The global fatty liver disease Sustainable Development Goal country score for 195 countries and territories

Jeffrey V. Lazarus1,2,3,4 | Hannah Han5 | Henry E. Mark2 | Saleh A. Alqahtani6 | Jörn M. Schattenberg7 | Joan B. Soriano8,9 | Trenton M. White1 | Shira Zelber-Sagi10,11 | M. Ashworth Dirac5,12

on behalf of the GBD Fatty Liver Disease Sustainable Development Goal Collaborators

1Barcelona Institute for Global Health (ISGlobal), Hospital Clínic, University of Barcelona, Barcelona, Spain
2EASL International Liver Foundation, Geneva, Switzerland
3Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
4CUNY Graduate School of Public Health and Health Policy (CUNY SPH), New York, New York, USA
5Institute for Health Metrics and Evaluation, University of Washington, Seattle, Washington, USA
6Organ Transplant Center, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
7I. Department of Medicine, Metabolic Liver Research Program, University Medical Center, Mainz, Germany
8Respiratory Department, Hospital Universitario de la Princesa; School of Medicine, Universidad Autónoma de Madrid, Madrid, Spain
9Centro de Investigación en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
10School of Public Health, University of Haifa, Haifa, Israel
11Department of Gastroenterology, Tel Aviv Medical Center, Tel Aviv, Israel
12Department of Health Metrics Sciences, Department of Family Medicine, University of Washington, Seattle, Washington, USA

Correspondence
Email: jeffrey.lazarus@isglobal.org

Abstract

Background and Aims: Fatty liver disease is highly prevalent, resulting in overarching wellbeing and economic costs. Addressing it requires comprehensive and coordinated multisectoral action. We developed a fatty liver disease Sustainable Development Goal (SDG) country score to provide insights into country-level preparedness to address fatty liver disease through a whole-of-society lens.

Approach and Results: We developed 2 fatty liver disease–SDG score sets. The first included 6 indicators (child wasting, child overweight, noncommunicable disease mortality, a universal health coverage service coverage index, health worker density, and education attainment), covering 195 countries and territories between 1990 and 2017. The second included the aforementioned indicators plus an urban green space indicator, covering...

Abbreviations: GBD, Global Burden of Disease; HDI, Human Development Index; NCD, noncommunicable disease; SDG, Sustainable Development Goal; UGS, urban green space; UHC, universal health coverage; UI, uncertainty interval.

Jeffrey V. Lazarus is lead author; M. Ashworth Dirac is senior author.

Supplemental Digital Content is available for this article. Direct URL citations are provided in the HTML and PDF versions of this article on the journal’s website, www.hepjournal.com.

This is an open access article distributed under the terms of the Creative Commons Attribution-Non Commercial-No Derivatives License 4.0 (CCBY-NC-ND), where it is permissible to download and share the work provided it is properly cited. The work cannot be changed in any way or used commercially without permission from the journal.

Copyright © 2023 The Author(s). Published by Wolters Kluwer Health, Inc.
60 countries and territories for which 2017 data were available. To develop the fatty liver disease–SDG score, indicators were categorized as “positive” or “negative” and scaled from 0 to 100. Higher scores indicate better preparedness levels. Fatty liver disease–SDG scores varied between countries and territories (n = 195), from 14.6 (95% uncertainty interval: 8.9 to 19.4) in Niger to 93.5 (91.6 to 95.3) in Japan; 18 countries and territories scored > 85. Regionally, the high-income super-region had the highest score at 88.8 (87.3 to 90.1) in 2017, whereas south Asia had the lowest score at 44.1 (42.4 to 45.8). Between 1990 and 2017, the fatty liver disease–SDG score increased in all super-regions, with the greatest increase in south Asia, but decreased in 8 countries and territories.

Conclusions: The fatty liver disease–SDG score provides a strategic advocacy tool at the national and global levels for the liver health field and non-communicable disease advocates, highlighting the multisectoral collaborations needed to address fatty liver disease, and noncommunicable diseases overall.

INTRODUCTION

Fatty liver disease refers to a range of conditions in which excess fat builds up in the liver and is largely unknown among the general population,[1] health policy makers, and the global public health community.[2] This potentially serious condition is estimated to affect about one in 3 adults globally,[3] and is increasingly problematic in children and adolescents.[4–6] Disease severity is measured through the degree of fibrosis; however, population-based estimates of advanced fibrosis associated with fatty liver disease are limited. Data from Germany have shown it to be around 1%,[7] whereas a Korean study estimated it at 2.6%.[8] A review of studies in patients at risk of clinically significant liver disease in a general population setting found that the prevalence of advanced liver fibrosis ranged between 0.9% and 2.0%, and cirrhosis between 0.1% and 1.7%.[9] Fatty liver disease, and particularly the more aggressive condition NASH, have a substantial impact on individual health,[10] burdening health systems, causing substantial economic encumbrance, and increasing wellbeing costs.[11]

Beyond being a leading cause of cirrhosis[12] and liver cancer,[13,14] fatty liver disease shares a close bidirectional relationship with other highly prevalent noncommunicable diseases (NCDs), most notably cardiovascular disease, type 2 diabetes mellitus, obesity, and nonhepatic cancers.[15–17] In the majority of patients, fatty liver disease emerges in the context of metabolic syndrome.[17] Although fatty liver disease is strongly associated with obesity,[18] it is still prevalent in nonobese individuals, especially those of Asian descent.[19] As a consequence of the lack of overall awareness about the condition, fatty liver disease continues to go largely undiagnosed among the general population,[20] even among some high-risk populations, like people diagnosed with type 2 diabetes mellitus.[21] Furthermore, fatty liver disease is asymptomatic until the occurrence of severe complications, making it difficult to identify the disease[20] and implement treatment and care interventions, such as lifestyle modification.

