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Abstract

In this work, we investigate how the complex structure found in solar wind proton velocity distribution functions
(VDFs), rather than the commonly assumed two-component bi-Maxwellian structure, affects the onset and
evolution of parallel-propagating microinstabilities. We use the Arbitrary Linear Plasma Solver, a
numerical dispersion solver, to find the real frequencies and growth/damping rates of the Alfvén modes calculated
for proton VDFs extracted from Wind spacecraft observations of the solar wind. We compare this wave behavior to
that obtained by applying the same procedure to core-and-beam bi-Maxwellian fits of the Wind proton VDFs. We
find several significant differences in the plasma waves obtained for the extracted data and bi-Maxwellian fits,
including a strong dependence of the growth/damping rate on the shape of the VDF. By applying the quasilinear
diffusion operator to these VDFs, we pinpoint resonantly interacting regions in velocity space where differences in
VDF structure significantly affect the wave growth and damping rates. This demonstration of the sensitive
dependence of Alfvén mode behavior on VDF structure may explain why the Alfvén ion-cyclotron instability
thresholds predicted by linear theory for bi-Maxwellian models of solar wind proton background VDFs do not
entirely constrain spacecraft observations of solar wind proton VDFs, such as those made by the Wind spacecraft.

Unified Astronomy Thesaurus concepts: Plasma physics (2089); Solar wind (1534); Alfven waves (23); Space
plasmas (1544); Plasma astrophysics (1261)

1. Introduction

Space and astrophysical plasmas are commonly weakly
collisional. With infrequent collisions, the velocity distribution
functions (VDFs) of these plasmas can significantly differ from
the entropically favored Maxwellian shape (Vasyliunas 1968;
Gosling et al. 1981; Lui & Krimigis 1981, 1983; Marsch et al.
1982; Armstrong et al. 1983; Williams et al. 1988). These
departures from equilibrium can act as sources of free energy
that drive instabilities. Instabilities play an important role in
both the small- and large-scale plasma behavior, e.g., by pitch-
angle scattering of particles acting as an effective viscosity
(Kunz et al. 2011; Riquelme et al. 2018; Arzamasskiy et al.
2023) or by serving as channels to transport energy in space;
see the review by Matteini et al. (2012). In the weakly
collisional plasma that comprises the solar wind a variety of
nonequilibrium features develop, including temperature aniso-
tropy (Kasper et al. 2002), temperature disequilibrium between
species (Neugebauer 1976), and beams (Pilipp et al. 1987;
Alterman et al. 2018).

To better describe the nonequilibrium features in solar wind
VDFs, it is common to fit observations to simplified model
distributions such as bi-Maxwellian (Marsch 2006) or kappa
(Summers et al. 1994) distributions. Bi-Maxwellian models have
been extensively used to determine instability thresholds as a
function of proton temperature anisotropy (T⊥,p/T∥,p where

perpendicular/parallel are defined with respect to the mean
magnetic field B) and the parallel proton plasma beta
(β∥,p= 8πnpkT∥,p/B

2 where nj is the density of a plasma
component j). Assuming a bi-Maxwellian shape of the back-
ground VDFs and a homogeneous background, different kinds
of wave instabilities are commonly expected to be driven beyond
these instability thresholds. The thresholds can account for either
a single free energy source (e.g., Hellinger et al. 2006; Bale et al.
2009) or multiple sources (e.g., Matteini et al. 2013; Chen et al.
2016; Klein et al. 2018); reviews of these thresholds are
provided by Gary (1993) and Verscharen et al. (2019).
A well-known open question in heliophysics, and the focus

of this paper, concerns the Alfvén ion-cyclotron (AIC)
instability, which occurs when the proton temperature is larger
perpendicular to the mean magnetic field direction than
parallel, T⊥,p> T∥,p (Kennel & Wong 1967; Davidson &
Ogden 1975). The predictions of linear theory for the AIC
instability threshold do not fully constrain the observations of
solar wind proton VDFs by the Wind spacecraft when
calculated for bi-Maxwellian proton background VDFs (Hel-
linger et al. 2006; Bale et al. 2009). Several explanations have
been proposed for the failure of this approach to describe the
observations, including inefficient energy extraction (Shoji
et al. 2009) or the impact of other plasma populations such as
α-particles (Maruca et al. 2012). Isenberg et al. (2013) suggest
that the assumption of bi-Maxwellian proton distributions
limits the applicability of the thresholds predicted by bi-
Maxwellian linear theory. Our investigation focuses on under-
standing how the structure of realistic solar wind VDFs affects
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the onset and evolution of the AIC instability in the solar wind
compared to the bi-Maxwellian approximation.

