients 

with ALS, and many with FTD irrespective of mutations in the gene (Ling et al., 2013).  I 

therefore hypothesise that this pathology is convergent, with several possible causes leading 

to mislocalisation of TDP-43 (Suk et al., 2020). This underscores the importance of 

understanding the role of TDP-43 in pathology to overall understanding of both ALS and FTD. 

 

A large amount of research has been done into the pathogenesis of TDP-43, and despite this, 

the underlying mechanisms of TDP-43 pathology are unclear. Presence of inclusions in the 

cytoplasm suggests that there is a toxic gain of function effects, but the nuclear depletion also 

suggests loss of function. Disambiguating these effects is important for development of 

therapeutic strategies. 

 

Gain of function effects are typically modelled through overexpression of the affected gene 

and loss of function through knockout/knockdown models. TDP-43 can regulate its own 

expression through binding to a site in its 3’ UTR (Ling et al., 2013; Sephton et al., 2011). This 

makes both knockdown and overexpression models technically challenging while 

homozygous knockout models are embryonically lethal. 

 

Our lab has been working with mice who have a point mutation localised in one of TARDBP’s 

2 RNA binding domains (RRM2) and gives rise to a phenylalanine to isoleucine change in the 

final protein. This leads to reduced RNA binding activity and a partial loss of splicing activity 

(Fratta et al., 2018). These mice continue to express TDP-43 at physiological levels allowing 

investigation of loss of function without the confounding factor of changes in expression. This 

mutation has not been encountered in humans, but seeks to use its unique factors to 

determine some of the effects of this specific loss of function. This mutation is of interest 

pathologically as mutations which are causative for ALS have been found to cluster around 

the RNA binding motifs of TARDBP (Ederle & Dormann, 2017; Ratti & Buratti, 2016). 

      



 
 

91 
 
 

As in previous loss of function models, homozygous versions of this mutation are 

embryonically lethal (Kraemer et al., 2010; Sephton et al., 2010; Wu et al., 2010). HOM 

embryos also show marked developmental delay compared with both HET mutants and 

wildtype littermates, but have normal organogenesis and no neuropathology. HET mutants 

are viable, with no overt motor defects of neuropathology even in aged animals observed. A 

list of some of the most relevant TDP-43/91Tardbp mouse models can be found in Table 6-1. 

 
Table 6-1. Table of targeted knock in and ENU mutagen Tardbp models. Adapted from (De Giorgio et al., 2019) 

Strain name 
Transgenic/Gene 
targeted knock-
in/ENU 

Genetic 
Background 

Protein Inclusions/ 
aggregates 

Final-stage 
disease 
(terminal MN 
loss) 

Behavioural 
analysis 

Reference 

hTDP-43 A315T Gene-targeted 
knock-in  
Endogenous 
Promoter: 
mTardbp 

129S2/129P2/ 
Ola×C57BL/6Ntac 

Human cDNA 
gene targeted into 
mouse Tardbp 
locus; alteration 
of 3′UTR aligning 
importance for 
autoregulation 

Inclusions: 
Present 
Ubiquitin: Present 
TDP-43: Co-
localises with Ub 
p62: Absent 

Early signs at 
∼12-20 
weeks. MN 
loss: 10% at 
65 weeks 

Mild motor 
coordination 
impairment 

(Stribl et 
al., 2014) 

Tardbp Q331K 
(JAX 031345) 

Gene-targeted 
knock-in 
Promoter: 
mTardbp 

C57BL/6J mTDP-43; TDP-43 
GOF. 45% increase 
in nuclear TDP-43 
in mutant, 
impaired 
autoregulation 

Absent Early signs at 
∼20 weeks; 
no final MN 
loss 

Mild to no 
motor 
coordination 
impairment 
at 20 and 24 
weeks. 
Cognitive and 
memory 
impairment 

(M. A.  
White et 
al., 2018) 

Tardbp Q331K Gene-targeted 
knock-in 
Promoter: 
mTardbp 

C57BL/6J mTDP-43; TDP-43 
gain-of-splicing 
function 

Not Stated Not Stated Not Stated (Fratta et 
al., 2018) 

Tardbp Q101X 
(JAX019899) 

ENU point 
mutant 
Promoter: 
mTardbp 

C57BL/6J×C3H/ 
HeH 

mTDP-43; no 
difference in 
protein level 
between 
WT/mutant TDP-
43 

Absent Early signs at 
32-61 weeks; 
no final MN 
loss 

Mild to No 
motor 
coordination 
impairment 

(Ricketts 
et al., 
2014) 

Tardbp F210I 
(BRC#GD000108) 

ENU point 
mutant 
Promoter: 
mTardbp 

On C57BL/6J 
embryonic day 
18.5; viable HOM 
on C57BL/6J-
DBA/2J 

mTDP-43; TDP-43 
LOF (shift towards 
exon inclusion), 
cryptic exon. 
Reduced RNA 
binding 

Absent Absent Absent (Fratta et 
al., 2018) 

Tardbp M323K 
(BRC#GD000110) 

ENU point 
mutant 
Promoter: 
mTardbp 

On C57BL/6J 
embryonic lethal; 
viable HOM on 
C57BL/6J-DBA/2J 

mTDP-43; TDP-43 
GOF(increased 
exon exclusion), 
skiptic exon. No 
nuclear depletion. 
Increased Tardbp 
intron 7 retention 

Inclusions: 
Present 
Ubiquitin: Present 
TDP-43: Absent 

Early signs at 
∼52 weeks; 
MN loss: 28% 
at 104 weeks 

Motor 
coordination 
impairment 

(Fratta et 
al., 2018) 

 

 

The aim of this chapter is to evaluate the effects of a heterozygous RRM2 mutation in mice 

on RNA. Both levels of expression and differential splicing are evaluated. The mutants will be 

compared to wildtype mice. The changes observed will also be compared to the changes 

observed in homozygous mice when compared with their wildtype mice to evaluate whether 
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there is a difference in the mechanisms of the two mutations beyond any changes in the size 

of the effect of mutations. 

 

6.3. Methods 

The Tardbp RRM2mut and LCDmut lines were derived from the RIKEN BioResource Centre 

and are available as BRC no. GD000108 and GD000110 from RIKEN BioResource Centre, 

respectively. RNA was extracted from MEFs, embryonic E18.5 head or adult spinal cord. Total 

RNA extracted using an Rneasy fibrous tissue extraction kit (Qiagen). Poly-A tailed RNA was 

purified using an oligo dT pulldown. Libraries were sequenced using an Illumina HiSeq 2000. 

The process was the same as that found in (Joyce et al., 2016; E. T. Wang et al., 2012). 

 

5 adult wildtype, and 7 adult heterozygous mice were culled and sequenced. 4 embryonic 

wildtype mice and 4 embryonic homozygous mice were also culled and sequenced. The 

breeding and extraction were performed by Nicol Birsa and Agnieszka Ule. The read depth of 

the HET samples can be found in Table 6-2. The read depth of the HOM samples was between 

31-36M. 
Table 6-2. Read Depth of HET samples and their WT controls. 

Sample Reads 

Het1 70765869 

Het2 70218750 

Het3 75901401 

Het4 75418950 

Het5 63184456 

Het6 67389214 

Het7 69631905 

WT1 61407539 

WT2 57542722 

WT3 67807082 

WT4 73074830 

WT5 58903412 

 

Alignment and read counting were performed as discussed in chapter 2. The full code for how 

I performed differential expression and other analysis can be found on my GitHub 

(https://github.com/SethMagnusJarvis/PhDFigureCreation/tree/main/F210I). Differential 

expression was performed using DESeq2 as described in section 2.3. Differential splicing 

analysis was performed as discussed in section 2.4 
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6.4. Results 

6.4.1 Sequencing of samples 

Our primary data for this dataset was comprised of 7 Adult mice, heterozygous for the RRM2 

mutation, and 5 littermate controls. After sequencing the data was aligned and expression of 

genes was counted using the method described in chapter 2. I then performed differential 

expression and splicing analysis, as well as a comparison between this data and a previously 

analysed HOM dataset.  

 

 

6.4.2 There are minimal gene expression changes in HET mutants 

When comparing the levels of RNA expression in the mutants and their littermate controls, I 

found that the effect of the HET mutation was relatively small. As can be seen in the PCA of 

normalised gene expression across all genes (Figure 6-1 ), I did find some separation between 

some of the WT and HET samples. While there is some separation, it is not complete, two 

samples in particular (WT3 and WT4) are almost indistinguishable from our HET mutants. This 

lack of separation between the groups is even more pronounced when comparing expressions 

of the most variant genes via heatmaps in Figure 6-2. The Hierarchical clustering shows that 

4 of the HET mutants group relatively closely together, one of the wildtype samples however, 

groups with them, and the other samples are less clearly separated. Given the relatively minor 

phenotype, this is not totally unexpected. 

