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Autoencoder‑based multimodal 
prediction of non‑small cell lung 
cancer survival
Jacob G. Ellen 1*, Etai Jacob 2, Nikos Nikolaou 2 & Natasha Markuzon 2*

The ability to accurately predict non‑small cell lung cancer (NSCLC) patient survival is crucial for 
informing physician decision‑making, and the increasing availability of multi‑omics data offers 
the promise of enhancing prognosis predictions. We present a multimodal integration approach 
that leverages microRNA, mRNA, DNA methylation, long non‑coding RNA (lncRNA) and clinical 
data to predict NSCLC survival and identify patient subtypes, utilizing denoising autoencoders for 
data compression and integration. Survival performance for patients with lung adenocarcinoma 
(LUAD) and squamous cell carcinoma (LUSC) was compared across modality combinations and data 
integration methods. Using The Cancer Genome Atlas data, our results demonstrate that survival 
prediction models combining multiple modalities outperform single modality models. The highest 
performance was achieved with a combination of only two modalities, lncRNA and clinical, at 
concordance indices (C‑indices) of 0.69 ± 0.03 for LUAD and 0.62 ± 0.03 for LUSC. Models utilizing 
all five modalities achieved mean C‑indices of 0.67 ± 0.04 and 0.63 ± 0.02 for LUAD and LUSC, 
respectively, while the best individual modality performance reached C‑indices of 0.64 ± 0.03 for LUAD 
and 0.59 ± 0.03 for LUSC. Analysis of biological differences revealed two distinct survival subtypes with 
over 900 differentially expressed transcripts.

Lung cancer is the leading cause of cancer-related mortality worldwide, accounting for 18.4% of total cancer 
deaths in  20201. Non-small cell lung cancer (NSCLC) makes up 85% of all cases, most of which fall into two 
major variations: lung adenocarcinoma (LUAD) and lung squamous cell carcinoma (LUSC), which comprise 
40% and 30% of all lung cancers, respectively.

The ability to accurately project NSCLC prognosis is crucial to inform physician decision-making, but it 
remains a difficult prediction task. Traditional approaches tend to use unimodal data sources, most commonly 
 clinical2, 3 or gene expression  data4, 5, to predict survival. However, recent advances in high throughput “omics” 
technologies have led to publicly accessible descriptions of the genetic, epigenetic, and transcriptional profiles 
of cancer cells. Due to the high heterogeneity of lung cancer cells, the integration of multiple data types can offer 
improved survival analysis over unimodal approaches by providing more context for predictions. Although these 
multimodal datasets provide the potential to build more precise models of lung cancer progression, multimodal 
data integration techniques are still in their  infancy6.

Many current multimodal approaches to predicting cancer progression are geared toward “pan-cancer” pre-
diction with the use of deep learning in processing the  data7, 8. Multimodal approaches for NSCLC prediction 
specifically tend to focus on either identifying clinically meaningful subtypes of patients, predicting patient 
 survival9, or  both10. For example, Lai et al.9 implemented a neural network that combined gene expression and 
clinical data to predict 5-year NSCLC survival. Another approach combined messenger RNA (mRNA), micro-
RNA (miRNA), and clinical data to subtype LUAD patients before performing survival analysis and identifying 
survival-associated biological  pathways11.

While emerging multimodal approaches are promising, they encounter a few common issues, including how 
to most effectively integrate heterogenous data modalities. Early integration, defined as omics concatenation 
prior to feature extraction, allows for the modeling of biological interactions between different omics types as the 
modalities are processed together. Conversely, late integration provides more precise representations of individual 
modalities, as each modality is extracted  separately12, 13. The relative effectiveness of each approach depends 
heavily on the prediction task and the amount of data  available14. However, early integration is more commonly 
used due to its potential to identify additional survival-related markers by combining multiple omics  types13.
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The most significant impediment to multimodal approaches remains the high dimensionality of sequenc-
ing data combined with the relatively small number of patients, causing models to  overfit6. Solutions include 
reducing the dimensionality of the feature space by using supervised and unsupervised methods. Previously 
used feature extraction algorithms include principal component analysis (PCA)15, deep highway  networks7, and 
 autoencoders16. In particular, autoencoders, which are fully connected neural networks with “encoding” and 
“decoding” network  paths17, have shown promise as a dimensionality reduction technique, including in appli-
cation to cancer  datasets18. They do so by reducing data dimensionality to a bottleneck in a hidden layer, while 
the decoding path uses the bottleneck representation to recreate the original input by minimizing a chosen loss 
function. Autoencoders have been found to improve accuracy in predicting kidney cancer survival compared 
to PCA by creating nonlinear feature  combinations16.

