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Abstract

Head direction cells (HDCs) are thought to represent the azimuthal direction that

an animal’s nose is pointing in a one-dimensional, compass-like, fashion. The un-

derlying mechanisms of head direction cells in freely moving animals traversing

continuously varying three-dimensional (3D) surfaces has yet to be explored. In

this work, I recorded HDCs electrophysiologically while rats foraged atop a hemi-

spherical arena. 3D head orientation data was recorded along with 3D positional

data. I found that previous models were unable to account for variability in pre-

ferred firing direction (PFD) of recorded HDCs on the hemisphere, including when

testing whether the HD representation was tied to the locomotor plane, or the angle

of the head. A number of HDCs formed swirl patterns on the hemisphere; their

swirl directions were highly lateralised. I present two novel frameworks in which

HDCs are recontextualised as components of a system for representing the 3D ori-

entation of the head. I apply these frameworks to my data, as well as previously

published results, showing that one interpretation better explains the firing patterns

of HDCs. Further, I describe generative models of my frameworks and use them to

simulate individual cells – some of which would appear as traditional HDCs if anal-

ysed conventionally. I conclude that cells in the HDC system could represent the

3D orientation of the head, and suggest that this same mechanism could represent

the orientation of other, external, objects as components of an internal model of the

world.
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Abbreviations and Definitions

• IR3 – real space – the three-dimensional world that we live in.

• ADN – anterodorsal nucleus of the thalamus.

• aEVCs – artificial eigenvector cells.

• aHDCs – artificial head direction cells.

• aHVCs – artificial head vector cells.

• Azimuth – rotations around the extrinsic Z axis, in the extrinsic flat plane,

equivalent to the horizontal.

• DA – dual axis (rule).

• EV – eigenvector.

• EVCs – eigenvector cells.

• Extrinsic – with respect to rotations, around a reference axis affixed to the

external world.

• GA – global azimuth (rule).

• GPR – Gaussian process regression.

• HD – head direction.

• HDCs – head direction cells.

• HV – head vector.
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• HVCs – head vector cells.

• Intrinsic – with respect to rotations, around a reference axis affixed to the

object being described.

• Invert – rotate to become upside-down, usually referring to the head. For

example, a mouse crawling along the lid of its cage is inverted.

• PFD – preferred firing direction.

• Pitch – up and down rotations around the X axis. Can be intrinsic or extrinsic.

Sometimes called elevation.

• PoS – postsubiculum.

• Roll – rotations around the Y axis, Can be intrinsic or extrinsic.

• RV – Rayleigh vector (length).

• SphRV – spherical Rayleigh vector (length).

• Yaw – rotations around the intrinsic Z axis, in the intrinsic flat plane.
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Chapter 1

Spatial Cognition

1.1 Preamble

Across neuroscience, psychology, and other cognitive sciences, many of us share an

overarching, if grandiose, goal. We want to understand the subjective character of

experience (Nagel, 1974): how the fatty mass in our skulls conspires to generate the

model of the world that we �nd ourselves in. Unsurprisingly, for perhaps the most

complex object of its size known to humankind, there are numerous approaches to

this. Some work at the level of dendrites and molecular computation, others probe

the behaviour of undergraduate students.

Those of us who work in circuits and systems neuroscience tend to take the

action potential to be the fundamental unit of the computations that underlie cogni-

tion. Since the discovery of a largely rate-code based system of representing space,

spatial cognition has presented itself as a promising tool with which to understand

these computations. As a relatively high-level cognitive function in which stimuli

and their neural substrates remain coherently coupled, despite multisynaptic path-

ways, spatial cognition is an invaluable window into neural computation, and will

undoubtedly continue to help us to understand how we build our models of the

world.

