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Key tropical crops at risk from pollinator loss due to
climate change and land use
Joseph Millard1,2*, Charlotte L. Outhwaite2, Silvia Ceaușu2, Luísa G. Carvalheiro3,4,
Felipe Deodato da Silva e Silva5, Lynn V. Dicks6, Jeff Ollerton7, Tim Newbold2

Insect pollinator biodiversity is changing rapidly, with potential consequences for the provision of crop polli-
nation. However, the role of land use–climate interactions in pollinator biodiversity changes, as well as conse-
quent economic effects via changes in crop pollination, remains poorly understood. We present a global
assessment of the interactive effects of climate change and land use on pollinator abundance and richness
and predictions of the risk to crop pollination from the inferred changes. Using a dataset containing 2673
sites and 3080 insect pollinator species, we show that the interactive combination of agriculture and climate
change is associated with large reductions in insect pollinators. As a result, it is expected that the tropics will
experience the greatest risk to crop production from pollinator losses. Localized risk is highest and predicted to
increase most rapidly, in regions of sub-Saharan Africa, northern South America, and Southeast Asia. Via polli-
nator loss alone, climate change and agricultural land use could be a risk to human well-being.
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INTRODUCTION
Recent studies have highlighted rapid ongoing changes in terrestrial
insect biodiversity (1–3), including among pollinating species (4–8).
Some of these studies have reported net declines (1, 3), while others
have shown mixtures of gains and losses (2). Pollinator biodiversity
changes have potential consequences for the provision of pollina-
tion to wild plants and crops. Evidence for insect biodiversity
trends has been biased toward Western Europe and North
America (9, 10), with little coverage of tropical and subtropical
regions (11, 12). Although a few studies have shown steep declines
of insects in the tropics (3), evidence about insect biodiversity
trends there often remains anecdotal (13), with global syntheses
(1, 2) having strong geographic biases toward nontropical regions.

Among the drivers of insect and pollinator biodiversity changes,
human-driven land use changes and climate change are prominent
(5, 10, 14–17). Climate change, in particular, is emerging as an in-
creasingly important driver (8, 14, 18–21), although among taxa re-
sponses are likely mixed to some extent (22). Synergistic interactive
effects of land use and climate change are often associated with
further reductions in insect biodiversity compared to if the pres-
sures acted in isolation (23–27). A key mechanism underpinning
interactive land use and climate effects is the altered microclimatic
conditions in areas where vegetation has been modified for human
land use (23). Tropical insects are expected to bemore susceptible to
climate change, including interactive effects with land use, given
their narrower physiological tolerance compared to nontropical

species (28). Recent studies show greater effects in tropical than
nontropical insect biodiversity (27).

Changes in the biodiversity and composition of pollinator com-
munities are expected to have large effects on the provision of pol-
lination services. Pollen limitation from animal pollinator losses has
already been shown to reduce the reproductive success of wild
plants (4, 29) and the productivity of certain crops (30–34), al-
though there is no clear evidence that pollen limitation is yet
causing wholesale reductions in yields of crops that rely on
animal pollination (35). Evidence that insect biodiversity responds
to human pressures more strongly in the tropics than elsewhere (17,
27) is noteworthy, given that the majority of animal pollination–de-
pendent crops are grown in the tropics (36). However, it is not only
tropical countries that will experience the effects of pollinator losses
and subsequent pollen limitation, with high-income countries ben-
efiting from imports of animal pollination–dependent foods from
tropical areas (37). Abundance, species diversity, and functional di-
versity of pollinators have all been implicated as determinants of the
delivery of pollination service (33, 38–42). Previous attempts to
model the provision of crop pollination service are often based on
predictions of pollinator abundance, which bears a direct relation to
pollination of plants, and has been shown to give a reasonable ap-
proximation of pollen deposition in at least some study systems
(43). A key uncertainty however relates to the shape of the function-
al relationship between pollinator abundance and crop produc-
tion (43).

Here, we present a global assessment of the interactive effects of
climate change and land use on pollinator abundance and predic-
tions of how the inferred abundance changes might translate into
risk to crop pollination worldwide based on a range of possible
abundance-pollination relationships. Because species richness has
also shown to be important for provision of crop pollination, we
also tested the robustness of our models and projections to using
Chao-estimated species richness in place of total abundance (44).
Our underlying analyses are based on a space-for-time framework
using the PREDICTS (Projecting Responses of Ecological Diversity
In Changing Terrestrial Systems) database of biodiversity recorded
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in different land uses (45), together with a list of species identified in
the literature as likely pollinators (17). We use mixed-effects models
to fit total pollinator community abundance as a function of land
use (primary vegetation versus cropland) and a measure of histor-
ical temperature change between a baseline period (1901–1930) and
the year before the end month of biodiversity sampling (see fig. S21
for the duration of each sampling period), standardized by monthly
temperature variability in the baseline period (27, 46). We standard-
ized temperature changes in this way to capture where temperatures
have exceeded the baseline seasonal and interannual variation, a
consideration that has previously been identified as important for
insects in general (27). Given that the PREDICTS database contains
a set of biodiversity measurements collected from across studies, we
include a set of random intercepts to account for study-level varia-
tion, as well as an adjustment for sampling effort. Our set of likely
insect pollinators was compiled through an automatic literature
scrape, combined with a manual search and verification by a
group of pollination ecology experts (17). We then apply these
models to predict which locations and crops are likely to be
exposed to the greatest losses of pollinator abundance and thus to
face the greatest risk of crop pollination shortfalls. We moderate es-
timates of risk according to estimates of where crops are grown (47),
how dependent these crops are on animal pollination (36), projec-
tions of historical and future climate change, and a set of assump-
tions for the relationship between local pollinator abundance and
crop pollination (from linear to highly concave to convex). We
focus on future climate projections under two Representative Con-
centration Pathway (RCP) scenarios: RCP 2.6, which has a multi-
model median–predicted 1.5°C increase in global average
temperatures by 2100 compared to the preindustrial climate, and
RCP 6.0, which has a multimodel median–predicted 3°C increase
in global average temperatures (48). Last, we combine projected pol-
lination risk with estimates of the trade in pollination-dependent
crop production (37) to predict regions of the world that may be
vulnerable to the indirect consequences of crop pollination risk
via trade connections.

