
T E C H N I C A L R E L E A S E

ensemblQueryR: fast, flexible and
high-throughput querying of
Ensembl LD API endpoints in R

Submitted: 23 May 2023
Accepted: 11 September 2023
Published: 14 September 2023

* Corresponding author. E-mail:
ucbtas8@ucl.ac.uk

† Contributed equally.

Published by GigaScience Press.

Preprint submitted at https:
//doi.org/10.48550/arXiv.2308.06792

This is an Open Access article
distributed under the terms of the
Creative Commons Attribution
License (https://creativecommons.
org/licenses/by/4.0/), which permits
unrestricted reuse, distribution, and
reproduction in any medium,
provided the original work is
properly cited.

Gigabyte, 2023, 1–10

Aine Fairbrother-Browne1,2,3,*, Sonia García-Ruiz1,4,
Regina Hertfelder Reynolds1,4, Mina Ryten1,4,† and Alan Hodgkinson2,†

1 Department of Genetics and Genomic Medicine Research & Teaching, UCL GOS Institute of Child Health,
London, UK

2 Department of Medical and Molecular Genetics, School of Basic and Medical Biosciences, King’s College
London, London, UK

3 Department of Neurodegenerative Disease, Queen Square Institute of Neurology, UCL, London, UK
4 NIHR Great Ormond Street Hospital Biomedical Research Centre, University College London, London,

UK

ABSTRACT
We present ensemblQueryR, an R package for querying Ensembl linkage disequilibrium (LD)
endpoints. This package is flexible, fast and user-friendly, and optimised for high-throughput
querying. ensemblQueryR uses functions that are intuitive and amenable to custom code
integration, familiar R object types as inputs and outputs as well as providing parallelisation
functionality. For each Ensembl LD endpoint, ensemblQueryR provides two functions, permitting
both single- and multi-query modes of operation. The multi-query functions are optimised
for large query sizes and provide optional parallelisation to leverage available computational
resources and minimise processing time. We demonstrate improved computational performance
of ensemblQueryR over an exisiting tool in terms of random access memory (RAM) usage
and speed, delivering a 10-fold speed increase whilst using a third of the RAM. Finally,
ensemblQueryR is near-agnostic to operating system and computational architecture through
Docker and singularity images, making this tool widely accessible to the scientific community.

Subjects Software and Workflows, Bioinformatics, Genetics, Software Engineering

STATEMENT OF NEED
Background
Linkage disequilibrium (LD) is the non-random association of alleles arising from different
loci [1]. In population genetics, LD is a measure of the frequency with which an allele of one
variant is correlated with an allele of a proximal variant within a particular population [2].
There are many applications for LD measures in genomics workflows. For example, in the
context of genome-wide association studies (GWAS), which have been used to detect
associations between genetic variants and a wide range of human phenotypes, downstream
interrogation of local LD structure is required to identify the potential ‘causal’ variant at a
nominated locus that exerts an effect on the downstream phenotype. Equally, in expression
quantitative trait loci (eQTL) analyses, which aim to uncover associations between genetic
variants and the expression of a cis or trans gene (eGene), LD information is required for
the identification of the potential causal variant affecting the expression of the eGene.

Gigabyte, 2023, DOI: 10.46471/gigabyte.91 1/10

mailto:ucbtas8@ucl.ac.uk
mailto:ucbtas8@ucl.ac.uk
mailto:ucbtas8@ucl.ac.uk
mailto:ucbtas8@ucl.ac.uk
mailto:ucbtas8@ucl.ac.uk
mailto:ucbtas8@ucl.ac.uk
mailto:ucbtas8@ucl.ac.uk
mailto:ucbtas8@ucl.ac.uk
mailto:ucbtas8@ucl.ac.uk
mailto:ucbtas8@ucl.ac.uk
mailto:ucbtas8@ucl.ac.uk
mailto:ucbtas8@ucl.ac.uk
mailto:ucbtas8@ucl.ac.uk
mailto:ucbtas8@ucl.ac.uk
mailto:ucbtas8@ucl.ac.uk
mailto:ucbtas8@ucl.ac.uk
mailto:ucbtas8@ucl.ac.uk
https://doi.org/10.48550/arXiv.2308.06792
https://doi.org/10.48550/arXiv.2308.06792
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.46471/gigabyte.91


Further downstream, LD information is useful for functional annotations, where genetic
variants or regions in LD with a target variant can aid in the identification of biological
processes that might be affected by the GWAS- or eQTL-implicated target variant. As such, it
is important that the LD information for a range of human populations can be easily
queried by researchers in an efficient and accessible way.