The structure of a plasma VDF has physical consequences in
terms of the growth or damping of plasma waves, which are
important carriers of energy in collisionless plasmas such as the
solar wind. We are therefore interested in understanding how
the properties of waves differ between those produced from
core-and-beam bi-Maxwellian models of spacecraft observa-
tions of solar wind proton VDFs and the spacecraft data itself.

Linear plasma solvers (such as WHAMP, NHDS, or PLUME)
designed to study the plasma waves associated with a given
background VDF typically use a bi-Maxwellian model and
solve the hot-plasma dispersion relation associated with this
simplified description of the distribution (Roennmark 1982;
Quataert 1998; Klein & Howes 2015; Verscharen & Chan-
dran 2018). In our investigation of how deviations from an
idealized bi-Maxwellian distribution affect the linear properties
of the AIC instability, we use the Arbitrary Linear
Plasma Solver (ALPS), a code that solves the hot-plasma
dispersion relation by direct numerical integration of arbitrary
background distributions for the plasma; a detailed overview of
ALPS is provided by Verscharen et al. (2018).

In Section 2, we describe the VDFs used in this work and
outline the numerical tools employed to calculate the linear
plasma response. We present the plasma behavior of the Alfvén
modes associated with these VDFs in Section 3, along with a
more detailed analysis of the connection between VDF
structure and the stability of the Alfvén modes through the
calculation of the quasilinear diffusion operator. We summarize
our results in Section 4.

2. Methodology

2.1. VDF Construction

The VDFs used in this paper are based on two representative
distributions observed by the Solar Wind Experiment (SWE)
aboard the Wind spacecraft (Ogilvie et al. 1995). The Wind
spacecraft rotates with a period of ≈3 s and charge flux
distributions, as a function of energy and incidence angle, are
acquired over ≈93 s. This rotation allows the distribution
function to be resolved over the full field of view of 4π sr. The
distributions used in this work are based on observations made
over one acquisition period on 2009 December 19 from
02:49:41 UT and 2008 August 14 from 04:31:43.69 UT for
Interval 1 and Interval 2, respectively. The average magnetic
field during each period is measured by the Magnetic Field
Investigation (Lepping et al. 1995) and the average magnitude
of the magnetic field over this 93 s interval is 5.044 nT for
Interval 1 and 6.065 nT for Interval 2. Based on a nonlinear bi-
Maxwellian fit to the SWE proton measurements (Kasper et al.
2002), we find β∥,p= 0.153, T⊥,p/T∥,p= 2.41 (Interval 1) and
β∥,p= 0.148, T⊥,p/T∥,p= 2.80 (Interval 2). Both intervals are
therefore above the γ/Ωp= 10−2 marginal stability threshold
(where γ is the growth/damping rate, Ωp= qpB/mp is the
proton cyclotron frequency, qp is the proton charge, and mp is
the proton mass) for the AIC instability if the distribution
function were modeled as a bi-Maxwellian, but below the same
threshold for the mirror instability (Verscharen et al. 2016). We
choose intervals in this region of β∥, T⊥,p/T∥,p space to allow
us to characterize the role of nonequilibrium VDF structure on
the stability of solar wind plasma that should be unstable to the
AIC instability under the bi-Maxwellian assumption. These

intervals exhibit a prominent proton beam population; such
intervals have historically been treated with core-and-beam bi-
Maxwellian fits. The α-particle density is below the detection
threshold for the Wind nonlinear analysis for Interval 1 and
around nα/np∼ 0.007 for Interval 2. These low α-particle
densities do not contribute significantly to the linear plasma
response, and thus we will not consider the α-particles in this
analysis.
The Wind SWE Faraday cup has a baseline resolution of 31