Despite their demonstrated effective performance, autoencoders are highly prone to  overfitting17. Recent 
survival prediction studies have experimented with denoising  autoencoders19, which add excess noise to the 
input data to improve generalization to new  data20. As an unsupervised method, autoencoders are not sensitive 
to features most relevant to survival prediction, which is problematic given that only a relatively small subset of 
genomic features contributes to survival  prediction5, 21. One solution, which we implement here, is to use feature 
selection before denoising autoencoder compression to filter for the most relevant features.

In this study, we explored the benefits of multimodal data integration as applied to NSCLC survival analysis. 
This included the development of robust early-integration patient survival models that used a combination of 
feature selection and denoising autoencoders for dimensionality reduction. Using mRNA, miRNA, DNA meth-
ylation, long non-coding RNA (lncRNA), and clinical data, we aimed to demonstrate the advantage of combining 
multiple modalities of data in predicting NSCLC patient survival. To the best of our knowledge, this combination 
of modalities, and in particular the lncRNA modality in a multimodal context, have not been investigated for 
NSCLC survival prediction. We evaluated multiple data integration and parameter estimation methods, as well 
as different autoencoder variations to improve NSCLC survival prediction and to identify predictive biomarkers 
associated with patient survival.

Results
Performance of survival prediction in a multimodal setting. The predictive survival performance 
for models using each individual modality and their combination is shown in Fig.  1. Results were averaged 
across 5 independent test set evaluations (see ‘Training and evaluation approach’ section in Methods). For multi-
modal models, results are reported using a single denoising zeros autoencoder (early integration), and an elastic 
net model trained on both LUAD and LUSC data. Results of variations of the pipeline discussed in the Methods 
are presented as Supplementary tables and figures.

The performance of the models predicting LUAD patients’ survival was superior to that of LUSC patients 
across individual modalities and in the multimodal setting, which agrees with previous  findings8. As expected, 
the clinical data for both LUAD and LUSC were strongly prognostic. Yet, models based on multimodal data 
outperformed models based on clinical data alone and any other individual omics modality. Specifically, models 
utilizing early integrated multimodal data achieved mean C-indices of 0.67 ± 0.04 and 0.63 ± 0.02 for LUAD and 

Figure 1.  Predictive performance of survival models based on different modalities, including a multimodal 
approach, using independent test data. Both LUAD and LUSC models using multimodal data integration 
demonstrate improved performance as compared to models using individual modalities.



3

Vol.:(0123456789)

Scientific Reports |        (2023) 13:15761  | https://doi.org/10.1038/s41598-023-42365-x

www.nature.com/scientificreports/

LUSC data, respectively, compared to C-indices of 0.64 ± 0.03 and 0.59 ± 0.03 for clinical data alone. However, 
this difference was not statistically significant.

The biological data seemed particularly informative for LUAD, as all modalities except methylation achieved a 
C-index of at least 0.60. This is in contrast to the LUSC data, where all biological modalities except lncRNA scored 
at or below an average 0.55 C-index. Across both NSCLC subtypes, methylation, and miRNA showed the lowest 
average performance and appeared to be the least predictive modalities. Gene expression data were moderately 
predictive and performed best on LUAD data, scoring a mean C-index of 0.63 ± 0.03. Notably, lncRNA narrowly 
scored the highest of any individual biological modality for both LUAD and LUSC data, with mean C-indices 
of 0.64 ± 0.03 and 0.56 ± 0.02, respectively. Ultimately, two-sample T-testing between the mean C-indices of the 
individual modalities compared to the multimodal modality (both LUAD and LUSC) revealed varied significance 
with p-values of 0.04, 0.05, 0.08, 0.15 and 0.55 for the comparison of mean C-index of DNA methylation, miRNA, 
mRNA, lncRNA and clinical, respectively, to multimodal.