Despite the widespread usage of LD measures in genomic research, the majority of tools
available at present are web-based. Although these offer user-friendly interfaces and can be
useful for one-off or small queries, they do not promote reproducibility and are not suited
to workflow-oriented researchers wishing to submit multiple large queries. Programmatic
tools offer a solution to these problems; however, very few tools for the retrieval of LD
metrics exist.

To our knowledge, only one R package provides a programmatic interface for LD metric
retrieval. LDlinkR (version 1.2.3) [3] provides an R-based interface to the web-based tool
LDlink [4], permitting retrieval of LD metrics using a range of query types. However,
LDlinkR has a number of key limitations with respect to speed and query handling. Firstly,
the user is required to obtain an access token by signing up on the NCBI website, which is
then supplied as an argument to all LDlinkR functions. This requirement is in place to limit
user queries, meaning that attempts to speed up the tool using parallelisation easily exceed
query limits and cause the tool to return timeout errors. This can result in the user’s access
token being blocked. Secondly, a number of functions for retrieving LD metrics are
configured for singular queries only – such as the LDpair and LDproxy functions – meaning
that the user must write custom code to submit more
than one query at one time. As such, although LDlinkR is a useful programmatic alternative
to the LDlink web tool, it is not suited to fast, high-throughput multi-query retrieval of LD
metrics.

Ensembl (RRID:SCR_002344) is another widely used source of LD metrics, offering an
application programming interface (API) that supports an array of query configurations
[5, 6]. However, some challenges are presented by direct API usage as its usage requires
some technical expertise. Additionally, it is not easily integrable with typical R workflows,
precludes the input of standard R objects (such as data frames, lists or vectors), does not
output data in an intuitive format and is not easily adaptable to high-throughput workflows.
To our knowledge, no R package has been developed to facilitate querying the Ensembl API
and, in particular, to retrieve Ensembl LD metrics. In light of this, and to address the
limitations of current tools, we present ensemblQueryR. Our R package provides fast,
efficient, user-friendly querying of Ensembl LD data, with a focus on intuitive,
high-throughput R workflow integration.

ensemblQueryR has been made freely available (DOI: 10.5281/zenodo.7837882) [7, 8]. The
package can also be used in Docker (RRID:SCR_016445) [9] or Singularity [10] containers, for
which the images can be found on Docker Hub [11] or the Singularity image repository [12].

Implementation
Our approach
ensemblQueryR provides a suite of functions that wrap around three Ensembl API
‘endpoints’. These endpoints operate to retrieve data from Ensembl databases through the
following query configurations:

Gigabyte, 2023, DOI: 10.46471/gigabyte.91 2/10

https://scicrunch.org/browse/resources/SCR_002344
https://doi.org/10.5281/zenodo.7837882
https://scicrunch.org/browse/resources/SCR_016445
https://doi.org/10.46471/gigabyte.91


Table 1. The functions comprising the ensemblQueryR package and their relationship to the three LD Ensembl API endpoints.

ensemblQueryR function Ensembl API
endpoint

Arguments Output Description

ensemblQueryGetPops Information [5] N/A A list of human populations for which LD metrics
can be retrieved. 

This function retrieves a list of the
Ensembl populations for which LD
metrics can be queried (for further
information on the available
populations, see Ensembl [13]). These
can be supplied to the ‘pop’ argument
across ensemblQueryR functions.

pingEnsembl Information [5] N/A An integer (and a message) to indicate the status of
the Ensembl API. Returns 1 and reports “Server OK.”
if the server is up.

This function checks and informs the
user of the status of the Ensembl API.

ensemblQueryLDwithSNPwi
ndow

Window [5] rsid
r2
d.prime
window.size
pop

A data frame with five columns: ‘query’ (the variant
input to ‘rsid’), snp_in_ld (variant(s) in LD with
‘query’), r2 (r-squared statistic), d_prime (D′
statistic), population_name (the population supplied
to ‘pop’).