Much like the other major public health challenges of the 21st century, fatty liver disease requires systems thinking alongside multidisciplinary and multisectoral responses[22] that address the immediate and underlying determinants of the disease. Yet, despite the scale of the challenge posed by fatty liver disease, health system and public health responses have generally been weak and fragmented.[2,23,24] A 2020 study captured data on NAFLD-related policies and guidelines in 102 countries, creating a NAFLD preparedness index that characterized the health system and public health responses in the participating countries. The study found that no country had a written strategy to address the disease and, in most countries, NAFLD was absent within strategies and guidelines for related conditions, including obesity and diabetes.[2] To fill the dearth of strategic guidance, a consortium of 218 experts from 91 countries recently developed NAFLD consensus statements and recommendations to advance public health and policy agendas.[25]

Although health systems sit at the center of efforts to address the burden of fatty liver disease, tackling this public health challenge will require action well
beyond the health sector. To help the public health community and those across other sectors to conceptualize the design of whole-of-society responses to fatty liver disease, we published a NAFLD–Sustainable Development Goal (SDG) framework.[26] The SDGs serve as the mainstay of the 2030 Agenda for Sustainable Development, with clear priorities, from reducing social and economic inequalities to improving nutrition, health, and education, and were adopted by all United Nations member states in 2015. Using the SDGs as a multisectoral framework for action,[27] a multidisciplinary group followed a standard Delphi process to identify the targets and indicators that are most relevant to NAFLD, with the final framework including 7 indicators. The framework is intended as a strategic advocacy tool to build the case for closer collaboration within and between sectors, to address fatty liver disease and other NCDs. Similar work has been undertaken to develop a framework to inform policy approaches on sustainable development and urban health[28] and to highlight the importance of addressing obesity for achieving the SDG agenda.[29]

Here, we present the development of the first fatty liver disease–SDG score, covering 195 countries and territories from 1990 to 2017. The fatty liver disease–SDG score builds on the earlier framework to provide a multisectoral lens through which to view country-level preparedness to address the challenge of fatty liver disease, and to guide future health and development sector collaboration and action on this issue.

METHODS

NAFLD Sustainable Development Goal framework

The NAFLD–SDG framework underpinning the fatty liver disease–SDG score was developed through a Delphi process. First, a core team of researchers reviewed the SDG targets and indicators,[30] identifying those directly or indirectly associated with NAFLD. Subsequently, a multidisciplinary group of experts (n = 15) was invited to select which of the shortlisted targets and indicators to include in the NAFLD–SDG framework. Targets and indicators with 75% or greater agreement were included in the final NAFLD–SDG framework, with this framework comprising 16 targets and 7 indicators (Figure 1). The detailed methodology has been published.[26]

Development of the fatty liver disease Sustainable Development Goal score

The indicators included in the fatty liver disease–SDG score are shown in Table 1. We developed 2 sets of fatty liver disease–SDG scores. The first set was developed using 6 indicators [child wasting, child overweight, NCD mortality, a universal health coverage (UHC) service coverage index, health worker density, and education attainment] and excluded the urban green space (UGS) score as it was not available for all countries and territories. It covers 195 countries and territories between 1990 and 2017. The second set was constructed using all 7 indicators and includes only the 60 countries for which the UGS data were available in 2017.

The estimates for child wasting, child overweight, NCD mortality, the UHC service coverage index, health worker density, and education attainment came from the “Global Burden of Disease (GBD), Injuries, and Risk Factors Study.” [31–33] Details of the input data and modeling procedures for estimating these indicators have been published.[34] The data for UGS were extracted from a published study conducted by Kwon et al.[35] UGS is a globally comparable metric computed using Sentinel-2 satellite imagery data.[36]

We took an analytical approach similar to the GBD’s health-related SDG index to develop the fatty liver disease–SDG score. First, indicators were grouped into either a “positive” or “negative” category. The “positive” category consisted of indicators where higher estimates were associated with better health outcomes (eg, UHC service coverage index). The “negative” category consisted of indicators where lower estimates were associated with better health outcomes (eg, child wasting).

Then, all indicators were scaled from 0 to 100, with 0 denoting the worst observed performance and 100 reflecting the best performance, to make them comparable. To reduce the sensitivity of extreme outliers in a given location-year, we set the lower bound at the 2.5th percentile and the upper bound at the 97.5th percentile of the distribution for a given indicator. For “positive” indicators, any value below the 2.5th percentile was assigned a value of 0 and any value exceeding the 97.5th percentile was assigned a value of 100. The “negative” indicators were scaled and adjusted for outliers similarly but with 0 assigned to any value exceeding the 97.5th percentile and 100 assigned to any value below the 2.5th percentile, over the same study period. A modified scaling approach was applied to 2 indicators: NCD mortality and health worker density. Specifically, NCD mortality was scaled in log-space. Health worker density was scaled to reflect the density of each health worker cadre (ie, physicians, nurses, midwives, and pharmacists). The details of the modified scaling approach for health worker density have been published.[34]

The final fatty liver disease–SDG score was calculated in 2 steps. First, we computed the geometric mean of child wasting and child overweight,
2 indicators that fall under the same SDG target.\[^{34}\] Then, we computed the geometric mean of the remaining indicators, including the aggregate child wasting and child overweight score. In both steps, we restricted draws of each indicator score to a minimum value of 1 before computing the geometric mean to mitigate issues with values close to 0. To generate the fatty liver disease–SDG score for the 7 standard GBD super-regions,\[^{37}\] we aggregated the national-level, unscaled estimates of each indicator for each super-region, using population weights. Then, the national-level 2.5th and 97.5th percentile values for each indicator were applied to scale the indicators for each super-region location, before taking the geometric mean of the indicators, to produce the final fatty liver disease–SDG scores.

