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Abstract—This paper investigates the information-theoretic se-
crecy problem for a K-user discrete memoryless (DM) multiple-
access wiretap (MAC-WT) channel. Instead of using the weak
secrecy criterion characterized by information leakage rate, we
adopt the strong secrecy metric defined by information leakage
to better protect the confidential information. We provide an
achievable rate region and prove its achievability by providing
a coding scheme and analyzing the output statistics in terms
of (average) variational distance. We show that the rate region
obtained in previous works on the subject is a special case of
ours. We also show that the achievability proof in such works is
incomplete, because it is assumed that certain inequalities hold
while they may not in some cases. We solve this problem by
constructing an inequality structure for the rates of all users’
secret and redundant messages, and analyzing the conditions
required to maintain this structure.

I. INTRODUCTION

Following the pioneering work of Wyner [1] and Csiszár
and Körner [2], information-theoretic secrecy has been studied
for many different channel models, including multiple access
wiretap (MAC-WT) channels. In [3]–[5], two-user MAC-WT
systems were studied, where [3] developed inner and outer
bounds for a discrete memoryless (DM) MAC-WT channel
with a weaker eavesdropper (Eve), and [4] and [5] studied
a channel where two users communicate with a common
receiver and see each other as an Eve. In [6]–[11], the
more general scenario with an arbitrary number of users was
investigated. Specifically, [6] and [7] developed achievable
regions for DM MAC-WT channels. Reference [8] studied
a Gaussian MAC-WT system with a weaker Eve seeing a
degraded channel. The work was extended by [9] to a non-
degraded Gaussian case where each user has, in addition
to confidential information, also an open (non-confidential)
message intended for the legitimate receiver (Bob). Then, in
[10] and [11], the results of [9] were further improved.

The above mentioned literature considered the weak secrecy
criterion characterized by information leakage rate. It should
be noted that a vanishing information leakage rate does not
imply that a vanishing number of information bits of the secret
message are leaked, because the length of the message in bits
grows linearly with the block length n. The notion of strong
secrecy was introduced in [12], [13], by considering directly
the information leakage in terms of the multi-letter mutual
information between messages and Eve’s received signal,
without normalization by n. In particular, [14]–[16] have
considered the MAC-WT under strong secrecy. In [14], by

analyzing the output statistics in terms of (average) variational
distance and applying random coding, an achievable region
was provided for a DM MAC-WT channel. In [15], the MAC-
WT system with a DM main channel and different wiretapping
scenarios was studied. Both [14] and [15] considered only
two-user case. Based on Rényi mutual information, [16]
considered the general K-user DM MAC-WT channel and
strengthened the results in [6] and [7] subject to the strong
secrecy criterion. However, by checking the two-user case and
comparing [16, (14)] with [14, Theorem 1], it can be easily
found that the achievable region given in [16] includes only
R1 in [14] but not R2 and R3, indicating that there is still
space for improvement of the achievable region of the general
K-user MAC-WT channel.

In this paper, we continue the study of information-theoretic
secrecy for a K-user DM MAC-WT channel under strong
secrecy and contribute in three aspects. 1) In wiretap channels,
typical achievability strategies are based on introducing redun-
dant messages to protect the confidential information. When
introducing such a message, one has to ensure that, on one
hand, its rate is large enough for protecting the secret message,
and on the other hand, the resulting sum rate (together with
the secret message rate) does not exceed Bob’s decoding
capability. This creates the need for an inequality structure
involving the rates of all users’ secret and redundant messages.
We explore and construct such a structure in Theorem 1,
which has never been analyzed before. 2) Unlike [16], we
prove the achievability based on the (average) variational
distance as in [14]. To this end, we extend the results on
the output statistics for a two-user MAC channel in [14]
to the general K-user case. 3) We provide an achievable
region for the considered channel and show that those given
in [14] and [16] are special cases of ours. Most importantly,
we show that to use Theorem 1 for the achievability proof,
some conditions must be met such that the inequality structure
built in Theorem 1 can be maintained. Therefore, in proving
the achievability, we separately talk about cases where these
conditions can and cannot be satisfied. As we explain in
Remark 1, a similar problem also exists in [14] and [16],
but it was not addressed.