RESULTS AND DISCUSSION
The abundance of insect pollinators responded strongly to the in-
teraction of recent climate change and land use (Fig. 1). Within
cropland experiencing novel temperatures (standardized tempera-
ture anomaly = 1), pollinator abundance is 61.1% lower than in
natural habitat that has not experienced temperature increases.
The causal mechanism underpinning this interaction is unclear,
but the moderation of microclimatic conditions (49) and the
absence of a buffering effect of forest within cropland (50), are
likely partly responsible. Our results are qualitatively consistent
with recent results for a sample of all insects (27), but importantly
we show that responses to the interactive effects of climate change
and land use are stronger for pollinating than nonpollinating insects
(Fig. 1). This is important, as it would indicate that risk inferred
from all insect groups will be lower than from insect pollinating
taxa alone. We also show that the strength of the interactive effect
varies among taxonomic groups, with the strongest effects seen in
dipteran and hymenopteran pollinators (fig. S1). Whether the sen-
sitivity of pollinating insects to the interaction of climate change
and land use relates directly to their reliance on floral resources
or to other correlated traits typical of pollinators is unclear, and a

combination of both factors is likely to operate. For example, selec-
tion of animal pollinated plants is thought to be highly sensitive to
climatic conditions such as precipitation and temperature (51), sug-
gesting that plant-pollinator interactions are highly sensitive to
thermal changes. Pollinator pilosity (i.e., hairiness), on the other
hand, likely affects an insect’s ability to adapt to changes in
climate (52) and, given its nature as a trait typical of bees and hov-
erflies, tends to be correlated with a reliance on floral resources (53).

The modeled effects of land use–climate interactions on pollina-
tor abundance are robust to using threshold temperatures to restrict
the months considered to those in which insects are likely to be
active (fig. S3), to jack-knifing the predictions for the top 10 sam-
pling methods (fig. S22; see fig. S23 for the full set of sampling
methods), and to including an interaction between mean annual
temperature and predominant land use (table S6; also see fig. S24,
showing the correlation between standardized temperature
anomaly and mean annual temperature, and fig. S25, suggesting
that mean annual temperature may have an effect on primary veg-
etation but not in cropland). Although the lepidopterans are the
only group represented for a standardized temperature anomaly
greater than 2 (fig. S1), our results are robust to dropping individual
taxonomic families from the model dataset (fig. S2).

We predict that total pollination production risk will increase
under all climate scenarios (see Fig. 2 for a schematic of our crop
pollination risk inputs and models, and Fig. 3 for the change in
risk). For all scenarios, our projections use change in pollinating
insect abundance as a proxy for the relative risk to the production
of crops dependent on insects, incorporating information on where
crops are grown worldwide (47), as well as the fractional depen-
dence of crops on animal pollination (36). Our projections are
based on the assumption that a projected loss in pollinator abun-
dance will be associated with risk to crop production from loss of
pollination services, according to a function that translates abun-
dance loss into production loss. This linked cascade model allows
us to account for uncertainty of the biodiversity-production rela-
tionship, which, although typically described as positive concave,
may vary for crop-pollinator interactions (54). We made a decision
to focus on abundance in the main text given the mechanistic link
between pollinator abundance, pollen load, pollen deposition, and
crop pollination. To be complete, however, in the Supplementary
Materials we also present a measure of risk based on species rich-
ness alone (figs. S15 and S16). Our estimates of both relative risk and
absolute production risk should be interpreted as indices of risk,
rather than predictions of the actual amount of production likely
to be lost, given the very high uncertainty in how pollinator abun-
dance changes will translate into actual production losses (55) and
that we do not account for the spatial context of individual crop-
land areas.

Increases in risk are seen for all assumed relationships between
abundance loss and production risk, although the magnitude of
changes in relative risk and especially absolute production risk
varied widely (Fig. 3). The predicted rate of increase in average pro-
duction risk was substantially higher under RCP 6.0 than RCP 2.6,
suggesting that efforts tomitigate climate changewill reduce the risk
to future crop production, alongside the many other benefits (56).
Relative production risk varied strongly between years under an as-
sumption of a concave relationship between pollinator abundance
and production (Fig. 3). This volatility may be explained by the way
in which the nonlinearity of abundance/production relationships
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interacts with interannual climate variability caused by the El Nino
Southern Oscillation (57). While increasingly concave assumed re-
lationships between insect abundance loss and crop production risk
led to steeper increases in relative production risk with future
climate change, absolute production risk was markedly lower,
owing to a lower baseline in the present day (Fig. 3). Our estimates
of risk are based on the distribution of crops as grown in 2000 (see
table S4 for the full list of crops), meaning we do not account for
changes in the distribution of crops over time, which are likely to
occur as a result of the direct impacts of climate change, indirect
effects through the loss of pollinator biodiversity, and socioeconom-
ic factors such as price changes in the global markets for particu-
lar crops.

Our projections of crop production risk are robust to variation in
climate predictions under different individual climate models (fig.
S4) and do not change markedly when abundance loss is capped at
the maximum model-fitted value (fig. S5), when lower-quality esti-
mates of crop distribution are dropped (fig. S6), when Chao-esti-
mated species richness is used in place of total abundance in the
models and projections (figs. S15 and S16), or when projections
are based on only bees as a key pollinating taxon (fig. S17).

