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Abstract
1. The use of camera traps to study wildlife has increased markedly in the last two 

decades. Camera surveys typically produce large data sets which require process-
ing to isolate images containing the species of interest. This is time consuming and 
costly, particularly if there are many empty images that can result from false trig-
gers. Computer vision technology can assist with data processing, but existing 
artificial intelligence algorithms are limited by the requirement of a training data 
set, which itself can be challenging to acquire. Furthermore, deep-learning meth-
ods often require powerful hardware and proficient coding skills.

2. We present Sherlock, a novel algorithm that can reduce the time required to pro-
cess camera trap data by removing a large number of unwanted images. The code 
is adaptable, simple to use and requires minimal processing power.

3. We tested Sherlock on 240,596 camera trap images collected from 46 cameras 
placed in a range of habitats on farms in Cornwall, United Kingdom, and set the 
parameters to find European badgers (Meles meles). The algorithm correctly clas-
sified 91.9% of badger images and removed 49.3% of the unwanted ‘empty’ im-
ages. When testing model parameters, we found that faster processing times 
were achieved by reducing both the number of sampled pixels and ‘bouncing’ 
attempts (the number of paths explored to identify a disturbance), with minimal 
implications for model sensitivity and specificity. When Sherlock was tested on 
two sites which contained no livestock in their images, its performance greatly 
improved and it removed 92.3% of the empty images.

4. Although further refinements may improve its performance, Sherlock is currently 
an accessible, simple and useful tool for processing camera trap data.
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1  |  INTRODUC TION

Camera-trapping methods have the potential to provide profound 
insights into the behaviour and ecology of animal populations 
(Kucera & Barrett, 2011) and are becoming increasingly widespread 
across the world (Cole Burton et al., 2015). Development in technol-
ogy has enabled the simultaneous study of a range of species across 
large spatial scales and with minimal disturbance. It is a substantially 
more cost-effective method of surveying mammals than the more 
traditional live trapping (De Bondi et al., 2010) and has led to the 
creation of extensive digital data sets of images (Green et al., 2020) 
on a scale that was previously unachievable.

A common constraint of camera-trapping research is the vast 
quantity of data produced. Millions of images can be generated 
from a single survey, a large proportion of which may be ‘empty’ 
(i.e. not containing any animals), as a result of moving vegetation 
and changes in light levels which falsely trigger the infrared sensors. 
This is particularly evident where camera locations are randomly 
selected and not designed to maximise encounters with the target 
species (Marcus Rowcliffe et al., 2008).

To help analyse such data, a number of software packages 
have been developed by researchers across the world to auto-
matically classify images from camera traps (Meek et al., 2020; 
Microsoft, 2022; Schneider et al., 2018; Tabak et al., 2020). These 
have proved successful, both at simply removing empty images (Wei 
et al., 2020) and at identifying animal species (Villa et al., 2017) and 
can achieve similar levels of accuracy to classification by human ex-
perts (Norouzzadeh et al., 2018).

Despite this process, many researchers face limited options 
when choosing a software package. A number of packages require at 
least some coding background to install and use (Green et al., 2020), 
and many require expensive hardware such as GPUs (graphics pro-
cessing units) to run (Wei et al., 2020). Moreover, with the majority 
of new algorithms being based on deep-learning methods (Meek 
et al., 2020; Schneider et al., 2018; Tabak et al., 2020), researchers 
are forced to find one that has already been trained on appropriate 
data, or obtain a large amount of manually classified images, done by 
either the researchers themselves (Schneider et al., 2020) or by the 
public (Adam et al., 2021).

This issue has recently been partly addressed by the publication 
of GUI (graphical user interfaces) for the ‘MegaDetector’ algorithm 
(Beery et al., 2019; van Lunteren, 2023). The vast amounts of train-
ing data used in the construction of this algorithm mean that it is 
transferable to a wide range of habitats, while it is possible to run it 
on a CPU. However, this comes at a computational cost—in our ex-
periments, it ran slowly, taking 7.04 s per image on a standard desk-
top computer (compared to Sherlock's 0.98 s per image), making it 
unsuitable as a stand-alone for projects with large amounts of data.