This function retrieves variants in LD
with the query variant within a given
genomic window.

ensemblQueryLDwithSNPwi
ndowDataframe

Window [5] in.table
r2
d.prime
window.size
pop
cores

A data frame with five columns: ‘query’ (the variant
input to ‘rsid’), snp_in_ld (variant(s) in LD with
‘query’), r2 (r-squared statistic), d_prime (D′
statistic), population_name (the population supplied
to ‘pop’).

This function takes a data frame with a
column of variant rsIDs (Reference SNP
cluster IDs). It retrieves variants in LD
with each query variant within a given
genomic window.

ensemblQueryLDwithSNPpair Pair [5] rsid1
rsid2
pop

A data frame with five columns: ‘query1’ (the
variant input to ‘rsid1’), ‘query2’ (the variant input
to ‘rsid2’), r2 (r-squared statistic), d_prime (D′
statistic), population_name (the population supplied
to ‘pop’).

This function takes a pair of rsIDs and
retrieves their LD metrics (D′ and R2).

ensemblQueryLDwithSNPpa
irDataframe

Pair [5] in.table
pop
cores

A data frame with five columns: ‘query1’ (the
variant input to ‘rsid1’), ‘query2’ (the variant input
to ‘rsid2’), r2 (r-squared statistic), d_prime (D′
statistic), population_name (the population supplied
to ‘pop’).

This function takes a data.frame
containing paired rsIDs, retrieving LD
metrics (D′ and R2) for all pairs.

ensemblQueryLDwithSNPre
gion

Region [5] chr
start
end
pop

A data frame with eight columns: ‘query_chr’ (the
query chromosome supplied to ‘chr’), ‘query_start’
(the query start coordinate supplied to ‘start’),
‘query_end’ (the query end coordinate supplied to
‘end’), ‘rsid1’ (variant one of two in the pair), ‘rsid2’
(variant two of two in the pair), r2 (r-squared
statistic), d_prime (D′ statistic), population_name
(the population supplied to ‘pop’).

This function takes a genomic
coordinate, retrieving LD metrics (D′ and
R2) for all rsID within the defined region.

ensemblQueryLDwithSNPre
gionDataframe

Region [5] in.table
pop
cores

A data frame with eight columns: ‘query_chr’ (the
query chromosome supplied to ‘chr’), ‘query_start’
(the query start coordinate supplied to ‘start’),
‘query_end’ (the query end coordinate supplied to
‘end’), ‘rsid1’ (variant one of two in the pair), ‘rsid2’
(variant two of two in the pair), r2 (r-squared
statistic), d_prime (D′ statistic), population_name
(the population supplied to ‘pop’).

This function takes a data frame
containing genomic coordinate(s) and
retrieves LD metrics (D′ and R2) for all
rsID within the defined region(s).

1. Window: retrieval of the LD metrics for a variant and all the other variants in a
window around the target variant;
2. Pair: retrieval of the LD metrics between a pair of target variants;
3. Region: retrieval of the LD metrics between all pairs of variants in a defined target
region.

Single-query and multi-query wrapper functions are provided for each of these Ensembl
API endpoints, all of which are described in detail in Table 1.

To make ensemblQueryR useful in a high-throughput context, the main challenge is that
the Ensembl API endpoints are configured to handle single queries. To address this,
ensemblQueryR’s three multi-query functions (with names ending in ‘Dataframe’, as
described in Table 1) take data frame objects as input, where each row needs to be
submitted as a separate query to the Ensembl API. The base R lapply function

Gigabyte, 2023, DOI: 10.46471/gigabyte.91 3/10

https://doi.org/10.46471/gigabyte.91


(Version 4.0.5) [14] is then used to apply the corresponding single-query function
over the  input data frame, iteratively formulating an API query from each data frame
row.