 

 
Figure 6-1. A PCA plot of the wildtype and heterozygous samples using normalised expression. It shows no clear 
separation between the wildtype and mutant samples.   
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Figure 6-2. Heatmap created using the R package pheatmap using normalised levels of expression to show how 
samples cluster based on the top 1% most expressed genes. Each line represents the expression of an individual 
gene using normalised values as produced by DESeq2. Colour coding indicates log of these normalised reads. 

 Table 6-3. List of the differentially expressed HET mutant genes and a description of their function. 

Ensembl ID Gene 

Name 

Function Description Fold Change Adjusted p-value 

ENSMUSG00000041459 Tardbp  TAR DNA binding protein 0.2864056 0.001601195 

ENSMUSG00000046865 Fbl  fibrillarin  0.3738060 0.008419617 

ENSMUSG00000040666 Sh3bgr  SH3-binding domain glutamic 

acid-rich protein 

-0.4510003 0.012066752 

ENSMUSG00000067818 Myl9 Calcium ion binding/myosin 

heavy chain binding 

0.5554708 0.006680943 

ENSMUSG00000024395 Lims2 LIM and senescent cell antigen 

like domains 2  

0.3522494 0.007746885 

ENSMUSG00000033364 Usp37  ubiquitin specific peptidase 37 -0.1926423 0.021157982 
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Figure 6-3. volcano plot of differential expression comparing HET mutant mice to wildtype controls. Red genes are 
considered to be significantly differentially expressed (padj < 0.05); green ones do not meet the significance 
threshold. It shows that all of the genes which are significantly differentially expressed have relatively small fold 

changes. 

 

 

In order to evaluate differential expression, I used DESeq2. As can be seen in the volcano plot 

(Figure 6-3) there were relatively few genes found to be significantly differentially expressed. 

Table 6-3 shows the 6 genes which were significantly differentially expressed. TARDBP had a 

slightly increased expression. Overcompensation of the self-regulatory mechanism may cause 

this. This increase does not mean an increase in functional TARDBP however. The fold change 

of TARDBP is one of the smallest observed.  

 

Figure 6-4. shows that while there were relatively few genes found to be significantly 

differentially expressed, two GO terms in particular were significantly enriched. Specifically, 

these were GO terms linked to RNA-polymerisation and binding to the 3’-UTR binding of 

mRNA. 
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Figure 6-4. GO term maps of molecular function in KS filtering any genes with padj < 0.05. It shows that binding is 
by far and away the most strongly effected top level GO term, with 3’ UTR binding, and a sequence linked to RNA 
polymerase II being seeming to be most strongly correlated. This is a subgraph induced by the most significant GO 
terms identified by the fisher exact algorithm for scoring GO terms for enrichment. Rectangles indicate the most 
significant terms. Rectangle colour represents the relative significance, ranging from dark red (most significant) to 
bright yellow (least significant). For each node, some basic information is displayed. The first two lines show the 

GO identifier and a trimmed GO name 

 

6.4.3 Splicing changes  

I used the method of calculating differential splicing described in the main methods chapter. 

It consisted of a combination of SGSeq and DEXSeq. As can be seen in our PCA plot of all of 
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splicing events (Figure 6-5), there does not seem to be a clear separation between the 

samples. It is not uncommon for PCA not to distinguish genotypes. Given the small number 

of subtle changes in this dataset, it is not surprising that PCA and hierarchical clustering did 

not distinguish between hET mutants and WT. 

 

 
Figure 6-5. PCA of expression of splicing changes in HET data. It uses the normalised level of expression of each 
splicing event observed within our data. 

Figure 6-6 shows the full breakdown of the events which were significantly differentially 

spliced.  Half of these events are cassette exons – broadly regarded as the most common type 

of splicing event in mammals (Cui et al., 2017; Sammeth et al., 2008), they are a term for the 

inclusion or loss of one or more exons between other exons in the mature mRNA. 

 

The Volcano plot of splicing (Figure 6-7) showed that the most significant splicing events were 

in the genes Sh3bgr, Dnajc5 and Sort1.  Sh3bgr encodes a protein linked to cell migration and 

angiogenesis (Li et al., 2016). Dnajc5 encodes for a protein linked to synapses and 

neurodegeneration (Cadieux-Dion et al., 2013). It has also been strongly to lysosomal storage 

disorders – a condition which results in the build-up of toxic products due to disruption in the 

lysosome (Henderson et al., 2016; Nosková et al., 2011).  The encoded protein (CSPα) has 

been found to be neuroprotective in Huntington’s and cystic fibrosis (Burgoyne et al., 2015)). 

Sort1 is responsible for making a receptor protein found primarily in the CNS (Andersen et al., 

2014). 

 

When comparing our list of genes containing differential splicing events to our list of 

differentially expressed genes, only one gene was found to be in both, Sh3bgr. The full list of 

significantly differentially spliced events can be found in Table 6-4. 
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Figure 6-6. Pie Chart showing the proportion each type of differentially spliced event at adjusted significance level 
<= 0.05. Cassette exons – including or skipping exons – are by far the most common type of event, with alternative 
3’ and intron retention being the two next most common event types. 

      

 
Figure 6-7. Volcano plots of Percentage spliced in (PSI) against log p-value. Red genes are considered to be 
significantly differentially expressed (padj < 0.05); green ones do not meet the significance threshold. All fold 
changes are relatively small, but the most significant splicing events tend to have a larger fold change.  
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All of the genes which have been significantly differentially spliced aside from GSTT3 and 

RBM18 have either been linked to mutations in TARDBP or linked to ALS more broadly(Dash 

et al., 2022; C. Yang et al., 2014; H.-S. Yang et al., 2020; Ziff et al., 2022). While RBM18 has 

not been directly linked to ALS or changes in TARDBP, like TARDBP it contains an RNA binding 

motif(RBM18 RNA Binding Motif Protein 18 [Homo Sapiens (Human)] – Gene – NCBI, n.d.). 

 

 Of the differentially spliced events, half were highly expressed (Exon Base Mean> 100). Figure 

6-8 shows a slight trend, with splicing events with the highest percentage spliced in index (PSI) 

– a measure of the ratio of reads including each particular splicing event – almost all had 

higher mean reads than the median. It is likely that genes which have a higher expression are 

more actively spliced, although it is possible that there is an issue with power; genes with a 

lower number of reads are likely to have less splicing information so it is harder to make an 

accurate judgement. 

 
Table 6-4. List of significantly differentially spliced events in HET mutants. 

Gene 

Name 
Exon Base Mean padj FDR Variant Type 

Sh3bgr 41.600603 9.223501e-62 9.391094e-62 Skipped Exon: Skipped 

Sh3bgr 256.243679 3.321541e-61 3.381894e-61 Skipped Exon: Included 

Dnajc5 73.216236 6.068522e-10 6.160618e-10 Skipped Exon: Included 

Dnajc5 324.701741 6.805627e-10 6.929286e-10 Skipped Exon: Skipped 

Sort1 130.242105 3.193490e-08 3.251517e-08 

Skipped Exon: Included + 

alternative 3’ splice site: 

Proximal 

Sort1 270.838162 3.417108e-08 3.479198e-08 

Skipped Exon: Skipped + 

alternative 3’ splice site: 

Distal 

Dctn6 96.376952 2.879804e-05 2.932130e-05 
Skipped Exon: Included + 

Mutually Exclusive Exons 

Dctn6 194.121630 1.388575e-04 1.413806e-04 

Skipped Exon: Skipped + 

alternative 3’ splice site: 

Distal 

Ndufa12 16.072170 3.564028e-03 3.628787e-03 

Skipped Exon: Skipped + 

Two Consecutive Exons 

Skipped: Included 
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Ndufa12 729.286697 4.007797e-03 4.080619e-03 

Skipped Exon: Included + 

Two Consecutive Exons 

Skipped: Skipped 

Phldb1 188.673438 6.675040e-03 6.778156e-03 

Retained Intron: Retained + 

alternative 3’ splice site: 

Proximal 

Phldb1 3.633528 9.150234e-03 9.316496e-03 

Retained Intron: 

Excluded+alternative 3’ 

splice site: Distal 

Eif4h 240.776375 9.150234e-03 9.316496e-03 

Skipped Exon: Skipped + 

Retained Intron: Excluded + 

alternative 5’ splice site: 

Distal + alternative 3’ splice 

site: Distal 

Eif4h 487.715709 9.700046e-03 9.876298e-03 

Skipped Exon: Included + 

Retained Intron: Retained + 

alternative 5’ splice site: 

Proximal + alternative 3’ 

splice site: Proximal 

Gstt3 46.560625 1.180594e-02 1.202046e-02 Skipped Exon: Skipped 

Gstt3 7.229119 1.252736e-02 1.275499e-02 Skipped Exon: Included 

Rbm18 6.365913 1.252736e-02 1.275499e-02  

Laptm4a 103.626496 3.550280e-02 3.614790e-02 Retained Intron: Retained 

Laptm4a 11.105789 3.550280e-02 3.614790e-02 Retained Intron: Excluded 
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Figure 6-8. Scatter plot of splicing events plotting mean expression vs PSI change. This shows that the genes with 
the highest PSI had higher mean reads than the median. 