The goal of this study was to provide an alternative solution to 
these issues through the development of a flexible and, crucially, 
low-resource algorithm, Sherlock, that is accessible to researchers 
with little or no computing background. This algorithm attempts 
to identify empty images—that is, images that were triggered by 

an inconsequential movement, such as a plant blowing in the wind. 
The final product is available on Zenodo (Miles, 2023) and contains 
simple, detailed instructions on how to use it, including a guide to 
installing Python.

Sherlock does not require any training data but instead uses an 
intuitive approach. It examines the sequence of images and looks 
for marked deviations from a rolling background image, allowing it 
to remove a large proportion of the false positives from the data. It 
also does not require large amounts of computing power or a GPU—
indeed, it runs off a single core—meaning its hardware requirements 
are minimal, and that the computer it is running on can continue to 
be used for other tasks. Moreover, it can be easily paused and re-
started, meaning that there is no requirement for it to be continu-
ously run until completion.

Other authors have sought to produce algorithms that do not 
require any training data, such as Xi et al. (2021). The most similar 
algorithm that the authors have found to Sherlock is the Zilong algo-
rithm given in Wei et al. (2020). Zilong is founded on similar princi-
ples—it does not use neural networks but instead seeks to compare 
images to the background and is shown to perform well on a range 
of images in Wei et al. (2020). However, Zilong, alongside the algo-
rithm presented in Xi et al. (2021), requires cameras to take ‘bursts’ 
of images—that is, a single movement triggers a sequence (of at least 
a certain, fixed length) of images to be taken. However, this assump-
tion was not met in the data on which our algorithm was tested as 
many encounters between animals and cameras would cause only a 
single image to be recorded. Moreover, Zilong is more difficult to set 
up than Sherlock, and so we believe we offer a valuable alternative 
to a wide range of researchers.

This paper is structured as follows. In Section 1, we give an ex-
planation of the method behind Sherlock, illustrated with an ex-
ample from our data set, and also detail the ways in which it can 
be parameterised. In Section 2, we present the results of testing 
Sherlock on a set of camera traps positioned across Cornwall, in the 
south-west of England. Finally, in Section 3, we discuss these results 
and detail future improvements that could be made to the algorithm.

2  |  MATERIAL S AND METHODS

2.1  |  Test data

We tested the performance of Sherlock against a data set of cam-
era trap images that had been separately classified by one of the 
authors (VM). Images were obtained from two camera surveys con-
ducted in 2019 in Cornwall, United Kingdom, as part of a study 
investigating analytical methods of estimating badger density. We 
used a random sample of 23 camera deployments from each site, 
totalling 240,596 images. Images were classified by a human as ei-
ther containing a badger or not and were tagged using (XnView 
MP, 2020). The data set contained 306 badger images, with the 
vast majority being non-badger images but potentially contain-
ing other moving subjects such as wildlife, livestock, people and 
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vehicles. The cameras were placed randomly within the survey area 
rather than being placed strategically to maximise encounters with 
the target species, in order to satisfy the assumptions of the ‘ran-
dom encounter’ model for estimating population density (Marcus 
Rowcliffe et al., 2014). This means that some of the sites had a large 
number of disturbances caused by sheep and cattle. We also tested 
performance with varying model parameters using a smaller data 
set of 1000 images from a single camera deployment, including 68 
classified badger images.

A selection of images which Sherlock correctly tagged as con-
taining badgers is shown in Figure 1, illustrating the range of habitats 
in which it was used.

2.2  |  Sherlock code

In this section, the method of the code is detailed, alongside an 
example. This example is taken from a set of 16 images, shown in 
Figure 2 which were the only images captured by this camera on the 
night that they were taken, and hence would have been analysed as 
a single set by the code (see below for details). The image on which 
the majority of the analysis is illustrated is image (i).