This thesis will explore the structure of directional and orientational represen-

tations in neurons in the rat brain.
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1.2 Spatial Cognition, Cognitive Maps, and Naviga-

tion

Mobile animals share a common problem: they need to represent the world around

them, and their own state with respect to it. Without doing so, they would struggle

to navigate, feed, predate, �ee, nest, breed, and therefore, survive. Over the past

century, a wealth of research has supported the idea that they share a common,

highly conserved, solution: a cognitive map.

The concept of a cognitive map was �rst formalised by Edward Tolman (Tol-

man, 1948). According to Tolman, the cognitive map is an internal representation

of external, environmental, features. He posited that, through experience, animals

accumulate signals from the environment, using them to build a mental image. In

the context of space and navigational behaviours, this mental image takes the form

of a map of space and the animals position within it - the cognitive map. Tolman's

experimental work with rats showed that this map was indeed experience-based,

and �exible, allowing behaviours such as shortcut-taking.

This ability to take shortcuts comes from the concept of path integration (Dar-

win, 1873), and is a fundamental function in ef�cient navigation. Path integration is

the summation of a non-direct path into a representation of total displacement. For

example, an animal may be foraging, and take a convoluted path between points A

(its nest) and B (where it �nds food). However, once it has its food, it can then take

the shortest direct route back to its nest (B->A), rather than retracing its steps (Fig.

1.1, Left). This behaviour is ubiquitous in mobile animals, having been demon-

strated in ants (Wehner and Srinivasan, 1981), bees (Menzel et al., 2005), birds

(von Saint Paul, 1982), rodents (Etienne, 1987), and primates (Gallistel and Cramer,

1996). Path integration, along with the correction of accumulated error using land-

marks (Taube, 1995a), is strong evidence for the existence of a cognitive map in the

animals in which it has been observed.

A recurring theme in this thesis will be distinction between a planar and volu-

metric cognitive map. Essentially, this is a question of dimensionality. While most

animals operate in a 3D world, neural compute is expensive, and a system which
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can represent a usable cognitive map using less energy will be selected for. A planar

cognitive map, in other words representing the state of an animal on a 2D plane or

state-space, would likely use considerably less energy than a volumetric cognitive

map, in which the state of an animal is represented in a volume, or 3D state space.

In order to be useful in 3D environments, a planar cognitive map could be projected

onto the surface on which the animal is locomoting, or down onto an imaginary hor-

izontal plane. The possible utility of a planar cognitive map to animals which move

in volumes, such as birds and �sh, is an open question. A volumetric cognitive map

would avoid the potential shortcomings of a planar representation, allowing robust

navigation in all dimensions.

Figure 1.1: Ant Path Integration, and Political Compass. Left, �gure from Lambrinos
et al. (2000) showing the convoluted search path of an ant (thin black line) from
its nest (A) until it �nds prey (B) and takes a direct route back to the nest (thick
black line). Right, the political compass (politicalcompass.org), showing the
estimated political positions of a number of �gures, countries, and movements

If we consider navigation as the updating of estimated position within an in-

ternal cognitive map, we can imagine an abstraction of this system being applied to

other cognitive problems. The ability to represent a state as a point on a 2D map

(Fig. 1.1, Left), or graph, using X and Y variables is highly valuable in various

tasks, for instance, placing a political belief on the classic political compass: Left-

Right (X) and Libertarian-Authoritarian (Y) (Fig. 1.1, Right). A representation of
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this type could theoretically be extended inN dimensions. In this way, we could

interpret navigation as an evolutionary pressure which has developed a system to

abstractly represent continuous multidimensional variables. A similar system for

representing the orientation of an animal within this map could similarly be co-

opted in order to represent the orientation of other objects, or encode other periodic

variables. This idea will be explored in further detail throughout this work.