Every analytic step was carried out for 1000 draws from the posterior distribution of the previous step, to ensure uncertainty from all inputs, and analyses were propagated through to the final scores. Uncertainty intervals (UIs) were obtained by taking the 2.5th and 97.5th percentiles of the 1000 draw values.

Combining the fatty liver disease Sustainable Development Goal scores with the NAFLD preparedness index

In contrast to our fatty liver disease–SDG score, which aims to measure preparedness to address fatty liver disease from a multisectoral, whole-of-society perspective, the described NAFLD preparedness index\[^{2}\] reports on country preparedness to address NAFLD specifically from a health system and public health policy perspective. After the development of the fatty liver disease–SDG scores, we combined them with the NAFLD preparedness index for a more comprehensive assessment of countries’ fatty liver disease preparedness. Fatty liver disease–SDG scores for 100 countries included in the NAFLD preparedness index were

![FIGURE 1 NAFLD–SDG framework. The NAFLD–SDG framework shows the SDG targets and indicators that are most relevant to NAFLD. The 8 colored segments indicate the selected targets and the 7 selected indicators are nested within 5 of these targets. Solid lines indicate targets with a direct link to NAFLD and dashed lines show those indirectly related to NAFLD. Abbreviations: NCD, noncommunicable disease; SDG, Sustainable Development Goal.](http://journals.lww.com/hep)
extracted and then ranked. Two countries/territories included in the NAFLD preparedness index (Aruba and Hong Kong) were not included in the fatty liver disease–SDG score and, hence, were excluded. For these 100 countries, we summed the country rankings for the fatty liver disease–SDG score with the rankings of the NAFLD preparedness index.

Comparing the fatty liver disease Sustainable Development Goal scores to the NAFLD preparedness index and the Human Development Index

We separately compared the 2017 estimates of fatty liver disease–SDG scores to the NAFLD preparedness index[2] and the Human Development Index (HDI).[38] The HDI is a composite index of life expectancy, level of education attainment, and gross national income per capita that measures the overall human development of a country. It covers some of the themes also captured in the fatty liver disease–SDG score, namely, education; however, it does not incorporate key issues for fatty liver disease, such as UHC service coverage or access to UGSs, which are included in the fatty liver disease–SDG score. Two countries/territories (Aruba and Hong Kong) were excluded from the comparison analysis between fatty liver disease–SDG scores and the NAFLD preparedness index, whereas 7 countries/territories (Hong Kong, Liechtenstein, Palau, Saint Kitts and Nevis, San Marino, Eswatini, and Tuvalu) were excluded for the fatty liver disease–SDG score and HDI comparison.

RESULTS

The fatty liver disease–SDG scores for the 195 countries and territories vary substantially, from 14.6 (95% UI: 8.92 to 19.4) in Niger to 93.5 (91.6 to 95.3) in Japan, with 18 countries scoring >85 on the 0 to 100 scale (Figure 2A; Supplemental Table S1 and S2 http://links.lww.com/HEP/F1000 for country and territory scores from 1990 to 2017). The SD of the fatty liver disease–SDG score across all 195 countries and territories in 2017 is 18.58 and the interquartile range is 26.81. The SD and interquartile range of the fatty liver disease–SDG score by GBD super-region can be found in Supplemental Table S3 (http://links.lww.com/HEP/F1000).

Regionally, the high-income super-region had the highest score at 88.8 (95% UI: 87.3 to 90.1) in 2017, and south Asia had the lowest score at 44.1 (42.4 to 45.8). Between 1990 and 2017, the fatty liver disease–SDG score improved in all 7 super-regions, with the percentage increase ranging from 13.3% to 181.2%.
The greatest improvement was in south Asia, despite its poor performance in absolute terms.

Across the 195 countries and territories, the fatty liver disease–SDG score decreased (worsened) in 8 countries and territories during the study period, with the largest decrease in Guam [−27.9% (95% UI: −32.8 to −20.2)] (Supplemental Table S4 http://links.lww.com/HEP/F1000). In contrast, the biggest fatty liver disease–SDG score increase (improvement) was observed in Eritrea [1116.1% (531.3 to 1913.1)], followed by Ethiopia [645.9% (382.6 to 764.9)] and Laos [628.3% (324.0 to 1292.3)].

Of the 6 indicators that were used to develop the fatty liver disease–SDG score, the UHC service coverage index had the lowest average scaled value across all 195 countries and territories. This was consistent when restricted to the countries and territories with the bottom 20% of the fatty liver disease–SDG scores. The second lowest indicator, however, differed in those 2 groups. When compared across all 195 countries and territories, the indicator with the second lowest scaled value was NCD mortality, whereas, when restricted to the bottom 20%, the second lowest was education attainment.

For the 60 countries and territories where UGS data were available (Figure 2B, Supplemental Table S5 http://links.lww.com/HEP/F1000), the inclusion of the indicators had variable impacts on the fatty liver disease–SDG scores (Figure 2C). In 21 countries and territories (35%), the inclusion of UGS data improved the score, whereas in 39 countries and territories (65%), the score worsened with the inclusion of this indicator. The average percentage improvement in the score including UGS data was 2.62% (95% UI: 0.83 to 3.82), whereas the average decrease was 9.29% (7.04 to 11.92) (Figure 2C). Montenegro had the biggest improvement in score with the inclusion of UGS data (8.37%), whereas Bahrain had the largest decrease (51.4%).