Building on ensemblQueryR’s high-throughput capabilities, we implemented optional
parallelisation for all multi-query functions. Each multi-query function (those with names
ending in ‘Dataframe’ in Table 1) has an argument that allows the user to set a number of
‘cores’ to parallelise the query across. Using this functionality can significantly reduce
run-time, particularly for larger queries where the parallelisation overheads represent a
small proportion of the overall memory requirements. For example, with a query size of
1,000, the ensemblQueryLDwithSNPpairDataframe function running on a single core takes
∼2.4 min, whereas ten cores speed the process up by 22 times, reducing the execution time
to ∼0.11 min (System tested on: Ubuntu server 16.04 LTS with kernel version
4.4.0-210-generic, total RAM 251G).

Consistency of the data output format is an important feature of ensemblQueryR,
making it amenable to R workflow integration. All functions (single- and multi-query)
return a data frame object, including instances where the query returns a null result or an
error. This consistent output format simplifies writing custom code, allowing users to
incorporate ensemblQueryR functionality into bespoke workflows. It is important to note
that when data cannot be retrieved, for example, if a variant is not found in Ensembl
databases or the user input is invalid, console messages alert the user of this and a data
frame row containing ‘NA’ values is returned for that query.

Benchmarking
LDlinkR is an alternative R package that offers LD metric retrieval. As such, it was
important to benchmark against this tool to demonstrate the utility of ensemblQueryR for
high-throughput querying. Of the functions contained in the LDlinkR and ensemblQueryR
packages, two functions are particularly comparable in their functionality. Both LDpair
(from LDlinkR) and ensemblQueryLDwithSNPpair (from ensemblQueryR) take a pair of
reference SNP cluster identifiers (rsIDs) as input, while the output is a table containing the
LD metrics for the query pair. As such, these functions were selected for benchmarking. To
compare the performance of the two functions, the computation speed and RAM usage at
three query sizes representing a range of throughputs – 100, 1,000 and 10,000 queries –
were assessed (Figure 1). For each function and query size combination, performance
(speed and peak RAM usage) was tested ten times to account for temporal
 fluctuations in  processing  speed and peak RAM usage, thus enabling a precise
performance  assessment.

Firstly, comparing execution speed, we found that, on average (across the ten tests),
ensemblQueryLDwithSNPpair was 10.2 times faster in the 100-query test, taking an average
of 0.208 min compared to the 2.12 min for LDpair (Figure 1b). The 1,000-query test found
that ensemblQueryLDwithSNPpair was, on average, 9.92 times faster than LDlinkR, taking
an average of 1.97 min compared to the 19.5 min for LDpair. Finally, in the 10,000-query
test, LDpair was unable to produce a final results table in seven out of ten tests, in these
instances returning an error message (‘Bad Gateway (HTTP 502)’). In contrast,
ensemblQueryLDwithSNPpair produced a final results table in all tests, demonstrating its
reliability for high-throughput querying. Looking at the only three successful tests of
LDpair, we found that ensemblQueryLDwithSNPpair was, on average, 10.9 times faster

Gigabyte, 2023, DOI: 10.46471/gigabyte.91 4/10

https://doi.org/10.46471/gigabyte.91


Figure 1. Comparison of performance metrics between analogous functions of the ensemblQueryR and LDlinkR
R packages. (a) Plot showing, for query sizes of 100, 1,000 and 10,000, the maximum RAM usage (mebibytes,
MiB) during the execution of ensemblQueryR’s ensemblQueryLDwithSNPpair (red) and LDlinkR’s LDpair (blue).
(b) Plot showing, for query sizes of 100, 1,000 and 10,000, the execution time (minutes, mins) of ensemblQueryR’s
ensemblQueryLDwithSNPpair (red) and LDlinkR’s LDpair (blue).

than LDpair, taking an average of 18.5 min compared to the 202 min (>3 h) for LDpair.
These speed improvements are likely due to request rate limits from the server side, which
are higher for Ensembl, thus enabling fast concurrent or parallel requests.

Secondly, we compared the peak RAM usage – the maximum RAM utilised at any time
during function execution – between ensemblQueryLDwithSNPpair and LDpair (Figure 1a).
We found that across query sizes, ensemblQueryLDwithSNPpair had approximately a third
(range: 20.8–49.6%) of the peak RAM usage of LDpair. These peak RAM usage improvements
are likely due to a focus on within-function reductions of intermediate object storage and a
reduction of the number of operations carried out within the ensemblQueryLDwithSNPpair
function.