1.3 Spatial Neural Correlates in 2D Environments

When we refer to neural correlates, or encoding, of spatial variables, we are de-

scribing a link between the spiking of individual neurons (or populations thereof)

and some aspect of the relationship between an animal and the external world. We

assess these neural correlates by co-recording the activity of a set of neurons and

various behavioural variables. Historically, within spatial cognition, most neural

recordings have been made electrophysiologically using juxtacellular electrodes, or

bundles of four electrodes known as tetrodes. Tetrodes allow the identi�cation of

individual cells from noisy signals due to distance-mediated differences in spike

amplitudes between each electrode. Most neural correlates of spatial cognition de-

scribed in this chapter were discovered using electrophysiology paired with record-

ings of the behaviour of an animal as it explores a �at arena. The spatially selec-

tive cell types described below are highly conserved, many having been observed

throughout a diverse set of species, from invertebrates to primates.

1.3.1 Place Cells

The earliest spatial cell type to be discovered, and perhaps the most well known,

is the place cell (O'Keefe and Dostrovsky, 1971). Place cells were discovered in

the rat hippocampus after observations that animals with hippocampal damage per-

formed poorly in spatial paradigms. While recording cells from the hippocampus,

O'Keefe and Dostrovsky noted that some cells �red when the animal was situated in

a particular part of the recording arena (Fig. 1.2, Left). This part of the environment

came to be known as the "place �eld", each cell having its own distinct place �eld,

where its �ring rate is highest (Fig. 1.2, Right). Due to the variability in place �eld
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location, an entire environment can be tiled by a population of place �elds, allowing

the estimation of an animal's position from their activity. A different set of cells is

usually recruited for each new environment. These results led to the suggestion that

the cognitive map posited by Tolman was made up of place cells in the hippocam-

pus. Notably, place cells exhibit "replay" - a phenomenon in which sequences of

place cell activations occurring during awake movement, such as while exploring

a maze, reoccur during sleep (Skaggs and McNaughton, 1996). This observation

bolstered the idea that place cells underlie episodic memory.

Figure 1.2: Rat Place Cell. Left, path of rat in black with location of the rat when the cell
�red marked in blue.Right, resultant �ring rate map, showing place �eld. Red
is highest �ring rate, blue is lowest.

Place cells have been painstakingly studied in 2D in the years since their dis-

covery, but further discussion is beyond the scope of this thesis. A detailed review

was undertaken in Colgin (2020).

1.3.2 Boundary Vector Cells

Boundary Vector Cells (BVCs) were �rst proposed as an upstream input of place

cells (O'Keefe and Burgess, 1996; Burgess and O'Keefe, 1996), then recorded ex-

perimentally for the �rst time by Barry et al. (2006). The activity of BVCs is mod-

ulated by the distance of environmental boundaries in speci�c allocentric directions

with respect to the animal (Fig. 1.3). Border cells, which �re in response to prox-
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imity to a border of the environment, have also been reported (Solstad et al., 2008;

Lever et al., 2009). While similar, BVCs and border cells are thought to be compu-

tationally distinct, with differences observed during environmental manipulations

(Stewart et al., 2014).

Figure 1.3: Boundary Vector Cell in the Rat Subiculum, recorded in a circular arena.
(Right), with magni�ed view (Left ). Red is highest �ring rate, blue is lowest.
Figure adapted from Stewart et al. (2014).

1.3.3 Grid Cells

Grid cells (Fyhn et al., 2004; Hafting et al., 2005) in the medial entorhinal cor-

tex (mEC) encode location similarly to place cells, but with multiple �ring �elds.

These �elds are arranged in a hexagonal grid, hence the term "grid cells" (Fig. 1.4).

Functionally, they are thought to be involved in measuring distance as an animal

passes through successive �elds (Solstad et al., 2006). Like BVCs, grid cells have

been hypothesised to underlie place cell activity in the hippocampus. Grid cells are

thought to be organised in distinct modules down the dorsoventral axis of the mEC.

More dorsal modules have �ner grid scales, while more ventral cells' scales are

larger (Stensola et al., 2012). As with place cells, there is variability between cells

in the location of each cell's �elds (or phase), allowing them to cover environments

uniformly.
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Figure 1.4: Grid Cell in the Rat Entorhinal Cortex. Left , path of rat shown in grey, with
locations of rat when cell �red shown as black dots.Right, autocorrelogram.
Black lines show 6-fold symmetry of �eld arrangement. Figure adapted from
Stensola et al. (2012).