We evaluated combinations of modalities, as well as the relationships between modalities, to examine which 
among them were necessary for strong survival performance (Supplementary Table S1). Even combinations of 
only two modalities noticeably increased performance, as all 2-omics LUAD combinations (except miRNA and 
clinical data) outperformed every unimodal model (Fig. 2A). The LUSC results were similar except for clinical 
data, which was still one of the stronger predictors.

The top five combinations of modalities by mean C-index are shown in Fig. 2B. Notably, the combination of 
lncRNA and clinical data achieved the joint highest performance for LUAD, with a mean C-index of 0.69 ± 0.03, 
as compared with 0.67 ± 0.03 for all modalities. For LUSC, lncRNA and clinical data achieved a mean C-index 
of 0.62 ± 0.03, the second-highest result after early integration of all modalities. These relationships were not 
purely additive, as lncRNA showed only slightly higher performance than mRNA, but lncRNA and clinical 
data complemented each other well. Consistent with previous observations, all five highest-performing LUSC 
combinations contained clinical data. The combination of lncRNA and clinical data upon two-sample T-testing 
across both NSCLC types, achieved p-values of 0.03, 0.03 and 0.05 compared to the mean C-indices of DNA 
methylation, miRNA and mRNA data, respectively. However, a p-value of 0.11 was found in the comparison of 
the combination of clinical and lncRNA data to unimodal lncRNA and a p-value of 0.48 when comparing to the 
mean C-index of unimodal clinical data.

Although most high-performing modality combinations contained clinical data (Fig. 2B), the early integration 
of biological modalities as input improved predictive power for both LUSC and LUAD (Supplementary Table S1) 
over models using corresponding individual modalities. In fact, for LUAD, every early integration combination 
of biological modalities achieved equal or better performance compared to late integration. Strikingly, the early 
integration of LUAD methylation and miRNA data resulted in a 0.09 increase in mean C-index (from 0.57 ± 0.02 
to 0.66 ± 0.03) compared with late integration. Average performance was also slightly higher for LUSC biologi-
cal combinations when using early integration (0.013 mean difference). However, mean performance on data 
combinations that included clinical data was similar for LUAD and LUSC regardless of the time of integration 
(Supplementary Table S1).

Combination of modalities for biomarker identification. Clustering analysis. K-means clustering 
was performed on the multimodal feature space using the multimodal non-zero features from the elastic net. 
The Silhouette  method22 was used to identify the optimal cluster number, and the largest average silhouette 
width appeared at K = 2 clusters. A Kaplan–Meier curve showed a significant difference in survival between the 
two groups (Fig. 3; log-rank P = 1e-9). Clusters were better distinguished by survival outcome than by NSCLC 
type (both not participating in the clustering process), as there was a relatively even split of LUAD and LUSC 
cases in each cluster (Cluster 1, 52% LUAD cases; Cluster 2, 59% LUAD cases). Patients from Cluster 1 exhib-
ited consistently lower survival times, which explains its slightly larger proportion of LUSC cases. Genes com-
monly linked to NSCLC survival, including EGFR (P = 0.002; log2 fold change [log2FC] = 0.42), MET (P = 0.04; 
log2FC = 0.29), and ERBB2 (P = 0.02; log2FC = –0.23), were differentially expressed in Cluster 1, but the KRAS 
gene was not (P = 0.17; log2FC = 0.11).

Differential expression analysis. We used these two groups to identify differentially expressed transcripts 
among all four biological modalities. In Cluster 1, which was associated with poorer survival, we identified 
507 differentially expressed genes (114 upregulated, 393 downregulated), 110 differentially expressed lncRNAs 
(57 upregulated; 53 downregulated), and 7 differentially expressed miRNAs (3 upregulated, 4 downregulated), 
(Supplementary Fig. S1). A total of 367 genes were differentially methylated in Cluster 1 compared to Cluster 
2; of these, 224 genes displayed significantly higher mean methylation and 143 showed decreased methylation.