Sweden had the highest overall combined rank when comparing the fatty liver disease–SDG score and NAFLD preparedness index (ranked fourth for the fatty liver disease–SDG score and third on the NAFLD preparedness index), whereas Central African Republic had the lowest (ranked 96th for the fatty liver disease–SDG score and joint 71st on the NAFLD preparedness index). Sweden, the UK, Belgium, Germany, and Israel ranked in the top 15 on both indices. The largest difference between the fatty liver disease–SDG score and the NAFLD preparedness index was seen in India, which ranked 88th on the former and first on the latter (Supplemental Table S6 http://links.lww.com/HEP/F1000).

The comparisons of the national fatty liver disease–SDG scores to the NAFLD preparedness index and HDI are shown in Figure 4 (Supplemental Tables S7 and S8 http://links.lww.com/HEP/F1000). Although many countries across all 7 GBD super-regions had near zero NAFLD preparedness index values, countries with higher fatty liver disease–SDG scores were more likely to score higher on the NAFLD preparedness index. A few notable exceptions were found. India and Bulgaria, 2 countries with suboptimal fatty liver disease–SDG scores, had some of the highest NAFLD preparedness index values. The correlation was higher, but not 100%, between the fatty liver disease–SDG score and the HDI.

DISCUSSION

There have been increasingly frequent calls to focus on systems thinking and to develop new tools to conceptualize and implement the complex responses needed to address today’s major health challenges,[22] including the partnerships and collaborations that sit at the center of systems responses. In this study, we present a score for 195 countries and territories (1990–2017), which uses the SDG framework as a lens through which to assess countries’ preparedness to tackle fatty liver disease. The burden of fatty liver disease is high[5] and rapidly increasing,[39] and it is already the fastest growing cause of HCC in France, the UK, and the USA. The incidence of NAFLD-related HCC is projected to increase dramatically by 2030, with increases of 82%, 117%, and 122% from 2016 in China, France, and the USA, respectively.[40] Fatty liver disease is an archetypical public health issue of the 21st century, requiring action across a wide range of sectors and disciplines. Although the focus of this study was fatty liver disease, the findings have broader relevance to NCDs, especially to closely related conditions, such as type 2 diabetes mellitus, cardiovascular disease, and obesity.

We suggest the fatty liver disease–SDG score for 3 primary uses. Given the lack of awareness about fatty liver disease and the importance of a multisectoral approach in tackling this public health challenge, the score can help to create awareness among key stakeholder groups, within and beyond the health sector. Second, the score can be an advocacy tool for public health professionals, civil society, and patient groups to advocate for greater action across sectors on this neglected public health challenge, at national and global levels. Finally, the score can inform the strategic decision-making within the national, regional, and global liver and other NCD organizations about the types of cross-sectoral actors that they should be engaging and collaborating with. While there is some correlation between the fatty liver disease–SDG score and existing scores, such as the HDI, the new score provides a more granular focus on the key issues impacting fatty liver disease and will support more nuanced discussions at a strategic and policy level. If the score is updated periodically (eg, every
advocates can also use it to scrutinize success and challenges over time, including policy changes. The fatty liver disease–SDG score provides a holistic multisectoral lens, through which to view
efforts to address fatty liver disease, complementing existing efforts, such as the NAFLD preparedness index, which takes a focused look at health system and public health responses within countries. Furthermore, the data used to calculate the score are regularly and consistently collected for 195 countries and territories, while the preparedness index had data from only 102 countries.

As expected, high-income countries generally had higher fatty liver disease–SDG scores than low-income and lower middle-income countries. There were some notable exceptions, including Uruguay, Brunei, and Qatar, none of which scored in the top quartile. This highlights that advanced economic development is not a guarantee of a higher fatty liver disease–SDG score, emphasizing the importance of focused policy interventions aimed at addressing the underlying and direct drivers of public health. These may, for example, target inadequate nutrition and sedentary lifestyles at the population level. Geographically, sub-Saharan Africa and south Asia were the GBD super-regions with the lowest scores; however, some countries in these regions performed well overall, such as Cabo Verde and Botswana, which both ranked higher than other more economically advanced countries, highlighting that low- and middle-income countries can take strides in preparing to address conditions such as fatty liver disease.

For the 60 countries where UGS data were available, the inclusion of this indicator had varying impacts on the overall score, improving it in just over one-third of countries and reducing it in the remainder, in the case of Bahrain by over 50%. Although we were unable to include UGS data in the score for all countries and territories, we believe that this indicator captures critical information on the environment in which people live. Importantly, the availability of UGS does not guarantee access and utilization, 2 points that are not reflected in our score. The use of UGS is impacted by socioeconomic and sociocultural factors, and efforts to increase its availability need to be accompanied by interventions to increase access and use, such as improved security and lighting. This is especially important among those who can benefit the most from using such space, including people at a higher risk of fatty liver disease and other NCDs, considering that UGS has effects on both physical and mental health.

Whole-of-society and health system responses

We combined the ranking of countries and territories on the fatty liver disease–SDG score with a published NAFLD preparedness index. While the fatty liver disease–SDG score provides a multisectoral perspective that speaks to a country’s action on fatty liver disease and NCDs more broadly, the NAFLD preparedness index gives insights into the relevant health system policy, guidelines, and strategies that are in place to address NAFLD. By comparing how well countries performed across both indices, we aimed to provide a holistic view of a country’s preparedness to address this public health challenge. Countries that rank highly on both the fatty liver disease–SDG and NAFLD preparedness indices are best prepared to address the challenge of fatty liver disease. The NAFLD preparedness index found substantial variation between countries’ readiness to
address NAFLD. Notably, even those countries that score relatively highly exhibit deficiencies in key domains, suggesting that structural changes are needed to optimize NAFLD management and ensure that effective public health approaches are in place. Further detailed analysis at the regional level of countries and territories ranking highly on both indices could provide useful case studies to understand the policy measures that have been implemented and how these could be implemented in other national or subnational contexts.