1.3.4 Head Direction Cells

Head direction cells (HDCs) (Taube et al., 1990a,b), perhaps the most broadly dis-

tributed spatially selective cell type in the brain (See Chapter 2, Section 2.2), tra-

ditionally encode the direction the head is facing in a compass-like manner. Each

HDC has a preferred �ring direction (PFD), usually denoted by the angleq, at

which its �ring rate is highest. Similarly to positional cell types, HDCs are thought

to integrate movements, this time in the form of angular head velocity (AHV), to

maintain a sense of current facing direction. In a symmetrical arena, rotating a vi-

sual cue on the wall will rotate the PFDs of all HDCs being examined, implying

that HDCs function as a single, distributed, network. A more detailed examination

of the HDC literature will be undertaken in Chapter 2.

1.3.5 Complex Interplay Between Place and Head Direction

Cells

As previously described, place cells and HDCs will often rotate together in response

to landmarks, a phenomenon modulated by the stability of the cues used (Knierim

et al., 1995). This hints at an interaction between landmarks and idiothetic cues.
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Figure 1.5: Rat Head Direction Cell. A, path of rat in black with location of the rat when
the cell �red marked in red.B, resultant �ring rate map, showing lack of place
or grid tuning. Red is highest �ring rate, blue is lowest.C, head direction
tuning curve in black, showing PFD in north-north-west. Head direction dwell
shown in yellow. Max �ring rate. Data recorded by author during screening.

Knierim et al. (1998) recorded place cells and HDCs in rats, while making sudden

changes to the position of visual cues mid-trial, introducing con�ict between visual

landmarks and the rat's own self-motion cues. When the con�ict was small (45°),

visual cues rotated the preferred �ring directions (PFD) of HDCs and the place

�elds of place cells in a similar fashion. Introduction of a larger con�ict caused

HDCs to prioritise idiothetic information, resisting a change in PFD. The place

cells, however, tended to completely remap in response to large con�icts, suggesting

a new representation of the environment, and challenging the idea that place cells

and HDCs always rotate together as a coherent representation.

In a later study, rats ran on ring-like tracks which were moved around a room

while place cells and HDCs were recorded (Yoganarasimha and Knierim, 2005).

Place cells maintained their �ring �elds relative to the local track, despite it mov-

ing around the room, while HDCs maintained their �ring directions, unaffected by

the parallax-shifts of distal cues in the room. When distal cues were rotated, the

�ring �elds of place cells, and the PFDs of HDCs shifted along with the cues. The

authors suggested therefore, that place cells were in�uenced by and interaction be-

tween local and idiothetic cues, while the orientation of the place cell ensemble was

controlled by the distal cues, via the head direction system. Another interpretation

of these results could be that HDCs provide an orienting signal to a positional en-
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coding system, aligning the self to the cognitive map, rather than playing an active

part in its generation.

1.3.6 Conjunctivity

While it is useful to refer to cells by their primary qualities, many spatially selective

cell types encode multiple variables. We refer to this property as conjunctivity.

The earliest place cells were noted to �re when "situated in a particular part of the

testing platform facing in a particular direction" (O'Keefe and Dostrovsky, 1971).

Likewise, grid cells have been shown to encode head direction (Sargolini et al.,

2006; Hardcastle et al., 2017), which may be locally modulated, with different PFDs

for different grid �elds in the same cell (Gerlei et al., 2020).

This idea of a multiplexed, heterogeneous, set of codes in the same cells may

appear to preclude any study of a single representation. However, if we consider the

set of �ring properties of spatially selective cell types as distributed systems, rather

than focusing on the idiosyncrasies of individual cells, we come to the idea of a set

of overlapping, distributed, spatial representations. When we talk about studying

HDCs, what we mean is that we are studying the broader representation of head

direction that this set of cells helps to encode (See Dudchenko et al. (2019) for an

alternative perspective). Due to variation in conjunctivity, and other properties, it is

valuable to record from multiple, anatomically distinct, populations when studying

spatial representations.