bins logarithmically distributed across voltages from 150–8000
V with an energy resolution of ΔE/E≈ 0.065 (Ogilvie et al.
1995) We further generalize the bi-Maxwellian VDF model
typically extracted from these measurements, provided by
Ogilvie et al. (2021), to better describe the Wind SWE Faraday
Cup observations. The Faraday Cup response function is not
uniquely or analytically invertible, so a numerical approach is
required in order to recover details of the VDF that are not well
described by the bi-Maxwellian model. We choose to
characterize the VDFs more completely by following a two-
step approach: first, we capture the dominant features with a
double bi-Maxwellian regression; second, we discretize that
model and apply random gyrotropic perturbations to improve
the match with the data. The resulting discrete gyrotropic
models are suitable for analysis with ALPS.
We first choose a double bi-Maxwellian VDF model to

capture both the core and secondary beam proton components
that are evident in the data. The Faraday Cup data is natively
expressed as ion charge fluxes measured as a function of
voltage and spacecraft spin angle (Kasper et al. 2021).
Following the protocol used in several previous works, Chen
et al. (2016), Gary et al. (2016), Wicks et al. (2016), Alterman
et al. (2018), and Jiansen et al. (2018), we fit the measured
instrument response to the modeled instrument response for
two bi-Maxwellian distributions. We superpose two instances
of the Faraday Cup response to a single bi-Maxwellian, where
the analytic form for the latter is described by Kasper et al.
(2006), and the sensitive area as a function of angle is derived
for each datum by interpolating on the effective area table
provided in the metadata of Kasper et al. (2021). We then
perform regressions to the data, with gyrotropic constraints
applied to the bi-Maxwellian symmetry axes and relative drifts.
The resultant best-fit parameters obtained using this method are
hereafter referred to as “model 1,” as they are labeled in
Table 1(a).
To explore non-Maxwellian variations on the fits, we first

discretize each model 1 fit to a Cartesian (v⊥, v∥) grid with
2× 2 km s−1 resolution and then recompute the Faraday Cup
response numerically. Calculating the Faraday Cup response
requires one to integrate the differential charge flux upon the
sensor, multiplied by the effective sensitive area, over an
appropriate domain. In this case, we take the differential charge
flux associated with any point in phase space from the gridded
model and retrieve the effective area from the table provided in
Kasper et al. (2021). The integration domain for each datum is
the conical frustum in phase space defined by the cupʼs full
field of view and the bounds of the particular energy window.
The integrations are performed using the IDL “int_3d” utility
with 20-point Gaussian quadrature.
For both spectra, we calculate the non-reduced chi-square

statistic by comparing the numerical model to the data and then
employ a Monte Carlo strategy. At each iteration, (1) a
pseudorandom perturbation is superposed at each point in the
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discrete VDF model, (2) the Faraday Cup response to the
perturbation is calculated, (3) the chi-square is recalculated for
the perturbed model, and (4) the perturbation is accepted or
rejected on the basis of whether the chi-square was reduced.
Gaussian perturbations are generated in an ad hoc manner: the
generator selects randomized magnitudes between –0.1 and 0.1
of the local VDF value and half-widths between 1 and 10 grid
cells. To select phase space locations, the generator uses the
VDF as a probability distribution function, with ad hoc
flattening and artificial enhancement out to six thermal widths.
This is found to strongly favor low-energy solutions while still
providing a clear and reliable signal at the tails. We carry out
the Monte Carlo procedure until the chi-square statistic
converges to 1 part in 10,000. The resulting modified spectrum
models are hereafter referred to as the inverted-interpolated
data or “I-I data” as they are labeled in Figure 1.