Notations: We use upper and lower case letters to denote
random variables and their realizations, e.g., X , x. PX(·) rep-
resents the distribution of X and PX(x) = Pr{X = x}. For
two different distributions, PX(·) and QX(·), defined both on
alphabet X , their variational distance is ‖PX(·)−QX(·)‖1 =
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Fig. 1. Block diagram of a K-user DM MAC-WT channel.∑
x∈X |PX(x)−QX(x)|. We use calligraphic capital letters

to denote sets, | · | to stand for the cardinality of a set, and
“ \ ” to represent the set subtraction operation. We use line
over a calligraphic letter to indicate it is the complement of
a set, e.g., K′ = K \K′ if K′ ⊆ K, and calligraphic subscript
to denote the set of elements whose indexes take values from
the subscript set, e.g., XK = {Xk,∀k ∈ K}.

II. CHANNEL MODEL

As shown in Fig. 1, we consider a DM MAC-WT channel
with K users, a legitimate receiver (or Bob for brevity),
and an Eve. Let K = {1, · · · ,K}. The DM MAC-WT
system can then be denoted by

(
XK, PY,Z|XK ,Y,Z

)
(in short

PY,Z|XK ), where Xk, Y , and Z are finite alphabets, xk ∈ Xk
is the channel inputs from user k, and y ∈ Y and z ∈ Z
are respectively channel outputs at Bob and Eve. Each user
k ∈ K transmits a secret message M s

k to Bob. Specifically,
user k encodes its information into a codeword Xn

k , and
then transmits it over the channel with transition probability
PY,Z|XK . Upon receiving the sequence Y n, Bob decodes the
messages of all users. Eve attempts to overhear the secret
messages of all users. Let Rs

k denote the rate of user k’s
secret message. Then, a

(
2nR

s
1 , · · · , 2nRs

K , n
)

secrecy code
for the considered DM MAC-WT channel consists of
• Message sets:Ms

k =
[
1 : 2nR

s
k

]
,∀k ∈ K. Each message

M s
k is uniformly distributed over Ms

k.
• Randomized encoders: the encoder of user k maps mes-

sage M s
k ∈Ms

k to a n-length codeword Xn
k .

• A decoder at Bob which maps the received noisy se-
quence Y n to the message estimate M̂ s

k ∈Ms
k,∀k ∈ K.

To evaluate the performance, we define two metrics, i.e., the
average probability of error Pr

{
M̂ s
K 6=M s

K

}
for Bob, and the

information leakage I (M s
K;Z

n) for Eve. A rate tuple (Rs
1,

· · · , Rs
K) is said to be achievable if there exists a sequence

of
(
2nR

s
1 , · · · , 2nRs

K , n
)

codes such that

lim
n→∞

Pr
{
M̂ s
K 6=M s

K

}
= 0, (1)

lim
n→∞

I (M s
K;Z

n) = 0. (2)

III. MAIN RESULTS

In this section, we provide an achievable region for the
considered DM MAC-WT channel. Before that we first give
two auxiliary theorems important for the achievability proof.

A. Auxiliary Results

We use mg
k and Rg

k to denote the redundant message
introduced for user k and its rate. Since Bob does not need this
information, we call it “garbage” message and use superscript
“g” to distinguish from the secret messages. As explained in

Section I, there should exist a relationship or structure for
Rs
k, R

g
k,∀k ∈ K such that all messages could be perfectly

decoded by Bob and the confidential information could be
protected. The following theorem characterizes such structure.

Theorem 1. For each given K′ ⊆ K, if

I(XS ;Y |XS , XK′)− I(XS ;Z|XK′) ≥ 0,∀S ⊆ K′, (3)

where K′ = K \ K′ and S = K′ \ S, then, for any rate tuple
(Rs

1, · · · , Rs
K) satisfying Rs

k = 0,∀k ∈ K′ and∑
k∈S

Rs
k ≤I(XS ;Y |XS , XK′)−I(XS ;Z|XK′),∀S ⊆ K

′, (4)

there exist Rg
k,∀k ∈ K′ such that

∑
k∈S

(Rs
k +Rg

k) ≤ I(XS ;Y |XS , XK′),∀S ⊆ K′,∑
k∈S

Rg
k ≥ I(XS ;Z|XK′),∀S ⊆ K′.