Many other spatially modulated neuron types have been discovered, but most

are beyond the scope of this thesis. For a comprehensive review, please see Grieves

and Jeffery (2017).

1.4 Spatial Neural Correlates in 3D Environments

While recording animals exploring 2D environments simpli�es experimental

paradigms, analysis, and provides useful insights into the function of spatial cog-

nition systems, it is often noted that few animals operate in purely planar, or �at,

environments. It can be argued that, for surface dwelling animals, a planar neu-

ral code would be more computationally ef�cient (or representative of possible
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behaviours), a property which would cause it to be selected for during evolution.

This planar neural code could be simply projected onto the surface upon which

the animal is locomoting. The counterpoint, a volumetricly structured represen-

tation, would allow representation of position in 3D space, and be applicable to

non-surface dwelling animals such as birds and �sh. The near-ubiquitous nature

of certain spatial representations can be interpreted in one of two ways. Either

the circuits which support them evolved early, in a common ancestor, and were

maintained due to their practicalities, or multiple space-representing species have

converged on a similar, optimal, representational structure. This point may seem

moot, but if the former is true, then it would seem more likely that such a sys-

tem would represent space in all three dimensions, allowing it to be evolutionarily

valuable to surface-dwellers and volume-dwellers alike.

Recently, there has been a drive towards recording classically 2D spatially

modulated cells in volumetric, or multiplanar environments. Due to the challenges

involved in both recording and analysis, the structure of spatial representations in

non-�at environments is less well-studied. Several papers have painted a complex

picture of their structure in volumetric and non-horizontal planar paradigms. A re-

view of the behavior of HDCs in non-horizontal environments will be undertaken

in Chapter 2.

1.4.1 Place Cells in 3D

The �rst study aiming to describe the activity of place cells in 3D space was Knierim

and McNaughton (2001). In this experiment, a rectangular track was tilted and

rotated into different positions, while pyramidal cells were recorded in rat CA1.

In theory, the movement of this planar arena into different positions would allow

sampling of a 3D cognitive map. Tilting the track resulted in remapping of some

place �elds, while others remained the same. The authors concluded that place

�elds change their tuning arbitrarily in response to changes in context, but that they

were not sampling a fundamentally volumetric representation.

In Hayman et al. (2011), place cells were recorded while rats traversed a pair of

mazes. One was a vertically oriented pegboard, on which rats could climb vertically
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and horizontally. The other was a helix, resembling a spiral staircase. In both

paradigms, place �elds were elongated vertically (Fig. 1.6), suggesting reduced,

but not absent, vertical spatial resolution. However, this may be the product of

environment geometry, and the resulting constraints on movement, rather than the

natural structure of the representation.

Figure 1.6: Rat Place Cell Recorded on the Helical Maze in Hayman et al. (2011). A,
Helical maze.B, top-down view of the path of a rat, with a cell's spikes shown
in red. C, cell �ring rates at each level of the maze, with running direction
shown, and each level's path and spikes shown to the side. Figure adapted from
Hayman et al. (2011).

Yartsev and Ulanovsky (2013) recorded neurons in the hippocampus of �ying

bats using a wireless telemetry system. Pyramidal place cells in CA1 were active in

distinct 3D volumes in the recording room, with >90% of cells encoding each axis

with similar resolution, indicating a uniform representation of 3D space, rather than

any vertical extension of planar place �elds (Fig. 1.7). Due to the unconstrained

nature of movement in bats, we cannot infer the presence or lack of any in�uence

of environmental geometry on their spatial representation. If constrained, bat place

�elds may also conform to contextual structure. It is also possible that bats evolved

out of an adaptive planar spatial code if it served no purpose. Later work showed

that the place cell representation in bats is stable across days (Liberti et al., 2022).