The top five differentially expressed mRNAs, miRNAs, and lncRNAs by log2FC and the top five differentially 
methylated genes by mean M-value difference across survival subtypes are shown in Table 1. Of the most down-
regulated genes in Cluster 1, low albumin expression is known as a poor survival indicator in NSCLC  patients23. 
Less is known about solute carrier gene SLC13A2, but it has been implicated in cellular survival during lung 
 tumorigenesis24. Additionally, SCGB1A1 is a determinant of the success of NSCLC radiation therapy and immune 
checkpoint inhibitor combination  therapy25.

The lncRNA with the greatest log2FC between the two groups, ERVH48-1, has been used to construct a LUSC 
prognostic signature of seven  lncRNAs26, whereas LINC01287 promotes proliferation and prevents apoptosis of 
LUAD  cells27. In previous research, FLJ22447 was found to reprogram fibroblasts to promote the growth of oral 
squamous-cell  carcinoma28.

Both hsa-mir-34b and hsa-mir-34c were found to be significantly downregulated in group 1, in agreement with 
previous findings showing that these miRNAs suppress LUAD tumor growth and that decreased expression of 
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both conferred poorer  survival29. Upregulated miRNA hsa-mir-891a was recently identified as a novel biomarker 
for NSCLC in a study showing that increased expression was positively associated with NSCLC  metastasis30.

For differentially methylated genes, SEPT9 promoter hypermethylation has been evaluated as a marker for 
early diagnosis of lung  cancer31, and its hypermethylation has been associated with poor prognosis in multiple 
cancer  types32. Furthermore, in one study in which a methylation nomogram containing 11 probes was created 
for LUAD prognosis prediction, two of these probes were located in the body of the FAM125B gene (cg12133048, 
cg13600632)33.

Exploratory analysis to improve prediction of patient survival. Comparison of denoising autoen-
coder performance. The denoising zeros autoencoder recorded the highest mean survival performance with the 
sigmoid activation function and with the addition of zeros to 30% of the matrix (Supplementary Table S2). These 
parameters achieved an average C-index of 0.592 across all modalities, which was greater than the next-highest 
value of 0.590. The latter was achieved by the denoising Gaussian autoencoder with a ReLU activation function 
and a 0.1 SD. Overall, the denoising zeros autoencoder achieved slightly higher average survival performance, 
achieving a mean C-index of 0.585 ± 0.005 as compared with 0.582 ± 0.005 for the denoising Gaussian autoen-
coder and 0.582 ± 0.003 for the basic autoencoder.

Figure 2.  (A) Comparison of models’ performance using 2-omic combinations versus single modalities. (B) 
The top five highest-performing combinations of modalities. All models are evaluated on independent test data 
using mean C-index.
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Varying training data. We examined whether training on only one NSCLC data type improved survival per-
formance by increasing the specificity of predictions. LUSC performance improved after training on both cancer 
types, with an increase in mean C-index of 0.02 (0.54 ± 0.01 to 0.56 ± 0.01) across all modalities (Supplementary 
Table S3). Clinical and methylation modalities recorded mean C-index increases of 0.05, whereas multimodal 
and miRNA data both recorded a mean C-index increase of 0.04. The improved performance of LUSC when 
training was conducted on both NSCLC subtypes is probably related to the noisy biological signals that were 
present in the LUSC dataset, as well as to the larger patient sample size.

After training on both data types, the average C-index for LUAD data increased by only 0.01 (0.62 ± 0.02 to 
0.63 ± 0.01) with 0.02 increases in the multimodal and methylation modalities. Otherwise, performance appeared 
similar other than a 0.02 decrease for the miRNA modality (Supplementary Table S3).

Early vs. late data integration. It is unclear whether early or late multimodal integration of genomic data 
leads to better task  performance12. In this analysis, early and late integration performed similarly for the LUAD 

Figure 3.  Survival differences between two groups of patients identified by K-means clustering based on 
multimodal feature space analysis.

Table 1.  Top five differentially expressed transcripts between survival subtypes sorted by largest absolute 
log2FC values or absolute mean M-value difference for methylation.