6.4.4 Comparison of HET and HOM mutants      

The Fratta lab had previously produced homozygous mutant mice. This mutation is 

embryonically lethal, therefore the sequencing had to be performed on embryos unlike our 

HET mutants which were performed on adult mice. An additional aim of my research was to 

see how much the results of our HET mutation differed from our HOM mutants. Data from 

embryonically culled heterozygous mice had not been collected, so adult HET mouse data was 

compared with embryonic HOM mouse data.  

 

Initial PCA of our HET and HOM datasets Figure 6-9 showed the characteristic which had the 

strongest effect was the age at which the samples were taken, this meant that direct 

comparison of HET vs HOM would contain too much biological noise. I therefore decided to 

make sure that any analysis done was between the results of differences of mutants and their 

controls rather than directly between our groups. 
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Figure 6-9. PCA of normalised gene expression of both HET and HOM. It shows that samples cluster more closely 
with other samples of the same age taken at the same time than samples with similar mutations. This suggested a 
strong batch effect making direct comparisons impractical. 

 

We ran DESeq2 on both datasets and found that of the 6 genes which are differentially 

expressed in our HET dataset, 3 are found to also be differentially expressed in the HOM as 

well (Tardbp, Fbl, and Sh3bgr). This can be seen in Figure 6-10. Similarly, Figure 6-11 shows 

that the 5 of the 13 differential splicing events found within HET are also found to be 

significant within HOM. 

 

I created figures to give a clearer picture of expression in the genes found to be significantly 

differentially expressed in HET (Figure 6-12). As well as further reinforcing the batch effect 

observed in Figure 6-9, it did clearly show differences between the mutants and their relative 

controls. It also showed that in genes with significant differential expression in HOM, HOM 

tended to show larger changes than HET. In our z-score plots (Figure 6-13), the trend is 

broadly positive with most significant z-scores having the same direction of fold change 

(positive or negative) in both samples. As expected given the relative strength of the 

phenotypes, our HOM dataset had a lot more significantly differentially expressed genes than 

our HET.   
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Figure 6-10. Venn diagram of genes found significantly differentially expressed (padj < 0.05) in both HET and HOM. 
It shows that the HOM mutants had many more genes significantly differentially expressed than did HET mutants, 
and that only half of the genes significant in HET were significant in HOM suggesting a difference in mechanism 
over time. The genes which were found to be significantly differentially expressed in both samples are Tardbp, Fbl, 
and Sh3bgr 

 
Figure 6-11. Venn diagram of splicing events found significantly differentially expressed (padj < 0.05) in both HET 
and HOM. It shows that HOM mutants have many more differential splicing events, and that less than half of the 
splicing events significant in HET were significant in HOM suggesting a difference in mechanism over time. The 
events which are significantly differentially spliced in both are the two events in Dnajc5, two events in Sort1, and 
the skipped exon skipped in Eif4h     
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Figure 6-12. Boxplots of RPKM of all genes significantly differentially in our HET data, with genes significantly 
differentially expressed in our HOM data on the top row. The function of each gene can be found in Table 6-3 

 

 
Figure 6-13. Comparison of differential expression Z-scores in HET and HOM coloured based on significance in 
each set. Orange points are genes which are significant in the HOM dataset and not the HET one, purple are 
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significant in HET and not HOM, Red are significant in both but in the opposite directions and green samples are 
significant in the same direction as both. An upper bound of 20 has been imposed on the x-axis due to some genes 
being so highly significant as to distort the rest of the graph. There are 2 samples with a Z score greater than 3 that 
have oppositely signed Z scores in the two samples, and 11 which exceed this threshold are signed have the same 
direction of change 

Z-score plot of splicing (Figure 6-14) shows a marginally stronger effect, there are no 

differential splicing events signed in opposite directions.  I finally ran a comparison of both 

fold change and PSI in the differential splicing events. I plotted a pair of bar plots (Figure 6-15) 

which evaluated whether a splicing event had a larger absolute fold change/PSI in HET or 

HOM, and marked it as positive or negative depending on if the larger value was positive or 

negative. In these graphs the HOM samples tended to have larger fold changes and the HET 

samples had larger PSI changes. The changes which are higher in HET than HOM present very 

minor changes, so their biological significance is unclear even if they are truly differentially 

spliced when compared to comparable WT samples. It does suggest that there may be some 

splicing changes which are too subtle to be picked up by DEXSeq. 

 

 

 
Figure 6-14. Comparison of differential splicing Z-scores in HET and HOM colored based on significance in each 
set. Orange points are genes which are significant in the HOM dataset and not the HET one, purple are significant 
in HET and not HOM, and green samples are significant in the same direction in both. An upper bound of 20 has 
been imposed on the x-axis due to some genes being so highly significant as to distort the rest of the graph. There 
are no genes with an inverse correlation and 6 where both exceed the threshold and are signed in the same 
direction.               
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Figure 6-15. Comparison of ratio of splicing. (a) Fold Change, and (b) PSI in HET v HOM: The + or – indicates 
whether the sign is positively or negative in differential expression/splicing, HET or HOM says which of them had 

a larger absolute value 

6.5. Discussion 

TDP43 is a crucial protein for neurodegeneration. Studying its partial loss of function in vivo 

has been incredibly challenging. When deleting one allele, the self-regulation nullifies the 

effect, making these models less useful for providing insight into partial loss of function. Our 

lab had previously described an interesting TDP model where the endogenous TDP had 

decreased RNA-binding. Whilst the homozygous mice from this model had previously been 

described as causing E18 lethality, we now decided to investigate the effects of loss of RNA-

binding in one allele, and the effects in adulthood. My primary analysis in this section was 

related to the HET data, as the HET mutation, provides a model of partial loss of function, 

potentially in a way that is more in line with mutations seen in patients.  

 

Generally, both expression and splicing analysis found very few events, particularly when 

comparing with the large number of events found within the homozygous embryos (Fratta et 

al., 2018). Interestingly TARDBP was itself one of the targets found to be upregulated. This 

was reassuring as it underlines the fact that loss of RNA-binding pushes the system towards 

overregulation. Although TDP changes are linked to consequences in gene expression, these 

have been often linked to secondary changes, but the overlap of our HET and HOM analysis 

does indeed show that half of the DEGs are also present in HOMs supporting them as being 

strongly linked to TDP loss of function.  

 

Our analysis of splicing also found few genes to be significantly differentially spliced. A 

number of these were also present in homozygote embryos, showing that our model does 

indeed have loss of TDP splicing function.  When comparing Z score splicing between 

heterozygotes and homozygotes, there were no significantly discordant events, and all 

splicing events significant both datasets were concordantly either up or down regulate. I 

found relatively few differential expression results.  
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Generally,  I found more events to be significantly differentially spliced than I did genes 

differentially expressed. I think I would have likely found even more if sequencing had been 

performed at a higher read depth. I believe this for two reasons, the genes which were found 

to be significantly differentially spliced had more reads than average, and when comparing 

with the HOM splicing data, the fold change was larger in more genes in the HOM, but HET 

had more genes with a higher percentage spliced in. Together those two findings suggest that 

there is substantial splicing activity going on as a result of the HET mutation, but at this read 

depth, they are subtle enough that sufficient statistical power to identify which ones are 

occurring for certain is not attained.  

 

The slight enrichment of TARDBP in our HET samples is likely a result of the self-regulation 

mechanism of TARDBP.  TARDBP auto-regulates through negative feedback(Ayala et al., 

2011a). As we have disrupted its ability to bind to RNA, it is less able to reduce production 

leading to a slight increase in the levels of RNA found. This was one of the smaller fold changes 

within our heterozygous mutations so the levels of TDP-43 are unlikely to be substantially 

higher than endogenous levels – this is reinforced by the relatively small number of changes 

found in our HET models. Amongst the other significantly differentially expressed genes, 

Sh3bgr has been previously linked to mutations in TARDBP – and in particular has been shown 

to undergo cryptic splicing (Jeong et al., 2017). The others, however, do not appear to have 

been strongly linked previously to neurodegeneration. 

