UCL Discovery
UCL home » Library Services » Electronic resources » UCL Discovery

Evaluation of hernia surgical meshes sterilised with ethylene oxide for adoption under UK regulations

Grillo, Alessandra; Hyder, Zargham; Mudera, Vivek; Kureshi, Alvena; (2023) Evaluation of hernia surgical meshes sterilised with ethylene oxide for adoption under UK regulations. Surgical Endoscopy 10.1007/s00464-023-10460-9. (In press). Green open access

[thumbnail of s00464-023-10460-9.pdf]
Preview
Text
s00464-023-10460-9.pdf - Published Version

Download (3MB) | Preview

Abstract

Background: Low-cost meshes (LCM) have been successfully used in low-income countries (LIC) over the past decades, demonstrating comparable surgical outcomes to commercial meshes at a fraction of the cost. However, LIC sterilisation standards (autoclave sterilisation at 121 °C) do not meet UK regulations for medical devices, which require either ethylene oxide (EO) sterilisation or steam sterilisation at 134 °C. Therefore, the aim of this study was to sterilise UK LCM and characterise their mechanical properties and in vitro biocompatibility to verify whether EO sterilisation causes changes in the mechanical properties and biocompatibility of LCM. // Methods: EO sterilised LCM were used. Uniaxial tensile tests were performed to measure mechanical properties. Biocompatibility was measured through viability and morphology of Human Dermal Fibroblasts (HDFs) cultured in mesh-conditioned media, and by calculating the metabolic activity and proliferation of HDFs attached on the meshes, with alamarBlue assay. // Results: Break stress of LCM1 was significantly higher than LCM2 (p < 0.0001), while Young’s modulus of LCM1 was significantly lower than LCM2 (p < 0.05) and there was no significant difference in break strain. Viability and morphology showed no significant difference between LCM and control. Attachment and proliferation of HDFs on LCM showed a better proliferation on LCM2 than LCM1, with values similar to the control at the final time point. // Conclusions: We demonstrated that EO sterilisation affects LCM mechanical properties, but they still have values closer to the native tissues than the commercially available ones. We also showed that in vitro biocompatibility of LCM2 is not affected by EO sterilisation, as HDFs attached and proliferated on the mesh, while EO affected attachment on LCM1. A more detailed cost analysis of the potential savings for healthcare systems around the world needs to be performed to strengthen the cost-effectiveness of this frugal innovation.

Type: Article
Title: Evaluation of hernia surgical meshes sterilised with ethylene oxide for adoption under UK regulations
Open access status: An open access version is available from UCL Discovery
DOI: 10.1007/s00464-023-10460-9
Publisher version: https://doi.org/10.1007/s00464-023-10460-9
Language: English
Additional information: This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
Keywords: Hernia repair; Mosquito mesh; Frugal innovation; Ethylene oxide; Sterilisation
UCL classification: UCL
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Medical Sciences
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Medical Sciences > Div of Medicine
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Medical Sciences > Div of Medicine > Renal Medicine
URI: https://discovery.ucl.ac.uk/id/eprint/10177815
Downloads since deposit
10Downloads
Download activity - last month
Download activity - last 12 months
Downloads by country - last 12 months

Archive Staff Only

View Item View Item