Projected risk to crop production in 2050 from insect pollinator
abundance losses, as a proportion of all production in a given loca-
tion, is highest in the tropical regions of sub-Saharan Africa, South
America, and Southeast Asia (Fig. 4A; see fig. S8 for individual
maps of pollination-dependent crop production and the

standardized temperature anomaly). In terms of total production
potentially at risk, China, India, Indonesia, Brazil, and the Philip-
pines emerge as being most at risk (Fig. 4B). Among crops, cocoa
is estimated to be at highest risk, by a large margin, especially in
Africa, followed by mango (particularly in India) and watermelon
(notably in China; Fig. 4B). The risk to cocoa production is partic-
ularly notable in light of the social and economic context, as most
cocoa is produced on small farms (2 to 4 ha) that provide income to
between 40 million and 50 million people globally (58). Coffee is
also expected to have a combination of relatively high production
risk (Fig. 4B) and high value, suggesting that regions in which it
is grown may experience economic difficulties, unless the pollina-
tion service can be replaced cost effectively. Similarly to cocoa,
coffee production provides income to millions of small-scale
farmers and their families in the tropics (59). Therefore, the in-
creased production risk due to loss of pollinators could lead to in-
creased income insecurity for some of the most vulnerable people
globally. Our projections of local crop production risk are sensitive
to the assumed abundance-production relationship (fig. S9), with
the exception of Southeast Asia, which is consistently projected to
have high risk, and the temperate realm, which is consistently pro-
jected to have low risk (fig. S10).

It is impossible to predict exactly how our estimates of produc-
tion risk measure will translate into actual crop production losses.
There are multiple uncertainties associated with predicting pollina-
tor biodiversity changes and how this affects crop production, some

Fig. 1. Response of pollinating and nonpollinating insect total abundance to the interactive effect of standardized temperature anomaly and land use. (A)
Pollinating insects: F = 22.4068, P < 0.001; (B) Nonpollinating insects: F = 10.7520, P < 0.01. Note that abundance is plotted on a loge scale (although the labels are back-
transformed). Results are based on linear mixed-effects models. Site numbers are as follows (also see table S1 and fig. S14 for site spatial distribution): insects known to
pollinate (primary vegetation = 1166, cropland = 1507); insects not known to pollinate (primary vegetation = 1747, cropland = 922). See table S2 for the number of species
represented in both the pollinating and nonpollinating groups, table S3 for AIC and R2 values for each model, figs. S18 and S19 for the number of insect pollinating
species, fig. S20 for the same figure but with the values of total abundance, and fig. S1 for models by taxonomic order. Shading represents 95% confidence intervals
around the mean fitted effect. Green, primary vegetation; yellow, cropland.
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of which we explore here (e.g., the relationship between pollinator
abundance and crop production), but many of which we do not or
cannot [e.g., the changing distribution of crops (60), the economic
viability of hand pollination (61), the buffering effects of managed
pollinators (62), the effects of climate change alone (63), the uncer-
tainty over whether pollinator abundance is more important than
other measures of pollinator diversity (34, 64), the buffering or
magnifying effects of landscape composition or agroforestry (65,
66), and other technological solutions such as the breeding or engi-
neering of pollinator-independent cultivars] (67). As one example,
crops in which hand pollination is already widely practiced, partic-
ularly apple, tomato, kiwi, oil palm, and vanilla (61), will likely be
more resilient than our models would predict. Regardless, at the
global scale, assuming that our modeled relationships between stan-
dardized temperature change and pollinator abundance are genuine
and hold into the future and that the distribution of pollination-de-
pendent production does not significantly change, the relative risk
we project is likely to be reflected in challenges for crop production.
For cocoa, recent research has focused on the direct effects of
climate change on crop production (68, 69), often overlooking
those that might be pollinator mediated, probably because the
direct effects of climate change are easier to capture and because
the set of cocoa pollinating taxa other than midges is unknown
(70). Solutions to direct and pollinator-mediated effects of climate
change may differ. For example, shade trees might protect crops
from the detrimental effects of extreme temperatures (68) but
might not for the ceratopogonid fly pollinators on which cocoa pol-
lination depends (71). The focus in previous research on direct
climate impacts rather than pollinator-mediated effects is a key

gap [but see (72)] given that some cocoa varieties are limited
more by pollination availability then resource availability (73).

Countries besides those with high production risk will feel the
impact of losses of pollinators and the crops that depend on them
through disruption to imports, especially as the most vulnerable
crops tend to be valuable export products such as coffee and
cocoa. In absolute terms, large countries such as China and the
United States have the highest total import risks (Fig. 5B). The
Netherlands emerges as having unexpectedly high risk given its
size, the third largest overall import risk (Fig. 5B), consistent with
its status as the greatest importer and second greatest processor of
cocoa beans worldwide (74, 75). Import risk per capita (Fig. 5A)
highlights the challenges that could be faced by nations with
limited agricultural production capacity, such as many island coun-
tries (e.g., Cayman Islands, Aruba, Singapore, the second, third and
fourth highest import risk per capita, respectively) or countries with
unfavorable environmental conditions for agriculture (e.g., Mongo-
lia, with the 19th highest import risk per capita). Total import risk
per capita tends to be high also in northern and high-income coun-
tries, particularly continental western Europe, which has large pro-
cessing industries for crops such as coffee and cocoa. High income
and unfavorable environment for agriculture could also account for
high import risk per capita for some countries in the Middle East
(United Arab Emirates, Kuwait, and Saudi Arabia, which have the
5th, 13th, and 27th highest estimated pollination import risk per
capita). Our predictions of import risk are based on trade patterns
in the present day (37), meaning we do not account for changes in
trade flows that will likely occur in the future. Our approach also
assumes that all crop production produced in a given country is ex-
ported. In other words, we used our trade pattern data to determine
how production at risk within a given country should be split
among its importers but did not have a value for the proportion
of production staying in that country.