(5)

Proof: See Appendix A. �
Next, we prove another auxiliary result that yields an expo-

nential upper bound to the average total variational distance
of the n-variate output distribution, subject to certain single-
letter mutual information inequalities. Consider a DM MAC
channel (not necessarily a wiretap channel) with K users and a
receiver. Each user k ∈ K has a message setMk =

[
1 : 2nRk

]
and its message Mk is uniformly distributed overMk. User k
generates a codebook ck by randomly and independently gen-
erating 2nRk sequences xnk (mk),∀mk ∈Mk, each according
to
∏n
i=1 PXk

(xki). Then, for a given message mk ∈ Mk,
user k transmits codeword xnk (mk) over channel PZ|XK . Let
Ck denote the random choice of codebook ck and define the
following conditional probability

PZn(zn|CK)

=2−n
∑

k∈K Rk

∑
mK∈

∏
k∈KMk

PZn

(
zn| {Xn

k (mk)}k∈K
)
. (6)

Since Ck is a random variable, PZn

(
zn| {Xn

k (mk)}k∈K
)

and
PZn(zn|CK) in (6) are conditional distributions whose values
depend on the specific realizations of Ck,∀k ∈ K.

Theorem 2. Let (XK, Z) ∼
∏K
k=1 PXk

PZ|XK . For any given
K′ ⊆ K, if

Rk = 0,∀k ∈ K′,∑
k∈S

Rk > I(XS ;Z|XK′),∀S ⊆ K
′,S 6= φ, (7)

using the above coding scheme, there exists ε > 0 such that

E ‖PZn(·|CK)− PZn(·|CK′)‖1 ≤ e
−nε, (8)

where PZn(·|CK′) is similarly defined as PZn(·|CK) in (6),
and the expectation is taken over the random codebooks. �

The detailed proof of Theorem 2 will be provided in [17].
Theorem 2 shows that with (7), the coding scheme provided
above ensures that the variational distance between output
statistics PZn(·|CK) and PZn(·|CK′) vanishes exponentially in
n. Note that the above coding scheme is provided mainly for
reaching Theorem 2 and is different from that in Section IV.



B. Achievable Region
In the following theorem, we give an achievable region for

the considered DM MAC-WT channel.

Theorem 3. Let (XK, Y, Z) ∼
∏K
k=1 PXk

PY,Z|XK . Then, for
each given K′ ⊆ K, any rate tuple (Rs

1, · · · , Rs
K) in region{

Rs
k = 0,∀k ∈ K′,∑

k∈S
Rs
k≤[I(XS ;Y |XS , XK′)−I(XS ;Z|XK′)]

+
,∀S⊆K′, (9)

is achievable. Let R(XK,K′) denote the set of rate tuples sat-
isfying (9). Then, the convex hull of the union of R(XK,K′)
over all

∏K
k=1 PXk

and K′ ⊆ K is an achievable rate region
of the DM MAC-WT channel.

The proof of Theorem 3 is provided in the next section.

Remark 1. It is easy to see that [14, Theorem 1] and [16,
Theorem 1] are special cases of Theorem 3 by respectively
setting K = 2 and considering only K′ = K. As shown in
the next section, for a given K′, we introduce “garbage” mes-
sages, whose rates satisfy (5), and then prove the achievability
of R(XK,K′) by providing a coding scheme. However, (5)
can only be satisfied if (3) is true. If it is not, the proof is no
longer valid. As a matter of fact, this problem also exists in
[14] and [16] (by respectively checking [14, (7), (20)] and
[16, (11), (13)]), but was not considered, making the proof
incomplete. In the next section we prove that if (3) is not
true, there always exists K′′ $ K′ such that (3) becomes true
for the reduced set K′′ and R(XK,K′) is in R(XK,K′′),
which can then be proved to be achievable. Therefore, this
paper not only extends the achievable region given by [14]
and [16], but also “completes” the proofs in these works.