Informing national responses to fatty liver disease

While national development priorities vary, fatty liver disease and NCDs—more broadly—are important considerations for decision-makers in all countries. For example, in low-income and lower middle-income countries, where public health issues have traditionally focused on communicable diseases, NCDs are becoming a major cause of morbidity and mortality with important implications for individual health, health systems, and economic development.

Fatty liver disease, to date, is not addressed in global health policy or technical guidance. Improving public health is a central pillar of the SDG agenda and should be a primary goal in all countries as a means of driving economic and social progress. While health system preparedness, underpinned by achieving UHC and health equity, is crucial, the underlying causes of fatty liver disease and other highly prevalent diseases cannot be addressed in the health sector alone. Our findings re-emphasize the longstanding calls for health in all policies' approaches.

Several indicators in this fatty liver disease–SDG score, namely, education attainment and UGS, fall beyond the direct scope of the public health community, pointing to the need to engage across various sectors, and for the public health community to support and champion the work of other sectors. Successful multi-sectoral action requires strong governance mechanisms that enable different stakeholders to collaborate around shared goals. Such governance structures are frequently missing or insufficient, especially in low- and middle-income countries, where institutions are commonly weak and fragmentation is common. More detailed analysis is still needed to understand how multi-sectoral action can best work in practice.

Limitations

This study has several limitations. There is variation in the clinical definition of fatty liver disease and countries...
may monitor the disease using different methods. Hence, the full burden and impact of the disease are unknown, precluding the potential to externally validate the fatty liver disease–SDG score using the estimated disease burden of fatty liver disease and NASH in each country. While such a validation would theoretically show if high-scoring countries have a lower disease burden and vice versa, interpretation of such an analysis is challenging, in part because primary data on fatty liver disease prevalence are scant and heterogeneous. Changes in fatty liver disease epidemiology occur slowly over time; in theory, the fatty liver disease–SDG scores for 1990, 2000, and 2010 will provide useful insights into the disease burden today, yet the myriad of confounding factors and data quality over this time makes such comparisons fraught.

Furthermore, we recognize that our combination of the fatty liver disease–SDG score with the NAFLD preparedness index uses data from different timepoints, with the former using data from 2017—the latest available data—and the latter from 2020. However, we suggest that it is unlikely that the fatty liver disease–SDG score will have changed substantially between these timepoints and find value in the aggregate score.

One SDG indicator (16.1.4: proportion of population that feel safe walking alone around the area they live after dark) was included in the NAFLD–SDG framework,[26] however, data for this indicator were unavailable to include in the fatty liver disease–SDG score.[30] We note that the metric for UGS was developed using data from only 90 cities within the 60 countries and territories included and may, thus, not be an accurate data from only 90 cities within the 60 countries and territories over 3 decades, with the aim of preparing a proposal to IHME with Henry E. Mark. They

ACKNOWLEDGMENTS

Jeffrey V. Lazarus and Trenton M. White acknowledge support to ISGlobal from the grant CEX2018-000806-S funded by MCIN/AEI/10.13039/501100011033 and the “Generalitat de Catalunya” through the CERCA Program, outside of the submitted work. M. Ashworth Dirac acknowledges support from the Global Public Goods Grant from Bill & Melinda Gates Foundation, outside of the submitted work. Aqeel Ahmad thanks the Deanship of Scientific Research at Shaqra University for supporting this work. Salman Hussain acknowledges support from the Operational Programme Research, Development and Education Project, Postdoc2MUNI (No. CZ.02.2.69/0/0.0/18_053/0016952), outside of the submitted work. Virginia Nuñez-Samudio acknowledges support from

Panamá’s La Secretaría Nacional de Ciencia, Tecnología e Innovación (Senacyt), as a member of the Sistema Nacional de Investigación (SNI), outside of the submitted work. Jagadish Rao Padubidri acknowledges support from Kasturba Medical College, Mangalore, Manipal Academy of Higher Education, Manipal in supporting collaborative research, outside of the submitted work. Abdallah M Samy acknowledges the support from Ain Shams University and the Egyptian Fulbright Mission Program, outside of the submitted work.