 

The fact that half of the genes which are significantly differentially expressed in HET are not 

significantly differentially expressed in HOM could be due to the comparison of adult spinal 

cord in HET to embryonic brain data in HOM. I could not find any GO terms in common 

between the genes which were exclusively differentially expressed in HET so they don’t seem 

to share a common mechanism, although given the very small number of DEGs, GO analysis 

has a limited value in this case. Given the large number of GO terms found in our HOM 

samples, and HOM not being the predominant focus of this analysis, we did not include tables 

or figures of their GO term analysis. 

 

Unlike our expression analysis, our splicing analysis did identify very well-known TDP targets 

such as Dnajc5, Sortilin, and Eif4h (Dash et al., 2022; Polymenidou et al., 2011; C. Yang et al., 

2014; H.-S. Yang et al., 2020; Ziff et al., 2022). The splicing change was less strong than in 

HOMs, confirming a dose dependency of this RNA-loss of function. Overall, the splicing results 

support the fact that our HET mice have a clear loss of function, and that a minor TDP loss of 

function may not be associated with overt genotypes. As discussed for the expression 

analysis, increasing sample size and depth may have allowed me to identify more subtle 

changes, but it is also clear that the changes which are present are minor. In support of this, 

our HET dataset had a larger N size (5 v 7 in HET, 4 V 4 in HOM), and a higher mean number 

of reads (67 million vs 34 million).  
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RRM2 has two orders of magnitude lower affinity for binding RNA than does RRM1(Kuo et al., 

2009). It has also been shown that certain mutations which do almost completely remove the 

ability of TDP-43 to self-regulate when inserted into RRM1 have little clear effect when 

inserted into RRM2(Ayala et al., 2011a). That being said, mutations in the RRM2 domain have 

been strongly linked to development of ALS(Ederle & Dormann, 2017; Maurel et al., 2017; 

Ratti & Buratti, 2016). My research aimed to evaluate the effect of mutations to the RRM2 

domain of TARDBP at endogenous levels, and whether they are capable of causing disease. 

These mice are a loss of function model, and, while these specific mutations have not been 

observed in patients, mutations linked to disease have been found to cluster around the RNA-

binding motif (Ederle & Dormann, 2017; Ratti & Buratti, 2016). The heterozygous removal of 

the RRM2 binding motif does not appear to cause substantial neurodegeneration, or motor 

pathology in our mice. 

 

I felt there might be three potential reasons why our mutation does not cause pathology:  

● Mutations in the RRM2 signal of TDP alone are not sufficient to cause degeneration 

● Mutations in RRM2 signal of TDP are sufficient to cause degeneration but our 

mutation either isn’t strong enough or has the wrong mechanism  

● Cryptic splicing events (Humphrey et al., 2017) observed in human samples are 

required for pathology and are not present in our mice 

 

Understanding the reasons for this lack of pathology will be important to understand the 

mechanisms of the disease and are a good target for future investigation. Furthermore, it may 

be that a mild loss of function as that observed in our mice needs to be complemented with 

other toxic stimuli. It could be of interest therefore, to see whether our heterozygote loss of 

function could aggravate other ALS disease models. Even very well-known ALS causing 

mutations in TDP do not cause a phenotype even after 2 years in mice, and are only able to 

induce neurodegeneration at a mild level when in homozygosity (Fratta et al., 2018; M. A. 

White,  et al., 2018;  Ebstien et al., 2019) 

 

As stated previously, it is likely that, due to the read depth/sample size of our samples, we 

are not able to pick up some splicing events which are truly different between samples, but 

have a relatively low magnitude. Re-sequencing samples at a higher read depth, or 

performing an experiment with more mouse models may be able to help elucidate the 

changes that are occurring and might give some insight into why this model does not cause 

disease. The effort may be better spent on a new model which does cause disease – either a 

different HET mutant or one which does cause the cryptic splicing events seen in human 

patients. Alternatively, these results may reveal that while changes in TDP are integral to 



 
 

109 
 
 

ALS/FTD, they do not work alone, and investigating other changes associated with this may 

help to produce a more optimised model.      

 

6.5.1 Future work 

The first point to be validated that has resulted from this work is whether the DEGs only found 

in the HET mutants are (i), truly significantly differentially expressed in HET, and (ii), truly not 

significantly differentially expressed in HOM. Initial analysis would likely take the form of 

qPCR. Investigation into changes in gene expression of either the same samples, or similar 

mouse models would provide insight into whether these changes are true.  

 

While mutations found to occur in RRM2 mutant mice may not be directly linked to the effects 

that the RRM2 mutation has in humans, it may give guidance as to the sort of changes to look 

for. A useful starting point would be to test whether the DEGs found significant in our mouse 

models are also different in patients with similar mutations. 
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7. Identification of degenerating neurons 

using machine learning 

 

7.1. Publication 

Elements of this work have been published in Scientific Reports (Mejia Maza et al., 2021). 

 

7.2. Introduction 

 

Neuromuscular junctions (NMJs) are the site at which neurons transmit signals to muscles to 

provide instruction on contractions. They are made of the terminal of a motor neuron, 

receptors on a muscle fibre, and a Schwann cell which sheaths it. Under normal 

circumstances, they are not static objects, undergoing continuous innervation and 

denervation (Slater 2017a). While some irreversible degeneration is part of the natural aging 

process, it is also one of the earliest signs of some common human neuromuscular disorders 

(Dupuis et al., 2009; Willadt 2018).  

 

In order to examine neurodegeneration in mice, both manual and automatic methods are 

used. The manual method entails a visual assessment of innervation status, but classification 

criteria can differ between labs or studies. One of the most common automatic methods is 

the ImageJ plugin NMJ-morph (Jones et al., 2016). It is widely used because it accurately and 

efficiently measures morphological features of NMJs, and can function on several species 

(Bohem et al., 2020).  It is not ideal however as it requires maximum intensity projections, 

which means that it will not function on the majority of NMJs as they have complex 3D shapes 

through their interaction with muscle fibres. It also requires manual thresholding of 

fluorescence, which reduces comparability between studies as it leaves things to the 

discretion of the person performing the analysis. 

 

Machine learning is a tool which has gained increased prominence. This is predominantly due 

to a combination of increased computing power, increasing amounts of available training 

data, and optimisations to existing models.  Some work has already been done to train 

machine learning models to classify cells based on images from microscopy(Kan, 2017; 

Zinchuk & Grossenbacher-Zinchuk, 2020). This has included training models to recognise 

various phenotypes as well as cells in an apoptotic or necrotic state (Li et al., 2021; Sommer 

& Gerlich, 2013; Verduijn et al., 2021). Given the existing literature which uses machine 
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learning tools for similar purposes, and the results of our initial analysis, we felt that it would 

be fruitful to use machine learning to classify neuromuscular junctions. 

 

 

My Colleague Alan Mejia Maza has developed a method called NMJ-Analyser (Mejia Maza et 

al., 2021). NMJ-Analyser enables quantitative assessment of the native 3D conformation of 

NMJs using an automatic thresholding method, to accurately capture their morphological 

features. Using the morphological features produced by NMJ-Analyser I worked with Alan 

Mejia Maza to train machine learning models which could automatically classify 

neuromuscular junctions into degenerating or healthy. 

 

 

 

7.3. Methods 

Three ALS mouse strains and a CMT2D mouse model with corresponding age and sex matched 

littermates were sued to study pathology. The full details of each model can be found in Table 

7-1. Lumbrical and flexor digitorum brevis (FDB) muscles located in the hindlimb paws of mice 

were dissected and stained, as described in (Sleigh, Burgess, et al., 2014; Tarpey et al., 2018). 

 

I mages of NMJs were obtained using a Zeiss LSM 710 confocal microscope (Zeiss, Germany). 

All strains were imaged at 512 × 512 resolution, except for the FUSΔ14/+ strain, which was at 

1024 × 1024. Z-stack images were decomposed into individual pre- and post-synaptic planes 

or posterior analysis (.TIFF, .PNG and .JPEG). 

 

Images were initially manually assessed and classified using Volocity 3D Image Analysis 

Software (version 6.5, Perkin Elmer), a family of software products for 3D image acquisition 

and analysis. When a nerve terminal and motor endplate overlapped with at least 50% 

coverage the NMJ was considered ‘fully innervated’. When it did not it was considered 

denervated – distinctions between full and partial denervation were not used for the 

purposes of training my machine learning models. 