We conclude that, by comparing analogous functions (ensemblQueryLDwithSNPpair and
LDpair), ensemblQueryR provides a performance improvement over LDlinkR with respect
to both speed (×10) and memory usage (1/3), underscoring the utility of our tool in the
context of high-throughput workflows.

Usage
The following code provides an implementation example for ensemblQueryR. In this case,
the target variant was taken from the OpenTargets homepage [15] with rsID rs4129267. To
find out which variants, within a set of genomic window sizes, are in LD (R2 > 0.8 and D′ >
0.8) with the target variant, the ensemblQueryLDwithSNPWindow function was
implemented as in Figure 2.

Methods
Docker and singularity images. In order to make this tool widely accessible to the research
community, we have provided a Docker image (Figure 3). It is based on a Rocker
(RRID:SCR_024215) [16] with R version 4.0.0 and Ubuntu version 20.04 LTS (Focal Fossa)
pre-installed. To start a container using the ‘ensemblqueryr’ Docker image and launch an

Gigabyte, 2023, DOI: 10.46471/gigabyte.91 5/10

https://identifiers.org/ensembl:rs4129267
https://scicrunch.org/browse/resources/SCR_024215
https://doi.org/10.46471/gigabyte.91


Figure 2. Working example of an ensemblQueryR implementation.

interactive R session within which the tool can be used, the following command can be
executed on the command line:

docker pull ainefairbrotherbrowne/ensemblqueryr:1.0; ∖
docker run -t -d --name ensemblqueryr
ainefairbrotherbrowne/ensemblqueryr:1.0; ∖
docker exec -i -t ensemblqueryr R

To mount a local volume that contains a file of variant IDs, the following command can
be used:

docker pull ainefairbrotherbrowne/ensemblqueryr:1.0; ∖
docker run -t -d --name ensemblqueryr ainefairbrotherbrowne/ensemblqueryr:1.0
-- path/to/volume; ∖
docker exec -i -t ensemblqueryr R

Additionally, for use-cases wherein the user does not have sufficient permissions to use
Docker, such as on HPC clusters, a singularity image can be used instead. To generate a
singularity image, we converted the ensemblQueryR docker image [11] into a singularity
image using the Docker-based tool docker2singularity (Version 2.6) [17]. This image can be
found on the sylabs.io singularity repository [12]. The singularity image can be pulled and
executed, launching a command line R session as follows:

singularity pull --arch amd64
library://ainefairbrother/ensemblqueryr/ensemblqueryr:sha256.e387ea11ae4eaea8
f94d81c625c2c1d5a22dd351858ebcd03910a7736d76ca30; ∖
singularity exec
ensemblqueryr_sha256.e387ea11ae4eaea8f94d81c625c2c1d5a22dd351858ebcd03910a773
6d76ca30.sif R

Benchmarking. To benchmark our package against LDlinkR, we first selected functions that
performed similar tasks. The most comparable functions in this context were LDlinkR’s

Gigabyte, 2023, DOI: 10.46471/gigabyte.91 6/10

https://doi.org/10.46471/gigabyte.91


Figure 3. Dockerfile containing the setup for the ensemblQueryR Docker image.

‘LDpair’ and ensemblQueryR’s ‘ensemblQueryLDwithSNPpair’. Both are configured for
single queries and take a pair of variant IDs as input, retrieving the corresponding LD
metrics through an API query. To run multiple queries using these single-query functions,
both functions were applied over variant identifier (ID) vectors using the base R lapply
(Version 4.0.5) [14].

To compare the utility of these functions for LD metric querying in the context of
high-throughput workflows, we measured the peak RAM usage and execution speed
using the R package peakRAM (version 1.0.2) [18] 10 times for each function and at three
query sizes (100, 1,000 and 10,000). The standard deviation (sd) of the performance
metric for each function at each time point across the ten iterations was calculated.
Mean performance metrics were plotted with error bars to show the sd from the mean

Gigabyte, 2023, DOI: 10.46471/gigabyte.91 7/10

https://doi.org/10.46471/gigabyte.91


for peak RAM usage (Figure 1a) and time measured in minutes (Figure 1b) for the three
query sizes.