Omics type Gene Log2FC/mean difference P Reference

mRNA

ALB – 2.39 1.11e-24 Stares et al.23

SLC13A2 – 1.80 7.41e-13 Bauer et al.24

NFE4 1.75 2.61e-13 Pan et al.46

SCGB1A1 – 1.63 3.28e-11 Ban et al.25

MTND1P23 – 1.60 2.70e-14 Zhou et al.47

lncRNA

ERVH48-1 2.06 1.21e-25 Qi et al.26

LINC01287 1.69 3.74e-10 Zhang et al.27

AC089983.1 1.25 8.60e-10 Li et al.48

FLJ22447 1.09 1.63e-14 Ding et al.28

RP11-356K23.1 – 1.06 2.12e-08 Lou et al.49

miRNA

hsa-mir-4449 0.76 1.96e-05 Yan et al.50

hsa-mir-184 – 0.67 1.01e-03 Lin et al.51

hsa-mir-34c – 0.67 1.34e-04 Kim et al.29

hsa-mir-891a 0.64 3.90e-03 Wan &  Zheng30

hsa-mir-34b – 0.62 8.4e-04 Kim et al.29

DNA methylation

CAPS 0.65 4.85e-05 Pastor et al.52

SEPT9 0.44 1.28e-04 Powrózek et al.31

PTPRF 0.39 1.60e-04 Soulières et al.53

FAM125B – 0.35 7.76e-05 Wang et al.33

PIK3R2 0.32 1.37e-04 Vallejo-Díaz et al.54
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dataset (Supplementary Table S4) while LUSC showed a striking 0.04 increase in mean C-index (0.59 ± 0.03 to 
0.63 ± 0.02) when early integration was used. In this case, nonlinear combinations of LUSC biological features 
created by the autoencoder were clearly more predictive than features from individual modalities.

Evaluation of alternative dimensionality reduction schemes. The combination of feature selection and denoising 
autoencoder narrowly outperformed three alternative pipelines for LUAD data for both early and late integra-
tion (Supplementary Fig. S2). For LUSC late integration, the combined approach was less predictive than either 
feature selection or denoising autoencoders individually. Yet early integration decisively favored our proposed 
approach (mean C-index = 0.63 ± 0.02), achieving the highest overall LUSC mean C-index. Although the differ-
ences were not large, the combined approach achieved the highest survival performance, with LFS representing 
the next-best methodology.

Discussion
Our results show that modality integration improved prognosis prediction, as using multimodal data increased 
survival discrimination over that of any individual modality. Furthermore, 2-omics combinations outperformed 
almost all unimodal approaches for both NSCLC types. These findings occurred despite the increased feature 
space dimensionality of modality combinations demonstrating the value of the proposed data integration meth-
odology. Our findings are consistent with those of a previous liver cancer multimodal  approach16 and provide 
strong evidence for the potential of multimodal data integration to better describe the heterogeneity of NSCLC 
patients.

Models based on a combination of clinical and lncRNA data achieved high performance for both LUAD and 
LUSC (mean C-indices of 0.69 ± 0.03 and 0.62 ± 0.03, respectively). Notably, lncRNAs were included in three and 
four of the five top-performing modalities combinations for LUSC and LUAD. This could partially be explained 
by the low correlation between lncRNA and other modalities. Further, although the investigation of lncRNAs in 
cancer is relatively new, lncRNAs are commonly dysregulated in  NSCLC34. However, with the exception of one 
study that used lncRNAs and clinical data to establish a NSCLC risk score for binary  survival35, to our knowledge 
no other multimodal studies have examined the predictive power of the lncRNA modality for both LUAD and 
LUSC together. Our study suggests the predictive value of this modality, with significant overlap in identified 
profiles for LUAD and LUSC. Further research is warranted to validate this finding.