 

Figure 7-1 shows how NMJ-analyser acts to process stacks of images into morphological 

information. First, pre-processing of the Z-stack images of NMJs is performed. This is to select 

clearly stained, well defined structures among other parameters. Each NMJ stack is then 

aligned to create a 3D image of the NMJ. Thresholding is then performed for clarity. The final 

step in automatic analysis is measurements of the morphology, comparing intensity of each 

component as well as distance between them at various points.  
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Table 7-1. Summary of mutant mice. MGI Mouse Genome Informatics number. From (Mejia Maza et al., 2021) 

Strain/MGI Mouse 

model  
Background Protein 

expression 
Age 
(months) 

Numbers/sex Disease 
state 

ref 

SOD1 
G93A/+  

MGI: 

2448770  

Transgenic C57BL/6N-

SJL 

~ 20-fold 

overexpression 
1 5 WT, 5 

mutants 

(male)  

ALS, pre-

symptomatic 

(Bilsland 

et al., 

2010; 

Gurney 

et al., 

1994) 1.5 5 WT, 5 

mutants 

(male)  

ALS, pre-

symptomatic 

3.5 4 WT, 9 

mutants 

(male) 

ALS, late 

symptomatic 

Gars C201R/+ 

MGI: 

3760297 

ENU 

mutagenesis 

C57BL/6J Physiological 

expression 
1 6 WT, 6 

mutants 

(male) 

CMT2D, 

early 

symptomatic 

(Achilli 

et al., 

2009; 

Sleigh, 

Grice, et 

al., 

2014) 

3 3 mutants 

(male) 

CMT2D, 

symptomatic 

FUS Δ14/+ 

MGI: 

6100933 

Knock-in, 

partial 

humanization 

C57BL/6J  Physiological 

expression  
3 4 WT, 4 

mutants 

(male) 

ALS, pre-

symptomatic 

(Devoy 

et al., 

2017) 

12 4 WT, 4 

mutants 

(male) 

ALS, 

symptomatic 

TDP43 
M323K/M323K 

MGI: 

6355456  

ENU 

mutagenesis 

C57BL/6J-

DBA/2J  

Physiological 

expression  
12 5 WT, 5 

mutants 

(female)  

ALS, pre-

symptomatic 

(Fratta et 

al., 

2018) 

 

 

The full code for creating the machine learning models as well as the machine learning models 

produced for this section can be found on GitHub: 

 https://github.com/SethMagnusJarvis/NMJMachineLearning 

 

The morphological data I used to create the machine learning models was produced through 

analysis with NMJ-Analyser6, and I used the package caret (Kuhn 2008) to train the machine 

learning models. 4648 samples were used for training, 1161 were used for testing, these 

samples were selected randomly. Modelling was performed using random forests with 10-

fold cross validation. The seed was set to 1337, and for the equalised models, equalisation 

was performed by grouping by type and using the sample_n function to select 1000 of each 

https://github.com/SethMagnusJarvis/NMJMachineLearning
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of healthy and degenerating NMJs.  The full list of variables used to train the models, and their 

meaning can be found in Table 7-2. 

 
Table 7-2. Overview of NMJ morphological features. From (Mejia Maza et al., 2021) 

NMJ 

component 

Features 
 

Nerve terminal/motor endplate 

Integrity Cluster_dist  Average distance between fragments or clusters 

Cluster_size  Average size of clusters 

Cluster_numbers  Number of cluster or fragments 

Fragmentation  Fragmentation index (1–1/Cluster numbers) 

Shape Non-compactness  Measures how non compact an NMJ component is 

Shape factor  Numerical description of the 3D shape of an NMJ component and 
its relation of becoming a more irregular shape 

Rugosity, internal  Number of internal faces, internal irregularity 

Rugosity, external  Number of external faces, external irregularity 

Size Length (μm)  Distance between the major-axis endpoints 

Surface/volume 

ratio  
Measures the amount of surface per unit of volume of an NMJ 
component 

Surface  Measures the 3D geometrical uppermost layer of an NMJ 
component. It is also known as surface area of the tridimensional 
surface 

Volume (μm 3)  Measures the amount of space occupied by an NMJ component 

Pre- and post-synaptic 

Interaction Coverage  Volume of nerve terminal staining as percentage of endplate 
volume 

Intersection  Area of intersecting area between NMJ components, overlapping 

Average dist  Distance between NMJ components 

Mass-distance  Distance between centre of mass 

Hausdorff 

distance  
Maximum distance between the nearest point between NMJ 
components 

 

 

7.4. Results 

7.4.1 Statement of purpose 

My colleague Alan Mejia Maza has developed a method called NMJ-Analyser which takes as 

input a stack of confocal microscope images of dissected immunostained neuromuscular 

junctions. The method then outputs a set of quantitative information based on various 

morphological features. Our objective was to see whether the output of NMJ-Analyser was 

sufficient to train a machine learning model to determine whether NMJs were healthy or 

degenerating. An overview of the workflow can be seen in Figure 7-1. 
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Figure 7-1. Overview NMJ-Analyser’s objectives and method. Figure produced for Mejia Maza et al 

7.4.2 Overview of NMJ-analyser (Performed by Alan Mejia Maza ) 

As can be seen in Figure 7-1, processing of the data before it is input into my machine learning 

model for training involves 3 steps:  

1. Dissection, staining digitalization and manual assessment of NMJ status 

2. Application of NMJ-Analyser to the stacked raw images and extraction of features 

3. Matching manual and automatic assessment 

 

Alan Mejia Maza dissected mouse muscles and stained them. He then digitised the NMJ 

structures which appear in the staining. Manual classification of the NMJs was then 

performed, annotating whether they were healthy, partially innervated, or fully denervated. 

 

These image stacks were then passed through the NMJ-analyser python script developed by 

Alan Mejia Maza. This analyses the image stacks and generates twelve biological relevant 

parameters for each pre and post synaptic structure, and five for the interaction between the 

two NMJ components. Several of the parameters are generated for both red and green 

stained areas resulting in 58 variables in total.  

 

The final step was to create a matrix containing the qualitative measures about innervation 

and the quantitative results from NMJ-analyser. I used this combined final matrix to train my 

machine learning models. 
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7.4.3 Exploratory analysis 

In our initial PCA comparing the results from NMJ-analyser (Figure 7-2) we found that there 

was some visual separation between healthy and degenerating NMJs which made us think 

that it might be possible to train a machine learning algorithm to classify samples instead of 

the person collecting the data, which would decrease the level of subjectivity in results. This 

would increase the accuracy of results, making studies more reliable and increasing the ease 

of comparison between studies by removing subjectivity in interpretation. It would also save 

time for researchers as most of the process is automated. 

 

 
Figure 7-2. PCA plot of NMJ-Analyser’s results on our NMJ training dataset. Each dot represents a neuromuscular 

junction. Figure produced for Mejia Maza et al 

 

7.4.4 Training model 

There are 6 commonly used types of machine learning algorithms for classification: 

• Logistic regression which uses a sigmoid function to return probability of a label 

• Decision trees which build hieratical branches of trees to subset data 

• Random forests which are a collection of decision trees that generate a consensus 

• Support vector machines which aim to insert a hyperplane between objects within an 

n-dimensional space to classify them 

• k-nearest neighbour which places the data within an n-dimensional space and uses 

distance between objects to classify them 

• I Bayes which calculates conditional probability based on prior knowledge 

 

Logistic regression was not considered suitable for this analysis as it works best on two groups 

and we were initially intending to try to separate into partially and fully degenerating during 

classification. Decision trees are prone to overfitting and are considered a less optimal version 

of random forest classification. Naive bayes was not considered suitable as it is optimised for 
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completely uncorrelated datapoints which our data isn’t. This meant that Random Forest, 

Support Vector Machines, and k-nearest neighbours were considered to be the most suitable 

models to our classification.  

 

Of those three models I decided to train classifiers using both random forest (RF) and support 

vector machine (SVM) models. This was because I had existing familiarity with those types of 

models, and there were well built tools which I could use to train them. Initial attempts at 

model creation were rather poor – models only had about a 70% accuracy with less than 50% 

sensitivity in prediction. I thought that this was likely due to the small number of degenerating 

NMJs so asked Alan Mejia Maza to collect more degenerating motor-neurons. The initial 

dataset had 362 degenerating NMJs, and 3779 healthy NMJs. The final dataset used to train 

the models after Alan Mejia Maza had collected more data consisted of 1179 degenerating, 

and 4630 healthy NMJs.  

 

When training both SVM and RF models, I found that SVMs took up to 10x – between 5 and 

10 minutes rather than under one - longer to train making prototyping marginally more 

difficult, and were about 10% less accurate in our initial exploration of our dataset. When 

creating the Random Forest model trained on our final dataset, I used 80% of the data as a 

training dataset, then used the remaining 20% as a test dataset. As can be seen in Figure 7-3, 

the overall classification accuracy is very high. 