The GBD Fatty Liver Disease Sustainable Development Goal Collaborators

Education, Mangalore, Karnataka, India; 38Department of Clinical Sciences, University of Sharjah, Sharjah, United Arab Emirates; 39Department of General Surgery and Medical- Surgical Specialties, University of Catania, Catania, Italy; 40Department of Biostatistics and Epidemiology, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; 41Department of Biomedical Sciences, Nazarbayev University, Nur-Sultan City, Kazakhstan; 42Department of Clinical Pharmacy, University of Medicine and Pharmacy, Craiova, Romania; 43Health and Nutrition Research Center, National Institute of Public Health, Cuernavaca, Mexico; 44Department of Community Medicine, Datta Meghe Institute of Medical Sciences, Sawangi, Maharashtra, India; 45Saveetha Medical College and Hospitals, Saveetha University, Chennai, India; 46Department of Health Informatics, University College London, London, UK; 47Health Data Research UK, London, UK; 48Clinical Epidemiology, National Autonomous University of Mexico, Mexico City, Mexico; 49Department of Public Health, Pontifical Catholic University of Chile, Santiago, Chile; 50Research Line in Environmental Exposures and Health Effects at Population Level, Centro de Desarrollo Urbano Sustentable (CEDEUS) [Advanced Center for Chronic Diseases (ACCDIS)], Santiago, Chile; 51Department of Health Systems Management, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia; 52Section of Global Health and Rehabilitation, Western Norway University of Applied Sciences, Bergen, Norway; 53Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway; 54Department of Health Metrics Sciences, University of Washington, Seattle, Washington, USA; 55Department of Medical Science, Shahid Beheshti University of Medical Sciences, Tehran, Iran; 56Division of Cardiology, Atlanta Veterans Affairs Medical Center, Decatur, Georgis, USA; 57Development of Research and Technology Center, Ministry of Health and Medical Education, Tehran, Iran; 58Health Science Center, University of Texas, Houston, Texas, USA; 59Forensic Medicine and Toxicology, Kabtstura Medical College Mangalore, Manipal Academy of Higher Education, Mangalore, Karnataka, India; 60Forensic Medicine and Toxicology, Kabtstura Medical College Mangalore, Mangalore, Dakshina Kannada District, Karnataka, India; 61Department of Biological Sciences, University of Medical Sciences, Ondo, Ondo, Nigeria; 62Biomedical Informatics and Medical Statistics Department, Alexandria University, Alexandria, Egypt; 63Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates; 64Egypt Center for Research and Regenerative Medicine (ECRRM), Cairo, Egypt; 65Department of Endemic Medicine and Hepatogastroenterology, Cairo University, Cairo, Egypt; 66Department of Virology, Pasteur Institute of Morocco, Casablanca, Morocco; 67Internal Medicine Department, Hamad Medical Corporation, Doha, Qatar; 68School of Pharmacy, The Chinese University of Hong Kong, Hong Kong, China; 69Department of Pharmacy, Wollega University, Nekemte, Ethiopia; 70Institute of Public Health, Charité Medical University Berlin, Berlin, Germany; 71Department of Radiology, King Edward Memorial Hospital, Mumbai, Maharashtra, India; 72Institute for Physical Activity and Nutrition, Deakin University, Melbourne, Victoria, Australia; 73Social Determinants of Health Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; 74E-Learning Center, Mashhad University of Medical Sciences, Mashhad, Iran; 75Department of Hepatology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India; 76Department of Health Systems and Policy Research, Indian Institute of Public Health, Gandhinagar, Gujarat, India; 77Department of Genetics, Sana Institute of Higher Education, Sari, Iran; 78Macquarie University, Sydney, Ne South Wales, Australia; 79School of Medicine, University of Maryland, Baltimore, Maryland, USA; 80Heart, Vascular, Thoracic Institute, Cleveland Clinic, Cleveland, Ohio, USA; 81Department of Medicine, Aga Khan University, Karachi, Pakistan; 82Medical Research Unit, Syiah Kuala University, Banda Aceh, Indonesia; 83Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran; 84Biology Department, Utica University, Utica, New York, USA; 85Department of Plastic Surgery, University of Texas, Houston, Texas, USA; 86National Data Management Center for Health (NDMC), Ethiopian Public Health Institute, Addis Ababa, Ethiopia; 87Department of Health Metrics Sciences, School of Medicine, University of Washington, Seattle, Washington, USA; 88Division for Health Service Promotion, University of Tokyo, Tokyo, Japan; 89Non-communicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran; 90National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran; 91Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; 92School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; 93Burn Research Center, Shahid Motahari Hospital, Tehran, Iran; 94Department of Health Services Administration, China Medical University, Taichung, Taiwan; 95Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong, China; 96Czech National Centre for Evidence-Based Healthcare and Knowledge Translation, Masaryk University, Brno, Czech Republic; 97Institute of Biostatistics and Analyses, Masaryk University, Brno, Czech Republic; 98Department of Health Promotion and Education, University of Ibadan, Ibadan, Nigeria; 99Department of Community Medicine, University of Ibadan, Ibadan, Nigeria; 100Department of Community Medicine, University College Hospital, Ibadan, Ibadan, Nigeria; 101Department of Clinical
The Global Fatty Liver Disease-SDG Country Score