Overall, the highest survival performance was achieved with lncRNA and clinical data (or gene expression, 
miRNA, and clinical data) for LUAD (mean C-index = 0.69 ± 0.03) and using all modalities for LUSC (mean 
C-index = 0.63 ± 0.02). It is challenging to directly compare survival performance with other studies because of 
differences in performance evaluation methods and the dataset utilized. A notable TCGA LUSC study imple-
mented a multimodal approach by using basic autoencoders and four biological data types to achieve a C-index 
of 0.59719. Another study combined histopathology whole-slide images (WSIs) with clinical data for a 0.62 
C-index36. In an examination of previous TCGA LUAD dataset performance, one study used mRNA data to 
achieve a C-index of 0.65637, and a second integrated mRNA and clinical data for a C-index of 0.68938. Finally, 
a LUAD study used an autoencoder to combine mRNA, miRNA, methylation, and copy-number variation 
data to achieve a 0.65 C-index39. As compared to the findings above, our proposed methodology demonstrates 
comparable or stronger performance using similar data and provides biologically actionable results. A higher 
performance achieved by Cheerla &  Gevaert7 can potentially be explained by an increase in the training data 
size when using pan-cancer TCGA data (20 different cancer types), which is in line with our finding of improved 
performance when using both LUAD and LUSC data for training.

In addition to improved predictive power, our approach has demonstrated that multimodal analysis provides a 
unique opportunity to build robust survival subgroups that take multiple aspects of a patient’s biology and clinical 
status into consideration. Our differential analysis based on those survival subgroups identified a combination 
of differentially expressed mRNAs, miRNAs, and lncRNAs, as well as differentially methylated genes associated 
with improved or shortened survival. Top genes in these categories have been previously linked to shown to 
be associated with NSCLC and/or cancer prognosis (see ‘Differential expression analysis’ section of Results).

Several limitations were placed on data selection in this work. These include the selection of patients with all 
the modalities present, which could have introduced a bias in the patient population. Along these same lines, 
this approach must be further validated on additional external datasets as more and more of these multimodal 
datasets become publicly available in the future. In addition, we did not explore other data modalities, such as 
proteomic, copy-number variation, or WSI data, that could allow for more effective survival predictions. The 
lack of interpretability of autoencoders is also a major limitation of this study, as it is difficult to determine what 
the extracted dimensions of the reduced feature space represent.

Methods
Overview. Our proposed data analysis approach is summarized in Fig. 4 and includes:

– Preprocessing steps: Data cleaning and supervised linear feature selection were carried out to identify signifi-
cant features and reduce the dimensionality of the input data. These steps were performed for each biological 
modality separately.

– Modality integration: A single autoencoder was used to integrate and compress biological data from all 
modalities together into a 160-dimensional feature space. Adding the clinical modality data brought the 
dimensionality of the input data to 171. Several types of autoencoders were evaluated for improved survival 
performance, with a demonstrated advantage of the denoising autoencoder.

– Survival analysis: We implemented the elastic net model, a regularized Cox proportional hazards (PH) model.
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– Biomarker identification: K-means clustering was conducted on the survival-associated variables (as iden-
tified by the elastic net model) of the multimodal feature space to identify survival subtypes. Differential 
expression analysis was carried out between the survival subtypes to identify biological transcripts associated 
with survival outcomes.

Data. Data for this study were obtained from The Cancer Genome Atlas (TCGA) dataset, which contains 
multiple modalities of lung cancer data, including 1881 miRNAs, mRNA expression data for 44,162 genes, DNA 
methylation data from 485,512 probes, and clinical data (Supplementary Table S5)40. In addition, 12,440 lncR-
NAs were extracted from the mRNA modality according to the lncRNA list published by Lin et al.41. Each patient 
has a time-to-death in days right-censored up to 11,000 days post-diagnosis and a binary survival status variable.

A total of 732 NSCLC patients had samples in all five modalities. We evaluated LUAD and LUSC subpopula-
tions separately to better understand the differences and generalizable commonalities in subpopulations. Of these 
patients, 449 (61.3%) survived (or were censored) and 283 (38.7%) died during the study period.

After all data modalities were combined, there were 544,006 features in the initial feature space. For clinical 
data, we used 11 features provided by TCGA (Table 2). The “tumor volume” variable was calculated by comput-
ing the volume of the tumor using the three dimensions provided in the dataset.

Preprocessing. For the initial preprocessing steps, the LUAD and LUSC datasets were combined as has 
been reported  previously2, 10. Individual mRNA, miRNA, and lncRNA features were removed if they had zero 
or missing values in more than 20% of patients in the dataset. Patients with follow-up times of 0 or 1 day were 
also removed. The features of each modality were Z-scored (i.e. each feature had zero mean and unit variance). 
Imputation was performed for missing values using the median. These computations were performed separately 
for training and testing data.