Interacting effects of climate change and anthropogenic land use
are rapidly restructuring biodiversity (27, 76). Here, we show that
the combination of agricultural land use and recent climate
change is associated with particularly large reductions in the abun-
dance of insect pollinators. As a result, we predict that the tropics
will likely experience the greatest risk of future crop pollination
shortfalls, putting at risk the production of crops that depend on
insect pollination. Future crop pollination risk is estimated to be
highest in areas used to produce cocoa, mango, watermelon, and
coffee. Given the many factors that determine crop production
and crop price (77), the likely effects of insect pollinator losses on
crop production are unclear, and even if they do occur, conclusive
attribution is likely to be challenging. Such complications likely, in
part, explain why identifying a strong effect of pollinator losses on
global crop yield and price has thus far been so difficult (35, 78, 79).
Regardless, there is sufficient evidence to suggest that declining
insect pollinator abundance will influence crop production risk,
particularly for those in the global south (80). Such risk could man-
ifest in the form of direct and immediate losses to crop production
through pollinator shortfall, fluctuations over time in the stability of
production (81), or decreased resilience to changes that will happen
in conjunction (e.g., the effects of extreme temperature and drought
on crop growth). Given the likely buffering effects of landscape
composition (27, 65), greater surrounding natural habitat may
help mitigate these risks. The health, well-being, and livelihoods
of a high proportion of the global population, from small farmers

Fig. 2. A schematic of models and inputs for our local production risk
measure. (Top) The PREDICTS database (“Biodiversity assemblages,” subset for a
set of “Likely animal pollinators”) is used to build a space-for-time model of polli-
nator biodiversity change, fitting total abundance as a function of an interaction
between land use type and a standardized temperature anomaly of climate
change (“Climate data” from the Climatic Research Unit). (Bottom) Change in
insect pollinator abundance relative to a baseline (where standardized tempera-
ture anomaly is 0) is converted into a crop production loss via a set of linear func-
tions and then converted into a pollination-dependent risk by multiplying the
expected change by the pollination-dependent production in each cell (“Crop pro-
duction” and “Pollination dependence”). Economic loss is calculated from produc-
tion at risk multiplied by crop price. Numbers in brackets for each input represent
the source from which the data originated (as listed in the bibliography). Image
credits: Bottom right photo, Ionutzmovie (CC BY 3.0); top right photo, gailhamp-
shire (CC BY 2.0).
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to consumers, rely, to some extent, on the availability and afford-
ability of crops dependent on animal pollination, which is likely
to be put at greater risk as a result of future pollinator losses as
land use and climate changes intensify.

MATERIALS AND METHODS
Biodiversity data for pollinators and nonpollinators
We used the PREDICTS database (45, 82) and a dataset that iden-
tifies species from within PREDICTS likely to pollinate plants [see
(17) for details] to model the response of local pollinator abundance
to the interactive effect of climate change and agricultural land use.
PREDICTS is a global database of local biodiversity records collect-
ed from the primary literature, with a hierarchical structure such
that each record is nested into a series of levels [“Source,” “Study,”
“Block,” and “Site” (45)].“Sources” represent the individual publica-
tions (mostly scientific papers) from which the data were sourced.
Sources are divided into separate “Studies” if different sampling
methods were used or if the data spanned a very large geographical
area (e.g., multiple countries). The locations sampled in each Study
are divided into “Blocks” if they form distinct spatial clusters. Last,
“Sites” are the locations at which biodiversity was sampled, with the
records consisting of a list of named taxa, along with somemeasure-
ment (most often abundance, sometimes presence or absence, and
occasionally an aggregate measure of biodiversity such as species

richness). Each record in the PREDICTS database is associated
with a land use type (primary vegetation, mature secondary vegeta-
tion, intermediate secondary vegetation, young secondary vegeta-
tion, plantation, pasture, cropland, and urban), meaning change
in biodiversity can be modeled as a function of anthropogenic
land use disturbance [e.g., (17, 83)]. Land use types were assigned
according to site-level descriptions in the paper fromwhich the bio-
diversity data was drawn, meaning it will be of a fine scale. Here, we
describe only those land use types that are relevant to this study.
“Primary vegetation” describes natural habitat with no record of
having been destroyed in the past. “Cropland” is an agricultural
land use type consisting of herbaceous crops. Each land use type
is also categorized according to a land use intensity in PREDICTS,
but we do not use that here. Full details of the scheme for classifying
land use can be found in (82). We focus in this study on the PRE-
DICTS data for insect species. PREDICTS analyses use a space-for-
time framework. In other words, biodiversity is sampled across
space at varying levels of standardized temperature anomaly, for
both cropland and primary vegetation sites, and then we assume
that model-inferred spatial differences will be indicative of change
over time.

We identified pollinating species in PREDICTS through a semi-
automatic approach combining text mining, manual inspection,
and expert consultation [see (17, 84) for a detailed description].
We first used the stemmed term “pollinat*” on Scopus to search