165Department of General Internal Medicine, Baylor College of Medicine, Houston, Florida, USA; 166Department of Medicine, Salvador Zubiran National Institute of Medical Sciences and Nutrition, Tlalpan, Mexico; 167Department of Biostatistics, University of Washington, Seattle, Washington, USA; 168Department of Forensic Medicine and Toxicology, Kasturba Medical College, Mangalore, Karnataka, India; 169Yonsei University College of Medicine, Yonsei University, Seodaemun-gu, South Korea; 170Department of Internal Medicine, Ochsner Medical Center, New Orleans, Los Angeles, California, USA; 171Department of General Surgery, University of Texas, Seattle, Washington, USA; 172Department of Internal Medicine, Advent Health, Palm coast, Florida, USA; 173Department of Hospital Medicine, Sound Physicians, Palm Coast, USA; 174Department of Medicine, State University of New York, Syracuse, New York, USA; 175Department of Biology, University of Bahrain, Sakir, Bahrain; 176Medical College, Tairunnessa Memorial Medical College and Hospital, Gazipur, Bangladesh; 177School of Public Health, University of Adelaide, Adelaide, South Australia, Australia; 178Department of Biochemistry, Jagadguru Sri Shivarathreeswara University, Mysuru, Karnataka, India; 179Department of Cardiology, Emory University, Atlanta, Georgia, USA; 180Department of Nephrology, Manipal Academy of Higher Education, Manipal, Karnataka, India; 181Department of Cardiology, Tehran University of Medical Sciences, Tehran, Iran; 182Department of Epidemiology, Non-Communicable Diseases Research Center (NCDRC), Tehran, Iran; 183Department of Pharmacology and Toxicology, University of Antioquia, Medellin, Colombia; 184Department of Clinical Research, Federal University of Uberlândia, Uberlândia, Brazil; 185Golestan Research Center of Gastroenterology and Hepatology, Golestan University of Medical Sciences, Gorgan, Iran; 186Department of Gastroenterology, Tehran University of Medical Sciences, Tehran, Iran; 187School of Health Sciences, Foundation University, Islamabad, Pakistan; 188International Center of Medical Sciences Research (ICMSR), Islamabad, Pakistan; 189Bioscience and Nursing, MAHSA University, Selangor, Malaysia; 190Interdisciplinary Research Centre in Biomedical Materials (IRCBM), COMSATS Institute of Information Technology, Lahore, Pakistan; 191Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; 192Biotechnology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; 193Department of Community and Family Medicine, All India Institute of Medical Sciences, Bathinda, Punjab, India; 194Department of Medicine, Tehran University of Medical Sciences, Tehran, Iran; 195Department of Entomology, Ain Shams University, Cairo, Egypt; 196Medical Ain Shams Research Institute, Ain Shams University, Cairo, Egypt; 197Department of Pediatrics, University Hospitals Rainbow Babies and Children’s Hospital, Cleveland, Ohio, USA; 198Department of Pediatrics, Case Western Reserve University, Cleveland, Ohio, USA; 199Department of Urban Planning and Design, University of Hong Kong, Hong Kong, China; 200Department of Medicine, Shifa College of Medicine, Shifa Tameer-e-millat University, Islamabad, Pakistan; 201National Heart, Lung, and Blood Institute, National Institute of Health, Rockville, Maryland, USA; 202Department of Infectious Diseases and Microbiology, Rajiv Gandhi University of Health Sciences, Bangalore, Karnataka, India; 203HepatoPancreatoBiliary Surgery and Liver Transplant Unit, HealthCare Global Limited Cancer Care Hospital, Bangalore, Karnataka, India; 204Tehran University of Medical Sciences, Tehran, Iran; 205Department of Basic Sciences, Tabriz University of Medical Sciences, Tabriz, Iran; 206Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran; 207Department of International Studies, Non-Communicable Diseases Research Center (NCDRC), Tehran, Iran; 208Department of Medical-Surgical Nursing, Mazandaran University of Medical Sciences, Sari, Iran; 209Department of Nursing and Health Sciences, Flanders University, Adelaide, SA, Australia; 210School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA; 211Department of Medicine Service, US Department of Veterans Affairs (VA), Birmingham, Alabama, USA; 212Department of Radiodiagnosis, All India Institute of Medical Sciences, Bathinda, Punjab, India; 213Maternal and Child Health Division, International Centre for Diarrheal Disease Research, Dhaka, Bangladesh; 214Department of Infectious Diseases and Epidemiology, Pirogov Russian National Research Medical University, Moscow, Russia; 215Department of Hygiene and Public Health, Kanazawa University, Canazawa, Japan; 216Trauma and Injury Research Center, Iran University of Medical Sciences, Tehran, Iran; 217Medical Ethics and Law Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; 218Department of Surgery, National University of Singapore, Singapore, Singapore; 219Rheumatology and Immunology Unit, Mansoura University, Mansoura, Egypt; 220Department of Gastroenterology, PSG Institute of Medical Sciences and Research, Coimbatore, Tamil Nadu, India; 221Department of Pharmacy, Komar University of Science and Technology, Sulaymaniyah, Iraq; 222Urmia University of Medical Sciences, Urmia, Iran; 223UKK Institute, Tampere, Finland; 224Tampere University, Tampere, Finland; 225Department of Medicine, Vanderbilt University, Nashville, Tennessee, USA; 226Department of Gastroenterology, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, China; 227Department of Community Medicine, Rajarata University of Sri Lanka, Anuradhapura, Sri Lanka; 228Department of Endocrinology, University of Science and Technology of China, Hefei, China; 229Department of Medicine, University of...
Rochester, Rochester, New York, USA; 230Department of Epidemiology and Biostatistics, Wuhan University, Wuhan, China; 231Department of Clinical Pharmacy and Outcomes Sciences, University of South Carolina, Columbia, South Carolina, USA; 232Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; 233School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; 234School of Medicine, Wuhan University, Wuhan, China

FUNDING INFORMATION

This work was supported by the EASL International Liver Foundation, which acknowledges funding from Intercept Pharmaceuticals, as well as Bristol Myers Squibb and Merck Sharp and Dohme. The funders of the study had no role in the study design, data collection, data analysis, data interpretation, or writing of the report. All authors had full access to the data in the study and had final responsibility for the decision to submit to publication.