 

 
Figure 7-3. AUC curve of our RF model 
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We also created a model which had an equal number of randomly selected healthy and 

degenerating NMJs. This model had approximately 5% lower overall accuracy, but was better 

at identifying degenerating motor neurons so was primarily intended for people who were 

expecting their data to contain more degenerating motor neurons. 

 
Table 7-3. Results of the machine learning model on the test data 

10-fold RF 

Accuracy 0.9552 

95% CI  (0.9417, 0.9664) 

P-value (Acc > NIR)  <2e-16           

Mcnearman’s test (p-value 0.6774 

Sensitivity 0.8809 

Specificity 0.9741 

Prevalence 0.2024 

Balanced accuracy 0.9275 

 

7.4.5 K-fold cross-validation 

In order to decrease the likelihood that our model had been overfit, I created a model with 

10-fold cross-validation i.e., one which had been optimized by creating 10 models, each from 

different random subsets of the data, and combining their results to increase generalisability. 

In Table 7-3 I can see that the sensitivity (true positives) is lower than the specificity (true 

negatives). A likely cause of this bias is the relative scarcity of degenerating samples in our 

dataset. While I have trained on about 6000 NMJs, only 1/5th of them are degenerating. Table 

7-4 shows a breakdown of the top 10 morphological features ranked by their permutation 

importance (the effect that removing the sample from the model has on prediction accuracy), 

and both the relative permutation and Gini importance – a measure of the proportion of splits 

a characteristic is involved in - of each feature. As I can see, the two most important factors 

for permutation were the shape factors of the endplate and the nerve, while the factor with 

the highest Gini was “intersection”, a measure of the interaction between the nerve terminal 

and end plate. 
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Table 7-4. Breakdown of morphological features on machine learning model accuracy 

Morphological Features Type Permutation 

Importance 

Gini Importance 

Shape factor of endplate Shape 100.00 47.43 

Shape factor of nerve Shape 58.39 18.63 

Intersection Interaction 35.08 100.00 

Integral rugosity of nerves Shape 34.13 31.29 

Integral rugosity of 

endplates 
Shape 31.47 17.74 

External rugosity of nerves 

(green) 
Shape 27.40 22.89 

Coverage Interaction 24.81 40.13 

External rugosity of nerves 

(red) 
Shape 24.09 24.73 

Nerve non-compactness Shape 23.35 43.20 

Surface/volume ratios of 

nerves 
Size 21.12 24.26 

 

7.5. Discussion 

As discussed in the paper introducing the method (Mejia Maza et al., 2021), NMJ-Analyser 

shows higher sensitivity to degeneration than both manual NMJ counting methods and NMJ-

Morph. The ability to provide information on the 3D structure independently of shape is 

important, as NMJ topology may change during disease. This helps to distinguish it from NMJ-

Morph (Slater 2017a; Dupuis 2009). Unlike NMJ-Morph it requires no judgement from the 

user, removing the need for manual thresholding or manual classification of cells.  

 

A comparison between NMJ-Analyser and NMJ-Morph was performed. It found that NMJ-

Analyser has a higher sensitivity than NMJ-Morph, and is capable of quantifying NMJs in their 

native 3D structure which is important due to changes in NMJ topology which have been 

observed in disease(Marques et al., 2000; Moloney et al., 2014; Slater, 2017; Willadt et al., 
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2018). This comparison has not been included in this chapter as it was predominantly 

performed by Alan Mejia Maza and I did not consider it relevant to my work which was 

training the machine learning models. It can be found in the published paper(Mejia Maza et 

al., 2021). 

 

The machine learning models I trained are specific and accurate at classification, given the 

relative rarity of degenerating NMJs. The main model’s higher accuracy overall does, as 

stated, come at the cost of slightly worse performance at identifying degenerating NMJs. I felt 

that this was a worthwhile trade-off. If any users disagree, I created a model trained on an 

equal number of degenerating and healthy samples. This reduces the overall accuracy as it 

identifies more NMJs as degenerating than there are in reality. It was created for cases where 

there is a higher-than-normal proportion of degenerating NMJs, or where accuracy in 

identification of NMJs is the most important variable as opposed to overall levels. 

 

In the future ideally there would be a more comprehensive integration of NMJ-Analyser and 

my machine learning model. Currently, the user needs to run NMJ-analyser separately then 

input the results matrix for classification in R, ideally, I would integrate this in a single pipeline 

or script. It may also be valuable to train a new machine learning model on results from other 

labs and with a larger cohort of degenerating NMJs, further improving generalisability of the 

model and possibly removing the need for the equalised model. 

 

7.5.1 Future Work 

While my analysis was performed only on data collected by Alan Mejia Maza and some of his 

colleagues, there has been some usage of my tool by external collaborators. Initial use by 

external labs seems to suggest that the model may be overfitted. This would likely be 

improved by including training and testing data created by other labs. Further validation from 

more diverse sources will be useful, particularly if users are willing to manually classify some 

NMJs and test the accuracy. 

 

With regards to further development there are gains to be made in both usability, and the 

models themselves. On the usability front, it would be ideal if we could fully automate this 

system: have a user input their stacks of confocal images, analyse them, and automatically 

return both the morphological information and whether each NMJ was degenerating or 

healthy. Barring that, creating a webapp where a user could input their results from NMJ-

analyser and receive the resulting counts and confidence intervals would be useful. As it is, I 

have automated as much as possible and given guidance as to how the analysis can be 

performed, but it is still more complex than would be ideal. 

 

There are 4 machine learning changes it would be useful to test in future work. These changes 

are:  
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● Creating a model with data from more labs to potentially increase generalisability 

● Gathering enough data to allow the model to be able to distinguish between healthy, 

partially degenerating and fully degenerated NMJs 

● Producing models for each species as structure of NMJs will differ 

● Using a computer vision method to directly predict the status of the NMJs 

All of these tasks bar possibly the creation of a machine vision model would require the 

collection of more data.  

 

Currently, the model is trained on a relatively narrow dataset from a few labs and exclusively 

on mouse data. If we could gather more data from a range of types of NMJs, ideally from 

different labs, it would substantially improve the generalisability of the work.  

 

The initial scope of the model was aiming to classify between healthy, partially and fully 

degenerating NMJs. Sadly, this resulted in performance that wasn’t much better than chance, 

thus I combined partially and fully degenerating NMJs into a single category. If we could 

gather more data, particularly in partially and fully degenerated NMJs, we would be able to 

create a more versatile model that could discriminate between the types of NMJs. Similarly, 

while the processing performed by NMJ-analyser will help ensure some standardisation, it 

would be ideal if a model could be trained using data from multiple labs to ensure consistency. 

This model is currently trained exclusively on mouse data. It is currently unclear if being able 

to classify in multiple species would require a single model trained on multiple species, or one 

model produced for each species, but in any case, further investigation into development of 

a method for analysing the NMJs of multiple species would be a worthwhile endeavour. 

 

My initial intention with this project was to develop a machine learning model which could 

interpret either compiled or raw image stacks from the confocal microscope. This would have 

required substantially more work from Alan Mejia Maza and would have been doubling up 

effort to an extent so was put on hold indefinitely. It would be interesting to see how a vision 

model would compare to the model based on the results of NMJ-analyser. While this might 

result in less information being output– only returning a classification of the NMJ and 

confidence–interval – it would be a prime target for automation. 
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8. Conclusions 

My PhD has primarily aimed to elucidate possible mechanisms through which ALS and FTD 

cause neurodegeneration by using RNA-sequencing methods. This has both been through 

evaluation and development of new methods and pipelines, as well as analysis of data from 

both disease models and patient brains. My role in projects was that of leading the research, 

analysing data provided by colleagues, and to help determine the best path forward and 

contribute to the larger picture. 

 

In Chapter 3, I compared low read depth QuantSeq, a cost-effective technique to assess gene 

expression, to the more established total RNA-seq protocol. As a method, its utility in 

differential polyadenylation analysis means it has its own niche. I wanted to evaluate how 

generally useful it was as a lower cost potential replacement for total RNA-seq analysis when 

splicing is not of interest. Other comparisons at both high and low read depths have been 

performed, but they have been direct comparisons to mRNA methods rather than total-RNA 

(Corley et al., 2019; Ma et al., 2019).  

 

The primary reason this data was sequenced was as part of a larger study on the mechanisms 

by which FUS mutations cause disease (Humphrey et al., 2020). The paper found that our 

humanised mouse mutation d14 limits the role FUS is able to play in autoregulation and 

splicing, and the method through which it acts – by leading to a dysregulation in intron 

retention events. 