Fig. 3. Projected change in total production risk under two RCP scenarios (2.6 and 6.0; see fig. S7 for 8.5) and a set of hypothetical relationships between
pollinator abundance and crop production (linear and varying degrees of concavity, defined in the righthand panel). Results are shown both for an index of
change in relative risk (A and B) and for the total production potentially at risk (in tonnes) (C andD). For each year into the future, the standardized temperature anomaly
was projected globally for all cells with production of crops dependent on animal pollination using a 3-year rolling average of temperature anomaly estimates in each cell,
from an ensemble of different climate models. We used data on crop production for the year 2000 (the latest year when such data are available for all crops). For each
annual projection of standardized temperature anomaly, insect pollinator abundance on cropland was predicted according to the model shown in Fig. 1A and then
expressed as proportional abundance loss compared to cropland that has experienced no warming (i.e., standardized temperature anomaly of 0). In each cell, the total
production of each crop (47) was multiplied by dependence on animal pollination (36) and then adjusted for the predicted percentage reduction in insect pollinator
abundance in that cell. These estimates of crop production at risk were summed across crops and then across all terrestrial cells globally. Lines show different assumed
relationships between insect pollinator abundance and crop production: dashed, concave relationships (of differing degrees, indicated by different colors: yellow, most
concave; purple/blue, least concave) and solid, linear relationship. See fig. S7 for a set of convex relationships.
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Fig. 4. Projected change globally in crop production estimated to be at risk in 2050 under the RCP 6.0 climate scenario, assuming a linear relationship between
insect pollinator abundance loss and production loss for crops dependent on animal pollination. All projections are based onmean projections of the standardized
temperature anomaly based on temperature estimates from an ensemble of individual climate models. (A) The sum of crop production at risk across all crops with some
dependence on animal pollination, as a proportion of the production of all crops grown in a location (“proportional production risk”). (B) The total crop production at risk
for the seven crops with the highest total pollination-dependent production value globally (see fig. S11 for the top 20 crops by pollination-dependent production alone,
fig. S12 for country level proportional production risk, and fig. S13 for crop level proportional production risk), in million US$ per annum, broken down into four main
geographic regions. Each colored bar represents a pollination-dependent crop group: gray, cocoa; black, tropical fruits (not recorded elsewhere); red, fruits (not recorded
elsewhere); orange, mango; dark blue, coffee; yellow, watermelon; green, coconut; and other crops, light blue. Per-tonne values of each crop are for the years 2015–2019
(US$ in 2015–2019 values) taken from (91) and total pollination dependent production according to (47) and (36). Each country is indicated according to its ISO3 code.
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Fig. 5. Projected total import risk for 2050 under the RCP 6.0 scenario, assuming a linear relationship between insect pollinator abundance loss and production
loss. Projections are based on projected changes in themean standardized temperature anomaly from an ensemble of individual climatemodels. Import risk is ameasure
of how the effects of localized production risk might be distributed among other countries, calculated using trade flow data from (37). For each yearly time step into the
future, local production risk in each spatial cell is attributed to importers according to the quantity of pollination trade imported from each country. For example, if an
importer is dependent on three countries for imports, at a proportion of 30, 50, and 20, then any change in import risk should scale as a function of the local production
risk aggregated at those same proportions. (A) The geographic distribution of total import risk adjusted for country population size and then converted to a percentile.
Colors represent each percentile grouping: yellow, 0 to 25th percentile; orange, 25 to 50th; purple, 50 to 75th; dark blue, 75 to 100th. Inset plot represents the absolute
import risk values on a log10 scale (although note that the labels are back-transformed), with the same percentile breakpoints. (B) The total import crop production at risk
in thousand tonnes per annum, for the 10 countries with the highest import production at risk. Each country is indicated according to its ISO3 code.“Other” is the sum of
import risk for all other countries in that geographic region.
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all abstracts for English language primary research papers. From
this set of abstracts, we then used a set of name-entity recognition
algorithms to extract all animal species Latin binomial names (84).
For each animal genus returned by the name-entity recognition al-
gorithms, we then read the corresponding abstracts searching for
evidence confirming that genus as pollinating. From this initial ab-
stract scrape, we identified 1013 possible pollinating genera across
3974 abstracts.We considered a pollinator to be an animal for which
there is experimental evidence confirming pollination, evidence of
pollen carrying, evidence of nectar/pollen feeding, or evidence of
nondestructive/nonpredatory flower visitation. Given that the set
of pollinators identified from Scopus abstracts could only ever be
a sample, we then additionally searched for evidence of pollination
across higher-level taxonomic groups (17). Specifically, from the
confirmed pollinators in our original list of genera, we identified
all unique families with at least one pollinator. For each family,
we assessed the breadth of evidence for pollination through consult-
ing the abstracts and taxonomic group reference books. For any
family with evidence of pollination across multiple branches of
that family and no evidence of any species definitely not pollinating,
we assumed that the whole family is pollinating. After compiling
our list of pollinators from automated text analysis and manual
searching, we then consulted a group of seven expert pollination
ecologists (O. Adedoja, S. Gavini, E. Kioko, M. Kuhlmann, Z.-X.
Ren, and M. Saunders) and removed or added any groups at their
suggestion (17).

Our data preparation process resulted in two datasets with dif-
ferent subsets of the original set of species in PREDICTS: pollinat-
ing insects and nonpollinating insects (see figs. S18 and S19 for the
breakdown of the insect pollinators and fig. S23 for the number of
records). Our set of nonpollinating species is not strictly a set of
confirmed nonpollinators, rather a set of species not confirmed as
being pollinators. For each of the two data subsets, we calculated
site-level total abundance (the sum of sampled abundances for all
species recorded at a site) and estimated species richness [calculated
using the Chao estimator (44)]. Where sampling effort varied
among the sites within a single study (8.9% of records in our polli-
nating insects dataset and 9.6% in the nonpollinating insects
dataset), we divided the abundance values for each measurement
by the relative sampling effort at each site, rescaled to a maximum
value of 1 within each study, as in (83).

Climate change estimates
We used the Climatic Research Unit Time Series (CRU TS) version
4.03 (46) mean daily temperature estimates per month, at a spatial
resolution of 0.5° (approximately 55 km at the equator), to calculate
a global standardized temperature anomaly for the year of each
PREDICTS sample using an approach developed previously (27).
Although extreme temperatures have been shown to predict con-
temporary changes in biodiversity better than mean temperatures
(85), we used the latter here since they provide a measure of the
central tendency of change in temperature per month. Mean tem-
peratures have been used in a similar manner for a number of other
studies on insect thermal tolerance [e.g., (28, 86)], in which they
have been shown to be informative of insect biodiversity change.
To calculate our standardized temperature anomaly, we first calcu-
lated a 30-year baseline temperature for the years 1901–1930 as the
mean temperature across all 360 monthly mean daily temperatures
for each cell. For each PREDICTS site, we then calculated

contemporary temperature as the mean temperature across the 12
months up until the last month of sampling at that site. We then
calculated a temperature anomaly for each site as the difference
between the baseline and contemporary average temperatures. We
then standardized this climate anomaly by dividing the anomaly at
each site by the SD across the 360 monthly mean daily temperatures
in the baseline period. A standardized temperature anomaly of less
than 0 indicates a region that has cooled since the baseline. A value
between 0 and 1 indicates a region that has warmed, but current
average temperature remains within 1 SD of the variability in base-
line temperatures. Avalue greater than 1 indicates a region in which
average warming is 1 SD greater than the variability in the baseline
(i.e., it is now experiencing high novel temperatures). We also cal-
culated a global map of the standardized temperature anomaly for
the period 2004–2006, also using the CRU TS version 4.03 (fig. S8).
The period 2004–2006 coincides with the midpoint of sampling in
the PREDICTS database (45).