IV. ACHIEVABILITY PROOF

It can be easily checked that if K′ = φ, R(XK,K′) contains
only rate tuple (Rs

1 = 0, · · · , Rs
K = 0), whose achievability

is obvious. Now we prove the achievability of R(XK,K′) for
any K′ ⊆ K and K′ 6= φ. Without loss of generality (w.l.o.g.),
we always assume

I(XS0 ;Y |XS0) > 0,∀S0 ⊆ K,S0 6= φ, (10)

where S0 = K \ S0 since otherwise users in S0 cannot
communicate with Bob. Moreover, we assume

I(XS ;Y |XS , XK′)−I(XS ;Z|XK′)>0,∀S⊆K′,S 6=φ,(11)

which is (3) with strict >. If (11) cannot not be satisfied, we
show later that the achievability could be proven by modifying
the proof steps.

A. Achievability Proof When (11) Holds
In this subsection, we show that with (11), any rate tuple

inside R(XK,K′) is achievable. This, together with the stan-
dard time-sharing over coding strategies, suffices to prove the
achievability of R(XK,K′). If assumption (11) can be met,
a rate tuple (Rs

1, · · · , Rs
K) inside R(XK,K′) satisfies

Rs
k = 0,∀k ∈ K′,∑

k∈S
Rs
k < I(XS ;Y |XS , XK′)− I(XS ;Z|XK′)− ε,

∀S ⊆ K′,S 6= φ,

(12)

where ε is an arbitrarily small positive number. Then, accord-
ing to Theorem 1, there exist Rg

k,∀k ∈ K′ such that
∑
k∈S

(Rs
k+R

g
k)<I(XS ;Y |XS , XK′)−ε,∀S⊆K′,S 6=φ,∑

k∈S
Rg
k > I(XS ;Z|XK′),∀S ⊆ K′,S 6= φ.

(13)

Now we provide a coding scheme and show that the rate
tuples inside R(XK,K′) are achievable. Note that for each
user k ∈ K′, since Rs

k = 0, we have Ms
k = {1} and |Ms

k| =
1. Hence, each user k ∈ K′ transmits a fixed message.

Codebook generation. For each secret message ms
k ∈

Ms
k of user k ∈ K′, generate a subcodebook ck(ms

k)
by randomly and independently generating 2nR

g
k sequences

xnk (m
s
k,m

g
k),∀m

g
k ∈M

g
k, each according to

∏n
i=1 PXk

(xki).
All these subcodebooks constitute the codebook of user
k ∈ K′, i.e., ck = {ck(ms

k),∀ms
k ∈Ms

k}. For each user
k ∈ K′, randomly generate a sequence xnk (1) with index
“1” and this unique codeword constructs its codebook, i.e.,
ck = {xnk (1)}. The codebooks of all users are then revealed
to all transmitters and receivers, including Eve.

Encoding. To send message ms
k ∈ Ms

k, user k ∈ K′
uniformly chooses a codeword (with index mg

k) from subcode-
book ck(ms

k) and then transmits xnk (m
s
k,m

g
k). In contrast,

user k ∈ K′ has only one message and transmits xnk (1).
Decoding. The decoder at Bob declares that m̂s

K′ is sent
if there exists m̂g

K′ ∈
∏
k∈K′M

g
k such that (m̂s

K′ , m̂
g
K′)

is the unique message tuple satisfying
(
{xnk (m̂s

k, m̂
g
k)}k∈K′ ,

{xnk (1)}k∈K′ , yn
)
∈ T (n)

ε (XK, Y ).
Now we show that using the coding scheme provided above,

both (1) and (2) can be satisfied. Since users in K′ and K′
respectively transmit messages at rate Rs

k +Rg
k and Rs

k = 0,
and (see (13))∑
k∈S

(Rs
k +Rg

k)<I(XS ;Y |XS , XK′)−ε, ∀S⊆K
′,S 6=φ, (14)

the rate tuple
( {
Rs
k +Rg

k

}
k∈K′ , {R

s
k = 0}k∈K′

)
is thus in-

side the capacity region of the MAC channel from all users
to Bob. Hence, Bob can perfectly decode all messages and
(1) can be satisfied.