2.2.1  |  Rolling background image

The main way in which animals are identified is by comparing each 
image to a rolling background image. Using a rolling background, 
rather than a fixed one for the whole set of images is particularly 
helpful for camera traps that are left for a long period of time, where 
vegetation growth or other factors may change the background. In 
an ideal setting, this background image would contain the closest 
N images (for some N) to the current image. However, this would 
require computing a separate background image for each image—a 
computationally expensive task—and instead the background image 
is periodically updated.

There are two conditions which determine the set of images that 
comprise each background image. Firstly, there is a user-inputted max-
imum number of images. This is important as if too many images are 
used then the background may shift as, for example, light conditions 
change. Moreover, using a very large number of images may fill up the 
memory of the computer used and cause the algorithm to crash. The 
second condition is that the background can only be formed from a 
set of consecutive daytime images or a set of consecutive nighttime 
images. Each image is identified as either ‘day’ or ‘night’ by accessing 
the metadata of the image to determine whether the flash was used.

F I G U R E  1  A selection of images which Sherlock correctly identified as containing badgers.
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Once the set of images has been chosen by the algorithm, the 
background image is then formed by taking the median colour of 
each pixel in this set. Using the median instead of the mean prevents 
large deviations from being overweighted, giving a more accurate 
construction of the true background. More advanced models have 
been developed, such as Gaussian mixture modelling (Hari Hara 
Santosh et al., 2013). However, the use of these would incur a sub-
stantial additional computational cost, and so the median was cho-
sen as a compromise between accuracy and efficiency.

An example of a background image, created from 16 images, is 
given in Figure 3, where one can see that the background is recov-
ered, despite the badger walking across the foreground, and the 

image where the flash caused the foreground to be much lighter. 
However, the background is not too blurry, as it retains some de-
tails such as individual blades of grass, which is an advantage of this 
background being made from a reasonably small number of images.

2.2.2  |  Bounding box creation

Once the background image has been calculated, it is possible to test 
each image and to determine whether it contains an animal. This is 
done by randomly sampling pixels, testing them and then attempt-
ing to build up bounding boxes of ‘disturbances’—connected sets of 

F I G U R E  2  The original set of 16 images which were used to make this example. These images, labelled from (a) to (p), show a badger 
moving across the field of view of the camera. Although the camera's infrared flash is automatically adjusted to ensure correct exposure, 
image (e) is evidently overexposed. Image (i) was chosen to illustrate the image analysis procedure.

F I G U R E  3  The background image 
created from the 16 images given in 
Figure 2.
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pixels that are different from the background image and meet any 
other criteria (detailed below).

The initial sample of pixels is chosen uniformly (i.e. every pixel 
has an equal chance of being in the sample) at random from the 
image. The number of pixels sampled can be modified by the user. 
To determine whether this pixel is a ‘disturbance’, it must satisfy the 
following conditions:

1. It must be sufficiently different from the equivalent pixel in the 
background image (i.e. the maximum difference between the 
RGB values (red, green, blue; with each value being between 
0 and 255) of these two pixels must exceed some threshold, 
which can be different for day and night images)

2. If appropriate, the RGB colours of the pixel must fall between a 
user-specified upper and lower bound. This condition can be re-
moved by setting the lower bound to (−1, −1, −1) and the upper 
bound to (256, 256, 256), and was not used by the algorithm when 
looking for badgers. However, if the animal in question was (at 
least largely) a single colour, then this parameter could be set so 
that only pixels close to that colour were considered.

3. If appropriate, the pixel in the image must be sufficiently grey (i.e. 
the R, G and B values of the pixel must have a range smaller than 
some threshold). This condition can be removed by setting the 
threshold to be 256, as in many cases (when the species of inter-
est is not approximately greyscale), it will not be appropriate.

Figure 4 shows the results of carrying out this sampling proce-
dure on an image. Most of the disturbances found were indeed on 
the body of a badger, although there is a minority of small clusters 
that were caused by moving vegetation or changing light conditions. 
It is also worth highlighting the number of pixels on the badger that 
were not counted as disturbances, and this noisy feature means that 
the image requires subsequent analysis.