 

The section of this research which I led was the comparison of the results of RNA-seq and 

QuantSeq observed in the results of this thesis. This work has subsequently been published 

as Jarvis et al., 2020. The contributions to the field are two-fold: (1) it demonstrates the utility 

of using low read depth QuantSeq for initial analysis of changes on many samples, and (2) it 

questions the ability of QuantSeq to accurately determine DEGs.  

 

I found that there were large differences in both the number of differentially expressed genes 

(DEGs) and which genes were found to be differentially expressed. Importantly, our datasets 

comprised both an “extreme” condition, where full knock-out of an RNA binding protein was 

present vs normal littermates, and an intermediate condition, where a partial loss-of-function 

mutation of the same RBP (FUS d14 mutation) was compared to its own littermate controls. 

This was particularly useful as it allowed us to see that discordance increased between the 

two sequencing approaches when the case when analysing the more subtle mutation, the 

FUS d14 mutation; as the magnitude of the changes were smaller, QuantSeq did not have the 

power to reach statistical significance in most cases.  
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As discussed in the future work section, this may present an opportunity for tool 

development. This does highlight a potential opportunity for new tools/new statistical 

methods to be developed to be able to more effectively analyse this kind of low read depth 

data, and this is a field of expanding interest since the rise of single cell sequencing, where 

shallow 3’ end sequencing is the norm. Overall, I found that low read depth QuantSeq may 

be a useful tool for initial exploration of datasets that are likely to have large changes. 

 

 

I believe that low read depth QuantSeq is likely to be a useful measure in the short to medium 

term. The cost of RNA-sequencing is still a real factor in planning experiments. Until acquiring 

samples becomes a more limiting factor than this cost, low read depth QuantSeq may find a 

use.  

 

One hurdle in the immediate future is the how well it can work with long read sequencing. 

The field seems increasingly to be moving towards long read sequencing as it can provide a 

lot more information when analysed properly. In long-read sequencing, I believe that 

QuantSeq will lose its primary advantage over other methods. Transcripts are generally 

sequenced in their entirety in long-read sequencing. This means that QuantSeq’s advantage 

at low read depths will be reduced as one read per transcript will be the default. This means 

that long read sequencing will only find one read per transcript, and is more able to detect 

splicing events(Buck et al., 2017; Liu et al., 2017; Oikonomopoulos et al., 2016).  

 

Currently, the two main methods for long read sequencing are nanopore, and PacBio SMRT 

sequencing.  The largest disadvantage of both is their relatively high error rate compared to 

short read sequencing methods (Kono and Arakawa, 2019; Amarasinghe et al., 2020). For 

many RNA-related applications the error rate is not as limiting as for genomics investigations. 

Further, both methods are gradually becoming less error prone. If QuantSeq is able to be 

utilised for another niche that sets it apart from other RNA pulldown methods in long read 

sequencing it may be useful, otherwise it is unlikely to see increased adoption. Given, total 

RNA-seq will be inexpensive enough, and the tools for analysis will be developed enough that 

all of the information and more which QuantSeq provides will be cheaply available.  

 

In Chapter 4 I analysed bulk RNA sequencing data from post mortem human brains. Although 

this approach is a direct sampling of disease, RNA sourced from brains has known limitations 

due to relatively low quality, in part due to degeneration occurring post mortem. This makes 

analysis challenging. Samples came from a mix of healthy brains, as well as from FTD patients 

with either TAU or C9orf72 mutations. This research was intended to both compare human 

brains with specific FTD etiologies to control brains, as well as to compare them to one 

another. To my knowledge, prior to my work a comparison had not sought to compare two 

subtypes of FTD directly to one another. 



 
 

124 
 
 

 

I found that TAU pathology resulted in more DEGs than did C9. There also seem to be 

substantially more differences in cell types between CTL and TAU than between CTL and C9 

samples. It is not clear why these differences in cell types are observed, but adding cell types 

as a covariate when examining differential expression was found to reduce the number of 

DEGs which may indicate a reduction in biological noise in some cases.  

 

The goals of my analysis of FTD brains were to provide insight into differences between the 

two pathologies, and, act as a useful pilot study for combining methods of brain cell type 

deconvolution with RNA-seq data. The results of the two aims are inextricably linked. 

 

The clearest result initially was that TAU pathology seemed to cause far more DEGs than did 

C9orf72 pathology. Since the conditions do not have markedly different disease progression 

rates and cause similar underlying conditions, this was unexpected (Van Langenhove et al., 

2013).  

 

When evaluating GO terms, I feel the two most interesting findings were the appearance of 

terms relating to the extracellular matrix and collagen. When not correcting for cell types, 

these were the most significant GO terms when comparing our C9 patients to controls. This 

is related to findings in mouse models expressing DPRs (Milito et al., 2023), as they also found 

changes in the extracellular matrix. When correcting for cell types, TAU patients also found 

GO terms related to the extracellular matrix to be the most significant highlighting a link 

between the mechanisms of the two aetiologies.  

 

When I examined the relative enrichment of brain cell types, I found obvious changes in TAU 

when compared to control samples. At this time, it is not clear  how much alterations in the 

cell composition or changes in expression within cell types drive the differences observed 

between the two pathologies. 

 

When I added the levels of cell types in TAU vs control in our input to DESeq2, I found that 

the number of DEGs in TAU decreased to similar levels of those seen in C9 pathologies. This 

did seem to cause abnormalities in the fold changes with very high peaks at specific fold 

change levels. This suggested that the method I used for integrating them was not ideal. I do 

not recommend including relative cell type enrichment when there are minimal changes 

between two conditions. Given the irregularities observed in fold changes, and the substantial 

reduction in DEGs across the board when used, I think that, as it stands, the method I used 

may add biological noise when only small differences between cell types are present. Using 

simulated data may be a possible useful avenue for investigating whether the issue is 

specifically with my data, or with the method for integration.  
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The analysis I have performed has highlighted that there are some clear differences in the 

effect of C9 and TAU both on RNA metabolism, and on specific cell types within the brain. It 

has also provided insights into a method to integrate brain cell type data into differential 

expression analysis, as well as drawbacks with the method. I hope that it also further adds to 

the evidence of the potential utility of this method in order to reduce biological noise and find 

true DEGs. I think that future studies should continue improving tools for analysis of cell type 

specific differences in bulk RNA-seq brain data. I also think that they should investigate cell 

type specific changes within these two mutants as a possible additional mechanism for 

neurodegeneration. 

 

In Chapter 5 I analysed bulk RNA-sequencing data from mice models with two different 

products of the C9orf72 repeat expansion mutations (PR and GR), and relevant littermate 

controls at both 6 months and 12 months old. Mouse models allow us to study early disease 

phases and to overcome the technical limitations found when using post mortem human 

material.  

 

These mice in particular aim to mimic the effect of two DPRs which have been most strongly 

linked to toxicity in C9orf72ALS-FTD (Kwon et al., 2014; Mizielinska et al., 2014). As stated in 

my introduction, there are three predominant hypotheses of how the repeat expansion 

observed within C9orf72 causes disease (Mizielinska et al., 2013; Gendron et al., 2014; Zhang 

et al., 2018). These are: 

● Reduced expression of C9orf72 

● Presence of large numbers of RNA foci (aggregates of RNA produced by both sense 

and antisense G4C2 repeats) 

● Production of dipeptide repeat (DPR) proteins through repeat-associated non-ATG 

(RAN) translation. 

Our study predominantly aimed to test the pathogenic effects of DPR proteins in the absence 

of RNA foci. It also aimed to observe differences in the effects of PR and GR DPRs which may 

be able to provide further information on the mechanism of disease.  Of note, our models all 

have loss of a normal allele, therefore recapitulating the partial loss of function observed in 

patients. 

 

Phenotypes had not started to develop at 6 months, and this was echoed in the RNA-

sequencing data, with minimal changes to expression in any genes. In the 12-month-old 

samples, I found large numbers of DEGs in both PR and GR, with GR having more changes 

overall. As was seen in the C9 mutants in the FTD brain data, there did not seem to be any 

significant changes in cell types between any of the datasets. I therefore did not feel it was 

useful to include relative cell type enrichment in differential expression analysis. 
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The primary goal of my analysis was to investigate the effects of expansion mutations on RNA-

expression. Changes I observed in the number of DEGs are consistent with disease 

progression observed in the mice (Milito et al., 2023). As stated previously, very few genes 

are significantly differentially expressed at 6 months in either mutation. A large number are 

found to be significant at 12 months, at which point, symptoms have started to develop. 