We also use the Levenberg–Marquardt method to construct
core-and-beam bi-Maxwellian fits to the I-I data. These best-fit
models are hereafter referred to as “model 2,” as they are
labeled in Table 1(a). As this work aims to understand the
impacts of VDF structure on microinstabilities, we include both
of these independently constructed models to determine

whether small differences between bi-Maxwellian models also
yield different linear plasma responses. The fit parameters for
both model 1 and model 2 are shown in Table 1(a).
Figure 1 shows the I-I data and two core-and-beam bi-

Maxwellian models for both intervals, where fp̄ is a rescaling
of fp to a maximum value of 1. The contours highlight how a
two-component bi-Maxwellian fit is unable to capture the
complex structure of the I-I data, at both small and large v∥.

2.2. Calculation of the Dispersion Relation

We employ ALPS to calculate the linear kinetic plasma
behavior of the bi-Maxwellian model and I-I data VDFs. For full
code details, see Verscharen et al. (2018). ALPS seeks nontrivial
solutions to the wave equation by numerical calculation of the
plasma susceptibility of each component species. Unlike
dispersion solvers that simplify this process by modeling the
distributions as bi-Maxwellians (e.g., PLUME, NHDS) or kappa
distributions (e.g., DSHARK Astfalk et al. 2015), ALPS
numerically integrates the susceptibility directly from a given
gyrotropic background distribution fj(v⊥, v∥). By numerically
integrating the phase space density to solve the plasma wave
equation rather than using the properties of special functions
such as Maxwellians to find closed-form solutions of the
dispersion relation, ALPS allows us to analyze the I-I Wind data
directly, without making the simplifying assumption that the
VDF structure follows a closed analytical form.
To numerically solve the hot-plasma dispersion relation, laid

out by Stix (1992), ALPS uses the distributions fj for each
species j defined on a discrete grid in perpendicular and parallel
momentum space, with minimum and maximum values Pmin,j
and Pmax,j and resolution defined by the number of steps N⊥ or
N∥ between P jmin, and P jmax, in each direction. The calculation
of the susceptibility χj is given in Equation (2.9) of Verscharen
et al. (2018). A user-defined parameter Jmax determines the
order of resonances nmax to include in the calculation of χj such
that the maximum amplitude of the Bessel function
J Jn 1 maxmax <+ . Modes that resonantly interact with portions
of the distribution outside the resolved numeric grid are
unaffected by the particular shape of fj and have been shown to
match fluid solutions.
For damped modes, the wave equation requires an analytic

continuation, for which we apply the hybrid-analytic continua-
tion scheme described in Section 3.2 of Verscharen et al.
(2018). The Landau contour integration in this scheme is
computed by decomposing the integral into a compound
function, where numerical integration is used when possible
and the residue component of the function is computed using
an algebraic function fit to fj that can be selected by the user.
Additional numeric methods are needed to integrate the poles;
these are described in Section 3.1 of Verscharen et al. (2018).
For these integrations, tlim and MI are user-defined parameters
determining the regions over which these numerical procedures
are implemented.
For our calculation of the dispersion relation using ALPS, we

use the following parameters. For all cases, J 10max
50= - ,

MI= 5, Mp= 100, T 0.01lim = , and P m v0j pmin, A=^ . For
Interval 1, the momentum space resolution is N⊥= 189 and
N∥= 206. For Interval 2, the momentum space resolution is
N⊥= 178 and N∥= 203. The proton and electron momentum
space ranges are presented in Table 1(b). The electron VDFs
used for the dispersion calculation in ALPS were constructed
using the observed electron temperature from Wind SWE

Table 1
Plasma and ALPS Parameters Used in This Work

(a)

Interval 1 Interval 2
Model 1 Model 2 Model 1 Model 2

β∥,c 0.14 0.09 0.13 0.08
vA [km s−1] 64.58 63.09 66.11 66.48
nb/nc 0.38 0.50 0.43 0.98
T∥,b/T∥,c 4.30 3.95 4.30 0.55
T⊥,c/T∥,c 3.39 2.27 3.08 3.58
T⊥,b/T∥,b 2.32 2.79 1.58 3.69

U bc,D ¯ 0.67 0.70 0.39 0.31

(b)