Data presented in Grieves et al. (2020) does suggest that place �elds are in�u-

enced by environmental geometry, or motor affordances. Place cells recorded wire-

lessly while a rat climbed within a cubic lattice (Fig. 1.8, A) showed place �elds
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Figure 1.7: Bat place cell in 3D space, from Yartsev and Ulanovsky (2013). Top Left,
Path of bat in grey, with spikes in red.Top Right, cell's �ring rate within the
recording room.Bottom, Calculated volumetric place �eld for the cell.

which spanned the available volume (Fig. 1.8, B), and were elongated along the

axes of the lattice, which also constrained movement. When the lattice was tilted,

and cells re-recorded, place �elds elongated along the axes of the newly tilted lattice

(Fig. 1.8, C), indicating that this adaption was tied to the environmental geometry,

rather than anchored to gravity.

Figure 1.8: Rat Place Cells in a 3D Volume, from Grieves et al. (2020). A, Cubic Lattice
Recording ArenaB, Volumetric place �elds calculated from the place cells of
one rat, with the lattice �at. C, Volumetric place �elds calculated from the
place cells of one rat, with the lattice tilted.
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1.4.2 Grid Cells in 3D

Alongside place cells, Hayman et al. (2011) recorded grid cells on the pegboard

and helix (Fig. 1.9, Left; Fig. 1.6, A). Grid �elds in both arenas formed vertical

stripes (Fig. 1.9, Right), as if sampling a columnar vertical projection of �at-arena

grid �elds. This has implications for the existence of neural odometry, and path

integration, in the vertical dimension in rats. These results led to the suggestion that

grid �elds span 3D space as a set of vertical columns.

Figure 1.9: Rat Grid Cell on the Pegboard, from Hayman et al. (2011). Left, Pegboard
recording arena.Top Right, path taken by rat in black, spike positions in red.
Bottom Right, calculated ratemap, with maximum �ring rate shown.

Motivated by their previous work, Hayman et al. (2015) went on to test this

columnar hypothesis (Fig. 1.10, A) using an arena composed of a �at area, and an

adjacent sloping area (Fig. 1.11, A). If the columnar hypothesis were correct, they

expected to see grid �elds elongated up and down the slope. This would be due

to the rats sampling a `slice' of the column at an angle. An alternative volumetric
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hypothesis was that grid cells encode 3D space with their grid �elds like packed

balls (Fig. 1.10, B). Finally, if grid cells were capable only of encoding planar

position, that their �elds would be projected onto whichever surface that the rat

was locomoting on (Fig. 1.10, C). Their data showed that grid �elds on the sloped

area of the recording arena were indistinguishable from those on the �at area (Fig.

1.11, B), supporting the idea of a planar representation which is projected onto the

locomotor surface.

Figure 1.10: Grid Field Hypotheses, adapted from Hayman et al. (2015). A, Columnar
hypothesis, with grid �elds in red, sampled slice in pegboard experiment in
light grey.B, volumetric lattice hypothesis, with sloping slice in light grey.C,
planar hypothesis, with grid �elds projected onto slope.

Figure 1.11: Grid Cell On a Slope, adapted from Hayman et al. (2015). A, recording
arena, with sloped and �at areas.B, path of rat, with spikes in red. Left half
is sloped area of arena, right half is �at area.

The difference in results from these two studies could be due to a number of

disparities. As in Grieves et al. (2020), motor affordances are likely to play a part

in the structure of the representation. In the pegboard experiment, rats were only
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able to move between discrete states, standing on one peg, then the next, rather

than moving in a continuous fashion as they would on a �at arena. This difference

may interfere with the odometry function of grid cells. If their representations is

planar, grid cells may not encode the allocentric vertical dimension, or indeed the

egocentric vertical dimension – the dimension orthogonal to the body plane.