The area around each pixel that is found to be a disturbance is then 
analysed further, through what we call the ‘bouncing’ procedure. The 
algorithm attempts to find paths of pixels moving outward from the 
disturbance, as illustrated in Figure 5. It tries four initial directions (up-
wards, downwards, leftwards and rightwards) in turn, continuing the 

path in that direction if the next pixel is also a disturbance (note that 
all pixels on the path are tested, not only those which were part of 
the initial sample). When it reaches a point which is not a disturbance, 
it attempts to change direction (i.e. the path ‘bounces’) to one of the 
eight horizontal, vertical and diagonal directions, and continues mov-
ing. However, it will only try directions which still make progress in 
the original direction (so, e.g. if it was initially moving to the left, it will 
only try to move diagonally upwards and leftwards or diagonally down-
wards and leftwards). This process is then continued until there are no 
more disturbances in any of the allowable directions. The code also 
allows flexibility for additional bounces to be carried out for each point 
(with a starting position randomly chosen from within the current 
bounding box) to improve the accuracy of the bounding boxes created.

After the bouncing procedure has finished, the maximal and min-
imal x and y coordinates on the bouncing paths are recorded. Under 
the assumption that the animal will be an approximately rectangular 
bounding box, one can then create a bounding box for each path 
from these maximal and minimal coordinates. If any paths started at 
separate points have overlapping bounding boxes, these bounding 
boxes are joined together. The effectiveness of this can be seen in 
the example of Figure 5—here, the bounding boxes arising from the 
paths starting at the five points shown in the figure would be com-
bined into a single bounding boxes.

The main benefit of this novel method is its efficiency. By re-
ducing the problem of finding a two-dimensional bounding box to 
searching for one-dimensional paths, the computational cost of the 
bouncing procedure scales linearly with the perimeter of the bound-
ing box. This occurs because each path from the starting pixel is al-
ways moving towards one edge of the bounding box (either directly, 
or at a 45-degree angle), and hence, its length is bounded by a con-
stant multiple of the perimeter.

This efficiency means that the code can run quickly even when 
a substantial proportion of the image is a disturbance. Moreover, 
as shown in Figure 5, one can recover a good approximation to the 
bounding box from only a small number of bounces, and hence not 
all of the disturbance points need to be tested—if they are in an al-
ready-formed bounding box by the time it is their ‘turn’ to be tested, 
then the bounce procedure is not carried out.

F I G U R E  4  A graphic showing the result 
of sampling 5000 random pixels image I 
in Figure 2. Green circles indicate that a 
pixel was not counted as a disturbance, 
while red pixels indicate that a pixel was 
counted as a disturbance. Note that the 
circles have been set to have a radius 
of 3 pixels for demonstrative purposes 
although only a single pixel was analysed 
in each case.
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2.2.3  |  Bounding box analysis

The final stage of the algorithm analyses each bounding box to de-
termine whether it is likely to be an animal, or simply an inconse-
quential disturbance.

The first and most important test is the size of the bounding box 
(i.e. its area), which must be larger than a certain threshold (which 
can be inputted by the user). Different values of this threshold can 
be used depending on whether the image was a daytime or a night-
time image, to account for the fact that animals are more similar 
to the background (and therefore likely to create smaller bounding 
boxes) at night. However, it is important to note that the size of 
the animals in the image will vary depending on how far away from 
the camera the animal is, and that the bounding box size should be 
chosen sufficiently small that all of these animals will be registered.

The second condition is that the bounding box must contain 
above a certain threshold of pixels that qualify as disturbances. This 
can help to remove any large rectangular bounding boxes that are 
created by small objects which have a diagonal orientation (with re-
spect to the image). Moreover, it can help to remove animals whose 
colouring is, in the majority, outside the colour and greyscale bounds 
that have been specified by the user (if, e.g. the user is only inter-
ested in specific species).

2.2.4  |  Adjacent images

It is often the case that images containing animals occur in sequences 
(as the animal moves through the field of view of the camera). To 
account for this, one can choose a value n such that if an image is 
within n images of an image that has been classed as a positive, and 
the timestamp of this image differs by at most some threshold (set 
as default to 20 s) from the timestamp of the positive image, then 
it is also classed as a positive, irrespective of what its classification 
would have been otherwise. We call these images adjacent images.