We now verify (2). Define the following variational distance

d (CK,ms
K) =

∥∥PZn (·|CK)− PZn

(
·| {Ck(ms

k)}k∈K
)∥∥

1

=
∥∥PZn

(
·|CK′ , {Ck(1)}k∈K′

)
− PZn

(
·| {Ck(ms

k)}k∈K′ , {Ck(1)}k∈K′
)∥∥

1
.(15)

As shown in (16) at the bottom of the next page, we can
get an upper bound on the expectation of d (CK,ms

K), where
the expectation is taken over CK. In (16), (16a) follows
from first introducing PZn

(
·| {Ck(1)}k∈K′

)
and then apply-

ing the triangular inequality, and (16b) holds by computing
PZn

(
·|CK′ , {Ck(1)}k∈K′

)
over all possible mK′ and also ap-

plying the triangular inequality. In addition, it is known from
the coding scheme provided above that there are respectively
2nR

g
k codewords in Ck(ms

k),∀k ∈ K′ and one codeword in
Ck(1),∀k ∈ K′. Since Rs

k = 0,∀k ∈ K′ and (see (13))∑
k∈S

Rg
k > I(XS ;Z|XK′),∀S ⊆ K

′,S 6= φ, (17)



(16c) is obtained by using Theorem 2. Now we evaluate
the information leakage over all codebooks in (18) at the
bottom of this page, where (18a), (18b), and (18c) fol-
low by respectively applying the triangular inequality, [18,
Lemma 2.7], and Jensen’s inequality, and the last step holds
since u ln |Z|

n

u is an increasing function of u in (0, |Z|
n

e ] and
0 < 2e−nε < 1

e ≤
|Z|n
e (as n goes to infinity). Using the

definition of mutual information,

I (M s
K;Z

n|CK) = I (M s
K;Z

n, CK)− I (M s
K; CK)

(a)
= I (M s

K;Z
n, CK)

= I (M s
K;Z

n) + I (M s
K; CK|Zn)

≥ I (M s
K;Z

n) , (19)

where (19a) holds since the choices of random messages and
codebooks are independent, resulting in I (M s

K; CK) = 0.
Combining (18) and (19), we know that (2) is true. Hence, if
(11) is true, any rate tuple in R(XK,K′) is achievable.

B. Achievability Proof When (11) does not Hold

Now we prove the achievability for the case where (11)
does not hold. Beforehand, we first assume

I(XK′ ;Y |XK′)− I(XK′ ;Z|XK′) > 0, (20)

which is one of the inequations in (11) with S = K′, since
otherwise it is known from (9) that Rs

k = 0,∀k ∈ K, and it is
no longer necessary to prove the achievability. Then, if (11)
does not hold, there must exist S $ K′ and S 6= φ such that

I(XS ;Y |XS , XK′)− I(XS ;Z|XK′) ≤ 0. (21)

In this case, there must exist at least one subset K0 $ K′ and
K0 6= φ such that

I(XK0
;Y |XK′\K0

, XK′)− I(XK0
;Z|XK′) ≤ 0, (22)

and

I(XK0∪V ;Y |XK′\(K0∪V), XK′)− I(XK0∪V ;Z|XK′) > 0,

∀V ⊆ K′ \ K0, V 6= φ. (23)

The inequations (22) and (23) indicate that K0 is the largest
set in K′ which includes all users in K0 and ensures (22).
Adding any other users in K′ \K0 to K0 results in (23). Note
that if there are multiple subsets in K′ making (22) and (23)
hold, we let K0 be any of them. Let

K′′ = K′ \ K0

= K \ (K′ ∪ K0),

K′′ = K \ K′′

= K′ ∪ K0. (24)

Then, we give the following theorem.

Theorem 4. With K0, K′′, and K′′ defined above, we have

I(XV ;Y |XV , XK′′)−I(XV ;Z|XK′′)>0,∀V⊆K′′,V 6=φ,(25)

where V = K′′ \V . In addition, if a rate tuple (Rs
1, · · · , Rs

K)
is in region R(XK,K′) defined by (9) and has (22) and (23)
met, it is also in region R(XK,K′′), i.e., it satisfies{
Rs
k = 0,∀k ∈ K′′,∑

k∈V
Rs
k ≤ I(XV ;Y |XV , XK′′)−I(XV ;Z|XK′′),∀V ⊆ K′′,

(26)
in which [·]+ is omitted due to (25).