Model 1 Model 2 I-I Data

Pmin, p Interval 1 −4.27 −4.44 −4.33

Interval 2 −4.20 −4.24 −4.20

Pmax, p Interval 1 4.75 4.79 4.69

Interval 2 4.49 4.39 4.48

Pmax, p^ Interval 1 8.28 8.47 8.28

Interval 2 7.62 7.57 7.62

Pmin, e Interval 1 −0.18 −0.23 −0.18

Interval 2 −0.18 −0.17 −0.18

Pmax, e Interval 1 0.18 0.23 0.18

Interval 2 0.18 0.17 0.17

Pmax, e^ Interval 1 0.34 0.42 0.34

Interval 2 0.34 0.30 0.31

Notes. (a) Parameters of the two bi-Maxwellian fits. Subscripts c and b indicate
core and beam. The relative drift between the beam and core populations
normalized to the Alfvén velocity is   U U U vbc b c, , , AD = -¯ ∣ ∣ , where

v B n m4 p pA p= is the proton Alfvén velocity. The I-I data have
β∥,p = 0.153 (Interval 1) and 0.148 (Interval 2) and vA [km s−1] = 65.11
(Interval 1) and 66.11 (Interval 2). (b) Parameters of momentum space VDFs
used in ALPS. All values are in units of mpvA.
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(13 eV for Interval 1 and 12.5 eV for Interval 2), with relative
drift and density chosen to preserve current-free and quasi-
neutral conditions.

3. Results

3.1. Dispersion Relation

Figure 2 presents the real and imaginary components of the
linear mode frequencies, ωr and γ, respectively, for the forward
and backward Alfvén modes as a function of the normalized
parallel wavenumber, k∥dp (where dp= vA/|Ωp| is the proton
inertial length). We calculate the dispersion relation for the
parallel-propagating Alfvén modes with normalized perpend-
icular wavenumber k⊥dp= 0.001 and k∥dp between 0.01 and
10. The k∥dp ranges shown in Figure 2 start at k∥dp= 0.25 as
this is the lower limit where the resonant velocity

v n kr pres w= - W( ) (where n is an integer) exceeds the v∥
bounds of the input distributions. For the upper limit of k∥, we
require that γ/ωr< 1/e for consistency with our later
calculations of the quasilinear diffusion operator. While the
calculated real frequency ωr agrees between the data and
bi- Maxwellian models for all modes (with slight differences
emerging as the waves approach small scales k∥dp? 1), there
is significant disagreement in γ. The backward Alfvén mode for
Interval 1 shows unstable behavior—a positive γ—for both bi-
Maxwellian models, but the solution for the I-I data is stable for
all k∥dp. The forward Alfvén mode for Interval 2 shows stable
behavior in the data and model 1, but model 2 develops an
instability.

Even in the cases for which all models predict an instability,
the extent of the unstable wavenumber range in k∥dp differs.

The forward Alfvén mode in Interval 1 exhibits only a small
region of instability from k∥dp= 0.33–0.41 for the I-I data,
compared to both bi-Maxwellian model instabilities, which
range from k∥dp= 0.25–0.41 (model 1) and k∥dp= 0.25–0.57
(model 2). The backward Alfvén mode in Interval 2 has
instabilities that span similar k∥dp ranges for the bi-Maxwellian
models, with k∥dp= 0.25–1.04 (model 1) and k∥dp= 0.33–1.09
(model 2), but the instability in the I-I data spans only
k∥dp= 0.25–0.79, terminating at a smaller k∥dp than either of
the models.
To tie the differences in unstable behavior back to the

structure of the input VDFs, we consider the resonant velocities
associated with the wavenumber at which the instabilities
terminate. These are indicated in Figure 1 by the vertical
colored lines, with any v 0res < corresponding to the forward
Alfvén modes and v 0res > corresponding to the backward
Alfvén modes. In Interval 1, the forward Alfvén mode in the I-I
data interacts with a region further from the core than either of
the models, by which point the model VDF contours are quite
smooth. The backward Alfvén modes for both models resonant
with a region of smooth fp structure for v∥> 0 and large
temperature anisotropy. The I-I data exhibit a more uneven
structure and steeper drop-off of fp in this same region, and no
instability in the backward Alfvén wave is found.
For the Interval 2 forward Alfvén mode, we find an

instability in model 2, but not model 1, with the width of the
core population being the primary difference in VDF structure
between the models. While the ALPS results for the I-I data
exhibit an instability at –174 km s−1, this is very close to the
bounds of the input VDF and is likely an artifact of the ALPS
scan moving into the resolved VDF range, so we consider this