Note that adjacent images that would otherwise have been 
classed as negatives do not trigger their own set of additional pos-
itive images. This step is helpful as animals often trigger a long 
sequence of images, some of which may be misclassified by the 

algorithm, and this step helps to find these errors. The default value 
of n is 1, which strikes a good balance between increasing sensitivity 
without decreasing specificity to a large degree.

2.2.5  |  Extending the set of positive images

An additional consideration is that images containing animals can af-
fect the classification of those images near to them because they 
may interfere with the background image created, particularly if an 
animal moves close to the camera. This will be a problem regardless 
of the difference in times between this image and the images near 
it in the image sequence. Thus, we consider ‘extending’ the set of 
positive images by including the images either side of each image 
originally in the set of positives (including adjacent images). In the 
Results section, we present separately the cases where the data set 
is and is not extended.

2.2.6  |  Algorithm outputs

Sherlock puts images in three categories—those which potentially 
contain the animal of interest, those which it believes do not contain 
the animal of interest and images that caused an error when being 
processed (this is very rare, but may occur if an image has been cor-
rupted). The basic summary of this categorisation is found in CSV 
(comma separated value) files which it outputs into each folder that 
contains images. Secondarily, Sherlock can create a new copy of 
each image, with the addition of a red box drawn around anything 
it believes to be an animal of interest, in a folder based on its cat-
egorisation. This may be of use if the potential animal images are 
then categorised by a human, as it will highlight which disturbances 
Sherlock has categorised as an animal.

2.3  |  Algorithm summary

Sherlock is summarised in Algorithm 1, with some function defini-
tions given in Table 1.

F I G U R E  5  An illustration of five 
realisations of the ‘bouncing’ procedure. 
The starting points are shown by red 
circles, and the bouncing paths are shown 
by yellow lines. Note that the lines are 
of width four pixels to improve their 
visibility, although each considers only a 
single pixel at a time.
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2.4  |  Code runtime

A timed test of Sherlock 6487 images was carried out on a Dell desk-
top with Intel Core i7-8665U CPU with four cores and 32GB of RAM. 
The images were stored on an external hard drive operating at the 
USB 2.0 interface speed, and each image was a JPEG file between 
1 and 2 megabytes in size, containing just over 4 million pixels. The 
code was run through the Python 3 user interface, Jupyter Lab.

The 6487 images took 6384 s (or approximately 3 h and 15 min) 
to process, which is a rate of approximately 0.98 s per image.

3  |  RESULTS

3.1  |  Overall results

Table 2 shows that Sherlock achieved a reasonably good perfor-
mance, removing close to 50% of the images in the unextended set. 
Moreover, the fact that only 8.1% of the images and 4.5% of the se-
quences were missed in the two cases shows that Sherlock's ability 
to reduce the need for human tagging comes with only a small cost 
in the reduction of relevant data.

Depending on the exact parameters of the study, it may be bene-
ficial to extend the set of positives. In this case, as one would expect, 
the percentage of false positives increased from 50.7% to 58.3%. 
However, almost all (98.1%) of the badger images were correctly 

identified in this case, highlighting the fact that many of the false 
negatives from Sherlock were simply a part of a sequence of images 
of badgers. The fact that only one sequence was missed in this case 
highlights Sherlock's sensitivity, and suggests that researchers can be 
confident that the vast majority of the useful data will be retained.

3.2  |  Performance by site

Part of the reason for Sherlock's low precision is that many of the 
sites on which it was tested contained a number of other animals 
which were not badgers, but which had similar coloration (such as 
cattle and sheep). Table 3 shows that Sherlock performed poorly 
on sites where sheep and cattle are abundant, but performed mark-
edly better on sites where no livestock were present. Indeed, the 
false-positive rate of 7.7% is very similar to the 7.5% of Zilong (Wei 
et al., 2020) and shows that Sherlock could be an extremely useful 
tool on similarly clean data sets.