DNA methylation features in the TCGA dataset consist of beta values from 485,512 probes ranging from 0 
to 1 based on methylation status. Probes with more than 20% missing values were excluded (remaining with 
395,616 probes). In addition, only the 131,106 probes found in CpG islands within 1500 base pairs upstream of 
the transcriptional start site were used, a commonly used methylation processing  approach10, 39. Finally, before 
LFS, the top 25,000 probes with the highest beta value variance were filtered to extract more informative features. 

Figure 4.  Proposed pipeline for NSCLC survival analysis.
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This led to a reduction of lncRNA features from 12,440 to 5411, mRNA features from 44,162 to 19,837, miRNA 
features from 1881 to 432, and methylation features from 485,512 to 25,000 (Fig. 4).

Linear feature selection (LFS). Prior to autoencoder-based data integration and lower dimensionality 
projection, each feature in each modality was separately evaluated through an LFS process to ensure feature 
relevance to the prediction task. Specifically, Wald significance tests based on univariate Cox PH models were 
employed to measure the association of each feature with patient survival time. The top 500 features for mRNA 
and methylation and the top 300 features for lncRNA and miRNA with the lowest Wald P values were selected 
for each modality, proportional to the initial number of features in each modality. Feature selection was per-
formed using training data only, with validation schema presented in the ‘Training and evaluation approach’ 
section below.

Denoising autoencoder. The final NSCLC pipeline employs a single denoising “zeros” autoencoder, 
which adds noise to the input data by randomly replacing a percentage of the input matrix with  zeros42. The 
denoising zeros autoencoder takes the concatenated biological data (1600 features) and reduces the data to a 
160-dimensional vector (Supplementary Fig. S3). Before choosing our final autoencoder structure, we tested 
and compared the performance of this denoising zeros autoencoder to a denoising autoencoder that adds zero-
centered Gaussian noise to the data with a chosen standard deviation (SD) of the distribution (denoising Gauss-
ian autoencoder)18. We also compared performance to that of a basic autoencoder with no denoising function 
(no additional hyperparameters). Performance of these autoencoder models and hyperparameter combinations 
were assessed by averaging C-index across each individual modality as well as the multimodal modality (Sup-
plementary Table S2).

All models employed an adaptive moment estimation optimizer, a mean squared error loss function, and a 
learning rate of 0.001 to balance accuracy and training time. To combat overfitting, all autoencoders were trained 
for 100 epochs with an early stopping mechanism that ended training if validation loss did not improve for 5 
epochs. For each denoising autoencoder type, the rectified linear unit (ReLU), tanh, and sigmoid activation 
functions were compared. For the denoising zeros autoencoder, the proportion of matrix observations replaced 
with zeros was modulated (0.2, 0.3, 0.4) and the SD of the distribution of noise added (0.5, 1, 1.5) was adjusted 
for the denoising Gaussian model.

Supervised survival modeling. For this study, we used an elastic net as the survival model. This model 
is a regularized form of the Cox PH model that deals effectively with high-dimensional data by preventing 
 overfitting43. More specifically, elastic net uses both Lasso (L1) and Ridge (L2) regularization together to penal-
ize complex Cox PH models and decrease coefficient values. The alpha value (between 0 and 1) determines how 

Table 2.  Clinical features included in TCGA dataset. a Variable data are expressed as mean ± SD. b A pack-year 
is defined as 20 cigarettes smoked every day for 1 year.

Clinical feature Feature  levelsa No. of missing samples

Age (years) 66.1 ± 9.5 14

Sex
Male

0
Female

Tumor volume  (cm3) 0.5 ± 0.5 220

Primary diagnosis
Adenocarcinoma

0
Squamous cell carcinoma

Prior malignancy Yes, no 0

Synchronous malignancy Yes, no 54

Pathological stage

Stage1, Stage 1A, Stage 1B

8
Stage 2, Stage 2A, Stage 2B

Stage 3, Stage 3A, Stage 3B

Stage 4

Staging tumor

T1, T1a, T1b

3
T2, T2a, T2b

T3

T4

Staging lymph nodes

N0

12N1

N2

Staging metastasis
M0

199
M1, M1a, M1b

No. of pack-years  smokedb 46.2 ± 28.1 180
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much weight is given to the L1 and L2 penalties, and an alpha value of 0.5 was chosen to give equal weight to 
each. Training data was used to find the optimal lambda value, a coefficient that determines the degree of coef-
ficient shrinkage.