Figure 1. Bi-Maxwellian core-and-beam models (left and center columns) and I-I data (right column) for Intervals 1 (top row) and 2 (bottom). Vertical lines
correspond to the resonant velocity at which an instability terminates for the I-I data (red lines), first bi-Maxwellian model (blue lines), and second bi-Maxwellian
model (green lines). Dashed and solid lines indicate resonant velocities associated with the forward and backward Alfvén modes, respectively. The velocity range is
trimmed in this figure to highlight the structure of the VDF, with the actual velocity ranges used in the ALPS calculation spanning v∥ ä [−207, 205] km s−1 and
v⊥ ä [0, 378] km s−1 for Interval 1 and v∥ ä [−204, 202] km s−1 and v⊥ ä [0, 356] km s−1 for Interval 2. While the color scale is linear, gray contours show the shape
of fp̄ across 10 logarithmically spaced levels between 0.01 and 0.9.
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to be an overall stable mode. In the backward Alfvén mode, all
three resonant velocities shown in Figure 1 are close to the core
population, with the I-I data instability terminating at a larger
vres than either model, where the I-I data VDF has a much more
varied structure than either model.

3.2. Diffusion Operator

To better understand what drives the differences in the linear
plasma response between the I-I data and bi-Maxwellian
models, we examine how the differences in the structure of the
input distributions affect the sign and magnitude of γ. We use
Equation (1), an analytical expression for the quasilinear
growth rate γj of a species j at a particular wavenumber,
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A full derivation of Equation (1) from the Vlasov–Maxwell
equations is provided by Kennel & Wong (1967). Equation (1)
is valid when γj= ωr. The explicit dependence of γj on the
distribution function and the resonant velocity links the VDF
structure to the resultant stability or instability of a given
plasma mode. The only component of Equation (1) that is not
positive definite is Gfj

ˆ , so this term determines whether a
species contributes at the given wavenumber range through a
positive or negative γj, directly affecting the stability of a given
mode based on the structure of fj (specifically on the v⊥ and v∥
gradients of fj seen in Equations (3) and (4)). The electrons
have a minor contribution and the intervals chosen have low α-
particle density, so we consider only the proton growth rate, γp
in our calculation. We neglect positive definite terms that do
not impact the sign of the energy transfer, including the
prefactors before the sum over n and the wave energy density
W. Evaluation of Equation (1) using the ALPS Alfvén solutions
for the three VDFs allows us to better understand what aspects

Figure 2. ALPS dispersion solutions for real and imaginary frequencies ωr and γ. The forward (left column) and backward (right) Alfvén solutions are presented for
Interval 1 (top panels) and 2 (bottom). The ωr solutions for the first (blue lines) and second (green lines) bi-Maxwellian models are qualitatively similar to the I-I data
(red lines) solution, but the γ behavior differs significantly. For instance, the bi-Maxwellian models are unstable for the backward Alfvén solution for Interval 1 while
the I-I data yields a stable solution. The forward Alfvén solution in Interval 2 is unstable in model 2 while model 1 and I-I data are stable. The ALPS scan is performed
for k∥dp between 0.01 and 10, and we choose the limited range presented here to constrain the scan to the region where the resonant velocity is within the limits of the
input distribution and γ/ωr < 1/e.
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of the VDF structure lead to the strong variances in the
growth rate.