To address this question, Casali et al. (2019) recorded rats foraging on the �oor

and one wall of an arena (Fig. 1.12, A). Laboratory rats are often raised in small

cages, precluding normal vertical exploration in their early life. This lack of expe-

rience of 3D movement may have an effect on spatial coding. To address this, the

authors raised the rats in a large (2x2x2m) cage, �lled with climbing apparatus. One

would expect grid cells' �ring �elds on the wall to resemble either stripes, based on

Hayman et al. (2011)(Fig. 1.12, B) and the columnar hypothesis, or a regular grid,

based on Hayman et al. (2015)(Fig. 1.12, C) and the planar projection hypothesis.

The results de�ed expectations, with grid cells' �elds on the wall resembling grid

�elds, but fewer and larger than on the �oor (Fig. 1.12, D), indicating attenuated

spatial coding, and neural odometry. This result is suggestive of a complex repre-

sentation, involving integration of both egocentric (the body plane) and allocentric

(gravity) information.

Grieves et al. (2021) recorded grid cells in rats foraging in the same cubic lat-

tice used in Grieves et al. (2020) (Fig. 1.8, A). Their data showed grid �elds which

were stable over time, but lacked the regularity of �at-plane grid patterns (Fig.

1.13). Instead, most grid �elds were ellipsoid, sparsely and irregularly arranged,

and had more variability in size than their planar counterparts, perhaps more like

mushy peas than the hypothesised packed balls.

Together, these data paint a complex picture of spatial encoding in 3D envi-

ronments. Cells which are spatially tuned on horizontal surfaces tend to be able

to represent the vertical dimension in non-horizontal paradigms, but with reduced

resolution and regularity. This could be interpreted as evidence that the rodent brain

uses neither a purely planar, or purely volumetric representation of space, but per-

haps an adaptive code which is in�uenced by the structure of the local environment.
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Figure 1.12: Grid Cell On the Wall, adapted from Casali et al. (2019). A, recording
arena, with wall and �oor areas.B, columnar hypothesis, with expected grid
�elds. C, planar hypothesis, with expected grid �elds.D, example recorded
cells. Path in black, spikes in red for each cell on the left. Top is wall, bottom
is �oor.

One problem with this hypothesis is the utility of such a code for neural odometry

and path integration; how would representations differing in structure be integrated

as animals move between differently structured environments? This idea will be

discussed further, in the context of HDCs, in later chapters.

1.5 Non-Spatial 1D and 2D Variables

More recently, the idea of the spatial cognition system representing various non-

spatial variables has been explored. Aronov et al. (2017) showed that continuous,

task-relevant variables were readily encoded by hippocampal (Fig. 1.14, A) and

entorhinal (Fig. 1.14, B) cells which encoded spatial variables in other paradigms.

In this work, rats used a joystick to manipulate a tone along a continuous frequency
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Figure 1.13: Grid Cell in the lattice, adapted from Grieves et al. (2021). Left, recording
lattice, with path of rat in light grey, spikes for current cell in red.Right, �ring
rate map calculated for current cell.

axis, aiming for a target pitch which would trigger a reward. Cells represented

speci�c `locations' on the frequency axis similarly to place and grid cells on a 1D

linear track. Those same cells behaved as place and grid cells when subsequently

recorded while the rat was foraging in a 2D arena.

Related work in humans used fMRI to explore the representation of 2D con-

ceptual knowledge. In this framework, the X and Y axes usually used to denote co-

ordinates of a map were assigned to the leg length and neck length of a cartoon bird

presented as a stimulus. In this way changes in neck and leg length were encoded

analogously to physical space, with activity levels displaying grid-like patterns as

subjects `navigated' through bird-space (Constantinescu et al., 2016). This work

uses the same fMRI activity interpretation as Doeller et al. (2010), in which move-

ments through task-space show a 6-fold symmetry, along the axes of a putative grid

cell population. For a comprehensive review of encoding of non-spatial variables

by the place cell system, see O'Keefe and Krupic (2021).
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