3.3  |  Ability to remove empty images

As shown by the previous section, Sherlock's simplicity means that it 
is not effective at distinguishing between species of similar colours. 
Thus, Sherlock may perhaps be most useful at removing ‘empty’ im-
ages from the data set (i.e. those images with no animals or humans 
in). Note that Sherlock's parameters were fixed at the same values as 
those used in the larger, badger-specific test, with the exception that 
no colour or greyscale filters were applied.

As expected, Table 4 shows that Sherlock achieved a similar, 
though slightly higher, false-negative rate (11.3%) under this eval-
uation, while achieving a substantially lower false-positive rate of 
7.9%. This false-positive rate is similar to that achieved in the data 
sets containing no animals considered in Table 3, providing fur-
ther evidence that Sherlock's low precision was simply caused by 
misidentifying other animals as badgers. Thus, these data suggest 
that Sherlock could be a valuable preprocessing tool for research-
ers, substantially reducing the amount of images that need to be 
classified.

Parameter group Parameters Function

Colour constraints Bounds and greyscale Boolean Cp(p) on pixels

Bounding box constraints Size and disturbance % Boolean Cb(b) on bounding boxes

TA B L E  1  Functions used in Sherlock to 
assess disturbances.

Classification method

Number (% correctly classified) of

Images Sequences

With badgers Without badgers With badgers

Human 308 240,288 67

Sherlock (unextended) 283 (91.9%) 118,351 (49.3%) 64 (95.5%)

Sherlock (extended) 302 (98.1%) 100,235 (41.7%) 66 (98.5%)

TA B L E  2  Sherlock's performance on 
the test data. Both the cases when the 
set of positive images was extended (i.e. 
images which were immediately before or 
after an image classified as a positive were 
counted as positives) and when the set 
of positive images was not extended are 
considered.

TA B L E  3  Sherlock's performance across three pairs of sites, 
with the majority of images from the first pair being of cattle, the 
majority in the second pair being of sheep and all of the third pair 
containing no livestock. Across all sites, 23 of the images contained 
badgers, of which 20 were correctly identified. Note that these 
results are based on the unextended set of positives.

Primary animal
Total 
images

Percentage of images 
containing livestock

False-positive 
rate

Cow 3340 68.0% 92.3%

Sheep 14,000 72.6% 66.7%

None 7746 0% 7.7%
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3.4  |  Testing with other parameter sets

As shown in Table 5, there was, in general, very little difference 
between the precision and recall achieved by these algorithms, 
though the algorithms with smaller sample sizes did have a slightly 
reduced recall. Most surprising was the drop in precision of the 
algorithm with a sample size of 1000 and 20 bounces, which per-
formed worse than the algorithm with a sample size of 1000 and 
4 bounces. This could have been caused by the increase in ran-
domness in the results which occurs when a smaller sample size 
is used. It also suggests that there may be little value in increasing 
the bounce parameter, particularly as it comes with the cost of in-
creased runtime. Indeed, setting this parameter too high could lead 
to bounding boxes which should be separate being joined together.

The clearest difference between the four parameter sets was 
in the runtime of the algorithm, with the quickest performing 
around 75% quicker than the slowest, and with only a small de-
crease in sensitivity. Further investigation, and a proper definition 
of optimality would be needed to determine the ‘optimal’ set of 
parameters, but it certainly suggests that there may be scope to 
speed up the algorithm, particularly if one is willing to accept a 
small drop in sensitivity.

3.5  |  Comparison to human tagging

To assess the practical usefulness of Sherlock, two of the authors 
separately tagged the set of 6531 images with and without the use 
of Sherlock. The results are summarised in Table 6.

In both cases, Sherlock substantially reduced the human time 
taken to tag these images. Moreover, Sherlock had only a small ef-
fect on the number of images that each person tagged as containing 

a badger and, in one case, this effect was positive as Tagger 2 found 
an additional image that contained a badger. Indeed, the largest 
source of error in this process appears to be the human doing the 
tagging as, given an identical set of images without Sherlock, Tagger 
1 tagged 15% more images as badgers than Tagger 2.