CONFLICTS OF INTEREST

Jeffrey V. Lazarus reports grants from Gilead Sciences and Roche and consulting fees and advisory arrangements from AbbVie, Gilead Sciences, and Roche, outside the submitted work. Jörn M. Schattenberg reports consulting fees from Apollo Endosurgery, AGED diagnostics, Bayer, Boehringer Ingelheim, Gilead Sciences, GSK, Intercept Pharmaceuticals, Ipsen, Inventiva Pharma, Madrigal, MSD, Northside Therapeutics, Novartis, Novo Nordisk, Pfizer, Roche, Sanofi, and Siemens Healthineers, speaker fees from Boehringer Ingelheim, Echosens, MedPublico GmbH, Novo Nordisk, Madrigal Pharmaceuticals, and Histioindex, and grants from Gilead Sciences, Boehringer Ingelheim, and Siemens Healthcare GmbH, outside the submitted work. Hannah Han and M. Ashworth Dirac report support for the present manuscript from the EASL International Liver Foundation. Sandra Cortés reports support from the Fondo de Financiamiento de Centros de Investigacion en Areas Prioritarias (FONDAP) (grant number 15130011), outside the submitted work. Xiaochen Dai reports support for the present manuscript from IHME/ UW as a salaried employee. Temitope Cyrus Ekundayo reports grants or contracts from The African-German Network of Excellence in Science (AGNES), the Federal Ministry of Education and Research (BMBF), and the Alexander von Humboldt Foundation (AvH) for financial support, outside the submitted work. Vivek Kumar Gupta reports grants or contracts from the National Health and Medical Research Council (NHMRC), Australia, outside the submitted work. Vivian Chia-rong Hsieh reports support from the National Science and Technology Council, Taiwan for Grant # MOST 107-2314-B-039-065-MY3 and grants or contracts from the National Science and Technology Council, Taiwan for Grant # MOST 107-2314-B-039-065-MY3, outside the submitted work. Nahlah Elkudssiah Ismail reports leadership or fiduciary roles in board, society, committee, or advocacy groups, paid or unpaid, with the Malaysian Academy of Pharmacy as council member, outside the submitted work. Abel Joseph reports support from the Bill and Melinda Gates Foundation, grants or contracts from the American College of Gastroenterology for a Clinical Research Award, and support for attending meetings and/or travel from American College of Gastroenterology Annual Meeting 2022, outside the submitted work. Jacek Jerzy Jozwiak reports payments or honoraria for lectures, presentations, speakers’ bureaus, manuscript writing, or educational events from NOVART and ADAMED, outside the submitted work. Ibraheem M. Karaye reports support for attending meetings and/or travel from Hofstra University, outside the submitted work. Yeong Yeh Lee reports grants or contracts from NAFLD-related Clinical Trial Investigator for Novo Nordisk and Boehringer Ingelheim and leadership or fiduciary roles in board, society, committee, or advocacy groups, paid or unpaid, with the Malaysian Society of Gastroenterology and Hepatology as President, outside the submitted work. Lee-Ling Lim reports grants or contracts from Boehringer Ingelheim, AstraZeneca, and Abbott Nutrition, outside the submitted work. Stefan Lorkowski acknowledges funding by the German Federal Ministry of Education and Research (nutriCARD, grant agreement number 01EA1808A), grants or contracts from Akcea Therapeutics Germany, consulting fees from Danone, Novartis Pharma, and Swedish Orphan Biovitrum (SOBI), payment or honoraria for lectures, presentations, speakers’ bureaus, manuscript writing, or educational events from Akcea Therapeutics Germany, AMARIN Germany, AMARIN Germany, AMGEN, Berlin-Chemie, Boehringer Ingelheim Pharma, Daiichi Sankyo Deutschland, Danone, Hubert Burda Media Holding, Janssen-Cilag, Lilly Deutschland, Novartis Pharma, Novo Nordisk Pharma, Roche Pharma, Sanofi-Aventis, and SYNLAB Holding Deutschland & SYNLAB Akademie, support for attending meetings and/or travel from AMGEN and Novo Nordisk Pharma., and participation on a Data Safety Monitoring Board or Advisory Board with Akcea Therapeutics Germany, AMGEN, Daiichi Sankyo Deutschland, Novartis Pharma, and Sanofi-Aventis, outside the submitted work. Chinmoy Sarkar reports grants or contracts from the US National Academy of Medicine – Hong Kong University International Fellowship in Global Health Leadership (2019-23), outside the submitted work. Pritik A. Shah reports support for the present manuscript from Bangalore Medical College and Research Institute, part of the Rajiv Gandhi University of Health Sciences, outside the submitted work. Jasvinder A. Singh reports consulting fees from Crealta/Horizon, Medisys, Fidia, PK Med, Two labs Inc.,
Adept Field Solutions, Clinical Care options, Clearview healthcare partners, Putnam associates, Focus forward, Navigant consulting, Spherix, MediQ, Jupiter Life Science, UBM LLC, Trio Health, Medscape, WebMD, Practice Point communications, and the National Institutes of Health and the American College of Rheumatology, payment or honoraria for lectures, presentations, speakers’ bureaus, manuscript writing, or educational events from Simply Speaking as a member of the speakers’ bureau, support for attending meetings and/or travel from the steering committee of OMERACT, participation on a Data Safety Monitoring Board or Advisory Board with FDA Arthritis Advisory Committee, leadership or fiduciary roles in board, society, committee, or advocacy groups, paid or unpaid, with OMERACT as a steering committee member, the Veterans Affairs Rheumatology Field Advisory Committee as Chair, and UAB Cochrane Musculoskeletal Group Satellite Center on Network Meta-analysis as editor and Director, stock or stock options in TPT Global Tech, Vaxart pharmaceuticals, Atyu biopharma, Adaptimmune Therapeutics, GevoX Labs, Pleris Pharmaceutical, Enzoylytcs Inc., Seres Therapeutics, Tonix Pharmaceuticals, and Charlotte’s Web Holdings, Inc, and previously held stock options in Amarin, Viking, and Moderna pharmaceuticals, outside the submitted work. The remaining authors have no conflicts to report.

ORCID
Jeffrey V. Lazarus https://orcid.org/0000-0001-9618-2299
Henry E. Mark https://orcid.org/0000-0002-8022-4279
Jörn M. Schattenberg https://orcid.org/0000-0002-4224-4703
Trenton M. White https://orcid.org/0000-0002-0633-4445
Shira Zelber-Sagi https://orcid.org/0000-0002-1324-7497

REFERENCES