Biodiversity responses
To model the interactive effects of land use and recent climate
change on pollinator (and nonpollinator) abundance, we built
linear mixed-effects models predicting total abundance as a func-
tion of land use type (primary vegetation and cropland), standard-
ized temperature anomaly, and their interaction (see the spatial
distribution of sites in fig. S14, the values of abundance in fig.
S20, the length of sampling period in fig. S21, the number of sites
in table S1, and the number of species in table S2). We did not use a
generalized linear model with Poisson errors because most recorded
measurements are noninteger values. Pollinator abundances are, in
some cases, noninteger values after site level sampling effort has
been accounted for or if abundance was recorded as a density or
relative abundance. We focused on primary vegetation and crop-
land given our interest in assessing how pollinator biodiversity
change may affect crop production that depends on animal pollina-
tion. We didn’t separate cropland or primary vegetation sites by
their intensity of use because there are relatively few data for polli-
nator species compared to insects as a whole and because the dis-
tinction between land use types is more important than between
levels of agricultural intensity, for understanding the impact of
land use–climate interactions (27). We loge-transformed all total
abundance values (adding one because of zero values) to normalize
the model residuals. Because of the nested nature of the database
(45), we considered a random intercept of study identity to
account for variation in sampling methods, sampling effort, and
broad geographical differences among studies, and a random inter-
cept of spatial block within study to account for the spatial structur-
ing of sites. Models that included this random-effects structure had
a lower Akaike information criterion (AIC) value than models with
a simpler combination of the same random effects (i.e., study iden-
tity only). Given the hierarchical structure of the PREDICTS data-
base, with a large amount of the variation in recorded biodiversity
being explained by the random effects (especially study identity),
typically the conditional R squared is very high and the marginal
R is squared very low (see table S3) (15). To infer the interactive
effect of the standardized temperature anomaly and land use type,
PREDICTS models require variation in land use type (i.e., cropland
or primary vegetation) within studies.
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Potential future risk to crop pollination
We used our model of insect pollinator abundance, combined with
information on crop dependence on animal pollination and projec-
tions of future climatic changes to predict geographic (change in
space) and temporal (change in time) patterns of potential risk to
crop pollination. We focus on three forms of risk: total production
risk, proportional production risk, and import risk. Production risk
is a measure of the total crop production potentially at risk of pol-
lination shortfalls. Proportional production risk is a measure of the
crop production at risk as a proportion of the total production for a
given cell, crop, or country. Import risk is a measure of risk to
imports of crops dependent on animal pollination via international
trade. We focus in this study on insects, which make a particularly
large contribution to crop pollination (36).

Our projections are based on the assumption that a projected
loss in pollinator abundance will be associated with an increased
risk to crop production from loss of pollination services. There is
strong evidence linking insect abundance with crop pollination
(33, 42). Furthermore, even if pollinator losses don’t affect crop
yields directly, they may reduce the resilience of crop production
in the face of other environmental changes (39). Nevertheless,
there are three core areas of uncertainty. First, we do not know if
there is a mechanistic link between the interactive effects of land
use and climate change on pollinator abundance. We reason that
a significant interactive effect is at least likely, however, given
prior localized studies demonstrating a synergistic effect of
climate change and anthropogenic land use in insects (76, 87).
Second, we do not account for changes in the distribution of
crops over time, which may occur because of direct effects of
climate change, indirect feedbacks caused by pollinator losses, or
other environmental or socioeconomic factors. Therefore, our pro-
jections should be seen as estimates of the risk posed to crops where
they are currently grown, which is still an important consideration
for food security and livelihoods. Third, it remains unclear exactly
how local abundance change will affect crop pollination, how abun-
dance change will interact with richness change, and, in turn, how
crop pollination will relate to yield change. We account for this un-
certainty as much as possible by testing alternative possible relation-
ships between pollinator abundance and production risk (see below
for details). We also include a supplementary analysis in which we
model species richness [as an alternative biodiversity metric with a
potential link to pollination provision (42)] as a function of the in-
teractive effects of climate change and land use and project crop pol-
lination risk using these models (figs. S15 and S16). We also develop
a separate set of models and projections of pollination risk based
only on bee species.

Here, we opted to focus on abundance for a few reasons. First,
the relative contributions of different biodiversity metrics are not
clear, precluding the calculation of an indicator of crop pollination
risk that aggregates multiple biodiversity metrics. Furthermore,
with a single metric, we can vary the slope of its relationship with
crop production, but aggregating metrics, we would have to iterate
over a set of plausible weightings and then, for each of those plau-
sible weightings, vary the slope of its relationship to production.
Second, the mechanistic link between pollinator abundance,
pollen load, pollen deposition, and crop pollination is an intuitive
causal pathway. For some combination of metrics or metrics other
than abundance, the logic of this causal pathway falls away, such
that we lose a framework in which we can vary the relationship of

these parameters to each other. In reality, however, true risk will
emerge as a function of multiple different facets of biodiversity,
with some links as yet poorly understood. Given all the uncertain-
ties, our projections should be interpreted as a measure of relative
risk to crop production rather than projections of absolute
yield loss.