Proof: See Appendix B. �
It is known from Theorem 4 that if a rate tuple (Rs

1, · · · ,
Rs
K) in R(XK,K′) satisfies (22) as well as (23), it also satis-

fies (25) and (26). Then, its achievability is immediately clear
if we could prove that with (25), any rate tuple in R(XK,K′′)
is achievable. Interestingly, this can be realized by using
similar techniques provided in the previous subsection.

E [d (CK,ms
K)]

(a)
≤ E

∥∥PZn

(
·|CK′ , {Ck(1)}k∈K′

)
− PZn

(
·| {Ck(1)}k∈K′

)∥∥
1

+ E
∥∥PZn

(
·| {Ck(ms

k)}k∈K′ , {Ck(1)}k∈K′
)
− PZn

(
·| {Ck(1)}k∈K′

)∥∥
1

(b)
≤ 2−n

∑
k∈K′ R

s
k

∑
ms
K′∈

∏
k∈K′Ms

k

E
∥∥PZn

(
·| {Ck(ms

k)}k∈K′ , {Ck(1)}k∈K′
)
− PZn

(
·| {Ck(1)}k∈K′

)∥∥
1

+ E
∥∥PZn

(
·| {Ck(ms

k)}k∈K′ , {Ck(1)}k∈K′
)
− PZn

(
·| {Ck(1)}k∈K′

)∥∥
1

(c)
≤ 2e−nε → 0. (16)

I (M s
K;Z

n|CK) = H (Zn|CK)−H (Zn|CK,M s
K)

= H
(
Zn|CK′ , {Ck(1)}k∈K′

)
−H

(
Zn| {Ck(M s

k)}k∈K′ , {Ck(1)}k∈K′
)

(a)
≤ 2−n

∑
k∈K′ R

s
k

∑
ms
K′∈

∏
k∈K′Ms

k

∣∣H (Zn|CK′ , {Ck(1)}k∈K′)−H (Zn| {Ck(ms
k)}k∈K′ , {Ck(1)}k∈K′

)∣∣
(b)
≤ 2−n

∑
k∈K′ R

s
k

∑
ms
K′∈

∏
k∈K′Ms

k

E
[
d (CK,ms

K) ln
|Z|n

d (CK,ms
K)

]
(c)
≤ 2−n

∑
k∈K′ R

s
k

∑
ms
K′∈

∏
k∈K′Ms

k

E [d (CK,ms
K)] ln

|Z|n

E [d (CK,ms
K)]

≤ 2e−nε (n ln |Z|+ nε− ln 2)→ 0. (18)



V. CONCLUSIONS

In this paper, we studied information-theoretic secrecy for a
K-user DM MAC-WT channel under strong secrecy. We de-
veloped an inequality structure for the rates of all users’ secret
and redundant messages, and analyzed the output statistics in
terms of variational distance for the general K-user MAC
channel. Based on these results, we provided and proved a
new achievable region that enlarges previously known results.
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APPENDIX A
PROOF OF THEOREM 1

We prove Theorem 1 by eliminating Rg
k in (5) using the

Fourier-Motzkin procedure [19, Appendix D] and showing
that (4) is the projection of (5) onto the hyperplane {Rg

k =
0,∀k ∈ K′}. To that end, we first obtain upper and lower
bounds on sums of Rg

k from (5) as follows∑
k∈S

Rg
k ≤ I(XS ;Y |XS , XK′)−

∑
k∈S

Rs
k,∀S ⊆ K′, (27)∑

k∈S′
Rg
k ≥ I(XS′ ;Z|XK′),∀S

′ ⊆ K′. (28)

Note that we use S ′ in (28) to distinguish from S in (27). By
comparing the upper bounds in (27) with the lower bounds in
(28), and eliminating Rg

k,∀k ∈ K′ one by one, we finally get∑
k∈S

Rs
k ≤ I(XS ;Y |XS , XK′)−

∑
Sj∈ψ

I(XSj ;Z|XK′),

∀S ⊆ K′, ψ ∈ ΨS , (29)

where ΨS is defined as

ΨS =
{
ψ = {S1, · · · ,SJ}|1 ≤ J ≤ |S|,Sj ,Sj′ ⊆ S,

Sj ∩ Sj′ = φ, ∀j, j′ ∈ J , j 6= j′,S1 ∪ · · · ∪ SJ = S
}
, (30)

and J = {1, · · · , J}. It is obvious that ΨS gives all possible
divisions of S.