3.6  |  Comparison to a simple 
classification algorithm

Finally, we compared Sherlock to a simple tagging algorithm using 
functions from the Python package OpenCV (Bradski & Kaehler, 
2000). To ensure a fair comparison, both algorithms used the same 
method of forming background images. The simple algorithm com-
pared each image to the background image using the cv2.absdiff 
function, before converting this image, first to a greyscale image 
(using cv2.cvtColor), and then to a binary threshold image (using 
cv2.threshold). Tests were carried out with different values of the 
threshold. Finally, the cv2.findContours function was used to locate 
contours in this threshold image, and the size of the largest contour 
(found using cv2.contourArea) was recorded.

For this algorithm to classify images, it is necessary to choose a 
‘size value’ for how large a contour needs to be in order for the image 
to be classed as containing an animal. In the below comparisons, the 
best possible size value was used for each of the OpenCV algorithms 
(i.e. the value which maximised the number of images that were cor-
rectly classified). However, Sherlock's parameters were fixed at the 
same values as those used in the larger, badger-specific test, with the 
exception that no colour or greyscale filters were applied. Table 7 
shows Sherlock outperformed the basic algorithm for all tested val-
ues of the threshold value and all size values. It is also notable that 
it had by far the lowest number of false negatives (of course, choos-
ing a different size value for the OpenCV algorithms would change 
this, but would make them less accurate overall). Thus, it appears 
that there is a substantial advantage in using Sherlock compared to 
a more basic algorithm.

Of course, the added complexity of Sherlock comes with an ad-
ditional computational cost. As previously discussed, Sherlock took 
0.98 s per image while the OpenCV algorithms ran in just over half 
the time, taking 0.59 s per image. However, part of the reason for this 
is that the in-built OpenCV functions have been highly optimised for 
speed, and we believe there is scope for Sherlock to be rewritten to 
run in a similar timeframe to the OpenCV algorithm.

TA B L E  4  Sherlock's performance at identifying empty images 
on a subset of 15091 images which were tagged as ‘empty’ (which 
were considered negatives) or ‘non-empty’ (which were considered 
positives). Note that these results are based on the unextended set 
of positives.

Total images
False 
positives

True 
positives

False 
negatives

True 
negatives

15,091 597 6659 847 6988

TA B L E  5  The results of using different parameter values on 
a test data set containing 1000 images, 68 of which contained 
badgers. Note that these results are based on the unextended set 
of positives.

Bounces
Pixel sample 
size

Run time 
(minutes) Precision Recall

4 5000 31.1 15% 93%

4 1000 16.0 16% 91%

20 5000 67.0 15% 93%

20 1000 34.0 14% 84%

TA B L E  6  The results from two of the authors separately tagging 
the same set of 6531 images with and without the use of Sherlock.

Tagger
With/without 
Sherlock

Tagging time 
(minutes)

Badgers 
tagged Sequences

1 Without 20.9 23 6

1 With 13.3 22 6

2 Without 25.8 20 6

2 With 7.8 21 6
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4  |  DISCUSSION

Sherlock has the potential to substantially reduce the number of 
human hours required to process a camera-trapping data set, as 
it can remove a large proportion of unwanted images while losing 
very few images of interest. It has performed well across a range 
of camera placements which contained many complicating factors 
such as vegetation and other animals that were not of interest. 
Moreover, an almost identical algorithm has been used by one of 
the authors in their work for a semi-professional football club for 
tracking players from video footage of their matches, highlight-
ing the algorithm's flexibility and the potential for its widespread 
adoption. It is simple to set up, with detailed instructions available 
on our GitHub page (Matthew, 2023), and does not require high 
levels of computing power to process images at a reasonably quick 
rate.

Because of its low computational cost, an area for future re-
search would be to investigate whether a version of Sherlock could 
be deployed directly on camera traps, meaning that empty images 
could automatically be discarded. This would reduce the risk of the 
camera's memory becoming full over the course of its deployment, 
particularly if it were placed in an area with high levels of vegetation, 
where the vast majority of images do not contain animals.