We first used the EarthStat global maps of the production of in-
dividual crops (47), in combination with the animal pollination de-
pendencies reported in (36), to build a map of global crop
production dependent on animal pollination for the year 2000.
The spatial resolution of each crop in EarthStat is 0.08°, equivalent
to ~10 km at the equator. For each crop represented in EarthStat, we
adjusted total production according to the proportional depen-
dence on animal pollination, as reported in a literature review of
the primary literature in (36) (essential = 0.95; great = 0.65;
modest/great = 0.45; modest = 0.25; little = 0.05; no increase = 0).
Some crop groups in EarthStat are represented by multiple individ-
ual crops in (36). For these groups, we calculated the mean depen-
dence on animal pollination (see table S4). We exclusively used (36)
for pollination dependence ratios for internal consistency or, in
other words, for a set of ratios that we could be confident were
meaningful relative to each other. We then summed the depen-
dence-adjusted production values for all crops (Nc) grown in each
cell as

PollinationProdi ¼
Xc¼Nc

c¼1
Prodcidc

where PollinationProdi is the total crop production inmetric tonnes
that is dependent on animal pollination in cell i, Prodci is the total
production of crop group c in cell i, and dc is the proportional de-
pendence of crop c on animal pollination (see fig. S11 for the total
production dependent on animal pollination for the top 20 crops
and fig. S8 for the global distribution of all animal pollination–de-
pendent production). We also calculated the total production of all
crops in any given cell (regardless of dependence on animal polli-
nation) as

TotalProdi ¼
Xc¼Nc

c¼1
Prodci

where TotalProdi is the total production of all crops in cell i. Al-
though our study was focused on insects, we considered all crop
groups with maps in EarthStat because none of these crop groups
relies exclusively on pollination by vertebrates of noninsect
invertebrates.

To project future risk to crop production, we used the ISIMIP
(Inter-Sectoral Impact Model Intercomparison Project) predicted
temperature anomalies from (88) to calculate the standardized tem-
perature anomaly for each year between 2016 and 2050, under three
RCP scenarios (2.6, 6.0, and 8.5; in the main text, we present results
only for RCPs 2.6 and 6.0) using an ensemble mean of the general
circulation climate models GFDL, HadGEM2, IPSL, and MIROC5.
RCP 8.5 represents a worst-case high-emissions scenario, 6.0, a
pathway with some degree of mitigation, and 2.6, a pathway with
significant reductions in emissions (89). RCP 2.6 has a multimodel
median–predicted increase of 1.5°C in global average temperatures
by 2100 compared to the preindustrial climate; RCP 6.0 has a pre-
dicted increase of 3°C, and RCP 8.5 has a predicted increase of 4.9°C
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(48). ISIMIP temperature anomalies were added to average monthly
temperatures across a historical baseline period of 1979–2013. We
used the annual standardized temperature anomaly estimates to cal-
culate a 3-year rolling average to smooth change in risk over time.
For each 3-year projection window, insect pollinator abundance on
cropland was predicted according to the model in Fig. 1 (left) for all
cells containing crop production dependent on animal pollination
(note that our predictions of risk are made at the finer scale of the
crop production data, rather than the coarser resolution of the
climate data). These abundance values were then expressed as the
proportional loss of abundance compared to the abundance expect-
ed on croplands that have experienced no warming (i.e., standard-
ized temperature anomaly of 0) as

lti ¼ 1 �
ati
a0i

where lti is the projected abundance loss for (3-year) time period t
and cell i, ati is the model-estimated abundance on cropland in cell i
under projected warming for time period t, and a0 is the model-es-
timated abundance on cropland in cell i under no warming (stan-
dardized temperature anomaly = 0). In each cell, animal
pollination–dependent crop production was then adjusted for the
percentage reduction in abundance at that time step before
summing production at risk for all cells (Ni) as

ProdRiskt ¼
Xi¼Ni

i¼1
PollinationProdilti

where ProdRiskt is the total crop production at risk in time period t.
We carried out a set of robustness checks for our total produc-

tion risk projections. First, we checked for the influence of single
climate models on our projections. Specifically, we calculated one
projection as the average of all models for that RCP scenario and
a set of additional jack-knifed projections, dropping each climate
model in turn (fig. S4). Second, for the ensemble average of all
climate models and for RCPs 2.6, 6.0, and 8.5, we checked the
extent to which extrapolating abundance loss beyond the lowest
fitted abundance value in the models of land use and climate
change impacts (i.e., the greatest model-estimated abundance
loss) affected our projections (fig. S5). Third, we checked the
extent to which our projections were robust to differences in the
data quality in the EarthStat crop production maps by iteratively fil-
tering the production estimates to include only higher-quality esti-
mates (fig. S6). EarthStat crop production data are broken down
into 5 quality levels (1, 0.75, 0.5, 0.25, and 0), from highest to
lowest data quality: 1, county level census data; 0.75c state level
census data; 0.5, census interpolated data, from within 2° latitude/
longitude; 0.25, country level census data; and 0, missing census
data. Fourth, we used two different approaches to test whether
our projections are influenced by considering the fact that insects
are only active in some months of each year (in our main projec-
tions, we included all months of the year in the calculation of the
standardized temperature anomaly). The first approach followed
the methodology of (27), defining active months as those that
have an average temperature of at least 10°C in the 5 years before
each PREDICTS sample and then calculating the standardized tem-
perature anomaly using only those months. The second approach
defined active months based on temperatures in the baseline
period, i.e., calculating the standardized temperature anomaly

based only on months for which the average temperature between
1901 and 1930 was at least 10°C. For both of these approaches, we
plotted the mean total abundance change (for just the pollinating
insects) on cropland relative to sites that have not changed, for a
set of potential scenarios (i.e., fig. S3). Fifth, we built additional
models to test whether abundance responses to the interactive
effects of climate change and land use differed among taxonomic
groups. In the first approach, we built a separate model for each
of the main pollinating insect orders (fig. S1), and in the second,
to test whether our results are overly influenced by individual
taxa, we built a series of models dropping each pollinating insect
family in turn (fig. S2). Sixth, we built an analogous model in
which we fit bee abundance alone as a function of the interaction
between land use type and standardized temperature anomaly and
then derived a risk map for this model alone (fig. S17). Seventh, we
built an analogousmodel in which we fit species richness [estimated
using the Chao estimator (44)] as a function of the interaction
between land use type and standardized temperature anomaly
(fig. S15) and then derived a risk map for this model alone (fig.
S16). Eighth, we jack-knifed the predictions for cropland and
primary vegetation for the top 10 most common sampling
methods (“flight trap,” “light trap,” “pit-fall traps,” “baited traps,”
“line/belt transects,” “aerial flight-inception trap,” “live traps,”
“sweep net,” “malaise traps,” and “aerial transect”) used in the orig-
inal biodiversity sampling (figs. S22 and S23). Ninth, we fit an anal-
ogous mixed effects model including an interaction between land
use type and mean annual temperature with the original set of
fixed effects to test whether including this covariate had an
impact on the coefficients (table S6). Tenth, we fit mean annual
temperature and the standardized temperature anomaly as main
effects for cropland and primary vegetation sites modeled separately
(fig. S25; see fig. S24 for the site-level correlation of mean annual
temperature and standardized temperature anomaly).