Limitations
It is important to note that there are some limitations to this R package. First, although this
package enables high-throughput querying of the Ensembl API, there is an inherent limit to
the number of queries that can be submitted arising from the API query limit, which is set
at 54,000 requests per hour [5, 6]. On the Ubuntu system used to develop ensemblQueryR
(Ubuntu server 16.04 LTS with kernel version 4.4.0-210-generic, total RAM 251 G), 54,000 API
requests via ensemblQueryLDwithSNPpairDataframe took ∼1.93 h on a single core, making
the per-hour request rate 27,867. As such, even query sizes of 54,000 can be run
unparallelised and are unlikely to exceed the Ensembl API hourly rate. However, this
request limit must be considered by users when applying parallelisation to large queries.
The second limitation is that the parallelisation library used to enable the multi-core
functionality is the R package ‘parallel’ (version 3.6.2) [19], which works on OSIX systems
(Mac, Linux and other Unix-based operating systems) but does not work on Windows.

Scope for future development
At present, this package provides wrappers for the Ensembl API endpoints that retrieve LD
data. However, the Ensembl API offers ∼109 other endpoints [5], all of which have the
potential to be wrapped into R functions and included in this package. As such, there is
scope for the usefulness of this package beyond LD metrics and further development will
expand its utility to R users across an array of bioscience disciplines.

AVAILABILITY OF SOURCE CODE AND REQUIREMENTS
• Project name: ensemblQueryR
• Project home page: https://github.com/ainefairbrother/ensemblQueryR
• Operating system(s): Platform independent
• Programming language: R
• Licence: MIT
• RRID: SCR_024216.

DATA AVAILABILITY
Snapshots of the code are available in GigaDB [20].

ABBREVIATIONS
API, Application Programming Interface; eGene, expression of a cis or trans gene; eQTL:
Expression Quantitative Trait Loci; GWAS: Genome-Wide Association Study; ID, identifier;
LD: Linkage Disequilibrium; RAM: Random Access Memory; REST: Representational State
Transfer; rsID: Reference SNP cluster IDs; sd: standard deviation.

DECLARATIONS
Ethical approval
The authors declare that ethical approval was not required for this type of research.

Gigabyte, 2023, DOI: 10.46471/gigabyte.91 8/10

https://github.com/ainefairbrother/ensemblQueryR
https://scicrunch.org/browse/resources/SCR_024216
https://doi.org/10.46471/gigabyte.91


Competing Interests
RHR is currently employed by CoSyne Therapeutics (Lead Bioinformatician). All work
performed for this publication was performed in her own time, and not as a part of her
duties as an employee.

Author contributions
AFB and RHR: conceptualisation. AFB: software. AFB and SGR: docker image. AFB:
benchmarking. AFB: writing - original draft. AFB, SGR, AH, MR and RHR: writing - review
and editing. MR and AH: supervision.

Funding
AFB was supported through the award of a Biotechnology and Biological Sciences Research
Council (BBSRC UK) London Interdisciplinary Doctoral Fellowship. SGR and MR were
supported through the award of a Tenure Track Clinician Scientist Fellowship to MR
(MR/N008324/1). AH was funded by a BBSRC award (BB/R006075/1).

REFERENCES
1 Slatkin M. Linkage disequilibrium — understanding the evolutionary past and mapping the medical

future. Nat. Rev. Genet., 2008; 9: 477–485. doi:10.1038/nrg2361.

2 Bush WS, Moore JH. Chapter 11: Genome-wide association studies. PLoS Comput. Biol., 2012; 8(12):
e1002822. doi:10.1371/journal.pcbi.1002822.

3 Myers TA, Chanock SJ, Machiela MJ. LDlinkR: An R package for rapidly calculating linkage
disequilibrium statistics in diverse populations. Front. Genet., 2020; 11: 157.

4 Machiela MJ, Chanock SJ. LDlink: a web-based application for exploring population-specific haplotype
structure and linking correlated alleles of possible functional variants. Bioinformatics, 2015; 31(21):
3555–3557. doi:10.1093/bioinformatics/btv402.

5 Ensembl Rest API - Ensembl REST API Endpoints. 2015; https://rest.ensembl.org/. Accessed 5 Nov
2022.

6 Yates A, Beal K, Keenan S et al. The ensembl REST API: Ensembl data for any language.
Bioinformatics, 2015; 31(1): 143–145. doi:10.1093/bioinformatics/btu613.