Across the whole data set, Sherlock did not achieve as high a 
specificity as some similar algorithms. For example, Zilong (Wei 
et al., 2020) removed approximately 92.5% of the empty images 
from its data set, compared to the 49.3% that Sherlock achieved 
from the unextended set of positives. However, such a direct com-
parison may not be an appropriate assessment of the relative utility 
of the two algorithms. When sites with no livestock were consid-
ered, Sherlock was able to remove 92.3% of the images, which is 
very similar to Zilong's performance. This suggests that Sherlock's 
apparent low performance was simply due to the high levels of 
noise in the data, and that it has the potential to be an extremely 
useful image-removal tool, particularly when the camera trap has 
little interference from other animals, or when all animals are of 
interest.

However, most importantly, the fact that Sherlock has such a 
high sensitivity of 91.9%—higher than, for example, the reported 
87% of Zilong—means that it could be used as a tool to preprocess 
a large set of data, reducing the number of images that need to be 
classified by more computationally intensive algorithms such as 
MegaDetector which, for example, could be more accurately used 
to classify animals to species level. The high sensitivity means that 
very little useful information would be lost during this step, while 

the computational savings may be valuable, both in terms of financial 
and time cost. This would be particularly relevant in the examples 
considered in Table 3, where, in the sites with sheep, Sherlock was 
able to remove a reasonable proportion of images from a very noisy 
data set.

There are a number of ways in which Sherlock could be refined 
to increase its performance. Primarily, adding the option to paral-
lelise the algorithm, and in particular adding the option to run it on 
a GPU, would lead to a large reduction in the amount of time taken 
to process each image (at the expense of making it less accessible). 
Moreover, it may be possible to more intelligently sample pixels 
from the image, so that the perspective of the image is taken into ac-
count—one needs to sample fewer pixels in the foreground than the 
background to achieve the same level of coverage. Combining this 
with position-dependent-bounding box size restrictions could fur-
ther improve performance, particularly if there is vegetation close to 
the camera that frequently triggers it.

There are also some limitations to the method of forming the 
background images. Firstly, there is not always an immediate 
transition between daytime and nighttime images, and so there 
may be some images taken at dawn or dusk which are very dis-
similar to the background. These images will then be classified as 
potentially having an animal, adding to the number of false pos-
itives in the data set. However, this was true for a small propor-
tion of the images and so did not substantially affect algorithm 
performance.

Moreover, using the median image only works when the back-
ground is truly fixed, otherwise there may be a number of pixels 
which are misclassified as disturbances. For example, if a blade of 
grass constantly sways in the wind, it should be possible to use a 
background comparison method which can take into account the 
possibility that the background may oscillate between multiple 
states. However, such improvements would come with a potentially 
substantial extra computational cost.

A final limitation is that the bouncing procedure was designed 
with convex animals, such as badgers, in mind. When tested on 
football players, the algorithm struggled to detect arms and legs (al-
though could still find the players from their torsos), with a large 
number of bounces required to do this successfully. Thus, Sherlock 
may struggle to give accurate bounding boxes of animals such as gi-
raffes, with many long thin sections, although it should still be able 
to detect their presence. We hope to investigate this further in fu-
ture work.

Despite these limitations, we believe that, in its current form, 
Sherlock has the potential to be of use to a wide range of researchers. 

Algorithm
Total 
images FP TP FN TN

% correctly 
classified

Sherlock 15,091 597 6659 847 6988 90.5%

OpenCV(60) 15,091 362 6191 1315 7222 88.9%

OpenCV(75) 15,091 291 6174 1332 7294 89.3%

OpenCV(90) 15,091 404 6148 1358 7181 88.3%

TA B L E  7  The results from comparing 
a simple algorithm, using OpenCV 
functions, to Sherlock. The same data 
set as Table 4 was used, with ‘positive’ 
images being defined as those containing 
animals or humans. The number after each 
OpenCV algorithm denotes the threshold 
used in the cv2.threshold function.
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The levels of specificity and sensitivity that it achieves can sub-
stantially reduce the amount of processing by humans required in 
camera-trapping projects Moreover, its ease of use and minimal 
hardware requirements mean that it is available to the vast majority 
of researchers, and we hope that its adoption can help accelerate 
many areas of biological research.
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