Given the uncertainty in the relationship between pollinator
abundance and crop production, we tested a series of potential re-
lationships, including linear, or with some form of concave or
convex relationship. In other words, it could be that crop produc-
tion declines slowly until a large proportion of pollinators have been
lost (concave relationships). Alternatively, crop production may de-
crease rapidly with even small reductions in pollinator abundance
(convex relationships). We used two functions, describing concave
relationships as

ProdRiskti ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðlti � 1Þz
q

þ 1

and convex relationships as

ProdRiskti ¼
ffiffiffiffiffiffi
ltiz

p

where z = a constant describing the concavity or convexity of the
relationship between local pollinator abundance loss and risk of
crop production loss. For both concave and convex relationships,
we considered four values of z (4, 8, 16, and 32), describing increas-
ingly steep concave or convex relationships. We assumed that all
lines meet at the extreme values of pollinator abundance loss (i.e.,
no risk to crop production where pollinator abundance is equal to
or higher than in the natural baseline condition and a proportional
risk of 1 where all pollinator abundance is lost). Here, we present
only the linear and concave relationships because these seem

SC I ENCE ADVANCES | R E S EARCH ART I C L E

Millard et al., Sci. Adv. 9, eadh0756 (2023) 12 October 2023 10 of 14

D
ow

nloaded from
 https://w

w
w

.science.org at U
niversity C

ollege L
ondon on M

arch 14, 2024



more likely to describe the true relationships (55). In fig. S7, we also
present the results based on the convex projections (54).

To identify geographic regions in which a high proportion of
crop production could be at risk, we expressed pollination risk as
a proportion of the total production of all crops within each cell as

PropRiskti ¼
ProdRiskti
TotalProdi

where PropRiskti is the fraction of all crop production in cell i and
time period t at risk from pollinator biodiversity losses. A value of 1
therefore indicates a hypothetical situation in which all of the crop
production in that cell is dependent on animal pollination, and pre-
dicted insect pollinator abundance loss is 100% (i.e., one would
expect a very high risk of crop production loss from pollination
shortfalls).

To investigate which countries and regions of the world might
expect the greatest crop pollination risk, we intersected our
mapped estimates of production risk with a global map of
country borders (90). For each country, we calculated the median
risk in the year 2050 across grid cells (“overall risk”), and the total
change between the start (2016) and end (2050) of the series
(“change in risk”).

To estimate the potential financial risk associated with pollinator
biodiversity loss, we estimated, for each country, the total value of
pollination-dependent crop production per country. Here, we
present this total value, while in fig. S12, we present estimates
divided by total national gross domestic product (GDP). We calcu-
lated the total value of crop production dependent on animal pol-
lination by multiplying the total animal pollination–dependent
production for each crop in each country by the estimated per-
tonne value of each crop (91) and then summing these values
across all crops grown in a given country. Per-tonne values for
each crop were estimated by calculating the mean producer price
of each crop in each country for the years 2015–2019 (US$ in
2015–2019 values) using Food and Agriculture Organization esti-
mates (91). For each crop, we then took the median value across
countries as a global estimate of the per-tonne value of each crop.
These values represent estimations of the price paid to producers at
the point of initial sale (91).We retrieved estimates of each country’s
GDP in millions of US$, from the package “rworldmap” (variable
name “GDP_MD_EST”) (90). In fig. S13, we present estimates
per crop for median risk and change in risk, across all the cells in
which that crop exists.

As a last step, we used our measure of local production risk to
calculate a measure of overall import risk and change in import risk.
We used estimates of the quantity of production (in metric tonnes)
dependent on animal pollination (accounting for the fractional de-
pendence of each crop on animal pollination) imported by each
country between 2001 and 2015, broken down by country of
origin (37). The data used here differs from that of (37) in that it
does not include a measure of average cropland isolation from
natural habitat. This adjustment was done so that production and
flow calculations would match. Global patterns of import risk de-
tected here are not affected by this calculation change.

To convert the estimates of import flow into a measure of import
risk, we reasoned that each unit of production dependent on animal
pollination produced in a given country can be attributed to an im-
porter according to the proportion that it imports from that

country. To calculate this import risk for 2050, we multiplied the
import flow of crops dependent on animal pollination from each
producing country (as a proportion of the total imported from all
producers) by the total production at risk across all cells in the ex-
porting country in 2050. For each importer, we summed this value
across all exporters. Import risk for a given importer country (I) at a
given time (ImportRisktI) is therefore calculated as

ImportRisktI ¼
XE¼NE

E¼1
ProdRisktEPE

where PE is the proportional flow between country E and I andNE is
the total number of exporters to country I. Thus, for example, if one
importer receives 20% of one country’s exports, 20% of another, and
10% of a third and each of those countries has a local production
risk at time t of 100, 200, and 500 tonnes, then ImportRisktI will be

ImportRisktI ¼ ð100� 0:2Þ þ ð200� 0:2Þ þ ð500� 0:1Þ

We defined this value as the overall import risk, which we then
divided by the mean total population size over the period 2015–
2019 [sourced from Our World in Data (92)] of each country to
give a per-capita estimate. All analyses were carried out in R
version 4.0.5.

Supplementary Materials
This PDF file includes:
Figs. S1 to S25
Tables S1 to S6
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