The electric field interaction is captured in the fn,k term:
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The argument of the Bessel function J is ξj= k⊥v⊥/Ωj.
Assuming parallel-propagating modes with k⊥= 0 limits our
evaluation to n= 0, ±1 since Jn≠0(0)= 0. This approximation
holds as long as k⊥= k∥, as is the case for our calculations. We
further focus on the Alfvénic solutions, which limits the
calculation to n=±1 for ωr/k∥£ 0 based on the polarization
of the modes. We do not perform a full quasilinear calculation,
but only use the quasilinear diffusion operator to determine the
regions of phase space responsible for the growth and damping
of waves.

With these caveats, we evaluate Gf k d v v,p A^ˆ ( ) for Interval
2 using the real frequency calculated from the ALPS solutions
for the two models and I-I data; these are plotted as color in

Figure 3. We define

dv v J k v Gf
1

2
6j j

2
0

2

G òº W^ ^ ^ ^( ) ˆ ( )

and plot this integrated value as a solid teal line in Figure 3,
with the surrounding error range in cyan. Over the region in
k∥dp where G is positive, an instability is present. The error
range indicates the bounds for ±10% variation in the retrieved
ALPS ωr for the Alfvén modes to account for any numerical
discrepancies in the frequency resolution. The gray-shaded
regions are areas where γp/ωr> 1/e.
We find in both the bi-Maxwellian models shown in the top

two rows of Figure 3 thatGfˆ has a smooth structure with defined
lobes of positive and negative values. For the I-I data in the
bottom row, patches of positive and negative regions intermingle
and only upon calculation of G can the final stable or unstable
behavior be discerned. The main difference between stable and
unstable behavior of the I-I data for the Interval 2 VDF is the
presence of a strong negative contribution at small v⊥ (where
v⊥/vA< 1) in the forward Alfvén mode. This originates from
G⊥f, shown in the top-right panel of Figure 4. Tracing this back
to the distribution itself in Figure 1, we see that over the region

Figure 3. Diffusion operator Gfˆ (Equation (2)) as a function of k∥ and v⊥ indicates regions where energy is transferred from the distribution to the fields (red) or
vice versa (blue). Color bars in the bottom row apply to the entire column. Gfˆ is dimensionless but proportional to n n v vj 0 A

4( ) ( ) where n0 ≡ ∫d3fj. Ĝ calculations are
shown for Interval 2 forward Alfvén mode (left) and backward Alfvén mode (right) for the first bi-Maxwellian model (top), second bi-Maxwellian model (middle), and
I-I data (bottom). G is plotted against the right-hand y-axis and given by the cyan line with error bounds as described in the text, with the associated growth (solid
green line) or damping (dashed line) rates plotted against the left-hand y-axis. G is dimensionless but proportional to n n v vj 0 A

7( ) ( ) . Where G is positive, we find a
corresponding instability (positive γ). For the forward Alfvén mode, gray contours are 8 logarithmically spaced levels between |5e − 5| and |.01| for both positive
(solid) and negative (dashed) values. For the backward Alfvén mode, contours are 8 logarithmically spaced levels between –0.25 and –1e-2 and 8 logarithmically
spaced levels between 1e-5 and 0.05.
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where Model 2 is unstable (at v⊥< –34 [km s−1]), the I-I data
VDF has more variation, particularly at low v⊥. This structure is
not captured in either of the models, which show almost
symmetric structures in Ĝ̂ and Ĝ in the first and second
columns of Figure 4. Similarly, in the backward Alfvén mode for
Interval 2, the models display a smooth structure in both
Figures 3 and 4 whereas the I-I data structure is far more
complex. Both the models and I-I data exhibit unstable behavior
for this mode, indicating that the complex VDF structure and
gradients do not necessarily suppress an AIC instability and that
it may be more coincidence than an accurate representation of
the I-I data by the models that results in similar unstable
behavior for all three distributions.

These features in the diffusion operator support the differences
seen in the VDFs in Figure 1, indicating that both the simple
contour structure of fp and the underlying velocity gradients in
the I-I data VDF are not being accurately captured by the two bi-
Maxwellian models and that different regions and structures in
v⊥ and v∥ space contribute to the resultant stable or unstable
behavior of the plasma normal modes. Even in the case of the
two bi-Maxwellian models, very slight differences in the density,
temperature anisotropy, and drift speed lead to different
behavior, as seen in Figure 4. Slight differences in the relative
values of the perpendicular and parallel contributions lead to an
overall net negative γp value, and thus a stable forward Alfvén
mode for Model 1, but an unstable mode for Model 2.