The inequation system defined by (29) is the projection of
(5) onto the hyperplane {Rg

k = 0,∀k ∈ K′}. Now we show
that it is equivalent to (4). For each given S ⊆ K′, (29) gives
|ΨS | upper bounds on

∑
k∈S R

s
k, while (4) provides only one.

When J = 1, i.e., ψ = {S}, we get from (29)∑
k∈S

Rs
k ≤ I(XS ;Y |XS , XK′)− I(XS ;Z|XK′), (31)

which is exactly (4). Hence, we only need to show that for a
given S, all uppers bounds on

∑
k∈S R

s
k with ψ ∈ ΨS \ {S}

given in (29) is no tighter than that with ψ = {S}, i.e., proving

I(XS ;Z|XK′) ≥
∑
Sj∈ψ

I(XSj ;Z|XK′),∀ψ ∈ ΨS\{S}. (32)

Since the sets in any ψ is a division of S, using the chain
rule of mutual information, we have

I(XS ;Z|XK′)
=I(XS1 , · · · , XSJ ;Z|XK′)
=I(XS1 ;Z|XK′) + · · ·+ I(XSJ ;Z|XS1 , · · · , XSJ−1

, XK′)

≥
∑
Sj∈ψ

I(XSj ;Z|XK′),∀ψ ∈ ΨS \ {S}, (33)

where the last step holds since Xk,∀k ∈ K are independent
of each other. (32) is thus true and this completes the proof.

APPENDIX B
PROOF OF THEOREM 4

We first prove (25). Using the chain rule of mutual infor-
mation, the left-hand-side term of (23) is upper bounded by

I(XK0∪V ;Y |XK′\(K0∪V), XK′)− I(XK0∪V ;Z|XK′)
=I(XK0

, XV ;Y |XK′\(K0∪V), XK′)− I(XK0
, XV ;Z|XK′)

=I(XK0 ;Y |XK′\K0
, XK′)− I(XK0 ;Z|XK′)

+I(XV ;Y |XK′\(K0∪V), XK′)− I(XV ;Z|XK′∪K0
)

(a)
≤I(XV ;Y |XK′\(K0∪V), XK′)− I(XV ;Z|XK′∪K0

)

(b)
≤I(XV ;Y |XK′\(K0∪V), XK′∪K0

)− I(XV ;Z|XK′∪K0
)

=I(XV ;Y |XV , XK′′)− I(XV ;Z|XK′′),∀V ⊆ K
′′,V 6= φ,

(34)

where (34a) follows by using (22), (34b) holds by introducing
XK0

and using the fact that Xk,∀k ∈ K are independent of
each other, and the last step follows by using the definitions
of K′′ as well as K′′ in (24). Combining (23) and (34), we
know that (25) is true.

Now we prove the second part of Theorem 4, i.e., if a rate
tuple (Rs

1, · · · , Rs
K) is in region R(XK,K′) and has (22) as

well as (23) met, it is also in R(XK,K′′). If (22) is satisfied,
it is known from (9) that Rs

k = 0,∀k ∈ K0. Hence,

Rs
k = 0,∀k ∈ K′′. (35)

Since (Rs
1, · · · , Rs

K) is in R(XK,K′) and Rs
k = 0,∀k ∈ K0,

it satisfies∑
k∈V

Rs
k =

∑
k∈K0∪V

Rs
k

≤ I(XK0∪V ;Y |XK′\(K0∪V), XK′)− I(XK0∪V ;Z|XK′)
≤ I(XV ;Y |XV , XK′′)− I(XV ;Z|XK′′),∀V ⊆ K

′′, (36)

where the first inequation is obtained directly from (9) by
replacing S in (9) with K0 ∪ V , and the last step follows
by using (34). Note that due to (23), the [·]+ operation in
the first inequation in (36) can be omitted. (35) together with
(36) shows that the rate tuple (Rs

1, · · · , Rs
K) can have (26)

satisfied and is thus also in R(XK,K′′). Theorem 4 is then
proven.
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