 

Some of the specific findings we have correlate with existing literature. Our PR mutant mice 

appeared to show the strongest changes in GO terms relating to histone modification and 

DNA repair (Zang et al., 2019). A study on the effect of overexpression of PR in mice found 

that there were changes observed in terms related to histone modification, my findings show 

that these changes occur even when these DPRs are expressed at closer to endogenous levels 

than existing overexpression models. Meanwhile, when evaluating human cells expressing 

poly(PR) DPRs, markers of DNA damage responses have been found (Farg et al., 2017). My 

work supports the causative nature of the DPRs in this DNA damage, and with further study 

may highlight some more specific ways in which this occurs.  

 

Our GR mutant mice showed changes relating to ubiquitin dependant protein degradation 

and RNA splicing. Splicing is known to be dysregulated in C9FTD/ALS patient brains (Prudencio 

et al., 2015). Disruptions in splicing have also been well characterised in TDP43 models. As 

these changes in GO terms related to splicing occur in the absence of TDP mislocalisation 

(Milioto et al., 2023), it appears to show that GR mutations cause disruption to splicing 

independent of known pathways by which TDP causes disease. 

 

One surprising finding was that there did not seem to be a change in the level of expression 

of C9 itself in the GR mutant mice. This is a change which needs further validation as the 

position of the knock-in insertion should substantially reduce expression of C9 when 

compared with WT controls. This is particularly because reduction of C9 at the RNA and 

protein level was shown via RT-PCR and western blotting (Milioto et al., 2023). 

 

Overall, my research suggests that PR and GR DPR proteins do cause disruption to levels of 

RNA expression in the absence of RNA foci. It also demonstrates some of the mechanisms by 

which each may act. They are not, however, able to cause the full symptoms of disease in the 

mice up to 12 months of age. This suggests other potential disease mechanisms may also be 

involved such as RNA foci.  

 

In chapter 6 I analysed data from mice with a mutation in another crucial gene for ALS/FTD: 

Tardbp (or TDP-43). The RRM2 mutation of TDP-43 has been previously studied, and 

disruptions in the RNA binding motifs of TDP-43 induce TDP-43 loss of function, which has 

been linked to the development of ALS (Ederle & Dormann, 2017; Ratti & Buratti, 2016). We 

have previously shown this model to be a bona-fide loss of function model (Fratta et al., 2018). 
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Our models were created to evaluate the effects caused by mislocalisation without full 

knockout of the gene. Other models such as those in Table 6-1 and (Ayala et al., 2011b; 

Eréndira Avendaño-Vázquez et al., 2012) have shown that it is difficult to make a model to 

study TARDBP LOF mutations in vivo due to the strong autoregulation of the gene. This results 

from TDP-43 binding to its own UTR.  

 

Our F210I model has a mutation in the RNA binding capacity which allowed for the study of 

loss of function without using mice who had fully knocked out TDP-43. While I was involved 

in the analysis of our homozygous model, I predominantly analysed the mice heterozygous 

for the mutation, and differences between the heterozygous and homozygous mechanisms 

of action. 

 

There were very few significant DEGs in our HET data. One of the genes which were found to 

be significant was Tardbp. Of the others, Sh3bgr had been most strongly linked to 

neurodegeneration in previous studies. This includes being shown to undergo cryptic splicing 

in a previous study where TDP-43 was conditionally deleted (Jeong et al., 2017). 

 

When comparing DEGs in HET to those in HOM, half were not found to be significant in the 

HOM. This may be a difference due to the ages of the mice, the area from which the RNA was 

taken (spinal cord vs brain), or due something within our analysis i.e., there is a true difference 

but it does not pass the significance threshold or is in some other way not observed. If there 

are true differences, they are likely due to differences in levels of TDP-43 or a result of the 

autoregulation mechanisms which result in equilibrium being restored. It is not obvious 

whether the differences are true differences or a function of differences in the data. 

Validation should be performed before a mechanism by which they differ can be discussed. 

 

While HOM versions of our model do seem to almost entirely remove the autoregulation 

ability of TDP-43, one functional version of the gene seems to be enough to restore 

equilibrium. As this occurs at endogenous levels, it means that mislocalisation and loss of 

nuclear function are able to cause pathogenesis. More endogenous loss of function models 

are needed to potentially isolate which specific effects play the largest role, but our findings 

show the substantial effect which mislocalisation has, and the ability of autoregulation to 

restore equilibrium when a single copy is present.  

 

If the differences between the HET and HOM mechanisms are true, further examining them 

may allow for a broader understanding of how the self-regulation acts, and how this loss of 

self-regulation causes mutations in TDP-43 to become pathogenic. 

 

In chapter 7 my topic was not transcription, but another very relevant mechanism for ALS 

biology: the degeneration of neuromuscular junctions. I trained a machine learning model to 
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classify neuromuscular junctions into healthy and degenerating. A common process in the 

field of neurodegeneration consists of using confocal imaging to evaluate relative levels of 

denervation of neuromuscular junctions. My colleague Alan Mejia Maza developed a method 

of analysing confocal image stacks to produce information on morphology of NMJs. I used this 

information to develop two machine learning models; one made up of the full dataset I had 

been provided with, and one with a balanced number of degenerating and healthy NMJs. 

Both of these models have at least a 90% overall accuracy on their respective datasets, but 

the balanced model is more likely to classify NMJs as degenerating which may be useful in 

unusually weighted datasets. 

 

Currently analysis of confocal imaging requires significant input from researchers. I hoped to 

automate this to the maximum possible extent. My initial intention was to train a machine 

learning model to directly classify NMJs based on confocal image stacks to directly classify 

NMJs. However, since Alan was generating data which was both independently useful, and 

could be used to train a machine learning model, collaboration with him made sense.  

 

Through this collaboration, and the development of this machine learning model, I have 

created a tool which has the potential to be useful to future researchers (Mejia Maza et al., 

2021). I hope that this tool will help to both standardise the analysis and classification of 

NMJs, and reduce the effort and time which classification of NMJs takes. 

 

In conclusion, my main contributions to the field have been: 

• the development of a tool to automate classification of neuromuscular junctions,  

• a comparison of two methods of differential expression analysis,  

• analysis of the effects of mutations in C9orf72, TARDBP, SOD1, and FUS in both human 

and mouse data 

• investigation into integration of cell type proportions into differential expression data, 

and highlighting future research 

 

Validation of changes which I have observed should be a focus of future work. Additionally, 

further development of tools may be a fruitful endeavour. The two areas which I would focus 

on would be building a gold standard RNA library for different cell types from many different 

backgrounds and preparations, and improving the statistical methods used to be more able 

to detect small changes. Alternatively, given the results of (Sutton et al., 2022), the creation 

of a tool which has multiple reference libraries which a user could select depending on the 

source of their data would substantially improve the accessibility and use of cell type 

disambiguation within brain sample analysis. Furthermore, easy integration of this tool with 

differential expression analysis would improve the accuracy of bulk RNA-seq analysis in 

samples from the brain. 
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Improvement of statistical tools for analysing differential expression would have hugely broad 

reaching effects. Since the cost of sequencing remains high, sequencing of large number of 

samples may be seen as prohibitively expensive, resulting in the statistical power of studies 

being relatively low. This can be seen in the low sample size of my work. Currently, there 

appears to be a trade-off in tools for differential expression analysis tools between precision 

and true-positive rates (T. Wang et al., 2019). Past a certain point however, a fundamental 

issue with statistics is reached. Depending on the number of samples, the effect size, and the 

read depth, it is not possible to determine whether an effect is due to chance based on the 

data observed. Therefore, finding ways to optimise for small study sizes is a fruitful 

endeavour. As a large number of statistical methods are used for analysis, I do not know what 

the best course of action for exploration will be to take. 

 

Taking a broader perspective, work to aid in the understanding of the mechanisms of disease 

such as mine and my colleagues’ is already proving useful for development of potential 

treatments, with drugs currently being trialled. Understanding of the mechanisms of action 

of SOD1 has led to the development of the drug Tofersen. This is a drug which prevents the 

SOD1 protein from being produced, which removes its ability to aggregate (Miller et al., 2022). 

Similarly, understanding of the pathway through which mutations in C9orf72 act have led to 

people testing drugs such as TPN-101 – initially used as a treatment for HIV -  which inhibit 

the enzyme LINE-1 reverse transcriptase. This aims to reduce damage to nerve cells, and 

appears to suggest neurodegeneration in Drosophila (Krug et al., 2017; Fort-Aznar et al., 

2020). 

 

The research presented here is not immediately useful for therapeutic development.  

However, the resulting increased understanding of the mechanisms of action of the disease 

can contribute towards stopping the progression of, and potentially reversing, the damage 

done by both ALS and FTD. This will be assisted by the development of more tools to more 

effectively analyse existing and future data. 
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