Integration of different combinations of modalities. In addition to combining all the modalities in 
survival prediction models, we evaluated several two, three, and four modality combinations. Both early and late 
data integration were evaluated for each combination.

Survival clustering stratification and differential expression analysis for biomarker identifica‑
tion. To gain additional insight into the features most affecting patient survival, we implemented K-means 
clustering using features significantly associated with survival by the elastic net model. By using one training run, 
features with coefficients driven to zero by the elastic net model were removed to keep only survival-associated 
features. These survival-related features were used in unsupervised K-means clustering to identify distinct sur-
vival subtypes. The optimal number of clusters was determined by silhouette index (2 to 10 clusters evaluated)22.

Using these identified survival subtypes, we conducted differential expression analysis to find differences in 
mRNA, miRNA, and lncRNA expression between groups. Differential expression was defined as a false-discovery 
rate adjusted P value of < 0.05 and absolute fold change of > 1.5.

For the methylation data, beta values were mapped to M-values through a logistic  transformation44. Methyla-
tion probes were mapped to genes by averaging M-values across each gene. An analysis-of-variance test identified 
differentially methylated genes based on the mean M-value, as described previously (P < 0.05)39.

Training and evaluation approach. We used a robust training/validation and independent test set 
schema for reporting the results. Training/validation data (80% of the data) were used for parameter estima-
tion through all preprocessing and modeling steps. Results are reported on the independent test set (20% of the 
data). To further assess the stability of the results and to report confidence intervals, a bootstrapping schema was 
introduced. The results are reported across these 5 independent runs.

Performance evaluation. To estimate prediction error, we used the Harrell concordance index (C-index), 
the most commonly used metric for survival  analysis45. The C-index is used to evaluate the probability that a 
model will correctly predict which of two randomly selected patients will die first. In other words, it measures 
the ability to correctly order patients in terms of survival time, ranging from 0.5 (random chance) to 1 (perfect 
prediction).

Exploratory analysis to improve patient survival prediction. Varying training data. Earlier stud-
ies showed improved performance of survival models when training using pan-cancer  data7. However, due to 
the prevalence of LUAD over LUSC cases in TCGA, the survival model may prioritize features that are geared 
more toward LUAD, compromising LUSC performance if training is done on both LUAD and LUSC. We there-
fore compared models’ performance trained using LUAD or LUSC data only versus their combination.

Early vs. late data integration. The effect of reducing the data dimensionality of each data type separately (late 
integration) was compared with that of using one denoising autoencoder to compress all of the biological data 
into a 160-dimensional vector together (early integration). For late integration, each autoencoder was structured 
with layers of size 500, 50, and 500 for mRNA and methylation data or 300, 30, and 300 for miRNA and lncRNA 
data. Survival performance was compared by using the C-index of each integration scheme on multimodal data 
and all possible combinations of omics data.

Comparison with other dimensionality reduction approaches. The performance of this combined feature selec-
tion and autoencoder feature reduction approach was compared with three alternative data dimensionality 
reduction methods. These alternatives were a denoising autoencoder with no feature selection, PCA, and LFS 
with no autoencoder. We compared the survival performance of all four techniques on multimodal data across 
both NSCLC type and early and late modality integration.

Implementation. All data analyses for this study were completed with R, version 4.2.0. The Keras package 
in R with a Tensorflow back end was employed to implement the denoising autoencoders. Differential expres-
sion analysis was implemented with the DESeq2 R package, and the lumi R package was used to map beta values 
to M-values for differential methylation analysis.

Data availability
The code used to generate all of the results and models from this study are available at: https:// github. com/ Astra 
Zeneca/ Multi modal_ NSCLC.
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