7 Fairbrother-Browne A. ensemblQueryR (Version 2.0.0). Zenodo, 23 May 2023;
https://doi.org/10.5281/zenodo.7837882.

8 Fairbrother-Browne A. ensemblQueryR (Version 2.0.0). GitHub, 23 May 2023;
https://github.com/ainefairbrother/ensemblQueryR.

9 Merkel D. Docker: lightweight Linux containers for consistent development and deployment. Linux J.,
2014; 2014(239): 2.

10 Kurtzer GM, Sochat V, Bauer MW. Singularity: Scientific containers for mobility of compute. PLOS
One, 2017; 12(5): e0177459. doi:10.1371/journal.pone.0177459.

11 Fairbrother-Browne A. ensemblqueryr (Version 1.0). Docker Hub, 22 May 2023;
https://hub.docker.com/r/ainefairbrotherbrowne/ensemblqueryr.

12 Fairbrother-Browne A. ensemblqueryr (Version 1.0). sylabs.io, 22 May 2023;
https://cloud.sylabs.io/library/ainefairbrother/ensemblqueryr/ensemblqueryr.

13 Ensembl Population Frequencies & Genotypes.
https://www.ensembl.org/info/genome/variation/species/populations.html. Accessed 23 May 2023.

14 R Core. R: A language and environment for statistical computing, 2021; Available at:
https://cran.r-project.org/doc/manuals/r-release/fullrefman.pdf.

15 Open Targets Genetics. https://genetics.opentargets.org/. Accessed 23 May 2023.

16 Boettiger C, Eddelbuettel D. An introduction to Rocker: Docker containers for R. R J., 2017; 9(2):
527–536. doi:10.32614/RJ-2017-065.

Gigabyte, 2023, DOI: 10.46471/gigabyte.91 9/10

https://doi.org/10.1038/nrg2361
https://doi.org/10.1371/journal.pcbi.1002822
https://doi.org/10.1093/bioinformatics/btv402
https://rest.ensembl.org/
https://doi.org/10.1093/bioinformatics/btu613
https://doi.org/10.5281/zenodo.7837882
https://github.com/ainefairbrother/ensemblQueryR
https://doi.org/10.1371/journal.pone.0177459
https://hub.docker.com/r/ainefairbrotherbrowne/ensemblqueryr
https://cloud.sylabs.io/library/ainefairbrother/ensemblqueryr/ensemblqueryr
https://www.ensembl.org/info/genome/variation/species/populations.html
https://cran.r-project.org/doc/manuals/r-release/fullrefman.pdf
https://genetics.opentargets.org/
https://doi.org/10.32614/RJ-2017-065
https://doi.org/10.46471/gigabyte.91


17 Singularity Hub. Docker2singularity (Version 2.6), 2018;
https://github.com/singularityhub/docker2singularity/releases/tag/v2.6-release.

18 Quinn T. peakRAM (Version 1.0.2), 2017;
https://cran.r-project.org/web/packages/peakRAM/vignettes/peakRAM.html.

19 R-core. Parallel (Version 3.6.2), 2023; https://www.rdocumentation.org/packages/parallel/versions/3.6.2.

20 Fairbrother-Browne A, García-Ruiz S, Reynolds RH et al. Supporting data for “ensemblQueryR: fast,
flexible and high-throughput querying of Ensembl API LD endpoints in R”. GigaScience Database,
2023; http://dx.doi.org/10.5524/102435.

Gigabyte, 2023, DOI: 10.46471/gigabyte.91 10/10

https://github.com/singularityhub/docker2singularity/releases/tag/v2.6-release
https://cran.r-project.org/web/packages/peakRAM/vignettes/peakRAM.html
https://www.rdocumentation.org/packages/parallel/versions/3.6.2
http://dx.doi.org/10.5524/102435
https://doi.org/10.46471/gigabyte.91

	Statement of need
	Background
	Implementation
	Our approach
	Benchmarking
	Usage
	Methods
	Limitations
	Scope for future development


	Availability of source code and requirements
	Data Availability
	Abbreviations
	Declarations
	Ethical approval
	Competing Interests
	Author contributions
	Funding