4. Discussion and Conclusions

We utilize ALPS to solve the hot-plasma dispersion relation for
inverted-interpolated solar wind proton VDFs based on two
intervals observed by the Wind spacecraft and compared these to
the dispersion relation for core-and-beam bi-Maxwellian models of

these VDFs. These intervals are chosen with β∥,p and T⊥,p> T∥,p
such that linear theory predicts that the AIC instability will develop
under a bi-Maxwellian assumption. We study each interval using
three different VDFs. The first VDF, model 1, is the typical core-
and-beam bi-Maxwellian fit to the measured instrument response.
We next implement a novel method to extract a more realistic
VDF from the Wind Faraday cup measurements; we use a Monte
Carlo strategy to apply Gaussian perturbations to a discrete version
of model 1. This procedure optimizes the chi-square statistic to
produce a VDF that more closely matches the known Faraday cup
response. This VDF, which we call the I-I data, better represents
the underlying distribution. Our model 2 VDF is constructed from
a core-and-beam bi-Maxwellian fit to the I-I data VDF rather than
to the instrument response. The more involved procedure used to
construct the I-I data yields a distribution with many non-
Maxwellian features that reproduces the measured instrument
response more accurately than either of the model fits.
For the two selected intervals, a comparison between the model

and I-I data VDFs shows that the bi-Maxwellian models result in
fundamentally different plasma behaviors than those calculated for
the I-I data they are based on, both by failing to find an instability
when one is calculated from the I-I data or by finding significantly
different k∥ ranges over which the instability operates. We show
that unstable behavior in Alfvén ion-cyclotron waves is sensitively
dependent on small VDF structures, particularly in the region
where v⊥/vA< 2. As bi-Maxwellian models are commonly used
to study solar wind proton VDFs, these findings indicate that such
simplifications may not accurately represent instabilities in the
solar wind, and thus incompletely capture wave-particle energy
transfer associated with these VDFs.
We use the quasilinear diffusion operator to demonstrate

how the structural differences between the I-I data and model
VDFs produce the dissimilar growth rates seen in the ALPS

Figure 4. Perpendicular (top row) and parallel (right) diffusion operators, Equations (3) and (4), for the bi-Maxwellian models 1 and 2 (left and middle columns) and
I-I data (right) for the Interval 2 forward Alfvén solution. The color scheme follows that presented in Figure 3. The models have qualitatively similar structures, but
exhibit different G fˆ̂ and G fˆ . This can be compared to the complexity seen in the I-I data, where the same broad structures are not observed. For model 1 and the I-I
data, gray contours are 8 logarithmically spaced levels between |5e − 4| and |0.03| for both positive (solid) and negative (dashed) values. For model 2, gray contours
are 8 logarithmically spaced levels between |5e − 3| and |0.3| for positive and negative values.
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solutions. Even for modes where both the model and I-I data
VDFs yield the same behavior in γ (such as the Interval 2
backward Alfvén mode where an instability is found in all three
cases), calculation of the diffusion operator, Gfj

ˆ , for the I-I data
reveals a far more complex structure. These underlying
structural differences between the I-I data and model VDFs
are apparent even when considering the separate Ĝ̂ and Ĝ
terms, revealing the failure of these models to truly capture the
fp dependence on either v⊥ or v∥ that is found in the I-I data.

This work demonstrates the importance of including
distribution structure when studying the development of
microinstabilities. The AIC instability threshold, calculated
from bi-Maxwellian models of solar wind protons, is frequently
exceeded in solar wind observations. Such observations are
unexpected as unstable AICs should reduce the temperature
anisotropy toward equilibrium. When we consider a more
complex VDF structure (the I-I data in this paper), entirely
different stable or unstable AIC behavior is calculated
compared to bi-Maxwellian models, potentially explaining this
discrepancy.
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